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Abstract

A generic non-integrable (unitary) out-of-equilibrium quantum process, when interro-
gated across many times, is shown to yield the same statistics as an (non-unitary) equili-
brated process. In particular, using the tools of quantum stochastic processes, we prove
that under loose assumptions, quantum processes equilibrate within finite time inter-
vals. Sufficient conditions for this to occur are that multitime observables are coarse
grained in both space and time, and that the initial state overlaps with many different
energy eigenstates. These results help bridge the gap between (unitary) quantum and
(non-unitary) statistical physics, i.e., when all multitime properties and correlations are
well approximated by stationary quantities, which includes non-Markovianity and tem-
poral entanglement. We discuss implications of this result for the emergence of classical
stochastic processes from multitime measurements of an underlying genuinely quantum
system.
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1 Introduction

Quantum processes allow the description of multitime statistics in quantum systems, providing
information on the dynamics beyond the single time (quantum state) limit. Any quantum
process can be represented as a single positive tensor Υk [1, 2], that can be used to compute
the expectation value of a multitime measurement,

tr[AkUk · · ·A1U1(ρ)] = tr[ΥkAT
k] =: 〈Ak〉Υ . (1)

Here, Ak too is a tensor encoding the sequence of k singletime measurement operators
{Ak,Ak−1, . . . ,A1} (in the Schödinger picture) and Υk is called the process tensor [1–3], which
encapsulates the unitary dynamics (Ui) and initial state (ρ). Both of the tensors have free in-
dices at the times k := {tk, tk−1, . . . , t1}, and are quantum combs [4]. These are depicted
graphically in Fig. 1 (a), and will be more formally constructed later in this work. Such a
description of quantum processes allows the characterization of temporal features such as
the degree of non-Markovianity of a process [5, 6], the genuine multipartite entanglement in
time [7], or when the statistics look classical [8,9].

One can ask then, when such quantum processes look equilibriated? This is a foundational
question of quantum statistical mechanics, concerned with how a thermal, or more generally
a steady state, can arise from the picture of isolated quantum mechanics. There are a number
of approaches to this research program, such as the celebrated Eigenstate Thermalization Hy-
pothesis (ETH) which assumes that matrix elements of single time expectation values agree
with their thermal value [10–18]. Equilibration, on the other hand, relies on rather minimal
assumptions to show when expectation values look stationary on average. More specifically,
for a quantum state in a large enough Hilbert space with many significant populations in the
energy eigenbasis, realistic (coarse) observables look stationary on average [19–22].

Previous approaches to the task of deriving statistical mechanics from pure quantum me-
chanics predominately lie firmly within the single-time picture of quantum mechanics [13,14,
23, 24]. However, this does not offer a complete picture, as generally there is a wealth of
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hidden informational content in a quantum process Υk compared to a state ρ, in the form of
encoded temporal correlations. Our previous work Ref. [25] takes the first steps in addressing
this problem, where it is shown which conditions lead analytically to a quantum process Υ
equilibrating on average (over infinite times) to an equilibrium process Ω, where all unitary
dynamics is replaced with dephasing (as summarized in Fig. 1). This means that equilibra-
tion is stable to perturbation, and that multitime correlations look stationary on average over
long times. Much like the single time results, this occurs for an effectively large initial state
and a spatially coarse measurement, but interestingly it additionally requires that the multi-
time observable is coarse in time (i.e., that the number of measurements k is not too large).
This result, however, does not give any information on the time scales necessary for process
equilibration, or the emergence of multitime features such as stochastic classicality.

Our results here and in Ref. [25] approach the question of equilibration from a new per-
spective. The advantage of considering the oft-neglected multitime setting, is that it exposes
a wide plethora of phenomena of interest to the overarching question of the foundations of
statistical mechanics. This includes why Markovianity is so prevalent in nature, and more gen-
erally why any multitime correlations should be well-approximated by stationary or thermal
ones. For example, on the (microscopic) quantum level, a molecule will ‘remember’ if one
applies laser pulse to it. However, chemically such a process is highly Markovian in practice.
Yet, one theory clearly underlies the other. So how can one get from the microscopic theory
to the (relatively) macroscopic? Measurement and interaction generally perturb quantum sys-
tems, so it is non-trivial to ask, what is the mechanism of the emergence of these multitime
statistical properties, and how quickly do they appear? While quantum processes account for
invasiveness of measurements, classicality emerges which is distinctly non-invasive [8,9,26].
Our work therefore helps address foundational questions beyond thermalization and single-time
equilibration.

In this work we extend the results of Ref. [25] to show the equilibration of processes in
finite time intervals and with degenerate energy levels. This means that, considering only
the times between measurements within the interval ∆t i ∈ [0, Ti], for large enough Ti the
processes Υk and Ωk are indistinguishable. That is, under this constraint for coarse multitime
observables Ak,

〈Ak〉Υ ≈ 〈Ak〉Ω . (2)

These time intervals Ti will be shown to be typically much smaller than recurrence times. In-
deed, it is important that this is the case for the equilibration time scales to be meaningful. The
infinite time intervals result of Ref. [25] readily implies the approximate equilibration for finite
times equal to recurrence times, up to arbitrary accuracy. This is for any quantum processes
evolving according to a finite dimensional, time-independent Hamiltonian, with arbitrary en-
ergy degeneracies and energy gap degeneracies. This is a generalization of the infinite time
results, which relied on a technical assumption about energy gap degeneracies. Additionally,
we also here give a general theorem of the equilibration of multitime geometric measures of
quantum processes, showing the power of this result in comparison to single time equilibra-
tion. This may prompt further bounds on the equilibration of multitime properties, such as
the time scales for a generic process to look Markovian or classical.

In section 2 we will introduce the process tensor formalism that describes quantum pro-
cesses, together with the notion of instruments which correspond to arbitrary multitime mea-
surements. Additionally we will recap the infinite times result of Ref. [25]. In section 3 we
give our main result on the equilibration of processes in finite time intervals, together with an
analysis of what time scales this will occur. Finally, in section 4 we show that process equili-
bration implies the general equilibration of any geometric measure of the multitime properties
of a process, such as non-Markovianity, classicality, etc.
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Figure 1: (a) An expectation value of the multitime instrument Ak over an arbitrary
quantum process Υ , which is dependent on times ∆tℓ of unitary evolution Uℓ. (b) If
these times are sampled from a large enough ranges of time, [0, Tℓ], then this expec-
tation value is likely to be approximately time-independent, equal to the expectation
value over the equilibrated process Ω. (c) A visualization of the effect of process
equilibration. Deviations from the stationary value of multitime correlations are rare
and small, across the time ranges ∆tℓ ∼ [0, Tℓ] for 1 ≤ ℓ ≤ k. The conditions on k
and Tℓ for this to occur can be seen in Eq. (29).

2 Preliminaries

Here we introduce the process tensor formalism from which our results are constructed from,
and restate a main theorem from Ref. [25] from which this work generalizes to finite times
and degenerate energy gaps.

2.1 Single-time instruments

Physical quantum transformations, including measurements, are in full generality described
by a linear and completely positive (CP) map A that takes an input quantum state σ, to an
output quantum state σ′. Both the input and the output states are density operators, but the
latter is not necessarily normalized except when the map is deterministic, i. e., when A is
further specified to be trace-preserving (TP).

Such a map admits a number of explicit representations, each useful is different circum-
stances [27,28]. The operator sum or Kraus representation is given by

A(σ) :=
n
∑

α=1

KασK†
α , (3)

where if the representation is ‘minimal’, n is equal to the rank of the map. A second repre-
sentation that will be essential below, is the Choi state. For a map A : Hb →Hc acting on an
input σ, this is a matrix A such that

A(σ) = trb[(1c ⊗σT)A] . (4)
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Note that the typewriter font will be used in the remainder of this work for Choi states of a
single time map (A and U), whereas a capital Greek letter will be used for the Choi state of a
process (Υ and Ω), and a capital boldfont Latin letter for a multitime instrument Choi state
(Ak), which we define below.

Expanding on the above, we can construct the Choi state of a composition of two maps
A ◦B, for B : Ha→Hb and A as above, via the link product [29],

A ∗ B := trb[(1c ⊗ ATb)(B⊗1a)] , (5)

where B ∈ L(Hb ⊗ Ha) and A ∈ L(Hc ⊗ Hb). That is, we append identity matrices to A
and B such that they live on the same Hilbert space, L(Ha ⊗Hb ⊗Hc), and then trace over
the shared space Hb. Here, the superscript ATb means the partial transpose of the matrix A
over the space Hb. The Link product essentially describes multiplication entirely within the
Choi representation, via matrix multiplication on the shared space and tensor product on the
independent. This is a key tool with which we can concisely and explicitly define the process
tensor.

An operator norm of instruments that will be relevant to our results is the POVM (positive
operator valued measured) norm,1 which is the largest singular value of the POVM element
A :=

∑

α K†
αKα ≤ 1,

∥A∥p := max
∥ψ∥2=1

∥A |ψ〉 ∥2 = maxp
〈ψ|ψ〉=1

Æ

〈ψ|A2 |ψ〉 . (6)

When a map is trace preserving, we have A=
∑

α K†
αKα = 1 and the POVM norm is then equal

to unity.

