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Abstract

Basic questions on the nature of spin polarization in two terminal systems and the way
in which decoherence breaks Time-Reversal Symmetry (TRS) are analyzed. We exactly
solve several one-dimensional models of tunneling electrons and show the interplay of
spin precession and decay of the wavefunction in either a U(1) magnetic field or an
effective Spin-Orbit (SO) magnetic field. Spin polarization is clearly identified as the
emergence of a spin component parallel to either magnetic field. We show that Onsager’s
reciprocity is fulfilled when time reversal symmetry is present and no spin polarization
arises, no matter the barrier parameters or the SO strength. Introducing a Büttiker’s
decoherence probe, that preserves unitarity of time evolution, we show that breaking
of TRS results in a strong spin polarization for realistic SO, and barrier strengths. We
discuss the significance of these results as a very general scenario for the onset of the
Chiral-Induced Spin Selectivity effect (CISS).
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1 Introduction

The Spin-Orbit (SO) coupling is many times neglected in electron transport because of the
energy scale of the coupling, meV for C, N, O in chiral molecules and e.g. Si, Ga, and Ge
semiconductors in the bulk. Although the source of SO coupling in many technologically
relevant materials is atomic, how this coupling translates to transport depends on the geometry
of the connection between spin active atoms. This way in flat graphene, while atomic SO
coupling is meV, the effective transport SO coupling is µeV. In a tight-binding model the SO
coupling cancels from the nearest neighbour contribution due to interference effects and it
is only when the second neighbours coupling is introduced one gets a meV interaction. On
the other hand, bending the graphene sheet and producing e.g. nanotubes, increases the SO
coupling by three orders of magnitude, as it becomes a first neighbours interaction [1]. The
same enhancement is seen in silicene which has a corrugated surface structure that breaks the
orthogonality of π orbitals and the σ structure in graphene [2].

In the case of electron transport in molecules, the SO coupling has been largely disregarded
but has come into light due to large spin activity reported as Chiral-Induced Spin Selectivity
(CISS) effect [3]. CISS effect is observed for both point chiral [4] in amino acids, helical
chirality such as DNA [5], and helicene [6,7]. Biological molecules generally combine both as
in e.g. oligopeptides [8,9].

There exists an enormous gap in understanding between the size of the SO coupling in
molecules, in the meV range, and the magnitude of the spin polarization effect in CISS effect
experiments, with spin-polarized transmissions above 40% [5]. This percentage exceeds the
polarization strength produced by transmission through ferromagnets. The SO coupling is al-
most universally regarded as the spin active ingredient in CISS effect and theoretical estimates
have yielded the correct qualitative behavior i.e. helicity states with the propagation axis as
the quantization axis of the electron spin. On the other hand, the prediction for the magnitude
of the spin polarization is at least ten times smaller, when correct atomic SO coupling strengths
are contemplated [10–13].

An important issue on the symmetries involved in electron transmission with two terminals
with SO coupling was pointed out by Yang, van der Wal and van Wees [14,15]. As was clearly
argued, Onsager’s reciprocity precludes the possibility of spin polarization in the two terminal
setting in the linear regime, in contrast with the results of many works in the literature, both
experimentally and numerically. It is then important to observe how symmetry arguments play
out in specific calculations as reference results [14, 16]. Symmetry arguments alone cannot
say how sensitive these results will be in the face of weak symmetry-breaking perturbations,
in this case, of Time-Reversal Symmetry (TRS).

In this work we will discuss the simplest transmission model through a SO active barrier, as
tunneling is a very common electron transfer mechanism in large molecules [17]. We will ex-
plore the possibilities of spin-polarized electron transmission in a one-dimensional two-probe
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setting for an exactly solved model. The action of a U(1) field on tunneling electrons [18]
will be contrasted with the effective momentum-dependent magnetic field arising from the SO
coupling. A very important issue in the latter case is the velocity operator’s non-diagonal na-
ture that secures the flux’s continuity through boundaries [19]. The strong result is that while
a U(1)magnetic field polarizes spin along its direction, under the action of the barrier, no spin
polarization results under the action of a spin-orbit magnetic field. Following, we solve the
model for the spin-orbit magnetic field under the effects of weak TRS breaking decoherence
effects, enacted through Büttiker’s probe. Large spin polarization highlights a high sensitivity
to TRS breaking with realistic SO couplings. These findings address the core issue of CISS
effect.

