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Abstract

Waveguide QED with cold atoms provides a potent platform for the study of non-equili-
brium, many-body, and open-system quantum dynamics. Even with weak coupling and
strong photon loss, the collective enhancement of light-atom interactions leads to strong
correlations of photons arising in transmission, as shown in recent experiments. Here
we apply an improved mean-field theory based on higher-order cumulant expansions to
describe the experimentally relevant, but theoretically elusive, regime of weak coupling
and strong driving of large ensembles. We determine the transmitted power, squeezing
spectra and the degree of second-order coherence, and systematically check the conver-
gence of the results by comparing expansions that truncate cumulants of few-particle
correlations at increasing order. This reveals the important role of many-body and long-
range correlations between atoms in steady state. Our approach allows to quantify the
trade-off between anti-bunching and output power in previously inaccessible parameter
regimes. Calculated squeezing spectra show good agreement with measured data, as we
present here.
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1 Introduction

The strong and tunable interactions among photons and atoms achievable in engineered nano-
photonic structures present exciting prospects for fundamental studies in non-equilibrium
many-body physics and for applications in quantum technology [1–3]. Waveguide QED [4–8],
specifically, offers unique opportunities to study the propagation of light in highly nonlinear
media and in the realm of collective coupling with atoms [9–17]. A distinctive feature of QED
with nanophotonic waveguides is the possibility of realizing a chiral light-matter interaction
in which atoms couple exclusively to photons propagating unidirectionally [18–23]. It was
shown that pulse propagation through an ensemble of non-interacting atoms strongly and
chirally coupled to a waveguide is governed by a rich structure of multi-photon states that
can lead to time-ordered many-body states of light [24, 25]. Remarkably, even in the case of
weak coupling, where photons are predominantly scattered out of the waveguide, the inter-
play of losses with the nonlinearity of atoms results in strong correlations of the light [26]. In
recent experiments, these photon-photon correlations have been demonstrated in the form of
(anti)-bunching [13] and squeezing [14] in light transmitted through an ensemble of two-level
systems that were weakly and chirally coupled to a waveguide.

Due to their non-equilibrium, many-body, and open-system dynamics, the theoretical de-
scription of such experiments is a major challenge at present. For lossless chiral systems, the
scattering matrix can be expressed analytically even in the many-body regime [27, 28]. For
the experimentally more relevant regime of weak coupling, this approach can also be applied
in the subspace with few excitations, giving good agreement with measurements for small in-
put powers [13, 14, 26]. However, the same method cannot be applied for stronger driving
fields approaching saturation, where states with larger numbers of excitations contribute sig-
nificantly. Instead of propagating the wave function of photons by means of an expansion on
scattering eigenstates, it is also possible to infer the properties of transmitted light from the
dynamics of atoms using input-output relations, and the quantum-regression theorem [29,30].
In principle, this requires the solution of an open many-particle spin model [31], which in turn
is only possible exactly in the subspace involving few excitations.

An approximate treatment of the many-body dynamics of atoms for strong driving may
exploit the fact that the coupling to the waveguide is weak. Since the dominant scattering of
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photons from the waveguide acts as a local decoherence channel for each atom and correlations
between atoms are induced only via weak collective scattering in guided field modes, one can
expect many-body correlations to be limited. Approximate descriptions for finitely correlated
systems in terms of matrix-product-states (MPS) [32] have been applied to waveguide QED
systems with good success [24,33]. However, because the one-dimensional geometry supports
infinite-range interactions, the finite correlation length imposed by MPS may fail to capture
important features, which becomes especially problematic for larger systems. Indeed, the long-
range nature of interactions [12] and correlations [15] has been explored in recent studies.

Here, we employ an improved mean-field theory based on a higher order cumulant expan-
sion [34] to solve for the dynamics of a strongly-driven, weakly-coupled, chiral chain of atoms
and thus determine the photon statistics of the transmitted light. In lowest order, this expan-
sion reduces to ordinary mean-field theory, and essentially assumes a tensor product state of
atoms. While this reproduces the equations of classical electrodynamics, it obviously fails to
account for the collective effects due to quantum correlations [35]. n-th order mean-field ex-
pansions, accounting systematically for genuine n-particle correlations, have received growing
interest lately in the context of collective interactions of light with atomic ensembles [36–39].
In general, such an expansion reduces the effective dimensionality of the problem at the cost
of introducing a nonlinearity in the equations of motion whose complexity grows with the
order of expansion. Remarkably, as we show here, when applied to a chirally coupled system,
the problem stays effectively linear. This avoids numerical issues usually arising at larger or-
ders of truncation, and allows us to compare results for different expansions even for systems
of considerable size. Using this method, we determine squeezing spectra and the degree of
second-order coherence in parameter regimes not accessible with other methods. In the low
power regime, we find results consistent with those found from the expansion in the two-
photon subspace [26]. For large driving, we find that higher order correlations of atoms play
a significant role for describing the correlations in transmitted light. We also study the spatial
characteristics of two-particle correlations, and show that the system develops intriguing pat-
terns of long-range correlations in steady state. Theoretical predictions for squeezing spectra
are compared with measurements and show good agreement, extending the discussion in [14]
to the regime of large driving powers. The predictions for the antibunching achievable in a
chiral waveguide system allow a discussion of the quality, in terms of the Mandel Q parameter,
of a stationary single photon source envisioned in [13,40].

The paper is structured as follows: In section 2 we introduce the cascaded systems master
equation governing the dynamics of the chiral system. We also introduce the correlation func-
tions of light, which we aim to determine from the dynamics of atoms. Section 3 deals with
the lowest order approximation to the system, i.e. mean-field theory. In section 4, we intro-
duce the higher order cumulant expansion, provide a systematic comparison of expansions at
various order, and discuss the role and characteristics of atomic correlations.

2 Cascaded system master equation

We consider the system shown in Fig. 1. An arrangement of N two-level atoms is chirally
coupled to a waveguide, i.e. the atoms effectively couple only to photons propagating in a
single direction. In addition, each atom couples independently to environmental modes. The
total rate of spontaneous emission Γ is accordingly composed of an emission rate β Γ into the
waveguide and a rate (1−β)Γ for decay into the environment, where 0≤ β ≤ 1. A continuous-
wave coherent field is coupled into the waveguide and drives the atomic transition at frequency
ω0. In the following, we will focus on the case of a resonant driving field investigated also in
recent experiments [13, 14]. The strength of the coherent drive is characterized by its mean
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Figure 1: Schematic of setup. In an array of N two-level atoms, each atom can emit
either at a rate β Γ chirally (unidirectionally) into a waveguide or at (1 − β)Γ into
environmental modes. A continuous-wave coherent field resonant with the atomic
transition is coupled into the waveguide with a power Pin. We determine the trans-
mitted power Pout, its components due to elastic and inelastic scattering (Pel, Pie),
the squeezing spectra of light quadratures Xθ , and the degree of second order coher-
ence g2(0).

photon flux Pin corresponding to an input power ħhω0Pin. For the sake of simplicity, we will
not distinguish these quantities and refer also to Pin and related quantities as powers. In the
following, we are interested in the regime of strong drive, by which we understand here an
input power Pin approaching the saturation power Psat = Γ/β .