2.2 Tensor representation of quantum processes

Consider a partition of an isolated quantum system, initially in the state ρ, into a system (S)
of interest and the rest, which we call an environment (E). SE then evolves unitarily up until
some point t1, according to the time-independent Hamiltonian

H =
∑

EnPn , (7)

i.e., via the supermap

U1(·) := e−iH∆t1(·)eiH∆t1 . (8)

An instrument is then applied to the S state at time t1, described by a CP map A1 ≡A1 ⊗1E.
Note that this SE decomposition is consistent with the notion of a coarse (or fine) measurement
on an isolated system. For example, measuring the total magnetization of a spin system is
highly coarse-grained, and one can appropriately couple the system of spins (E) to an ancilla
spin (S), such that measuring this ancilla will determine the total magnetization. Now, this
dynamics followed by measurement is repeated, with a variable time of unitary evolution∆t i ,
and choice of single time instruments Ai , as depicted in Fig. 1 (a). The expectation value of
the sequence of instruments is given by

tr[AkUk · · ·A1U1(ρ)] = tr[ΥkAT
k] =: 〈Ak〉Υ , (9)

where we have introduced the process tensor Υk and the multitime instrument Ak, defined for
the times k := {t1, t2, . . . , tk}. Note that adjacent calligraphic characters mean the composition
of maps, AiU j :=Ai ◦U j .

1We name it the POVM norm so as not to get mixed up with the operator norm of the instrument itself, that is
the largest singular value of the Choi state of the instrument.
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Figure 2: Circuit diagram of the construction of the Choi state of a process tensor
through the generalized Choi-Jamiołkowski isomorphism [1, 28]. An ancilla system
composed of k (unnormalized) Bell states ψ+ is appended to SE, with one half of
a pair swapped with the S state before each unitary evolution Ui , and the E space
being discarded (traced over) at the end. Here the independent Hilbert spaces are
labeled such that ℓi (ℓo) is the input (output) index at time tℓ, showing that the final
tensor Υk corresponds to a 2k− 1 body density matrix.

Recalling the definition of the Link product Eq. (5), we can directly convert the individual
CP maps to their Choi representation, to prove Eq. (9): First, we have ρ ∈ B(Ho

S,0 ⊗H
o
E,0),

Ak : B(Hi
S,k) → B(Ho

S,k), Uk:k−1 : B(Ho
S,k−1 ⊗ Ho

E,k−1) → B(Hi
S,k ⊗ Hi

E,k−1). The notation

Hi/o
S(E), j means the input/output Hilbert space of the system (environment) at measurement

time j, which we give in order to specify the independent Hilbert spaces so it is clear which
tensor indices contract in the following; see Fig. 2. We then write each of these in terms of
their matrix indices to get the L.H.S. of Eq. (9)

∑

all

δx3,y3
δα3,β3

Ax3a3,y3 b3
U
α3α2,β3β2
a3 x2,b3 y2

Ax2a2,y2 b2
U
α2α1,β2β1
a2 x1,b2 y1

Ax1a1,y1 b1
U
α1α0,β1β0
a1 x0,b1 y0

ρα0,β0
x0,y0

. (10)

We have used Greek indices for the environment, and Latin for the system. Upon separating
all terms with Greek indices from those that only have Latin ones we have

∑

latin

 

∑

greek

U
εα2,εβ2
a3 x2,b3 y2

U
α2α1,β2β1
a2 x1,b2 y1

U
α1α0,β1β0
a1 x0,b1 y0

ρα0,β0
x0,y0

!

�

∑

e

Aea3,eb3
Ax2a2,y2 b2

Ax1a1,y1 b1

�

. (11)

Relabelling the two terms yields Eq. (9)

tr[ΥkAT
k] =

∑

latin

(Υk)a3 x2a2 x1a1,b3 y2 b2 y1 b1
(Ak)a3 x2a2 x1a1,b3 y2 b2 y1 b1

. (12)

While we have chosen a k = 3 step process as an example, a more general procedure will
yield the explicit definitions

Υk := trE[Uk ∗ · · · ∗ U1 ∗ρ] ,
Ak := Ak ∗ · · · ∗ A1 .

(13)
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An alternative circuit construction of Υk based on the generalized Choi-Jamiołkowski isomor-
phism can be seen in Fig. 2. Both Υk and Ak are examples of quantum combs that possess
well-behaved positivity and trace properties [1,2,5,29]. The former guarantees the positivity
of probabilities and the latter is crucial for ensuring the causality of a process - that tracing
over a final output leg of a process means the preceding input has no influence on the remain-
der of the process; ensuring future instruments cannot affect the statistics of past outcomes.
In the derivation Eq. (10) it is assumed that the Ai are not correlated, in which case the Link
product definition of Ak in Eq. (13) reduces to a tensor product. We rather allow instruments
to carry quantum memory, which can be operationally realized by appending a ancilla space
W such that each Ai acts instead on the combined space SW , as shown in Fig. 3. In such a
case Ak is called a tester, and is the most general way to measure a process.

For our purposes, Υk is a universal descriptor for any multitime quantum process [2, 30]
and, in particular, central for describing non-Markovian processes [1,3,5]. This is because all
dynamics and correlations that define a process are stored in the single object Υk, which can be
probed by the in-principle experimentally implementable instruments encoded in Ak. Eq. (9)
is then the multitime generalization of the Born rule [4, 31, 32], where Υk plays the role of a
state and Ak that of a measurement. This definition allows the computation of any temporal
correlation functions on a process, accounting for the invasive nature of measurements in
quantum mechanics [33].

It is worth pointing out that quantum combs arise naturally in many areas of modern quan-
tum mechanics, including: channels with operational memory [34–37], operational quantum
gravity [38–40], spatiotemporal density matrix [41], causally indefinite processes [31], quan-
tum stochastic thermodynamics [42,43], and the quantum-to-classical transition [8,9]. They
are, of course, central to the studies of multitime correlations in open quantum systems.

2.3 The diamond norm distance

In the previous section we have shown that there exists a representation for quantum processes
that yields k-time correlations as a (2k − 1)-body quantum state, i.e. the Choi state of the
process. This allows us to define distances between two quantum processes. This is very
much akin to defining distance between two probability distributions, which may represent
two (classical) stochastic processes [2].

Considering two processes Υk andΩk, the most natural way to compute a distance between
them is to ask how well one can distinguish them using the optimal multitime measurement.
The most general measurement we can perform is a tester, that is we allow the multitime
instrument to carry quantum memory and so be correlated in time. We therefore define the
generalized diamond norm distance [2,29,44] between two processes as the maximum norm
difference in the expectation value of any tester on them (with normalization 1/2),

D◆(Υ ,Ω) :=
1
2

max
Ak

∑

x⃗

| 〈A x⃗〉Υ−Ω | , (14)

where we have defined the shorthand 〈A x⃗〉Υ−Ω := 〈A x⃗〉Υ −〈A x⃗〉Ω. This definition is motivated
by the fact that a particular outcome of an instrument generates a probability distribution,
〈A x⃗〉Υ = P(xk, xk−1 . . . , x1), and then Eq. (14) is simply a trace difference between probability
distributions, maximized over all possible distributions that can be generated on the process
Υ . In practice, however, one does not generally have access to the optimal tester. Instead,
consider a restricted set of instruments Mk = {Ak} which a hypothetical experimenter has
access to, that probe a process at most k times. We define the operational diamond norm to
be

DMk
(Υ ,Ω) :=

1
2

max
Ak∈Mk

∑

x⃗

�

�〈Ak〉Υ−Ω
�

� . (15)
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Υk

Ak

ρ
E

S
U1

A1

W

U2

A2

U3 ⋯

A k
−
1

Uk

\

Ak \

Figure 3: Allowing instruments to transmit quantum memory is equivalent to ap-
pending an ancilla space (W ) such that Ak is now a quantum comb. So-called ‘testers’
are the most general way to probe a process Υ [2,29].

In the limit of Mk containing all possible testers, we obtain the generalized diamond norm
Eq. (14), and so 0 ≤ DMk

≤ D◆ ≤ 1. Intuitively, the operational diamond norm is how well
one can distinguish between two processes in the best possible case, using only instruments
available. This stems from the fact that we assume one has access to a limited set of measure-
ments (for example, whatever is reasonably implementable in a given experimental setup),
and measures the maximum difference in measurement statistics using the “most distinguish-
ing” instrument available.

This is essential to our concept of process equilibration, as it allows us to describe a spatial
coarse graining in the restriction of accessible instruments to a number that is operationally
realistic. From now we drop the subscript k on Mk. In the single-time measurement case,
where Υ ≡ ρ and the expectation values are the usual quantum mechanical ones, DM is the
analogue of the distinguishability and D◆ the trace distance [22,45]. Note, however, that the
inclusion of quantum memory in the multitime case is a non-trivial extension.