To clarify the nature of the contribution in this work: The first three sections are qualitative,
as the parameters are not chosen to fit the actual physical ones for chiral molecules. In section
3, independently of the parameters chosen, the null results for polarization are exact results
verifying the symmetry requirements of the Onsager relations. A few previous numerical com-
putations resulted in transport spin filtering associated with non-hermiticities that crept into
the calculations. Although we refer to previous papers with the correct conclusion for the po-
larization of the Rashba case, these contributions have shortcomings that are overcome here
realizing the correct boundary conditions.

The meaning of polarization in terms of an asymmetric treatment of opposite spin ori-
entations is also clarified in this paper, along with an exact solution to the problem (with
time-reversal symmetry in place), in light of Buttiker’s magnetic field case that breaks time re-
versal. Finally, in section 5, on Buttiker’s probe, the parameters are fitted to a polaron model
of transport. Nevertheless, the coupling to the reservoir is not parameterized quantitatively
and we only show qualitatively the sensitivity of the polarization to decoherence. We also
note that in more realistic situation, the Rashba coupling can be a varying function of the co-
ordinate [20, 21], since it can be modulated by local geometrical configurations [22], but we
believe that our findings where this is neglected retain the essential of the physics at work..

2 Barrier model with a magnetic field

2.1 Spectrum, eigenfunctions, and wavevectors

We will first fully solve analytically for the emblematic problem of a magnetic field under a
barrier for spinful particles [18]. The correct solution to this problem allowed for properly
addressing the tunneling time problem. Büttiker realised that spin precession in the field is
modulated by the spin-dependent decay of the wavefunctions under the barrier, generating
polarization in the direction of the magnetic field. The Hamiltonian in this case is given by

H =







�

p2
x

2m + V0

�

1σ − Γσz , if 0< x < a ,
�

p2
x

2m

�

1σ , otherwise ,
(1)

where 1σ is the unit matrix in spin space and σi are the Pauli spin matrices, with i = x , y, z.
Γ = h̄ωL/2 where ωL is the Larmor frequency, and V0 is the barrier height. H acts on the
spinors ψ = (ψ+(x) ψ−(x)) where |ψ±|2d x is the probability of find a particle between x
and x + d x with spin ±h̄/2. The Hamiltonian inside the barrier has the dispersion relation
depicted in Fig. 1. The choice of coordinates is slightly different from that of Büttiker so we
can discuss all one-dimensional models with the same notation.
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Figure 1: The dispersion relation for the barrier with a magnetic field. The figure
depicts the degenerate κλσ vectors that occur in the barrier range.

The incoming wavefunction we choose to be

ψ=
1

p

1+ |s|2

�

1
is

�

. (2)

The values of s = ±1 correspond to the two eigenfunctions of the σy matrix, and s = ±i
correspond to the two eigenfunctions of the σx matrix, appropriately normalized. The eigen-
values of the Hamiltonian are

E =
p2

x

2m
−σΓ+ V0 , (3)

where σ = ±1 is the spin degree of freedom. Using E = h̄2k2/2m, we define the wavevector
outside the barrier k. This Hamiltonian is not time-reversal invariant since inverting time flips
px and σ, and these flips change the energy. From the eigenvalue equation, one can then
distinguish between the different wavevectors under the barrier

κλσ = λ
�

k2 − k2
0 +σk2

B

�1/2
, (4)

where k2
B = 2mΓ/h̄2 and k2

0 = 2mV0/h̄2. As can be seen, κλσ can only be real or imaginary. Thus
we have either exponentially decaying solutions for k2 < k2

0 −σk2
B or plane waves otherwise.

As the Hamiltonian commutes with σz in the barrier region we can superpose eigenfunctions
of σz as

ψ1 =
1

p

1+ |s|2

�

1
is

�

eikx +

�

A+
A−

�

e−ikx , (5)

ψ2 = ε

�

1
0

�

eiκ++x + ζ

�

0
1

�

eiκ+−x +η

�

1
0

�

eiκ−+x + θ

�

0
1

�

eiκ−−x , (6)

ψ3 =

�

D+
D−

�

eikx . (7)

The boundary conditions are

ψi(xb) =ψi+1(xb) , (8)

v̂xψi(xb) = v̂xψi+1(xb) , (9)
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where v̂x = (∂H/∂ px) is the velocity operator and xb the boundary between the different
space regions. We match the wavefunction and the amplitude flux. This latter boundary condi-
tion is very important to realize and has often been confused in the literature. Any dependence
of the mass on position (effective mass) should be carefully considered to yield the appropri-
ate hermitian velocity operator [23]. If the mass is a constant, then the boundary conditions
amount to matching the wavefunctions and the first derivatives thereof. Although this problem
can be separated into two spinless tunneling problems with different barrier heights [18], we
have decided to phrase somewhat more cumbersomely to make a few important points when
considering spin-orbit coupling.