In this arrangement, the reduced state ρN of the N atoms (after elimination of the photon
field in standard Born-Markov approximation) evolves according to a cascaded system master
equation [23,29,30,41]

1
Γ

dρN

d t
= −i

N
∑

j=1

√

√ Pin

Psat

�

σ−j +σ
+
j ,ρN

�

+ (1− β)
N
∑

j=1

D
�

σ−j

�

ρN

+
β

2

N
∑

j,l=1
j>l

�

σ+l σ
−
j −σ

+
j σ
−
l ,ρN

�

+ β D
�

N
∑

j=1

σ−j

�

ρN =: LNρN . (1)

The master equation is written in a frame rotating atω0. The first two terms on the right hand
side describe, respectively, the coherent resonant drive and decay of atoms to ambient modes.
These two processes affect each of the atoms independently. D[x]ρ = xρx†− 1

2(x
† xρ+ρx† x)

denotes a Lindblad term with jump operator x . The cascaded (chiral) coupling of atoms to
the waveguide is accounted for by the two terms in the last line. These describe collective
dynamics and induce correlations among atoms.

The field coupled out of the waveguide is described by the annihilation operator aout(t)
which fulfills the input-output relation

aout(t) = ain(t) +
p

Pin − i
Æ

βΓ

N
∑

i=1

σ−i (t) . (2)

The first two terms on the right hand side are, respectively, vacuum noise and coherent ampli-
tude (assumed to be real valued) of the input field. The last term represents the field radiated
by the atomic dipoles, and accounts for all effects arising from scattering of photons on atoms
(including damping of the coherent amplitude). The atomic operators appear as a collective
lowering operator as the detection of a photon exiting the waveguide can be emitted from
any of the emitters. The vacuum noise on the right hand side of Eq. (2) will be suppressed in
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the following since we will be exclusively interested in normally ordered quantities to which
vacuum fluctuations do not contribute.

Specifically, we want to characterize the properties of the transmitted light while varying
the input power Pin/Psat, the atomic waveguide coupling β , and the number of emitters N .
A crucial parameter in this system is its optical depth OD = 4βN . We are interested in the
transmitted power Pout = 〈a

†
outaout〉= Pel+Pie, its components due elastically and inelastically

scattered photons Pel and Pie, the squeezing properties of the quadratures of the transmitted
field, and its second-order coherence, i.e. the (anti)bunching of the transmitted photons.
Via the input-output relation (2), these quantities ultimately relate to correlation functions of
atomic observables. In particular, we have

Pel = | 〈aout〉|
2 =

�

�

�

�

�

p

Pin − i
Æ

βΓ

N
∑

i=1




σ−i (t)
�

�

�

�

�

�

2

, (3)

Pie = 〈a†
outaout〉 − | 〈aout〉|

2 = βΓ
N
∑

i, j=1

〈〈σ+i (t)σ
−
j (t)〉〉 . (4)

Pel corresponds to the power due to the interference of the coherent input and the field radiated
by the average atomic dipoles. Pie is the power radiated from dipole fluctuations as described
by their covariance or (second-order) cumulant 〈〈σ+i σ

−
j 〉〉, which is generally defined by

〈〈AB〉〉= 〈AB〉 − 〈A〉 〈B〉 . (5)

While Eqs. (3) and (4) apply for arbitrary time, we focus in the following exclusively on the sta-
tionary dynamics of the system, implicitly taking a long-time limit. Furthermore, the squeezing
spectrum of light quadratures Xθ (t) =

1
2

�

aout(t)eiθ + h.c.
�

is quantified by the spectral density

:Sθ (ω):=

∫ ∞

0

dτ
�

eiωτ + e−iωτ
�

〈:δXθ (τ)δXθ (0):〉 (6)

of quadrature fluctuations δXθ (t) = Xθ (t) − 〈Xθ (t)〉. The colons in :A: denote normal and
time ordering of A. The angle θ is the local oscillator phase with respect to the coherent drive.
With the input-output-relation (2) the two-time correlations of quadrature fluctuations can be
related to those of atomic operators,

〈:δXθ (τ)δXθ (0):〉=
βΓ

4

N
∑

i, j=1

〈〈σ+j (0)σ
−
i (τ)〉〉 − e2iθ 〈〈σ−i (τ)σ

−
j (0)〉〉+ h.c. (7)

The squeezing spectra in Eq. (6) with regard to two conjugate quadratures, say θ = 0, π/2,
can be combined to determine the spectrum of inelastically scattered photons,

Sie(ω) =

∫ ∞

−∞
dτe−iωτ〈〈a†

out(τ)aout(0)〉〉= :S0(ω): + :Sπ/2(ω): . (8)

The frequency integral of this spectrum in turn corresponds to the power in the inelastically
scattered field in Eq. (4),

Pie =
1

2π

∫ ∞

−∞
dωSie(ω) = 〈:δX0(0)δX0(0):〉+




:δXπ/2(0)δXπ/2(0):
�

, (9)

where we introduced the integrated quadrature fluctuations,

〈:δXθ (0)δXθ (0):〉=
1

2π

∫ ∞

−∞
dω :Sθ (ω): . (10)
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Finally, we will also explore the normalized second order correlation function of the output
field at equal times,

g(2)(0) =




a†
out(0)a

†
out(0)aout(0)aout(0)

�

P2
out

. (11)

Its expression in terms of atomic operators follows from the direct application of the input-
output relation in Eq. (2), but turns out to be rather lengthy and is therefore moved to Eq. (A.5)
in Appendix A. Evidently, g(2)(0) involves atomic moments among up to four atoms.

In summary, all quantities of interest ultimately depend on mean values and two-body, as
well as higher order, correlations of atomic observables. These can, in principle, be calculated
from the master equation (1), in combination with the quantum regression theorem as nec-
essary. However, owing to the exponential scaling of the dimension of ρN in the number of
atoms and due to the correlations that arise between them during collective decay through
the waveguide an exact solution is unfeasible. This is the case even in the region of weak
coupling to the waveguide, β ≪ 1, when the optical depth is large OD = 4βN > 1. However,
in this regime the atoms mostly decay non-collectively, and it is therefore to be expected that
correlations between atoms remain weak, at least in the sense that many-particle correlations
are less pronounced than correlations between few particles. On this basis, we construct in
the following approximate solutions of the steady state of the master equation in a mean-field
approach and, in systematic extensions of this, in higher-order cumulant expansions.