2.4 Underlying continuous process

So far we have considered a discrete process Υk, with free indices at exactly the times k where
a chosen instrument Ak measures. However, in principle there exists an underlying continu-
ous process Υ , with an infinite set of ‘free’ indices at all times, with implied identity operators
at each. Then, when a discrete times instrument Ak is chosen to measure this process, the
marginal process Υk ⊂ Υ which we have derived above is used to compute the expectation
value.2 The existence of the underlying Υ is ensured by the Generalized Extension Theorem,
the quantum generalization of the Kolmogorov Extension Theorem for classical stochastic pro-
cesses [2,30].

Considering that the underlying Υ can hypothetically be measured with a multitime in-
strument at any set of times k, this motivates the definition of an equilibrium process, as the
process generated by averaging over these times. The dynamics of such a process will be in-
dependent of times k= {tk, tk−1, . . . , t1}, with k specifying only the times where the process is
measured. The k-time equilibrium process Ωk is defined as the average marginal process over
all possible (ordered) sets of times k,

Ωk := Υk
∞
=

� k
∏

i=1

lim
Ti→∞

1
Ti

∫ Ti

0

d(∆t i)

�

Υ

= trE

�

$̂ ∗ · · · ∗ $̂ ∗ρ
�

,

(16)

where $̂ is the Choi state of the dephasing map with respect to the energy eigenbasis,

$(·) :=
∑

n

Pn(·)Pn . (17)

2For a := {t1, t2, . . . , ta} and b := {t1, t2, . . . , tb} with a < b, the notation Υa ⊂ Υb means that the a-time process
Υa is related to the b-time process Υb by insertion of identity operators at the times b\a.
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This means that for a given dynamic, marginal process Υk, the corresponding equilibrium pro-
cess Ωk corresponds to replacing all global (SE) unitary dynamics with dephasing; see Fig. 1.
We then define process equilibration as the time-average indistinguishability of multitime ex-
pectation values on this equilibrium process in comparison to an arbitrary non-equilibrium
process Υk, via the operational diamond norm distance (15):

DMk
(Υk,Ωk)≪ 1 . (18)

This is the key definition of this work. Note that in comparison to [25], here we consider the
average in Eq. (18) to be over finite time intervals.

From now on we will generally drop the subscript k on processes, with the understanding
that the multitime instrument Ak dictates the times k= (t1, t2, . . . , tk) at which the underlying
process Υ marginalizes to.

2.5 Equilibration of processes over infinite times

The results of this work are an extension of the infinite time results from the related work [25],
which we will now summarize. Specifically, the following bound was proven, in terms of the
expectation value of any k-time instrument Ak applied to a process Υ and its corresponding
equilibrium Ω,

|〈Ak〉Υ−Ω|2
∞
≤ max

j∈[0,k−1]

(2k − 1)∥Ak:···:( j+1)∥2p
deff[A j(ω j)]

. (19)

Here, Ak:···: j is the POVM element of the composition of CP maps

Ak$kAk−1 · · ·$ j+1A j , (20)

and we have defined the intermediate equilibrium state for j ∈ [0, k− 1] := {0,1, . . . , k− 1},

ω j := $ jA j−1$ j−1A j−2 · · ·A1$(ρ) . (21)

The crucial term of the right hand side is the effective dimension, which is defined as

deff[σ] :=
1

tr[$(σ)2]
. (22)

In generic physical situations the effective dimension scales exponentially with system size
N [20, 24, 46], and is considered a quantifier for the validity of a statistical description of a
many-body system. Therefore, with ∥Ak:···:( j+1)∥2p ≤ 1 acting as a scale and k ≪ N restricted
by physical considerations, the right hand side of Eq. (19) is extremely small in typical many-
body systems, leading directly to physical results on the equilibration of quantum processes
over infinite time intervals, without energy gap degeneracies [25]. However, taking the infinite
time average means that nothing can be said from this result about the time scales necessary to
witness equilibration. It corresponds to averaging up to the recurrence time, which is typically
doubly exponential in system size and so even for relatively small many body system these
times can be longer than the age of the universe [47–49]. Instead, we here ask if similar
equilibration results apply when averaging over finite time intervals, that are less than the
recurrence times? and therefore can this give any additional insights into the open question
of equilibration time scales [46,50–55]? We will now explore this, first extending Eq. (19) to
finite time intervals between instruments while allowing arbitrary energy gap degeneracies,
in the spirit of Refs. [46,50].
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3 Equilibration of processes over finite times

Consider an isolated quantum process Υ as described in Section 2.2 and represented by the
purple dashed comb in Fig. 1 (a). This encompasses a finite quantum system evolving ac-
cording to a time-independent Hamiltonian H =

∑

EnPn, which we allow to have arbitrarily
degenerate energy levels. Between the global system plus environment (SE) unitary evolu-
tion, consider repeated, local measurements on the space S alone, at the times t1, t2, . . . , tk by
instruments A1,A2, . . . ,Ak. Together this represents the expectation value of a k-time instru-
ment Ak on a process Υ , shown in Fig. 1 (a). We then wish to investigate how the expectation
value of this instrument varies when measured with respect to Υ in comparison to the corre-
sponding equilibrated Ω, over finite time intervals Tℓ (such that ∆tℓ := tℓ − tℓ−1 ≤ Tℓ). In
contrast to the infinite time result Eq. (19), we additionally allow energy gap degeneracies
and this will be included quantitatively in our results.

We will first state our main result on the equilibration of quantum processes over finite
times, discuss its implications, and then detail the proof of this result in section 3.2. A reader
not interested in the details of the proof should skip this section and read on to section 4, where
we show how this result readily implies the equilibration of arbitrary geometric measures of
quantum processes.

3.1 Main result

Consider the difference in expectation values of some multitime instrument Ak, acting at the
set of times k := {t1, t2, . . . , tk}, between a process Υ and corresponding equilibrium process
Ω and averaged over the time intervals ∆tℓ ∈ [0, Tℓ] for each ℓ ∈ [1, k]. Define finite time-
averaging as,

X
T⃗
=
�

k
∏

i=1

1
Ti

∫ Ti

0

d(∆t i)
�

X , (23)

where X is some function of ∆t1,∆t2, . . . ,∆tk. Then in full generality, any process and mul-
titime instrument satisfy the following bound, for time intervals Tℓ ≥ 0 and ε > 0,

|〈Ak〉Υ−Ω|2
T⃗
≤

23k−1gk

deff[ρ]min
=:

Ck(ε, Tmin)
deff[ρ]min

, (24)

where

g := N(ε)
�

1+
8 log2 dH

εTmin

�

and deff[ρ]min := min
σ∈{ρ,ω,A1(ρ),A1(ω),... }

deff[σ] . (25)

Here, dH is the number of non-degenerate energy levels, Tmin := minℓ∈[1,k]Tℓ and, following
Ref. [50], N(ε) is the maximum number of energy gaps in an interval of size ε > 0,

N(ε) :=max
E
|{(m, n) : E ≤ Em − En ≤ E + ε}| . (26)

When ε→ 0+, this reduces to the maximum degeneracy of any single energy gap, DG . Eq. (24)
is the finite time generalization of Eq. (19) and the main mathematical result from which our
physical results are derived.

The key feature of the bound Eq. (24) is that it scales with the smallest effective dimension
at any stage of either of the processes Υ and Ω. This means that the right hand side will
typically scale exponentially with system size (when there are many significantly interacting
energy eigenstates), as long as no instrument ‘knocks’ the total SE state into a small energy
subspace. Also note that while g ≥ 1 can be very large in general, in the bound (24) it scales
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logarithmically with total dimension, whereas the effective dimension typically scales linearly
with dH in a many body system. It will be discussed below what time scales are needed for
the right hand side of the bound to be small. This will follow argumentation of Ref. [50].

Using this bound, we arrive at our main physical result on the distinguishability of the
processes Υ and Ω.

Result 1. For any quantum process Υ with corresponding equilibrated Ω, and given a set of
multitime measurements M, then for Tℓ > 0, ε > 0 where ℓ ∈ [1, k],

DM(Υ ,Ω)
T⃗
≤

SM
p

Ck(ε, Tmin)

2
p

deff[ρ]min

. (27)

Here, SM is the total combined number of outcomes for all instruments in the set M,

SM =
∑

M∈M
card(M) , (28)

where card(M) is the cardinality of the set M.

Proof. A proof for this applies Eq. (24) to a result from Ref. [25], and is given in App. D.