The system of equations above can be solved to yield

D+ =
t+

p

1+ |s|2
=

2k(κ−+ −κ
+
+)e
−ia(−κ−+−κ

+
++k)

p

|s|2+1
�

eiaκ−+(κ−+ − k)(κ++ + k)− eiaκ++(κ−+ + k)(κ++ − k)
� ,

D− =
ist−

p

1+ |s|2
=

2iks(κ−− −κ
+
−)e
−ia(−κ−−−κ

+
−+k)

p

|s|2+1
�

eiaκ−−(κ−− − k)(κ+− + k)− eiaκ+−(κ−− + k)(κ+− − k)
� ,

A+ =
r+

p

1+ |s|2
=

(κ−+ − k)(k−κ++)
�

eiaκ−+ − eiaκ++
�

p

|s|2+1
�

eiaκ−+(κ−+ − k)(κ++ + k)− eiaκ++(κ−+ + k)(κ++ − k)
� ,

A− =
isr−

p

1+ |s|2
=

is(κ−− − k)(k−κ+−)
�

eiaκ−− − eiaκ+−
�

p

|s|2+1
�

eiaκ−−(κ−− − k)(κ+− + k)− eiaκ+−(κ−− + k)(κ+− − k)
� , (10)

where the t± and r± denote the transmission and reflection amplitudes. We recall

κλσ = λ
q

�

k2 − k2
0 +σk2

B

�

. In the next section, we obtain the behavior of the spin as a function
of the magnetic field strength consistent with tunneling and we see both regular Larmor pre-
cession with V0 = 0, and precession combined with spin alignment in the field direction when
tunneling occurs.

2.2 Spin precession under the barrier with magnetic field

One readily verifies the differential decay of the transmission with the length of the barrier as
T+ ∼ e−2κ++a, and T− ∼ e−2κ+−a as long as E < V0∓ h̄ωL/2. The following relations quantify the
polarization of the electron, the transmitted (T) wave is

ψT =
1

p

|D+|2+|D−|2

�

D+
D−

�

eikx , (11)

and the spin averages are defined by

〈sz〉=
h̄
2
〈ψT |σz|ψT 〉=

h̄
2
|D+|2−|D−|2

|D+|2+|D−|2
,

〈sy〉=
h̄
2
〈ψT |σy |ψT 〉= i

h̄
2

D+D∗− − D∗+D−
|D+|2+|D−|2

,

〈sx〉=
h̄
2
〈ψT |σx |ψT 〉=

h̄
2

D+D∗− + D∗+D−
|D+|2+|D−|2

. (12)

Analogous relations can be written for the reflected wave. A spin oriented in the y direction
(corresponding to s = −1, see Eq. (2) will Larmor precess around the magnetic field (in z
direction) when V0 = 0 as shown in Fig. 2.
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Figure 2: Precession of the spin as it goes through an increasing barrier length a
starting from the 1/

p
2 (1 − i) state, for V0 = 0. This is the simple Larmor precession

initially surmised for tunneling times [18].

On the other hand, for V0 > E ± h̄ωL/2, spin precession around the magnetic field is only
part of the average spin motion, since each spin component decays at a different rate under
the barrier. This gives rise to a z-component that aligns with the direction of the field [18].
Figure 3 depicts the qualitative motion for the latter case. For V0 < E ± h̄ωL/2 only Larmor
precession follows.

Finally, Fig. 4 shows the transmitted probability in z quantization axis. The input spin
orientation is along the negative y axis and the transmitted wave selects the up spin orienta-
tion due to the slower decay of the lower energy state under the barrier. This produces spin
alignment with the magnetic field.

A very important relationship to check is that of the conservation of angular momentum.
As proven in reference [18], the conservation can be stated exactly as

(R+ + R−)〈sz〉R = −〈sz〉(T+ + T−) , (13)

where T+ = |t+|2 and R+ = |r+|2 and 〈sz〉R is the reflected (R) spin component in the z direc-
tion.

Such a relationship is verified in Fig. 5 where the changed angular momentum transmitted
is compensated by the opposite angular momentum reflected. We have thus verified Büttiker’s
scenario for tunneling with a magnetic field under the barrier. Before addressing the case of
the SO coupling in one dimension, some useful gauge concepts will be introduced.