3 Mean-field theory

3.1 Transmitted power

The equations of motion for the expectation values of the x , y , and z Pauli operators are

1
Γ

d
d t
〈σx

j 〉= −
1
2
〈σx

j 〉 ,

1
Γ

d
d t
〈σ y

j 〉= −
1
2
〈σ y

j 〉 − 2α j 〈σz
j 〉+ β

j−1
∑

l=1

〈〈σz
jσ

y
l 〉〉 ,

1
Γ

d
d t
〈σz

j 〉= 2α j 〈σ
y
j 〉 − 〈σ

z
j 〉 − 1− β

j−1
∑

l=1

�

〈〈σx
j σ

x
l 〉〉+ 〈〈σ

y
j σ

y
l 〉〉
�

, (12)

as follows from Eq. (1) without approximation. For simplicity, we have already omitted quanti-
ties of the form 〈〈σx

i σ
y,z
j 〉〉, anticipating that these vanish for resonant drive. In these equations

we already expressed two-body correlations through second order cumulants using Eq. (5). In
this way, an effective field driving the j–th atom naturally emerges,

α j = α1 − iβ
j−1
∑

l=1

〈σ−l 〉 , α1 =

√

√ Pin

Psat
, (13)

where α1 is the amplitude experienced by the first atom. The sum in the expression for α j
accounts for the field radiated coherently by all atoms to the left of the j–th one. For reso-
nant driving, the expectation values of the out-of-phase atomic dipoles vanish in steady state,
〈σx

j 〉= 0, and thus the effective driving field α j = α1−
β
2

∑ j−1
l=1 〈σ

y
l 〉 is real. It is also useful to

note that the output power corresponding to the elastically scattered photons in Eq. (3) can be
considered as the effective driving field that would be seen by a hypothetical (N + 1)th atom,
Pel/Psat = α2

N+1.
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To close the system of Eqs. (12), it would have to be supplemented by corresponding
equations for all correlations up to N particles, which would amount to the exact solution of
the master equation. The mean-field approach is the lowest-order approximation that yields a
closed system of equations and corresponds to neglecting all second-order cumulants 〈〈σµj σ

ν
l 〉〉

in Eqs. (12) where µ,ν= x , y, z. In view of Eq. (5), this is tantamount to approximate

〈AB〉 ≃ 〈A〉 〈B〉 , (14)

where A and B are operators referring to different atoms. This approach corresponds to mean-
field theory, where a product state ansatz is made for the density matrix ρN =

⊗

i ρ
(i) with

single particle states ρ(i). Since the system considered here is not translationally invariant,
the single particle states will not be identical. In this approximation and in stationary state,
Eqs. (12) are solved by

〈σz
j 〉= −

1

1+ 8α2
j

, 〈σ y
j 〉=

4α j

1+ 8α2
j

. (15)

Substituting in Eq. (13) yields a recurrence relation for the effective driving field in mean-field
theory α j = α1 − 2β

∑ j−1
l=1αl/
�

1+ 8α2
l

�

.
An approximate solution can be constructed by considering the difference equation

∆α j = α j+1− α j = −2βα j/(1 + 8α2
j ). In the continuous limit (replacing the index j by a

continuous variable z ∈ [0, N]), the solution of the corresponding differential equation for
α(z) yields the Lambert law for the elastically scattered power,

Pel(z) = Psatα(z)
2 = Pin

w
�

8α2
1e8α2

1−4βz
�

8α2
1

, (16)

where w(·) is the Lambert function.1 It is instructive to express this as

4βz =
8Pin

Psat

�

1−
Pel(z)

Pin

�

− ln
�

Pel(z)
Pin

�

, (17)

which reveals a scaling behavior of the particle number (here, z) with β . For low input power
(8Pin≪ Psat), the first term can be neglected with respect to the second one, and one recovers
the Beer-Lambert law

Pel(z)≃ Pin exp(−4βz) . (18)

For large input powers (8Pin≫ Psat) one finds instead an (initial) nonexponential decay

Pel(z)≃ Pin −
Γ z
2

. (19)

In Fig. 2 we illustrate the normalized power of the elastically scattered field Pel/Pin=α2
N+1/α

2
1

versus number of atoms (optical depth). We compare results from mean-field theory where
αN+1 is determined from Eq. (13), with predictions according to the Lambert law (16) and the
Beer-Lambert law (18). In the regime of weak coupling and small input power (up to β ≲ 0.1
and Pin ≲ Psat) the Lambert law provides a good approximation for the decay of Pel, while the
Beer-Lambert law is clearly violated. In Fig. 2, the results of the basic mean-field theory relying
on the product state ansatz are compared to and confirmed by those of improved mean-field
theories, which will be introduced in Section 4.

1Here, w(x) denotes the solution of w exp(w) = x for x ≥ 0, and fulfills the identities w(x exp(x)) = x and
ln w(x) = x −w(x).
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Figure 2: Normalized power of the elastically scattered field Pel/Pin versus num-
ber of atoms (lower x-axes) and optical depth (upper x-axes). a)-b) correspond to
β = 0.01, c)-d) to β = 0.1. Columns refer to input powers Pin/Psat = 0.1, 0.3 from
left to right, respectively. Lines show results from mean-field (MF) theory Eq. (15)
(dotted red line), Lambert law Eq. (16) (solid green line) and Beer-Lambert law
Eq. (18) (dashed blue line). Results from higher order cumulant expansions at trun-
cation order (TO) 2 and 3 are shown as dashed black and dash-dotted black lines,
respectively. Mean-field theory gives good results for low β and low input power. For
Pin/Psat ≳ 1/8 power decay is initially non-exponential, as expressed in Eq. (19).

3.2 Squeezing spectra

We next consider the spectra of quadrature fluctuations which is an important quantity that
directly reveal quantum features of light. It can be experimentally readily accessed using a
balanced homodyne detection scheme, as in [14]. In the following we will first discuss the
squeezing spectrum in different truncation order and compare it to experimental data later
in Sec 4.2.

In the mean-field approach the product state ansatz implies that in Eq. (7) only the one-
particle moments contribute, 〈〈σµi (τ)σ

ν
j (0)〉〉 = δi j〈〈σ

µ
i (τ)σ

ν
i (0)〉〉 with µ,ν being any x , y, z.

Therefore, the squeezing spectrum of light after the j-th atom is given by the sum of the
individual spectra of all i ≤ j atoms (cf. (A.3)), where the respective effective driving power
is given by (16). That is, in mean-field treatment the problem of computing the squeezing
spectrum after j atoms reduces to the problem of resonance fluorescence of j independent
atoms, each driven with different power. Squeezing in the resonance fluorescence of single
two level atoms has been covered in classic papers by Collet, Walls and Zoller [42, 43]. It
is shown there that with resonant drive, squeezing only occurs at moderate drive strength
8Pin/Psat < 1, i.e. well below the threshold of Pin ≃ Psat at which the Mollow triplet occurs.