Assuming that process equilibration occurs in the infinite time intervals case [25], i.e.
assuming that SM

p

2k − 1 ≪
p

deff[ρ]min, we additionally have equilibration within finite
time intervals T⃗ given that

Tℓ ≳
log2 dH

ε
and k≪

1
3

log2 deff[ρ]min . (29)

The first condition states that if no energy gap is hugely degenerate and each time interval Tℓ
is big enough, the factor g is not too large. Physically this time scale is much smaller than the
recurrence times, which typically scale exponentially with effective dimension (doubly expo-
nentially with system size). However, in realistic physical examples g can blow up due to the
N(ε) factor defined in Eq. (26). We therefore expect tighter bounds than Eq. (24) to hold with
additional physical assumptions, with strong evidence that realistic (locally interacting) mod-
els with generic initial states equilibrate significantly faster than our bound (and the bound
of Ref. [50]) suggests [13,14,56,57]. Although it should be noted there exists relevant phys-
ical examples of transitionally invariant lattice models where it takes exponentially long to
equilibrate in the single time sense [24,58]. The strength of the present work is that it holds
analytically under minimal assumptions, where analogous results are difficult to obtain with
increasing physical assumptions (although some progress in the multitime case has been made
very recently, see Refs. [26,59]).

The second condition ensures the number of times at which an instrument measures the
system is far less than the number of components in the system. Clearly this is satisfied in typ-
ical many body situations, with for example O(1023) particles, where measuring even O(102)
time correlations is experimentally unfeasible. Physically, choosing a (small) finite k is a kind
of coarse graining in time; analogous to the assumption that SM is small, which is a coarse
graining in (Hilbert) space. This is essential in defining process equilibration. As a counter ex-
ample, a perfectly fine grained instrument which continuously measures a process at all times
can distinguish a dynamical out-of-equilibrium Υ from a stationary Ω.

A disadvantage of this result in comparison to the infinite time one, is that it cannot easily
be interpreted in terms of a probability bound, such as Chebyshev’s inequality [25]. This is be-
cause the bound Eq. (24) (the variance) is computed over a finite times uniform distribution,
whereas the equilibrated process expectation value 〈Ak〉Ω (the mean) is computed over an in-
finite times one. Nonetheless, it offers additional insight when interpreted via the operational
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diamond norm in Eq. (15), allowing us to show quantum process equilibration in finite time
intervals that are generally much less than recurrence times.

Under the conditions (29), Result 1 indicates that processes equilibrate within finite time
intervals. However, due to the generality of the setup, the time scales involved are still typically
very large. Additional assumptions on the physical scenario would be needed for an estimate
on realistic equilibration times. To this purpose, the process tensor formalism directly allows
for physical assumptions on the dynamical details of a system. This will be immediately clear
from a physical corollary to Result 1, which we describe in Section 4.

3.2 Proof of Eq. (24)

We will here derive our main result explicitly for k = 2 instruments, and then motivate a
generalization to arbitrary k, with further details set out in the Appendix. We wish to bound

|〈Ak〉Υ − 〈Ak〉Ω|2
T⃗
, where

X
T⃗

:=
1

T1 · · · Tk

∫ Tk

0

· · ·
∫ T1

0

X d(∆t1) · · · d(∆tk) (30)

is the finite-time average over all evolution time intervals ∆t i within the range [0, Ti].
Recalling the multitime Born rule Eq. (9), we can expand unitary evolution operators in

the energy eigenbasis for the following,

〈Ak〉Υ − 〈Ak〉Ω =
∑

ni ,mi

tr[AkPnkmk
· · ·A1Pn1m1

(ρ)]

¨ k
∏

i=1

e−i∆t i(Eni
−Emi

) −
k
∏

i=1

δmi ni

«

, (31)

where Pni m j
(·) := Pni

(·)Pm j
is the superoperator that projects onto the (ni , m j)th component

in the energy eigenbasis.
Specifying to k = 2 we have,

〈Ak〉Υ−Ω =
(k=2)

=:X
︷ ︸︸ ︷

∑

n1 ̸=m1
n2 ̸=m2

tr[A2Pn2m2
A1Pn1m1

(ρ)]
�

e−i∆t2(En2
−Em2

)e−i∆t1(En1
−Em1

)
�

+
∑

n1 ̸=m1

tr[A2$2A1Pn1m1
(ρ)]e−i∆t1(En1

−Em1
)

︸ ︷︷ ︸

=:Y

+
∑

n2 ̸=m2

tr[A2Pn2m2
A1(ω1)]e

−i∆t2(En2
−Em2

)

︸ ︷︷ ︸

=:Z

.

(32)

We will now multiply this with its complex conjugate and independently time-average over

each ∆tℓ over the range [0, Tℓ], in order to obtain the desired quantity |〈Ak〉Υ − 〈Ak〉Ω|2
T⃗
. We

label the indices corresponding to complex conjugate parts with primes, n′i and m′i , and af-
ter taking the modulus square we obtain exponential multiplicative factors with exponents
−i∆tℓ(Enℓ − En′

ℓ
− Emℓ + Em′

ℓ
) and −i∆tℓ(Enℓ − Emℓ). These factors contain all the time depen-

dencies, and so we therefore define the tensors G(ℓ) and G(ℓ) with components

G(ℓ)nℓmℓn
′
ℓ
m′
ℓ

:= exp[−i∆t(Enℓ − En′
ℓ
− Emℓ + Em′

ℓ
)]

Tℓ ,

G
(ℓ)
nℓmℓ

:= exp[−i∆t(Enℓ − Emℓ)]|
Tℓ (33)

in the corresponding energy eigenbasis. For brevity we will also define the following multilin-
ear function

f (X ,Y) := tr[A2XA1Y(ρ)] . (34)
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So for example f (Pn2m2
,Pn1m1

), f ($,Pn1m1
), and f (Pn2m2

, $) appear in Eq. (32) .
Then for k = 2, we obtain

|〈Ak〉Υ−Ω|2
T⃗
=
(k=2)

X 2 + Y 2 + Z2 + 2Re{X Y ∗ + X Z∗ + Y Z∗} . (35)

We will address each of these terms in turn, and see that they are all bounded by a quantity
that scales with an effective dimension, using results from Refs. [25, 50]. There are three
different type of terms in Eq. (35): the first three only have double sums over n(′)

ℓ
̸= m(′)

ℓ
(where a prime with a bracket here means a sum over both prime and non-prime indices).
We call these ‘diagonal’; the next two terms have both a double sum over n(′)

ℓ
̸= m(′)

ℓ
and an

independent sum over n j ̸= m j with j ̸= ℓ. We call these ‘cross terms’; and the final term
contains only independent sums over nℓ ̸= mℓ, which we call ‘off-diagonal’. These three type
of terms require somewhat different methods to bound, but classify all the different terms that
appear at higher k. The following methods of will therefore directly generalize to many time
instruments.

3.2.1 Diagonal terms

Looking at the first term, we have

X 2 =
∑

n(′)1 ̸=m(′)1

n(′)2 ̸=m(′)2

G(1)n1m1n′1m′1
G(2)n2m2n′2m2

′ f (Pn2m2
,Pn1m1

) f (Pn′2m′2
,Pn′1m′1

)∗ , (36)

where
∑

n(′)
ℓ
̸=m(′)

ℓ

:=
∑

nℓ ̸=mℓ

∑

n′
ℓ
̸=m′

ℓ
(with ℓ ∈ {1, 2} here). The indices with primes, (n′i and

m′i), come from the complex conjugate X ∗, and the complex prefactor G(i)
ni mi n

′
i m
′
i
(a tensor with

four indices) is defined in Eq. (33). We can write this prefactor as a matrix, by gathering the

indices as α≡ (nℓ, mℓ). One can then see that G(ℓ)nℓmℓn
′
ℓ
m′
ℓ
≡ G(ℓ)αα′ is Hermitian in α, and similarly

Mαα′ := G(1)n1m1n′1m′1
G(2)n2m2n′2m′2

is Hermitian in the indices α= (n1, m1, n2, m2). We may therefore

use that for Hermitian M ,
∑

αα′ v
∗
αMαα′ vα′ ≤ ∥M∥

∑

α |vα|
2, where ∥M∥ is the usual operator

norm of the matrix M .3 Therefore,

X 2 ≤ ∥G(1)∥∥G(2)∥
∑

n1 ̸=m1
n2 ̸=m2

| f (Pn2m2
,Pn1m1

)|2 .
(37)

From here, we will use an identity used to obtain the infinite time result of Ref. [25],
∑

ni ̸=mi
···

n j ̸=m j

�

�tr[AkDk . . .D j+1A jPn j ,m j
A j−1S j−1 . . .A jS1(ρ)]

�

�≤ ∥Ak:···: j∥2pd−1
eff [A j−1(ω j−1)] , (38)

where 1 ≤ i < j ≤ k, Dℓ ∈ {$,I} for identity superoperator I, and Sℓ ∈ {$,Pnℓmℓ}. The
norm ∥Ak:···: j∥2p is the POVM norm of the composition of CP maps AkDkAk−1 · · ·D j+1A j , as
defined in Eq. (6). The key thing to note is that the choice of each Sℓ does not matter for the
inequality (38), instead only the final (leftmost) projector is what determines the bound. A
proof of this is given in App. A for completeness, reproduced from Ref. [25]. We then obtain

X 2 ≤ g1 g2∥A2∥2pd−1
eff [A1(ω1)] , (39)

3The operator norm of a matrix is its largest singular value; formally, ∥M∥ := sup{∥M v∥ : ∥v∥= 1}.
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where we have also introduced a bound derived in Ref. [50],

∥G(ℓ)∥ ≤ N(ε)
�

1+
8 log2 dH

εTℓ

�

=: gℓ , (40)

where ε > 0, dH is the number of distinct energies, and N(ε) is maximum number of energy
gaps in an interval of size ε, as defined in Eq. (26). A proof for Eq. (40) is given in Appendix B
for completeness. An equivalent method can be applied to bound the other two diagonal
terms,

Y 2 ≤ g1∥A2:1∥2pd−1
eff [ρ] and Z2 ≤ g2∥A2∥2pd−1

eff [A1(ω1)] . (41)

3.2.2 Cross terms

Now, the next two cross terms of Eq. (35) will also be proportional to an effective dimension,
but require a different treatment and obtain an additional multiplicity.