3 Barrier model with a Rashba term

3.1 Spectrum, eigenfunctions, and wavevectors

We solve the scattering problem for the following model

H =

(

(
p2

x
2m + V0)1σ +Λpxσy , if 0< x < a ,

(
p2

x
2m)1σ , otherwise ,

(14)

where 1σ is the unit matrix in spin space and σi are the Pauli spin matrices. This Hamiltonian
can be obtained from a helical model of a molecule with p wave overlaps and SO active car-
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Figure 3: Relaxation of spin toward magnetic field direction due to tunneling when
k2 < k2

0 ∓ k2
B [18]. For long enough barriers the spin becomes completely polarized

in the direction of the field. The reference values taken for the plot are k = 2/a,
k0 = 3/a, and kB = 1/a, where a is the barrier length.

bon/nitrogen atoms [24–26]. The magnitude of the SO coupling considered is in fact derived
from the overlaps that are only feasible for the chiral structure considered in those models.

We take the incident beam to have an amplitude

ψ=
p

2
p

1+ s2

�1+s
2

1−s
2

�

, (15)

where s = 1 corresponds to the up-spin normalized eigenstate of the σz matrix and s = −1 to
the down-spin state. The normalization also allows access to all spin states in the x−z plane of
the Bloch sphere. Here we will illustrate how the SU(2) gauge vector for the one-dimensional
Rashba Hamiltonian becomes crucial in the barrier boundary conditions [19] which has been
missed in previous treatments.

We can faithfully rewrite the Hamiltonian in the following form

H = 1
2m

�

p̂x1σ +mΛ(x)σy

�2
+ V0 −

mΛ2

2
, (16)

where we can identify the SU(2) gauge field Ax = Ay
xσy = mΛ(x)σy . The velocity operator

defined by vx = ∂H/∂ px = ((px/m)1σ+Λσy), where no effective mass differences are consid-
ered [23] for the different scattering regions. Solving for the eigenvalues of this Hamiltonian,
we arrive at

E =
1

2m
(px +mσΛ)2 −

mΛ2

2
+ V0 , (17)

whereσ = ±1 is the spin quantum number (eigenvalue label of SU(2)Hamiltonian). Equating
E = h̄2k2/2m we define the wavevector outside the barrier region as k. Starting from the
eigenvalue, we can solve for the possible values of px = h̄q. A new quantum number arises that
distinguishes right and left propagating waves. The resulting possible values of the wavevector
under the barrier are

qλσ = λ
q

k2 + k2
so − k2

0 −σkso , (18)

where kso = mΛ/h̄ and k2
0 = 2mV0/h̄2. The meaning of the quantum numbers is depicted in

Fig. 6, where the degeneracy of two Kramer’s pairs is evident. Note that for each direction of
propagation, there are two distinct wavevectors with opposite spin labels and that the previous
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Figure 4: Transmission contrast between spin components for a magnetic field under
the barrier. One can see the preferred spin polarization due to the slower decay of
the lower energy spin configuration under the barrier, leading to an alignment of the
entering spin to the magnetic field. The parameters chosen are the same as in Fig. 3.

wavevector can be real or complex depending on the values of the incoming wavevector (with
energy E = h̄2k2/2m) and the height of the potential barrier. As is easily derived from Eq. (14),
the Hamiltonian commutes with σy , and p̂x so it has common eigenstates with σy and the p̂x
eigenstates. In the σz basis the wavefunctions in the different regions are parameterized as
follows

ψ1 =

�1+s
2

1−s
2

�

eikx +

�

A+
A−

�

e−ikx ,

ψ2 =
α
p

2

�

1
i

�

eiq++ x +
β
p

2

�

1
−i

�

eiq+− x +
γ
p

2

�

1
i

�

eiq−+ x +
δ
p

2

�

1
−i

�

eiq−− x ,

ψ3 =

�

D+
D−

�

eikx , (19)

where the coupling between the direction of propagation and spin orientation has been im-
plemented by the appropriate qλσ wavevectors. The boundary conditions are the same as in
Eqs.9 [19]where v̂x =

�

p̂x +mΛσy

�

/m. The linear system of eight unknowns can be explicitly
solved for the transmission and reflection amplitudes

t+ =
(1+ i)∆ke−iak

�

(1− is)eiksoa + (s− 1)e−iksoa
�

(e−ia∆(∆+ k)2 − eia∆(k−∆)2)
,

t− = −
(1+ i)∆ke−iak

�

(s+ i)eiksoa − (1+ is)e−iksoa
�

(e−ia∆(∆+ k)2 − eia∆(k−∆)2)
,

r+ =
(k−∆)(∆+ k)(s+ 1)