Beyond some optical depth, which is dependent on β and Pin/Psat, mean-field theory im-
plies saturation in the spectra of the in-phase (in-quadrature) components (θ = 0,π/2), as
well as in the spectrum of the total inelastically scattered field (8). This is clearly unphysi-
cal, since due to the dominant scattering of photons out of the waveguide, the transmitted
power must eventually decrease to zero. In Fig. 3 we can clearly observe this effect. There
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Figure 3: Spectrum of inelastically scattered field Sie(ω) and of quadrature fluctua-
tions :Sθ (ω): for β = 0.01 and Pin

Psat
= 0.1 calculated in cumulant expansion at TO 2.

Normally ordered spectra :Sθ (ω): are bounded from below by −1/4. Blue regions
indicate squeezing. Mean-field theory predicts an unphysical saturation at large opti-
cal depth OD= 4βN (upper x-axes) which is due to the fact that correlations among
atoms and re-scattering of photons are not reflected in mean-field approximation.
Dashed lines correspond to a point of maximal atomic correlations discussed in Sec. 4
and defined there in Eq. (22).

the spectra of quadrature fluctuations : Sθ (ω) : predicted by cumulant expansion at TO 2 are
shown for β = 0.01 and Pin/Psat = 0.1. The artifact of the mean-field ansatz arises from the
implicit assumption that each photon can scatter only once at one of the atoms. The repeated
scattering of photons would cause correlations between the atoms that cannot be represented
in a mean-field approach. We conclude that mean-field theory, while providing satisfactory
results for describing the mean-field amplitude and hence the elastically scattered power, is
clearly inadequate for determining squeezing spectra and the inelastically scattered power.

4 Higher order cumulant expansions

To incorporate correlations into the description of the system, we use improved mean-field
approximations based on a systematic extension of cumulant expansions [34, 36, 37, 39, 44].
The basic mean-field theory described earlier, which neglects all second and higher-order cu-
mulants, corresponds in this framework to a cumulant expansion with truncation order 1 (TO
1). In the following, we will use the cumulant expansions at TO 2, 3, and 4, which account
for correlations involving up to two, three and four particles respectively.

In a cumulant expansion at TO 2, all three-body cumulants

〈〈ABC〉〉= 〈ABC〉 − 〈AB〉 〈C〉 − 〈AC〉 〈B〉 − 〈BC〉 〈A〉+ 2 〈A〉 〈B〉 〈C〉

are discarded, which effectively expresses three-body moments by those of lower order,

〈ABC〉 ≃ 〈AB〉 〈C〉+ 〈AC〉 〈B〉+ 〈BC〉 〈A〉 − 2 〈A〉 〈B〉 〈C〉 . (20)

Here, A, B, and C refer to different atoms. This generalizes the approximation in Eq. (14) from
TO 1 to TO 2. By means of Eq. (20), the master equation (1) is approximated by a closed set
of differential equations comprised of Eqs. (12) and corresponding equations for two-body-
cumulants which we defer to the Appendix A in Eqs. (A.3). This procedure has a systematic
extension to higher TO which is discussed in the Appendix. In particular, the generalization of
Eqs. (14) and (20) to arbitrary higher order is given in Eq. (A.2) of the Appendix. On this basis
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Figure 4: Power of inelastically scattered photons Pie (left column) and integrated
fluctuations 〈:δXθ (0)δXθ (0):〉/Γ for amplitude and phase quadratures (middle and
right column), scaled to the atomic line width Γ , for β = 0.01, Pin/Psat = 0.1 (top)
and β = 0.1, Pin/Psat = 0.3 (bottom). a) - c) correspond to the frequency integration
of the data shown in Fig. 3. Mean-field theory (TO 1, red dotted line) deviates from
expansions at TO 2,3, 4 (black lines) for both sets of parameters. For lower β and
input power, shown in a) - c), results of truncation order 2 and higher agree. In d) -
f) we see that for higher β and power even TO 2 and TO 3,4 deviate, indicating that
higher order correlations start to play a non-negligible role. Including them raises
the computational complexity, which is the reason why the lines for different TO’s do
not extend equally far.

it is in principle straightforward to derive the corresponding equations for TO 3 and 4 from
the master equation (1), but the results are too unwieldy to state explicitly here. The effective
dimensionality of the resulting system of equations grows rapidly with increasing TO, which
limits the treatment to progressively smaller numbers of particles N . In Appendix A we also
give a proof for the effective linearity of the system of equations, which is a special feature of
cascaded systems at arbitrary order of truncation, and provide further comments and caveats
on the method of cumulant expansions.

4.1 Transmitted power and squeezing spectra

The results of TO 2 and TO 3 for the power in the elastically scattered field confirm the pre-
dictions of mean-field theory and the Lambert law, discussed earlier, for the parameter regime
in Fig. 2. However, Fig. 3 shows that the predictions for the squeezing spectra and the power
spectrum of the inelastically scattered field differ significantly. In contrast to mean-field theory,
a treatment in TO 2 predicts a – physically expected – decay of the spectra, which occurs in
particular first at resonant frequencies. The same behavior is observed in the third truncation
order, the results of which we show in Fig. 10 in Appendix A. There, a larger range of powers
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Figure 5: Total output light field Pout = Pel+ Pie for β = 0.01, Pin
Psat
= 0.1 and β = 0.1,

Pin
Psat
= 0.3. In a) the elastically scattered part dominates as the fraction of inelastically

scattered photons is relatively small. Expressed in other words, this means that the
amount of higher order correlations is small and can be truncated without any loss
of accuracy. In b) the elastically scattered part dominates in the beginning of the
chain as well. But with higher β there are more correlations among atoms, i.e. more
inelastically scattered light. Here, higher orders of truncation are necessary for higher
accuracy. The blue line denotes the high-particle limit of the 2-photon theory of [26].

is considered, covering the transition from squeezing to the Mollow triplet. In the following
Section 4.2 we compare the results for squeezing spectra in TO2 to experimental data and find
good agreement.

The discrepancy between mean-field theory and higher-order cumulant expansions is fur-
ther illustrated in Fig. 4, which shows the power in the inelastically transmitted field and
its components, the integrated spectra of the quadrature fluctuations defined in Eq. (10).
For low β and input powers, the higher order truncation results appear to be converged al-
ready at TO 2, indicating that it is sufficient to account for two-body correlations. For higher β
and input powers, it can be seen that the results for TO 2 and TO 3 or TO 4 are in qualitative
agreement, but convergence is not yet achieved for TO 2. This testifies the role of atomic cor-
relations, also beyond pair correlations, and the collective nature of the light-atom interaction
in the waveguide even at the low coupling strengths considered here. Fig. 4 clearly demon-
strates that atomic correlations are essential to obtain a physically meaningful behavior for
increasing optical depths and to evade the artificial saturation that occurs in the mean-field
approach. Atomic correlations will be explored in more detail in Section 4.3.