2Re{X Y ∗}= 2Re















∑

n(′)1 ̸=m(′)1
n2 ̸=m2

G(1)n1m1n′1m′1
G
(2)
n2m2

f (Pn2m2
,Pn1m1

) f ($,Pn′1m′1
)∗















≤ 2G
(2)
max

�

�

�

�

�

�

∑

n(′)1 ̸=m(′)1

G(1)n1m1n′1m′1
f

 

∑

n2 ̸=m2

Pn2m2
,Pn1m1

!

f ($,Pm′1n′1
)

�

�

�

�

�

�

, (42)

where we have used that for z ∈ C, Re(z)≤ |z|, and defined the max value of the matrix G
(ℓ)

,
G(ℓ)max :=max

m ̸=n

�

�G(ℓ)nm

�

�≤ 1. Note also that the complex conjugate of the trace function f (Eq. (34))

corresponds only to a transpose of indices m and n. Noticing that
∑

n̸=m Pnm ≡ I − $, we can
use the linearity of f and the triangle inequality to expand the sum over n2 ̸= m2. For the sum
over n(′)1 ̸= m(′)1 , we may again use that G(ℓ)nmn′m′ is Hermitian, and so

∑

αα′ uαMαα′ vα′ defines an
inner product. Applying the Cauchy-Schwarz inequality with respect to this, after the triangle
inequality mentioned above, we arrive at

2Re{X Y ∗} ≤ 2G
(2)
max∥G

(1)
∥
√

√

√

∑

n′1 ̸=m′1

| f ($,Pn′1m′1
)|2





√

√

√

∑

n1 ̸=m1

| f (I,Pn1m1
)|2 +

√

√

√

∑

n1 ̸=m1

| f ($,Pn1m1
)|2



 . (43)

At this point we are left with terms of the form of the identity Eq. (38), and so arrive at the
final bound for this term,

2Re{X Y ∗} ≤ 4 s2 g1∥A2:1∥2pd−1
eff [ρ] , (44)

where ∆Emin is the minimum energy gap, and we have computed

G(ℓ)max =max
m ̸=n

2| sin[Tℓ(Em − En)/2]|
Tℓ|Em − En|

= |sinc
�

Tℓ∆Emin

2

�

|=: sℓ ≤ 1 .
(45)

The inequality is saturated if and only if the time interval Tℓ is finite and the Hamiltonian
H has a degenerate energy level. Note however, that we may in full generality consider only
non-degenerate Hamiltonians as this generalizes to degenerate Hamiltonian’s via an additional
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inequality in convex mixtures of pure instruments and pure initial states.4 Additionally con-
sidering that we here only consider finite Tℓ, the inequality in Eq. (45) is strict.

The fifth term of Eq. (35) can be upper bound in a similar manner,

2Re{X Z∗} ≤ 2G
(1)
max∥G

(2)
∥∥A2∥2p

�

Ç

d−1
eff [A1(ω1)]

Ç

d−1
eff [A1(ρ)] + d−1

eff [A1(ω1)]
�

(46)

≤ 4 s1 g2 ∥A2∥2p d−1
eff [ρ]min , (47)

where we have used the minimum effective dimension at any stage of either process, as defined
in Eq. (25).

3.2.3 Off-diagonal terms

We are finally left to bound the last term of Eq. (35), which is ‘off-diagonal in the sense that
it contains no double-sums over n(′)

ℓ
̸= m(′)

ℓ
. The time averages for Y and Z∗ are entirely

independent, and so

2Re{Y Z∗} ≤ 2| f ($,U1 − $)
T1 f (U2 − $,$)

T2 |

≤
r

f ($,U1 − $)2
T1 f (U2 − $,$)2

T2

≤

√

√

√

√

∥G(1)∥∥A2:1∥2p
deff[ρ]

∥G(2)∥∥A2∥2p
deff[A1(ω)]

≤

q

g1 ∥A2:1∥2p g2 ∥A2∥2p
deff[ρ]min

.

(48)

Here we have used the single time equilibration result of Ref. [50], which can be derived using
the identity (38) together with Eq. (40).

3.2.4 Final Bound for k = 2

We can now combine Eqs. (39), (41), (44), (46), and (48) to obtain the full equilibration
bound for k = 2,

|〈Ak〉Υ−Ω|2
T⃗
≤
�

g1 g2∥A2∥2p + g1∥A2:1∥2p + g2∥A2∥2p
+ 4g1s2∥A2:1∥2p + 4g2s1∥A2∥2p (49)

+ 2
Ç

g1 g2∥A2∥2p∥A2:1∥2p
�

d−1
eff [ρ]min ,

where we have introduced an additional inequality to get the common factor d−1
eff [ρ]min (which

is defined in Eq. (25)).
A perceptive reader may notice that Eq. (49) does not exactly reduce to the infinite time

bound Eq. (19). As when Tℓ→∞, then gℓ→ 1 and sℓ→ 0, and so Eq. (49) reduces to,

|〈Ak〉Υ−Ω|2
∞
≤
�

∥A2∥2p + ∥A2:1∥2p + ∥A2∥2p + 2
Ç

∥A2∥2p∥A2:1∥2p
�

d−1
eff [ρ]min , (50)

4Via a similar argument to one given in Ref. [22], we can ensure that the evolution is equivalently according
to a non-degenerate Hamiltonian by choosing a basis for any degenerate subspace such that the SE state at any
particular time step may overlap only with one of the degenerate basis states for each distinct energy. This argument
holds for pure states at all times, and so only for purity-preserving instruments Ai . However, |〈A〉Υ−Ω|2

∞
, is convex

in mixtures of pure instruments/states, so any bound for pure instruments directly implies a bound for mixed
instruments/states.
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which is a slightly looser bound than Eq. (19). This comes from the fact that the final term
which we bounded, 2Re{Y Z∗}, can in fact alternatively be bounded by a term∝ s1s2, without
any inverse effective dimension dependence. This then goes to zero in the infinite time limit.
However, in the finite time case this term can be problematic: ∆Emin can be extremely small
in a typical many body system (with a large deff[ρ]), and so this term could cause the bound
to become large in such a case, predicting larger equilibration times for systems with smaller
∆Emin. In summary, the final term of Eq. (49) can be replaced with,

2Re{Y Z∗} ≤ min
¦

2
Ç

g1 g2∥A2∥2p∥A2:1∥2pd−1
eff [ρ]min, 8s1s2

©

, (51)

in which case we arrive at the infinite time limit of Ref. [25]. We will omit this for clarity, as
the bound proportional to the effective dimension is the most meaningful in the case of finite
time intervals.

3.2.5 Extension to arbitrary k

The derivation of the k = 2 result Eq. (49) dealt with the three types of terms that appear in the
generalization of Eq. (35) for arbitrary k-time instruments. Therefore, the methods here can
be directly extended to a similar derivation for a bound for any k. We give the result explicitly
for k = 3 in App. C (49 terms). The key factor is the inverse proportionality with respect to the
effective dimension, which will typically be large compared to the other multiplicative factors,
and compared to the total multiplicity.

Finally, using that sℓ = sinc(∆EmaxTℓ/2)≤ 1, gℓ ≥ 1, and that ∥A∥ ≤ 1, we can generalize
the above derivation to arrive at Eq. (24), together with a multiplicity argument which can be
found in App. C. This completes the proof.

4 Equilibration of geometric measures

The multitime correlation equilibration results of Eqs. (19) and (24) are stronger than previ-
ous equilibration results for singletime observables [20–22,46,50]. To see this, in this section
we show how process equilibration directly implies the equilibration of a number of geometric
measures describing physical properties of a quantum process. We first provide a general the-
orem on the equilibration of geometric measures, and then specify some examples of physical
measures. A geometric measure EM is defined as the minimum distance to the closest process
Λ ∈K, where K is some restricted set of processes that defines the measure,

EM(Υ ) :=min
Λ∈K

�

DM(Υ ,Λ)
�

. (52)

Our chosen distance metric here is the operational diamond norm under the restricted set of
instruments M, as defined in Eq. (15). This allows us to derive results about the equilibration
of various geometric measures.