�

(k−∆)2e2ia∆ + (∆+ k)2e−2ia∆ − 2(k2 +∆2)
�

2 (e−ia∆(∆+ k)2 − eia∆(k−∆)2)2
,

r− = −
(k−∆)(∆+ k)(s− 1)

�

(k−∆)2e2ia∆ + (∆+ k)2e−2ia∆ − 2
�

k2 +∆2
��

2 (e−ia∆(∆+ k)2 − eia∆(k−∆)2)2
, (20)

where ∆=
q

k2 + k2
so − k2

0, and as before t± and r± are the spin dependent transmission and
reflection amplitudes. Such amplitudes will be very important to understand how decoherence
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Figure 5: Angular momentum conservation balancing transmitted spin up (z-
component) and reflected spin down. As there is no incident spin-up current the
two previous components (Eq. (13)) must balance.

Figure 6: Dispersion for Hamiltonian in Eq. (14) The labels correspond to the
wavevectors in the barrier region with qλσ.

effects generate spin polarization. The barrier region amplitudes are

α=
(−1)1/4eiaq−+k(s− i)(k+∆)

−eiaq++(k−∆)2 + eiaq−+(k+∆)2
,

β =
(−1)1/4k(1− is)eiaq−−(∆+ k)

eiaq−−(∆+ k)2 − eiaq+−(k−∆)2
, (21)

and

γ=
(−1)1/4k(s− i)eiaq++(k−∆)

eiaq++(k−∆)2 − eiaq−+(∆+ k)2
,

δ =
(−1)1/4k(1− is)eiaq+−(k−∆)
eiaq+−(k−∆)2 − eiaq−−(∆+ k)2

. (22)

We recall that qλσ = λ
q

k2 + k2
so − k2

0 −σkso.
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Figure 7: Precession of spin around the spin-orbit magnetic field. Note that as the
k vector inside the barrier has always a real part, we have pure precession with no
tilting toward the magnetic field as with the magnetic field in the previous section.
This happens below and above the barrier.

3.2 Spin precession under the barrier for Rashba

The transmission of up-spin as a function of the entry spin polarization is

|t+|2 =
8|∆|2k2[1+ s cos(2ksoa)]

|e−ia∆(∆+ k)2 − eia∆(k−∆)2|2
,

|t−|2 =
8|∆|2k2[1− s cos(2ksoa)]

|e−ia∆(∆+ k)2 − eia∆(k−∆)2|2
, (23)

from where we can see that T = |t+|2+|t−|2 so the total conductance is

Gtotal = G+ + G−

=
e2

h
T =

16e2|∆|2k2

h |e−ia∆(∆+ k)2 − eia∆(k−∆)2|2
,

(24)

where G± = (e2/h)|t±|2, which is spin independent [19,27] even in the presence of a barrier
and an open system at either end of the barrier.

Following the definitions for average spin components in Eq. (.12), we can now see the be-
havior of the injected spin into the spin-orbit active barrier. Fig. 7 shows how the average spin
traverses the spin-active barrier region with SO coupling. In analogy with Büttiker’s U(1)mag-
netic field, we can define a new momentum-dependent magnetic field BSO given the mapping
λpxσy = −γBSO ·σ that results in BSO = −(Λ/γ)pxuy . BSO lies in the negative y direction for
the model Hamiltonian. Precession follows correctly the torque equation d〈s〉/d t = γ〈s〉×BSO.
Note that, as even under the barrier, the wavevector is complex, unlike the magnetic field case,
precession proceeds with no generation of a spin component along the BSO direction. Also,
both spin components suffer the same decay within the barrier (although dependent on SO)
independent of their spin orientation (see Eq. (18)).

We can see from comparing the two cases (magnetic field and SO) that one superposes
different k vectors corresponding with the same energy when traversing the spin active region.

10

https://scipost.org
https://scipost.org/SciPostPhysCore.6.2.044


SciPost Phys. Core 6, 044 (2023)

The two wavevectors, having different real parts, cause precession due to a torque around the
direction of BSO. In the case of a real magnetic field, under the barrier, the k vector is purely
imaginary, and only a spin-dependent decay ensues (see Eq. (4)), producing an alignment of
the spin in the magnetic field direction. In the case of the SO, there is always a real part to the
k vector (even under the barrier) so that precession occurs for energies above and below the
barrier. No spin polarization along BSO follows from this scenario in tune with time-reversal
symmetry.