It is instructive to combine the results from Figs. 2 and 4 and examine the total output
power Pout = Pel + Pie, cf. Fig. 5. For low optical depth, the total transmitted power is dom-
inated by its elastically scattered component. For larger β and input powers, a crossover
becomes visible at higher optical depths, where the inelastically scattered field becomes domi-
nant. In Fig. 5 we include also the results from the theory developed in [26] where the photon
wave function is expanded in the subspace including up to two excitations. This approach
is limited to a regime of low (effective) driving power, but appears to be consistent at large
optical depths with the asymptotic result of cumulant expansions beyond mean-field theory.

4.2 Comparison with experimental data

In the following, we compare the previously obtained results for the squeezing spectrum with
experimental data. The waveguide QED platform consists of laser cooled Cesium atoms cou-
pled to a single mode optical nanofiber [14]. The atoms couple weakly to the evanescent field
part of the waveguided mode with β = 0.0070(5) and yield a total optical depth of OD ≈ 5.
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The atoms are probed with a resonant field that is launched through the fiber with different
input powers Pin = 25−300pW. For comparison to experimental data, it is useful to quantify
the input power in terms of the saturation parameter s = 8Pin

Psat
, which is also consistent with

the nomenclature of [14]. The output light is analyzed with a balanced homodyne detection
scheme from which we deduce the normally ordered squeezing spectrum :Sθ (ω):. A more
detailed description of the setup and the measurement method can be found in [14]. While
the study in [14] was limited to weak excitation regime (s≪ 1), the datasets presented here
include higher input power but have elsewise been taken under the same conditions. Fig. 6
shows :Sθ (ω): for different values of s together with the corresponding theoretical prediction
for TO 2. The amplitude (θ = 0,π) and the phase quadrature (θ = π/2, 3π/2) are displayed
in blue and orange respectively. For low saturation s ≪ 1, the amplitude of the squeezing
spectrum scales with the input power and is mirror-symmetric with respect to the horizontal
axis :Sθ (ω):= 0, i.e. the noise reduction in one quadrature leads to an increased noise in the
conjugate quadrature, c.f. Fig. 6 a) and b). Each spectrum consists of two sidebands which
results from the interplay of coherent build-up and absorption. For s ≳ 1, the atomic transition
starts to saturate, which adds additional noise to each quadrature. This behavior is similar to a
single emitter [42,45] and breaks the symmetry between the two quadratures, as is apparent
from Fig. 6 c) onward. For larger input powers, the experimental conditions are less con-
trolled, resulting in some deviation between theory and experiment. In particular, at higher
input powers, photon scattering leads to recoil heating of the atoms, which modifies both N
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Figure 6: Comparison between experiment and theory for different input saturation
parameters s for the amplitude (θ = 0,π) and phase quadrature (θ = π/2, 3π/2) at
OD ≈ 5. The theoretical prediction based on TO2 are shown by the solid lines. At
low saturation, as shown in a) and b), the squeezing spectra of the two quadratures
are symmetric around : Sθ (ω) := 0. In this regime the theory predicts a crossing of
both quadratures at ω≈ 0, which we attribute to an approximation error due to the
high OD. For larger s, as shown in c) - f), additional noise appears close to resonance,
which breaks the symmetry, and eventually also leads to anti-squeezing for θ = 0,π.
For comparison we show the prediction in the weak saturation regime s≪ 1 [14,26]
in dotted lines.
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Figure 7: Cumulants 〈〈σx
i σ

x
j 〉〉 for β = 0.01 and Pin

Psat
= 0.01,0.1, 0.6,1 determined in

TO 2. The top and right axis show the optical depth OD = 4β j. In stationary state,
a complex correlation pattern emerges, which also exhibits long range correlations
among atoms. The maximal correlation among the first and the j–th atom at j∗
(OD∗) given in Eq. (22) is marked by a yellow circle. As a guide for the eye, the
black contour line indicates 70% of the maximal correlation.

and β , see Appendix A for details. Still, the experimental data exhibits the characteristics pre-
dicted by theory: As s increases, additional noise first appears around resonance, breaks the
symmetry between the quadratures and eventually, anti-squeezing appears in the amplitude
quadrature. We note that in the relevant range, β ≪ 1, the squeezing spectra Sθ (ω) do not
directly depend on β , therefore we calculated the spectra at a slightly higher β (= 0.01), for
the same OD, gaining a numerical advantage in terms of a lowered number of atoms.

4.3 Atomic correlations

Since correlations among atoms play a crucial role, it is is worth studying them more closely.
Fig. 7 shows the pair correlations 〈〈σx

i σ
x
j 〉〉 in steady state determined in TO 2 for various lev-

els of input power in the regime of weak coupling β = 0.01. For power levels approaching
saturation, a rather complex spin correlation develops along the atoms. Remarkably, even
long-range correlations occur, where the pair correlations feature an extremum for a certain
distance |i − j|. For the case of a resonant input field considered here, the equation of mo-
tion for 〈〈σx

i σ
x
j 〉〉 correlations, cf. Eq. (A.3a) in Appendix A, is simple enough to gain some

analytical insight regarding this characteristic distance of maximum correlation. In particular,
for i = 1 one finds the stationary correlation between the first and the j–th atom to be well
approximated by

〈〈σx
1σ

x
j 〉〉= β
�

1+ 〈σz
1〉
�

〈σz
j 〉

j−1
∏

l=2

�

1+ β〈σz
l 〉
�

. (21)

Substituting the mean-field solution in (15) for 〈σz
l 〉, it is possible to approximately determine

the index j∗ where these correlations become extremal. One finds that this is the case at an
optical depth

OD∗ = 4β j∗ ≃ ln
�

24Pin

Psat

�

+
8Pin

Psat
+ 2β −

1
3

. (22)

We note that this formula holds in the limit of small β and does not cover the limit Pin → 0
where correlations decay monotonically. A comparison of this formula to numerical results
is given in Fig. 7 and shows good agreement. We also mark the optical depth OD∗ in the
squeezing spectra shown in Figs. 3 and 10. We observe that it correlates with the cross over
of :S0(0): from antisqueezing to squeezing. It would be highly interesting to have a similar
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Figure 8: g2(0) correlation function for β = 0.05, different input powers and in a)
truncation orders 1 (MF) and in b) TO 4.

characterization of the maximal correlations of 〈〈σ y
i σ

y
j 〉〉, since these determine – for resonant

driving – at which optical depths maximum squeezing occurs in :S0(0):. Unfortunately, the
equations of motion for this case are more complex, cf. Eqs. (A.3), and cannot be solved in
the same way.

4.4 Second-order coherence

Finally, we extend our treatment further to a cumulant expansion at TO 4. This enables us
to discuss the second-order coherence function g2(0) and the antibunching of transmitted
photons. This was recently investigated and experimentally demonstrated in [13]. The exper-
imental results were compared to the two-photon theory of [26] showing good agreement after
taking into account an uncertainty in OD. The experiments were conducted for low coupling
strength β = 0.0083± 0.0003 and low input power s = 0.02 (Pin/Psat = 0.0025).