Result 2. For any geometric measure EM of processes, in terms of the operational diamond norm
distance restricted to the set of at most k time instruments M,

|EM(Υ )− EM(Ω)|
T⃗
≤

SM
p

Ck(ε, Tmin)

2
p

deff[ρ]min

. (53)

Proof. Consider without loss of generality that EM(Υ ) ≥ EM(Ω); an equivalent argument
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applies in the complementary case. Then,

|∆EM|= |EM(Υ )− EM(Ω)|
= EM(Υ )− EM(Ω)
= min
ΛΥ∈K

DM(Υ ,ΛΥ )− EM(Ω)

≤ DM(Υ ,Λ′Ω)− EM(Ω)
= DM(Υ ,Λ′Ω)− DM(Ω,Λ′Ω) ,

(54)

where Λ′Ω is chosen to be the process that minimizes DM(Ω,ΛΩ), i.e. that in the definition of
EM(Ω). To arrive at the penultimate line, we have used that EM(Υ ) is a minimum over all
processes in the restricted set K, and so Λ′Ω satisfies the inequality for the first term. Now we
apply the triangle inequality to arrive at,

|∆EM| ≤ DM(Υ ,Ω) . (55)

We can then take the multitime average and apply the bound Eq. (27).

This allows us to prove that (geometric) time-dependent dynamical properties of a process
equilibrate to a time-independent quantity in finite time intervals. All these bounds will result
in meaningful equilibration under the same conditions as when the right hand side of Eq. (27)
is small. That is, for a large effective dimension, a realistic number of total outcomes of mea-
surements S(M) that act at a not too large number of times k, and given that no energy gap
is hugely degenerate, the quantity E(Υ ) is approximately equal to the time-independent E(Ω).

Examples of such geometric measures include the non-Markovianity [2, 3, 5, 60, 61], the
entanglement in time (including genuinely multipartite entanglement) [7], and the classicality
of a process [8, 9]. Given that the implications of process equilibration on non-Markovianity
was investigated in Ref. [25], we will here focus on classicality.

A classical stochastic process is a joint probability distribution on a multi-time random
variable, P(xk, . . . , x1). The process tensor is the quantum generalization of this, reducing
to it in the correct limit [2, 8, 9], preserving the causal order of a process and satisfying a
generalized Kolmogorov extension theorem (GET), in that one can marginalize over time steps
through the insertion of the identity super-operator I for an instrument, and so show the
existence of an underlying process on all times [30].

A quantum process is deemed classical when it satisfies the Kolmogorov consistency con-
dition inherent to classical stochastic processes [8,9],

P(x1, . . . ,��x i , . . . , xk) :=
∑

i

P(x1, . . . , x i , . . . , xk) , (56)

for all i. This means that ignoring a step of the process is equivalent to summing over all
outcomes. Recalling the definition of single time instruments as CP maps on some space
S (see section 2.1), one can expand them in terms of projectors onto their eigenspace,
Ai(·) ≡

∑

x i
x iPx i

(·), where x i is an outcome of the measurement. Then, in terms of the
process tensor, the classical condition Eq. (56) means that if

〈Pxk
⊗. . .∆i . . .⊗ Px1

〉
Υ
=〈Pxk

⊗. . .1. . .⊗ Px1
〉
Υ

, (57)

then the quantum process Υ is classical. Here, for the projector superoperator Px i
, we have

called its Choi state Px i
, and defined the dephasing operation ∆i :=

∑

x i
Px i
(·). That is, Υ is

classical when marginalizing in the quantum sense (insertion of I) is equivalent to marginal-
izing in the classical sense (tracing over all outcomes). To ground ourselves here among the

17

https://scipost.org
https://scipost.org/SciPostPhysCore.6.2.043


SciPost Phys. Core 6, 043 (2023)

formalism, consider the following explicit example of an experimental realization of Eq. (57).
Take an electron traversing a sequence of Stern-Gerlach apparatuses, within a noisy environ-
ment such as outside photons interacting with the electron. Then the electron corresponds to
the system which we can measure, the noisy photons correspond to the environment, and the
outcomes x j are whether the electron is measured as spin up or spin down according to the
jth apparatus. Then Eq. (57) corresponds to whether the experimenter leaves the ith device in
the sequence, allowing both spin up and spin down to continue on (left hand side), compared
to removing the ith device altogether (right hand side). Then we call a process classical if this
has no effects on the statistics of the measurements on devices 1, . . . , i − 1, i + 1, . . . , k.

We can now define a geometric measure of the classicality CM of a process, as the dis-
tance to the closest classical process, given the restricted set M with which the process can be
probed. Therefore choosing E ≡ C in Eq. (53), we arrive at the equilibration of the classicality
of a process to the time-independent equilibrium quantity CM(Ω). This does not mean that
the equilibrium process Ω is necessarily classical. However, it does say that for coarse multi-
time observables and large enough typical systems, how classical the statistics of your mea-
surements look is overwhelmingly likely to be close to this constant. This means that, solely
within a (generalized) Born rule quantum measurement framework, it is extremely likely that
the classicality of your measurement statistics are close to some value CM(Ω). Note that no
semiclassical limit is taken here, and so this is a step towards a quantum process description
of the emergence of classical stochasticity. If there is extra structure on the quantum process,
such as an assumption of quantum Darwinism [62,63], this could have profound implications
for the emergence of macroscopic, objective determinism.

Our ultimate goal is to find the constraints that lead to nontrivial dynamical phenomena
for a system, i.e., non-Markovian processes, from an underlying system-environment unitary
quantum process. This has the potential to bridge the gaps between the quantum and classical
theories.

5 Conclusions and discussion

In this work we have proven the conditions under which equilibration of quantum processes
occurs in finite time intervals. This is a generalization of the infinite time process equilibration
results of Ref. [25], and the extension of the finite time equilibration results of Refs. [46, 50]
to multitime observables.

The time scales involved are generally much less than the recurrence times, and so this
work offers a method on approximating equilibration times based on the properties of quan-
tum processes. An example of a possible application of the bounds on geometric measures

(Result 2) would be to enforce that EM(Ω)
!
= 0, to determine bounds on different process

equilibration times. This may motivate conditions on the generic Markovianization of pro-
cess Υ , or when a quantum process produces classical statistics, and what minimum times T⃗
would result in this. This addresses the question: how long does a quantum process take to
lose memory? How coarse in time do measurements need to be to arrive at classical observed
phenomena? And what extra assumptions on the system and dynamics are needed for this to
occur [26]?

In the recent, related work [59], it is shown that for a large class of translation invariant
Hamiltonians which satisfy a weak version of the ETH, two point correlation functions com-
puted over a thermal state factorize for large times, with small deviations from this on average.
Their setup therefore goes beyond the minimal one proposed in this work and the infinite time
result of Ref. [25]. Interestingly, their results imply a kind of weak Markovianization, in that
the factorization of thermal, temporal correlations implies that no memory is carried between
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observables at two different times. This shows the kind of extra physical assumptions that
may lead to emergent, general Markovianization and thermalization. Indeed, we expect that
results presented here may lead to a generalization of those presented in Ref. [59] to arbitrary
multitime correlations and to finite time intervals, which in turn could stimulate new insight
regarding the question of Markovianization. It should also be noted that there are known cases
where quantum non-Markovianity is only seen for three or higher order correlations [64], and
that non-Markovianity can be hidden for arbitrarily long times [65,66].

One could similarly investigate the times needed for a process to look classical. Both of
these cases are physically relevant, as macroscopically it is highly typical to observe Marko-
vian [67,68] and classical phenomena. This would be an interesting avenue for further inves-
tigation, and the methods used here may be used to address parallel questions to the contem-
porary issue of equilibration time scales [46,50–55].
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A Proof of Eq. (38)

This proof is essentially reproduced from the Appendix of Ref. [25].
To prove Eq. (38), we require to further specify the process Υ to encompass a pure initial

state, and only allow pure instruments (a pure instrument is one which preserves the purity
of the input state). This allows us to argue that the evolution is according to an effective
degenerate Hamiltonian. We will show that this generalizes to mixed states and instruments
in the following.