4 Other helicity Hamiltonians

Varying the Hamiltonian under the barrier to the case where the eigenstates are projected along
the direction of propagation (helicity states), can be interpreted directly from the previous
results. The Hamiltonian in this case is

H =







�

p2
x

2m + V0

�

1σ +Λpxσx , if 0< x < a ,
�

p2
x

2m

�

1σ , otherwise.
(25)

The SO magnetic field is now in the x direction as BSO = −Λpx/γ ux . Working out the
eigenstates in the SO active region, the eigenstates will be those of σx matrix, and the possible
k vectors will be κλσ = λ

q

k2 + k2
so − k2

0−σkso as before. The k-vector under the barrier always
has a real part that results in a spin precession. If we start from a spin orientation in the z-
axis, then the spin will precess around the x axis without generating a spin component in the
x direction. So no changes from the conclusion in the previous section follow in this case.

5 Decoherence with Büttiker’s probe

The spin-orbit coupling does not contrast between spin species, so it cannot, alone, account
for polarised spin polarization as expected in CISS effect. Nevertheless, the perfect conditions
under which these results are valid i.e., no coupling to a TRS breaking probe beyond the two
terminals, are not met, especially at room temperature conditions. A thermalization of electron
transport to the environment through the electron-phonon or electron-electron interactions is
inevitable. This environment can be modeled as a lumped probe that disrupts the delicate
coherences that yield Bardarson’s theorem that translates into transport as the Onsager reci-
procity relations in the linear regime. This turns our attention to a tunneling molecular system
to a three-probe scenario.

The Büttiker’s voltage probe [28] is an ingenious way to introduce decoherence processes
through the scattering matrix for an exactly solved model. Here we introduce a generalization
of the probe used previously in the context of persistent currents [29–31] (see Fig. 8). The
probe is spin insensitive, so we do not introduce extraneous sources of spin selection. This is
achieved by introducing two probes, one for each spin species at the same point connected to a
third reservoir thermalized to a Fermi distribution at temperature T . The probe is wide-band,
supporting the wavevectors injected by the barrier channels. The probe scattering matrix re-
turns an amplitude consistent with a simple electron reservoir unrelated to the input amplitude
(while preserving unitarity) so that a disruption to the interferences occurs according to the
local fluxes of each spin orientation. Such a probe introduces TRS breaking that generates the
Büttiker tilting of the spin in the BSO direction producing net spin polarization.
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Figure 8: Büttiker’s probe under the spin-orbit active barrier with electrons imping-
ing on the left and leaving on the rigth with wavevector k. The function Γ(α,β ,γ,δ)
represents the wavefunction combination under the barrier as in Eq. A.1. The probe
absorbs each eigenstate spin species under the barrier with the same scattering ma-
trix, so no spurious spin selection is induced. Flux conditions are imposed on building
the S matrix for a wideband Büttiker’s probe.

The behavior of the Büttiker’s probe follows the combination of an ideal lead with v = h̄κ/m
that supports a current dI = ev(dN/dE) f (E)dE in the energy interval dE, where f (E) is the
Fermi distribution, dN/dE = 1/2πh̄v is the density of states. This model can then induce level
broadening [29, 30], ( [31] for Hamiltonian version) and level shifts under the barrier, and
also depends on where the decoherence event occurs. Besides the coupling of the probe to
the barrier, we can also control the temperature through the Fermi distribution of the attached
reservoir. The Büttiker’s probe is also discussed in [32], where they consider inelastic events
i.e., energy changes but conservation of particles. Here S†S = 1 so that only decoherence is
contemplated.

Figure 8 shows the four regions that must be matched for continuity and flux. Under the
barrier, the matching occurs at position (x0, y0) = (x0, 0) where y describes the coordinate
of the third probe. The Scattering (S) matrix can then emulate a generic dephasing process
[29]. Matching flux conditions at x0 yields the following S matrix between input and output
amplitudes for each spin species i.e., spin eigenstates under the barrier. Here we only show
the spin down matrix equation (see Appendix A for details)

Ψout =





p
Nζ−
β ′

δ



= S−Ψin =





−(A+B) −
p
εeiq−− x0

p
εeiq+− x0

p
εe−iq+− x0 −Ae−2i∆x0 B

−
p
εe−iq−− x0 B −Ae2i∆x0









p
N
δ′

β



 , (26)

where Ψin,out represent the input/output amplitudes to the junction and S− is the scatter-
ing matrix for the spin-down label. The labels follow the usage previously introduced where
qλσ, with σ the spin label and λ the sense of propagation label. A = (

p
1− 2ε − 1)/2 and

B = (
p

1− 2ε+ 1)/2, while N = e f (E)dE/2πh̄v with f (E) the Fermi distribution, e the elec-
tron charge, E the energy and v the velocity of the carriers in the lead [28]. 0 < ε < 0.5
describes the coupling of the probe to the barrier from uncoupled to fully coupled.