One can expect to see a rising discrepancy between the experimental results and 2-photon
theory for higher input power. Our work is complementary in the sense that we can study
the system at higher powers. However, the scaling of the effective dimensionality restricts
our treatment to moderate particle numbers. This ensues that in the regime of low coupling
strength (β ≤ 0.01) it becomes unfeasible to investigate the optical depth at which antibunch-
ing is maximal. Nevertheless, for slightly larger coupling strengths β ≥ 0.05 we are able to
treat optical depths of interest showing good agreement between our approach in low-power
(black line at TO 4) and the 2-photon theory (red line), cf. Fig. 8. g2(0) is given in Eq. (11)
and expressed in terms of atomic moments in Eq. (A.5).

Since g2(0) depends on correlations up to fourth order, low-order truncations can be ex-
pected not to yield reliable results. In Fig. 8 we compare the results of mean-field theory and
cumulant expansions at higher order for β = 0.05 and various levels of input power. Sur-
prisingly, a mean-field approximation does give qualitatively similar results as higher order
truncations. However, it is quantitatively wrong in the sense that it predicts too strong an-
tibunching at too small optical depth. Here, as in computing other observables, mean-field
theory means effectively a factorization of higher-order moments into products of first-order
moments, c.f. (A.5). Results at TO 2 turned out to be nonphysical (predicting negative values
for g2(0)), and are therefore not shown in Fig 8. We attribute this unphysicality to the fact
that one needs to apply a nested cumulant expansion in order to compute the 4-body moments
in (A.5) at TO 2. Higher order expansions at TO 3 and 4 do not require nested expansions,
and give physical results. They show good agreement among each other and, at low powers,
with the predictions of [26].

Thus, in order to get a quantitatively correct description, the inclusion of higher order cor-
relations is essential. As we saw in Fig. 4 and 5, correlations account for the initial collectively
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Figure 9: a) shows the output power Pout/Γ in dependence of the input power at
maximal antibunching, i.e. N = 19 for β = 0.05 and N = 7 for β = 0.1, illustrating
the trade-off between large anti-bunching and large output-power. b) compares the
performance of single-photon sources based on single emitters (grey), with β = 0.05
(dashed), β = 1 (solid) and collective sources (blue) for β = 0.05 calculated in TO4
(solid) and using the 2-photon theory (dashed).

enhanced build up of the inelastically scattered part Pie and its subsequent loss. Antibunching
can be understood as a delicate interference between the elastically and inelastically scattered
components. Therefore, including correlations alters the prediction of occurrence and magni-
tude of antibunching strongly.

Fig. 9 shows the output power Pout/Γ (black line) in dependence of the input power at
maximal antibunching, i.e. N = 19 for β = 0.05 and N = 7 for β = 0.1. In the same plot,
the green line shows 1 − g2(0) illustrating the amount of antibunching in the output field
at different input powers. Evidently, there is a trade-off between the level of antibunching
and output power, which is important to grasp if the system is considered as a single-photon
source [40]. Following up on this idea, it is worth comparing the performance of such a
collective single photon source with that of a reference source based on a continuously driven
single atom with a linewidth-limited transition whose emitted photons are collected into a
given optical mode. In principle, one has to compare two quantities: indistinguishability of
the photons and the achievable photon output rate, or brightness. Absent inhomogeneous
spectral broadening, the photon current generated with the collective scheme has a similar
spectral width and yields a similar temporal shape of g2(τ) as the fluorescence of a single atom.
When transforming the photon current into a train of pulses containing at most one photon,
both approaches thus yield the same performance in terms of photon indistinguishability.

In order to quantify the brightness of both types of sources, we require a quantity that
depends on the photon output rate Pout and temporal width τ of the anti-bunching dip. The
latter defines the timescale over which one can be sure that, given a photon detection event,
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no second photon detection will occur. Therefore, we define the quantity

Q = Pout ·τ
�

g(2)(0)− 1
�

, (23)

where τ defines the full width of the anti-bunching dip where it reaches 85% of its maximum
depth. In this region, we approximate g(2)(t) to be constant. For a single atom at low driving
one can show that this definition of τ yields τ = 1/Γ . The quantity Q is equivalent to the
continuous wave version of the Mandel Q parameter [46]which quantifies the deviation of the
photon statistics of the light from a Poissonian distribution in the time interval 2τ. For a single-
atom-based source with photon collection efficiency β , we obtain the analytical expression
Q = −βs/2(1 + s)3/2 with a minimum value of Qmin = −0.19β . For the collective source,
the formalism presented in this manuscript opens up the path to an investigation of the rate–
quality trade-off also in the regime of strong driving. As the performance of the collective
source is in first approximation independent of β , we calculate the expected Q-parameter as
a function of the input power for the experimental parameters underlying Fig. 8, see section
A. The result is shown in the second panel of Fig. 9. The minimum value of Q for this type of
source is Qmin = −0.013. This is about 6.5% of that of a perfect single photon source, i.e. a
single emitter-based source with unit collection efficiency. In other words, this means that at
the optimal working point the performance of a collective single photon source is equivalent
to that of a single emitter based source with β = 6.5%. This shows that such a collective single
photon source outperforms single quantum emitter-based photon sources in situations where
β factors larger than 0.065 cannot be realized.

5 Conclusions and outlook

We employed an improved mean-field theory based on a higher order cumulant expansion
to determine the stationary state of a strongly-driven, weakly-coupled, chiral chain of atoms.
We inferred the power of the transmitted light, its elastic and inelastic component, as well
as squeezing spectra and the degree of second-order coherence. Our treatment evidences the
important role of atomic correlations of growing order for larger input powers. Thanks to the
linearity of the effective equations of motion, we are able to compare different order of cu-
mulant expansions, and in this sense investigate systematically the deviations from a classical,
mean-field description. We find that the system develops intriguing long-range correlations in
steady state. Our theoretical predictions regarding squeezing spectra agree well with experi-
mental results, even for large powers that could not be captured in previous descriptions.