Intuitively, more mixing means more statistical uncertainty, and so mixed instru-

ments/states may only further equilibrate the system. Precisely, |〈A〉Υ − 〈A〉Ω|2
T⃗

is convex in
mixtures of pure instruments/states, so any bound for pure instruments/states may be used
in a straightforward manner to produce a bound for mixed instruments/states. Therefore, we
consider only exclusively pure instruments/states. This allows us to specify that the evolution
is equivalently according to a non-degenerate (rank 1) Hamiltonian, H ′ =

∑

En |n〉 〈n|, where
{|n〉} could be different for different ‘steps’ in the process. This is done by specifying a basis
for each unitary evolution such that only one basis state |n〉 of any degenerate subspace may
overlap with the SE state, for each distinct energy.
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First, consider Eq. (38) for a single sum over ni ̸= mi . Expanding the instrument in its
Kraus representation A(·)≡

∑

β Kβ(·)Kβ†, for any density operator σ,

∑

ni ̸=mi

�

�tr[APni mi
(σ)]

�

�

2
=
∑

ni ̸=mi

�

�

�

�

�

∑

β

tr[Kβ(|ni〉 〈ni|σ |mi〉 〈mi|)Kβ†]

�

�

�

�

�

2

=
∑

ni ̸=mi

|tr[A |ni〉 〈ni|σ |mi〉 〈mi|]|
2

=
∑

ni ̸=mi

|σni mi
|2 〈mi|A |ni〉 〈ni|A† |mi〉

≤
∑

ni ̸=mi

σni ni
σmi mi

〈mi|A |ni〉 〈ni|A |mi〉

≤
∑

ni ,mi

tr
�

Aσni ni
|ni〉 〈ni|Aσmi mi

|mi〉 〈mi|
�

= tr [A$i(σ)A$i(σ)]

≤
Æ

tr [A$i(σ)$i(σ)A] tr [$i(σ)AA$i(σ)]

=
Ç

tr
�

AA ($i(σ))
2� tr

�

AA ($i(σ))
2�

≤ ∥A2∥p tr
�

($i(σ))
2�= ∥A∥2pd−1

eff [σ] ,

(A.1)

where we have defined the POVM element A :=
∑

β Kβ†Kβ = A†, and the energy eigenstate
decomposition σ :=

∑

ni ,mi
σni mi
|ni〉 〈mi|. In the fifth line we have used the Cauchy-Schwarz

inequality |σnm|2 ≤ σnnσmm, valid for any positive hermitian operator σ (equality for pure
states). In the sixth line we have added the (non-negative) terms where mi = ni to the sum. In
the penultimate line we have again used Cauchy-Schwarz, but for the Hilbert-Schmidt inner
product, tr[A†B] ≤ ∥A∥HS∥B∥HS with ∥A∥HS :=

p

tr[A†A] and noting that A = A† and σ = σ†.
Finally, we have used the identity tr(X Y ) ≤ ∥X∥p tr(Y ) for positive operators X and Y , and
that operator norms satisfy ∥X †X∥p = ∥X∥2p.
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Next, proving Eq. (38) for two sums over ni ̸= mi ,

∑

n1 ̸=m1
n2 ̸=m2

�

�tr[A2Pn2m2
A1Pn1m1

(ρ)]
�

�

2
=

∑

n1 ̸=m1
n2 ̸=m2

�

�

�

�

�

∑

α

tr
�

A2 |n2〉 〈n2|Kα1 |n1〉 〈n1|ρ |m1〉 〈m1|K
α†
1 |m2〉 〈m2|

�

�

�

�

�

�

2

=
∑

n1 ̸=m1
n2 ̸=m2

∑

α,β

|ρn1m1
|2 〈m2|A2 |n2〉 〈n2|Kα1 |n1〉 〈m1|K

α†
1 |m2〉 〈m2|K

β
1 |m1〉 〈n1|K

β†
1 |n2〉 〈n2|A2 |m2〉

≤
∑

n1, m1
n2, m2

∑

α

ρn1n1
ρm1m1

| 〈m2|A2 |n2〉 |2 〈n2|Kα1 (|n1〉 〈n1|)K
α†
1 |n2〉 〈m2|Kα1 (|m1〉 〈m1|)K

α†
1 |m2〉

+
∑

n1,m1
n2,m2

∑

α̸=β

ρn1n1
ρm1m1

| 〈m2|A2 |n2〉 |2 〈n2|Kα1 |n1〉 〈m1|K
α†
1 |m2〉 〈m2|K

β
1 |m1〉 〈n1|K

β†
1 |n2〉

≤
∑

α

∑

n2, m2

| 〈m2|A2 |n2〉 |2 〈n2|Kα1 (ω1)K
α†
1 |n2〉 〈m2|Kα1 (ω1)K

α†
1 |m2〉

+max
i, j
|(A2)i j|2

∑

α̸=β

∑

n1,m1
n2,m2

〈m2|K
β
1 (|m1〉 〈m1|)K

α†
1 |m2〉 〈n2|Kα1 (|n1〉 〈n1|)K

β†
1 |n2〉

=
∑

α

∑

n2, m2

(Kα1 (ω1)K
α†
1 )n2n2

(Kα1 (ω1)K
α†
1 )m2m2

tr [A2 |n2〉 〈n2|A2 |m2〉 〈m2|]

+max
i, j
|(A2)i j|2

∑

α̸=β

tr
�

Kβ1 Kα†
1 ] tr[K

α
1 Kβ†

1

�

=
∑

α

tr
�

A2$2(K
α
1 (ω1)K

α†
1 )A2$2(K

α
1 (ω1)K

α†
1 )
�

≤
∑

α

∥A2∥2p tr
�

�

$2(K
α
1 (ω1)K

α†
1 )
�2�

≤ ∥A2∥2p tr

�

�

∑

α

$2(K
α
1 (ω1)K

α†
1 )

�2�

= ∥A2∥2pd−1
eff [A1(ω1)] ,

(A.2)

where in the third line we have again used that |ρn1m1
|2 ≤ ρn1n1

ρm1m1
, and also split the sums

∑

α,β =
∑

α̸=β +
∑

αδαβ , adding the (non-negative) extra terms n1 = m1 and n2 = m2s. In the
antepenultimate line we have chosen an orthogonal (canonical) Kraus representation for A1, a
minimal representation such that tr[Kα†

1 Kβ1 ]∝ δαβ [45]. At that point we have a term of the
form of the seventh line of Eq. (A.1), and so we use that result to arrive at the next inequality.
In the final line we bring the sum inside by the linearity of the trace, and as

∑

|x i|2 ≤ |
∑

x i|2

for positive x i .
The combination of Eqs. (A.1) and (A.2) generalize directly to arrive at Eq. (38) for arbi-

trarily many sums over ni ̸= mi .

B Proof of Eq. (40)

This proof is reproduced from Ref. [50].

Consider the matrix G(ℓ) as defined in Eq. (33). Then

∥G(ℓ)∥ ≤max
n′
ℓ
m′
ℓ

∑

n,m

|G(ℓ)nℓmℓn
′
ℓ
m′
ℓ
| , (B.1)
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noting that

G(ℓ)nℓmℓn
′
ℓ
m′
ℓ
= exp[−i∆t(Enℓ − En′

ℓ
− Emℓ + Em′

ℓ
)]

Tℓ

=







1 , if (Enℓ − En′
ℓ
− Emℓ + Em′

ℓ
) = 0 ,

exp[i(Enℓ
−En′

ℓ
−Emℓ

+Em′
ℓ
)T]−1

i(Enℓ
−En′

ℓ
−Emℓ

+Em′
ℓ
)T , otherwise.

(B.2)

Now, the sum in Eq. (B.1) can be split into intervals of width ε, such that there are at most
N(ε) energy gaps (n, m) satisfying,

(k+ 1/2)ε > Enℓ − En′
ℓ
− Emℓ + Em′

ℓ
≥ (k− 1/2)ε , (B.3)

for each k ∈ Z. For k = 0, we just take |G(ℓ)nℓmℓn
′
ℓ
m′
ℓ
| ≤ 1, giving the first term of the bound

Eq. (40). If k is non-zero, then |Enℓ − En′
ℓ
− Emℓ + Em′

ℓ
| ≥ (|k| − 1/2)ε, and so considering that

there are dH(dH − 1) terms in the sum, we can use Eq. (B.2) to arrive at,

∑

n,m

|G(ℓ)nℓmℓn
′
ℓ
m′
ℓ
| ≤ N(ε)

 

1+ 2
dH(dH−1)/2
∑

k=1

2
(k− 1/2)εT

!

. (B.4)

Now, due to convexity,

dH(dH−1)/2
∑

n=2

1
n− 1/2

≤
∫ dH(dH−1)/2

1

1
x

dx = ln
�

dH(dH − 1)
2

�

, (B.5)

and so
dH(dH−1)/2
∑

n=1

1
n− 1/2

≤ 2+ ln
�

dH(dH − 1)
2

�

≤ 2log2(dH) . (B.6)

The final inequality can be checked explicitly for dH = 2 and dH = 3, and confirmed for
higher dH by comparing the derivatives of both sides. Using this in Eq. (B.4), we arrive at the
bound Eq. (40).