The results regarding the influence of decoherence, barrier length, and SO coupling is
depicted in Figs. 9 thru 11. In Fig. 9, where only qualitative parameters are used so that
precession can be appreciated, one can see that the SO coupled to the third probe produces
a smooth disruption of the spin precession which is no longer in the (x , z) plane but yields a
〈s〉y component. The tunneling electrons now achieve a large polarization in the direction of
the SO magnetic field (see inset). Thus, the BSO acts as a symmetry-breaking interaction such
as a real magnetic field in Fig. 3.
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Figure 9: Precession of input spin orientation when the decoherence probe couples to
a particular point x0 under the barrier. A noticeable disruption of spin precession is
observed, generating a spin polarization toward BSO analogous to an actual magnetic
field (see Fig. 3, realizing broken time-reversal symmetry). As here x0 = 0.8, we
begin the plot at a = 1 so that the probe is always under the barrier.

Figure 10 depicts the transmission contrast between spin components along the y axis in
which the BSO field is oriented. As can be seen, the spin acquires a preferred direction along
the −y direction aligning with the SO magnetic field. This is analogous to the case of the TRS
breaking U(1) magnetic field considered at the outset. When the SO strength is zero, the two
components merge, showing no spin activity, and only express the transmission through the
barrier.

Figure 11 shows the dependence of the new polarization as a function kso, and the cou-
pling to the reservoir. In contrast to previous figures depicting qualitative precession features,
here we have set the parameters to realistic ranges for spin-orbit strength, barrier height, and
barrier-probe coupling [24]. It is evident that even for weak coupling (ε) and ESO ∼ 10 meV,
one can achieve polarizations of 40%. The polarization effects can yield positive and negative
polarizations depending on the length of the barrier a and exhibit a non-trivial temperature
dependence. No spin polarization is produced without the SO interaction, no matter the cou-
pling to the third probe.

Figure 12 shows the non-monotone/interference effects of coupling to the third probe and
the sensitivity to the coupling to the third probe. Sufficiently large values of SO wavevec-
tor kso, can produce a large polarization at low coupling, while large couplings degrade the
polarization. Figure 13 depicts the temperature dependence of the polarization as a func-
tion of the barrier length. The temperature dependence is expressed through the parameter
N = e f (E)dE/2πh̄v proportional to the thermal occupation of the probe. As temperature
rises N is reduced so that as the temperature is increased, the polarization increases for fixed
barrier length. Non-monotone effects with the probe coupling can change this temperature
dependence. They will be determined by the specific nature of how the electron spin current
thermalizes to the environment e.g., electron-phonon, electron-electron interactions.

A parameter that may be the least determined physically is the probe’s position x0, and
how many of these probes should be placed in the tunneling/spin active region. Although it is
beyond the scope of this work, one may estimate how many electron-phonon events may occur
as a function of temperature and the particular electron-phonon coupling within the tunnel-
ing region and statistically place as many probes as the estimate dictates. As to the specific
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Figure 10: Transmission contrast of spin orientations along the y quantization axis
(BSO field orientation). The input spin wavefunction in the (1 0) orientation, which
has equal amplitudes in the latter basis, acquires a preferred orientation aligned with
the BSO field analogously to the U(1) magnetic field case.

location of the probe, the most appropriate procedure is to average its effect over different
positions under the barrier. We have not performed these procedures but show the smooth be-
havior of the polarization as a function of the probe position so that the previous procedures
can be readily implemented. Figure 14 shows the smooth probe position dependence of the
decoherence-generated spin polarization for the parameters of Fig. 11. The figure also displays
the sensitivity of the generated polarization as a function of probe-barrier coupling ε. Such
smooth dependence lends itself to the averaging procedures proposed and will not change
qualitatively the one probe results in an essential way.