Our approach can be extended in various directions. Firstly, the assumption of resonant
drive can be easily dropped, without changing our treatment conceptually. Secondly, the trade-
off between anti-bunching and photon flux can be investigated more systematically. In order to
do so for lower coupling, our approach need to be made more efficient in terms of the scaling
with particle number, at least at TO 3. This could be done by restricting the descriptions to
those three-particle correlations which are making a relevant contribution to g2(0). Thirdly,
while we focused here on a perfectly unidirectional system, it would be interesting to consider
also systems of mixed chirality. This would, however, come at the cost of an unavoidable
nonlinearity in the equations to be solved.
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A Appendix

General idea of cumulant expansions

We first review the general idea behind a cumulant expansion, for which we also refer to [36]
and references in there. For N particles, an (ℓ+1)-body moment is given by 〈⊗ℓ+1

m=1σ
βm
jm
〉where

we take ℓ+1≤ N , βm ∈ {x , y, z}, jm ∈ [1, N] and jm ̸= jn for m ̸= n. The corresponding (ℓ+1)-
body cumulant is defined by [47]

〈〈
ℓ+1
⊗

m=1
σ
βm
jm
〉〉=
∑

P∈Pℓ+1

f (|P|)
∏

M∈P

〈
⊗

n∈M
σ
βn
jn
〉 , (A.1)

where Pℓ+1 denotes the set of all partitions of the interval [1,ℓ+1], and f (n) = (−1)n−1(n−1)!.
Note that one of the elements in Pℓ+1 is the trivial partition given by {[1,ℓ+ 1]}. This is the
only partition with |P| = 1, and contributes the (ℓ+ 1)-body moment on the right hand side
of Eq. (A.1).

In an expansion at truncation order (TO) ℓ, cumulants of order ℓ+ 1 are set to zero. This
is equivalent to setting

〈
ℓ+1
⊗

m=1
σ
βm
jm
〉= −
∑

P∈Pℓ+1
|P|>1

f (|p|)
∏

M∈P

〈
⊗

n∈M
σ
βn
jn
〉 , (A.2)

which effectively replaces correlations of order ℓ + 1 by a nonlinear function of correlations
of lower order. In this way, the master equation is approximated by a system of differential
equations of lower dimension (depending on the TO), which is closed but generally nonlinear.
In the next section we will explain that this is not the case for cascaded systems.

Before that, we comment on some well-known problems with cumulant expansions, and
explain how we are dealing with these issues in this work. As was explained Sec. 3, a cumulant
expansion at TO 1 corresponds to a product state ansatz for the density matrix, which is a
physically meaningful state by construction. Cumulant expansions at higher order have no
such analog on the level of the density matrix. Thus, the correlations determined in this way
do not necessarily correspond to a physical state. Whether or not a given set Cn

ℓ
of correlations

up to a certain order ℓ among n particles can be due to a density operator ρn corresponds to
the quantum marginal problem [48–50], which is NP-hard and even QMA-complete.

In the present context the unphysicality of the set of correlations Cn
ℓ

can give rise to un-
physicalities in the properties of the transmitted field. For examples, it can give rise to negative
expectation values of positive quantities such as transmitted power, or to violations of Heisen-
berg uncertainty relations for quadrature fluctuations, which reads (:S0(ω):)(:Sπ/2(ω):)≥

1
16 .

In our truncations up to TO 4 such violations do occur for large β and input powers, that is, in
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regimes where correlations of even higher order become important. Comparing results from
different expansions confirms that unphysicalities become less severe or disappear at higher
TO. In all cases shown and discussed here, we have ensured that the power spectrum is positive
everywhere and that the Heisenberg uncertainty of the squeezing spectra is satisfied.

Equations of motion in second order cumulant expansion

For example, in TO 2, the master equation (1) implies the equations of motion for second
order cumulants
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(A.3d)

for i ̸= j. Here, as in (12), we left quantities of the form 〈〈σx
i σ

y,z
j 〉〉 out, since numerical

evidence shows that these vanish. These equations complement and close those in Eq. (12).
We call attention to the nonlinearity on the right hand side which arises from the cumulant
expansion. To gain insight into the correlation structure 〈〈σx

1σ
x
j 〉〉 and derive Eq. (21) we set

β〈〈σz
iσ

z
j 〉〉 to zero. This approximation is justified by the fact that 〈〈σz

iσ
z
j 〉〉 cumulants are by

themself small (numerical evidence) and multiplied by β this term gets neglectable.

Linearity of cumulant expansions for cascaded systems

The cascaded nature of the dynamics implies that the state ρn of the first n atoms evolves
autonomously and independently of the N − n atoms to the right. This can be seen by taking
the partial trace with respect to these N −n atoms in the master equation (1), which gives, for
all n≤ N ,

1
Γ

dρn

d t
= Lnρn . (A.4)

An important consequence of this property, which holds generally for any cascaded system, is
the following: The cumulant expansion at any order of a cascaded system yields a nonlinear
system of differential equations whose structure corresponds to a hierarchy of nested systems
of actually linear differential equations. This feature prevents certain numerical difficulties
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Figure 10: Sie(ω), :S0(ω):, :Sπ/2(ω): for β = 0.01 and Pin/Psat = 0.03, 0.06, 0.1,
0.3, 1 at TO 3. The dashed line is computed via equation (22). As observed earlier
in Fig. 6, in the low power regime the spectra are symmetric. Approaching a regime
where Pin ≃ Psat we see the transition to and, eventually, in the last row, the mani-
festation of the Mollow triplet.

in solving the truncated differential equation systems associated with the normally occurring
nonlinearity, which becomes pertinent especially for higher TOs.

In order to show this, we denote by Cn
ℓ

the set of correlations of the type (A.1) involving up
to (and including) ℓ particles among the leftmost n atoms, assuming ℓ≤ n. Thus, Cn

ℓ
contains

at most ℓ-body moments and it is a subset of Cn+1
ℓ

. Cn+1
ℓ

contains additionally all correlations
up to order ℓ involving the (n+ 1)-th particle.

Our argument proceeds inductively: The correlations Cℓ
ℓ

up to order ℓ among the first ℓ
atoms follow without approximation from Eq. (A.4) for n= ℓ. Thus, Cℓ

ℓ
can be determined by

solving linear equations. Now suppose that in a cumulant expansion of order ℓ the correlations
Cn
ℓ

can be determined by solving linear equations, which, as we have just seen, holds for
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n = ℓ. To determine the correlations in Cn+1
ℓ

, we additionally need all correlations involving
the (n + 1)-th particle. These satisfy linear equations of motion involving all correlations in
Cn+1
ℓ+1 involving up to ℓ + 1 particles. In a cumulant expansion at order ℓ, (ℓ + 1)-particle

correlations are replaced by Eq. (A.2). In the right hand side of Eq. (A.2) each term in the sum
contains exactly one factor involving the (n+ 1)-th particle. All other factors are elements of
Cn
ℓ
, which are known. This implies that the correlations involving the (n+1)-th particle follow

from linear equations, and so does Cn+1
ℓ

.

Degree of second order coherence

Inserting the input-output relation (2) in the definition of g2(0) in Eq. (11) one arrives at
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, (A.5)

where we used σee = (1+σz)/2 to denote the projector on the excited state. In mean-field
approximation, every moment of order higher than one factorizes into products of first order
moments, and the expression for g2(0) simplifies considerably due to 〈σi

x〉 = 0 for resonant
drive. In treatments at truncation order ℓ, all correlations involving more than ℓ-particles are
approximated by those of lower order by means of Eq. (A.2).