C Eq. (49) extended to k = 3 time instruments

The proof for higher k proceeds in the same way as way described in the main body for k = 2,
with the three types of terms addressed individually in the Sections 3.2.1, 3.2.2, and 3.2.3
equivalently appearing in the expansion for k > 2. The only non-trivial aspect is the counting
of the multiplicity of particular terms. However, the total multiplicity is (2k−1)2, which is what
we take to be relevant for our main results for arbitrary k (found explicitly in the definition of
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the constant Ck in Eq. (24)). Expanding Eq. (31) for k = 3 we have,

〈Ak〉Υ−Ω =
(k=3)

=:X
︷ ︸︸ ︷

∑

n1 ̸=m1
n2 ̸=m2
n3 ̸=m3

tr
�

A3Pn3m3
A2Pn2m2

A1Pn1m1
(ρ)

�

�

e−i∆t3(En3
−Em3

)e−i∆t2(En2
−Em2

)e−i∆t1(En1
−Em1

)
�

+

=:Y1
︷ ︸︸ ︷

∑

n1 ̸=m1
n2 ̸=m2

tr[A3$3A2Pn2m2
A1Pn1m1

(ρ)]
�

e−i∆t2(En2
−Em2

)e−i∆t1(En1
−Em1

)
�

+

=:Y2
︷ ︸︸ ︷

∑

n1 ̸=m1
n3 ̸=m3

tr[A3Pn3m3
A2$2A1Pn1m1

(ρ)]
�

e−i∆t3(En3
−Em3

)e−i∆t1(En1
−Em1

)
�

+

=:Y3
︷ ︸︸ ︷

∑

n2 ̸=m2
n3 ̸=m3

tr[A3Pn3m3
A2Pn2m2

A1(ω1)]
�

e−i∆t3(En3
−Em3

)e−i∆t2(En2
−Em2

)
�

+
∑

n1 ̸=m1

tr[A3$3A2$2A1Pn1m1
(ρ)]e−i∆t1(En1

−Em1
)

︸ ︷︷ ︸

=:Z1

+
∑

n2 ̸=m2

tr[A3$3A2Pn2m2
A1(ω1)]e

−i∆t2(En2
−Em2

)

︸ ︷︷ ︸

=:Z2

+
∑

n3 ̸=m3

tr[A2Pn3m3
A2(ω2)]e

−i∆t3(En3
−Em3

)

︸ ︷︷ ︸

=:Z3

.

(C.1)

Then,

|〈Ak〉Υ−Ω|2
T⃗
=
(k=3)

X 2 + Y 2
1 + Y 2

2 + Y 2
3 + Z2

1 + Z2
2 + Z2

3

+ 2Re
¦

(Y1Z∗1 + Y2Z∗1) + (Y1Z∗2 + Y3Z∗2)

+ (Y2Z∗3 + Y3Z∗3) + X Y ∗1
+ X Y ∗2 + X Y ∗3
+ Z1Z∗2 + Z1Z∗3 + Z2Z∗3
+ (X Z∗1 + Y1Y ∗2 ) + (X Z∗2 + Y1Y ∗3 ) + (X Z∗3 + Y2Y ∗3 )

+ (Y1Z∗3 + Y2Z∗2 + Y3Z∗1)
©

.

(C.2)

Here we have grouped terms that will have similar bounds, such that the order of these groups
here will agree with the equations below. Note that in the last two lines, we have grouped
terms that are equal (thus getting an additional multiplicity). The key thing to note is that
after carefully examination, one can see that the bounds of the individual terms in the proof
for k = 2 in Section 3.2 can be directly generalized to higher k > 2. We need only determine
what type of terms appear in Eq. (C.2); “diagonal”, “cross” or “off-diagonal”. In particular, the
terms in the first line of Eq. (C.2) are diagonal and so can be bound directly using the method
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of Section 3.2.1; the second, third, fourth and sixth lines can all be bound using Section 3.2.2
as they are cross terms; and finally the fifth and seventh lines are off-diagonal and so can be
bound using the methods of Section 3.2.3. Looking at a representative example of each type
of term, the diagonal terms can be bounded as

X 2 =
∑

n(′)1 ̸=m(′)1

n(′)2 ̸=m(′)2

n(′)3 ̸=m(′)3

G(1)n1m1n′1m′1
G(2)n2m2n′2m2

′G
(3)
n3m3n′3m3

′ f (Pn3m3
,Pn2m2

,Pn1m1
) f (Pn′3m′3

,Pn′2m′2
,Pn′1m′1

)∗

≤ ∥G(1)∥∥G(2)∥∥G(3)∥
∑

n1 ̸=m1
n2 ̸=m2
n3 ̸=m3

| f (Pn2m2
,Pn1m1

)|2

≤ g1 g2 g3∥A3∥2pd−1
eff [A2(ω2)] .

(C.3)

In the second line we have used the steps outlined below Eq. (36), and then finally used
Eq. (38) together with (45) and (40). Note that we define the generalization of the shorthand
function f (Eq. (34)) as

f (X ,Y ,Z) := tr[A3XA2YA1Z(ρ)] , (C.4)

with X ,Y ,Z being either a projector, dephasing, or the identity map. An example of how we
can bound a cross term is

2Re{X Y ∗1 }= 2Re
�

∑

n(′)1 ̸=m(′)1

n(′)2 ̸=m(′)2
n3 ̸=m3

G(1)n1m1n′1m′1
G(2)n2m2n′2m′2

G
(3)
n3m3

f (Pn3m3
,Pn2m2

,Pn1m1
) f ($,Pn′2m′2

,Pn′1m′1
)∗
	

≤ 2G
(2)
max∥G

(1)
∥
√

√

√

√

∑

n′1 ̸=m′1
n′2 ̸=m′2

| f ($,Pn′2m′2
,Pn′1m′1

)|2









√

√

√

√

∑

n1 ̸=m1
n2 ̸=m2

| f (I,Pn2m2
,Pn1m1

)|2

+
√

√

√

√

∑

n1 ̸=m1
n2 ̸=m2

| f ($,Pn2m2
,Pn1m1

)|2









≤ g1 g2(2s1)∥A3:2∥2pd−1
eff [ρ]min .

(C.5)

Here, in the second line we used the triangle inequality argument as described above Eq. (43),
and in the final line we have applied the bound Eq. (38) together with the bounds of the
prefactors: (45) and (40). Finally, an example of the method to bound an off-diagonal term is

2Re{Y1Z∗3} ≤ 2| f ($, $,U1 − $)
T1 f ($,U2 − $,$)

T2 f (U3 − $, $,$)
T3 |

≤

q

g1 ∥A3:1∥2p g2 ∥A3:2∥2p g3 ∥A3∥2p
deff[ρ]min

,
(C.6)

using the single time equilibration result of Ref. [50], analogous to the explanation of Eq. (48).
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Therefore, using these methods to bound all terms in Eq. (C.2), Eq. (49) generalizes to
(23 − 1)2 = 49 terms, with an extra multiplicity of 2 for each sℓ in the cross terms

|〈Ak〉Υ − 〈Ak〉Ω|2
T⃗
≤
(k=3)

�

�

1+ g1 + g2 + g1 g2

�

g3∥A3∥2p +
�

g1 + 1
�

g2∥A3:2∥2p + g1∥A3:1∥2p

+ 2
�

�

(2s2) + (2s3)
�

g1∥A3:1∥2p +
�

(2s1) + (2s3)
�

g2∥A3:2∥2p
+
�

(2s1) + (2s2)
�

g3∥A3∥2p + g1 g2(2s3)∥A3:2∥2p
+ g1 g3(2s2)∥A3∥2p + g2 g3(2s1)∥A3∥2p
+
�Ç

g1 g2∥A3:1∥2p∥A3:2∥2p +
Ç

g1 g3∥A3:1∥2p∥A3∥2p +
Ç

g2 g3∥A3:2∥2p∥A3∥2p
�

+ 2g1(2s2)(2s3)∥A3:1∥2p + 2g2(2s1)(2s3)∥A3:2∥2p + 2g3(2s1)(2s2)∥A3∥2p

+ 3
Ç

g1 g2 g3∥A3:1∥2p∥A3:2∥2p∥A3∥2p
�

�

d−1
eff [ρ]min .

(C.7)

To determine the total multiplicity, given that there are (2k − 1)2 total terms in the k-time
generalization of Eq. (35), there is also an additional factor of 2 for every sℓ that appears due to
the triangle inequality used in the proof. Taking the largest power out the front by introducing
an additional inequality, we arrive at a total multiplicity bounded above by 4k2k−1 = 23k−1.
Recalling the definition (25) and that g≥ 1, we again introduce an additional inequality with
gk as a common factor, and arrive at the definition of Ck.

D Proof of result 1

Consider that each Aw ∈ Mk has outcomes { x⃗} = {(x1, x2, . . . , xw)} corresponding to the
instrument A x⃗ , where w ≤ k. We can then bound the time averaged operational diamond
norm, as defined in Eq. (15),

DM(Υ ,Ω)
T⃗
=

1
2

max
Aw∈Mk

∑

x⃗

|tr[A x⃗ (Υw −Ωw)]|
T⃗

≤
1
2

∑

Aw∈Mk

∑

x⃗

|〈A x⃗〉Υ − 〈A x⃗〉Ω|
T⃗

≤
1
2

∑

Aw∈Mk

∑

x⃗

r

|〈A x⃗〉Υ − 〈A x⃗〉Ω|2
T⃗

≤
1
2

∑

Aw∈Mk

∑

x⃗

Ç

Cw(εTmin)d−1
eff [ρ]min

≤
1
2

∑

Aw∈Mk

∑

x⃗

Ç

Ck(ε, Tmin)d−1
eff [ρ]min

=
SM

p

Ck(ε, Tmin)

2
p

deff[ρ]min

,

(D.1)

where in the fourth line we have used Eq. (24), and in the fifth that w ≤ k. Note that this
proof follows closely to one given in Ref. [22], and is effectively reproduced from Ref. [25].
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