Squeezing spectra in third order cumulant expansion

Here, we complement Fig. 3 and show results for squeezing spectra in cumulant expansion at
TO 3, which evidences good convergence at TO 2. We also extend the analysis to a larger set
of input powers approaching saturation, where the Mollow triplet emerges in the spectrum of
the inelastically scattered field. The results are shown in Fig. 10.

Experimental details

The experimental platform The experimental platform consists of a nanofiber-based optical
interface for laser-cooled Cesium (Cs) atoms. The optical nanofiber with 400 nm diameter is
realized as the waist of a tapered optical fiber. The atoms are trapped using the evanescent
field surrounding the nanofiber where two 1D arrays are formed along the nanofiber through
a combination of red- and blue-detuned nanofiber-guided light fields [51–54]. The atoms are
located at a distance of ∼ 250 nm from the nanofiber surface. Each trapping site contains
at most one atom and the average filling fraction is about 10 %. A nanofiber-guided probe
field of power Pin, which is resonant with the Cesium D2-line (F = 4→ F ′ = 5) transition, is
launched through the tapered optical fiber and interfaces the atoms via the evanescent field
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Figure 11: Experimental setup to measure squeezing of light upon propagating
through an array of nanofiber-trapped atoms. The probe light interacts via the
evanescent field of the nanofiber. After the interaction, the probe light interferes
with a local oscillator (LO) with a relative phase of θ on a 50:50 beam splitter and
the resulting light is analyzed on balanced photo-detectors. The atoms are trapped
in the evanescent field surrounding the nanofiber-waist of a tapered optical fiber by
a combination of a red-detuned standing-wave light field at a free-space wavelength
of 935 nm (solid red line) and blue-detuned running-wave light field (dashed blue
line) at 685 nm. Figure adapted from [14].

of the nanofiber mode, see Fig. 11. The coupling of individual atoms to the nanofiber mode is
characterized by the coupling constant β = Γwg/Γtot = 0.0070(5), where Γwg is the spontaneous
emission rate into the waveguide and Γtot = 2π × 5.2 MHz is the total emission rate. We
analyze the transmitted light via a balanced homodyne detection scheme: First, the trapping
light fields are suppressed in the output by means of optical filters and mixed with a local
oscillator (LO) field on a 50:50 beam splitter. The powers at the two outputs are recorded on
balanced photo-detectors, from which we deduce the amplified differential current between
both photodiodes, I(t). From this differential current, we deduce the squeezing spectrum,
Sθ (ω), and normalized it to the spectrum of a coherent state. In the final step, we deduce the
normally ordered squeezing spectrum, :Sθ (ω): =

∫

〈:X̂θ (0)X̂θ (τ):〉eiωτdτ, from Sθ (ω). The
optical depth, OD, and β are both determined in a separate transmission measurement. More
details can be found in [14].

Heating and probing time We probe the atoms with input powers ranging from 20-300 pW
during 10−100µs and repeat the experiment 10000 - 100000 times. For larger input power,
heating of the atoms during probing becomes important. To avoid a too large temperature, we
decrease the probing time for larger input power: Up to s = 0.6 we probe for 100µs and then
gradually decrease the probing time to keep the OD approximately constant. For the largest
saturation parameter s = 2.19, we probe for 10µs and the OD changes by up to 20%.

Even with reduced probing times, we expect that heating is the main source for the dis-
crepancy between theory and experiment at high input power since it affects both β and N .
First, the atoms are confined in anharmonic traps, such that the average coupling constant β
decreases for atoms with larger energy. Second, atoms can be lost from the trap, which has a
finite depth of about ≃ 100µK. Modeling how this modifies the squeezing spectrum is beyond
the scope of this work.

Squeezing angle On resonance (∆ = 0), the interesting squeezing angles are at θ = 0 and
θ = π/2 for which the largest squeezing and anti-squeezing occurs. In order to increase the
signal to noise in Sθ (ω), we use the π-periodicity of Sθ (ω) and average the data over θ = 0
and π as well as θ = π/2 and 3π/2 respectively. For each value of θ , we average over a range
of ±18◦ [14].
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The saturation parameter s vs. Pin/Psat We point out that we characterize the saturation
of the emitters by two quantities, s and Pin/Psat, depending on the context. Both quantities
are linked by s = 8Pin/Psat. The saturation parameter s is more convenient when referring to
experimental data. For s = 1, an emitter is subject to a light intensity Isat and scatters Γ/4
photons [55]. The saturation power Psat =

Γ
β is more suitable for writing formulas, such as

equations of motion etc., where it simplifies notations [26]. We remind the reader that we
scale powers to photon flux by ħhω0.

Quantifying the performance of source of a antibunched light

For practical implementations of single photon sources based on a stream of antibunched light,
it is crucial to provide a physical parameter that quantifies the latter’s performance. This
parameter should be linear in the output photon flux Pout. Furthermore, it should quantify
how much the photon statistics is different from a Poissonian distribution, i.e. the larger the
temporal width of the antibunching dip of g(2)(t), the longer the output fields remains non-
classical after the detection of a single photon and the higher the quality of the source. Here,
we chose the Mandel-Q factor that quantifies the deviation of the photon statistics of a light
field from a Poissonian distribution [46]

Q = Pout

∫ τ

−τ
d t
�

1−
|t|
τ

�

�

g(2)(t)− 1
�

, (A.6)

where Q < 0 indicates a sub-Poissonian photon statistics. In the following, we consider a
sufficiently short time interval after the detection of a photon, so that g(2)(t)≈ const. For this,
we define τ as the 85% width of the anti-bunching dip. In this approximation one obtains

Q ≈ Poutτ
�

g(2)(0)− 1
�

. (A.7)

For the fluorescence of a single atom, τ is given by τ≈ Γ−1 · (1+ s)−1/2. For the Q parameter
one thus obtains

Qsingle atom ≈ −βPout · (1− g(2)(t)) ·τ= −β
s

2(1+ s)3/2
, (A.8)

with a minimum value of Qmin = −0.19β at s = 2. For the source based on collective forward
scattering, we calculate the same quantity. The exact temporal shape of the g(2)(t) function in
the high-power limit is hard to calculate. Therefore, we make the simplifying assumption that
for the considered power regime the only change of g(2)(t) is the reduction of the depth of the
antibunching dip (see Fig. 8) while the overall temporal shape does not significantly change.
That is, we approximate the temporal width to be independent of s with τcoll = 0.41Γ−1, which
we obtain from the 2-photon theory prediction. In this way, we obtain for the saturation-
dependent Q parameter the solid blue curve shown in Fig. 9 which reaches a minimum value
of Qmin = −0.013 at a saturation parameter of s ≈ 0.8. For comparison, the solid gray curve
is the Q parameter achievable for a perfect single photon source, i.e. a single atom with unit
collection efficiency β = 1. In contrast, the dashed grey curve depicts the Q parameter of a
single atom with a coupling strength of β = 0.05.
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