6 Summary and Discussion

We have discussed a one-dimensional system with SO interaction which can be derived from
a three-dimensional model ignoring the orbital degree of freedom [24, 25]. The spin-orbit
coupling arises from the geometrical arrangement of the p orbitals of the helical model’s chiral
structure. Without it, the SO coupling would be orders of magnitude smaller [25], as happens
comparing SO coupling of planar graphene and carbon nanotubes [1]. Due to the atomic
origin of the SO coupling in this model, the helix’s spin and orbital degrees of freedom are
uncoupled at the lowest order and in the half-filling model [25, 26]. Thus the orbital degree
of freedom only modulates the kinetic energy and adds orbital angular momentum, which can
also enhance spin-orbit effects, as shown in ref. [33]. So chirality has a role in the present
CISS model in generating its ∼10 meV strength.

In the succession of models presented for transmission through a spin-active barrier, we
have expressed spin polarization as the manifestation of a lack of TRS that selects a spin ori-
entation. We first discussed Büttiker’s model of a U(1) magnetic field under a barrier. The
differential decay of the amplitudes for spin-up and spin-down produces a reorientation of the
spin along the magnetic field. It serves as the trademark of TRS breaking in the spin polariza-
tion. In the following model we assessed the SO coupling where an effective magnetic field
can also be identified BSO, mapping the SO coupling to a Zeeman-like term. Nevertheless, this
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Figure 11: Spin polarization for k = 0.4 nm−1, k0 = 1 nm−1, a = 5 nm, x0 = 1.5 nm
and N = 0.1, generated by decoherence analogous to that caused by a real external
magnetic field. The contour plot shows the effect of a spin-orbit and decoherence
coupling, consistent with estimates of ref. [24] for tunneling. The appearance of
alignment of the spin to the BSO is very sensitive to the coupling to the Büttiker’s
probe, producing up to 16% polarization with realistic values of SO coupling.

effective field depends on the propagation direction and does not break TRS. The exact solu-
tion of the tunneling problem, which has not been satisfactorily solved before in the literature
in this form, yields nevertheless the expected result, implied by Onsager’s reciprocity for two
terminal devices, i.e. no spin polarization independent of the magnitude of the SO coupling.
Spin precession around BSO with no differential decay of different spin components is shown.
Thus, in the two terminal setup, at T = 0, the chiral structure and SO will then not be enough
for spin selectivity since, as we have shown above, the spin-orbit coupling only makes for spin
precession due to the spin torque of the SO magnetic field BSO with no asymmetric treatment
of both spin species.

One of the most emblematic features of the CISS effect is that it is measured at room tem-
perature (although see [34,35]) in molecular systems that are strongly coupled to the thermal
environment. Strictly coherent quantum models can only be part of the story. The final model
addresses minimal coupling to the environment through a third probe, making for decoher-
ent/dephasing albeit unitary processes. Symmetry arguments cannot assess beforehand, how
sensitive the system will be to weak-TRS-breaking events. These events are incorporated in
the last model as a time reversal symmetric interaction (SO coupling) under a barrier coupled
to a Büttiker’s probe. Our exact results show a high sensitivity of spin polarization, where the
combination of SO coupling and decoherence acts analogously to a U(1) magnetic field. The
input spin reorients to the effective magnetic field producing a net spin polarization. This is
a very different mechanism from the first model considered, where differential decay of each
spin orientation gives polarization. Here delicate interferences that guarantee time-reversal
symmetry are disrupted, producing a large effect of even 40% for small couplings to the Büt-
tiker’s probe.
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Figure 12: Spin polarized component for k = 0.6 nm−1, k0 = 2 nm−1, a = 4 nm,
x0 = 1.5 nm and N = 0.1. Manifest interference effects in the spin polarization
through the coupling to the third probe. Small couplings to the probe can produce
large polarizations while larger couplings degrade the polarization. Note the depen-
dence on the probe position x0 and the high sensitivity to the probe coupling that
cannot be surmised solely based on symmetry arguments.

The proposed scenario, in the context of an exactly solved model, addresses many issues
that have related to the CISS effect: i) The size of the SO coupling is set to realistic values
in agreement with theoretical estimates in the meV range [25]; ii) The models reproduce the
Onsager relations for two terminal devices for TRS interactions; iii) Coupling weakly to the
environment through a third probe (other than terminals) produces highly sensitive effects of
the polarization capacity of chiral molecules, that can match the order of magnitude found in
experiments. Additionally, we note that other interactions such as electron- and spin-phonon
have been modeled [36] to investigate their effect on electron transport and spin polarization
through chiral molecules. These works show that non-zero coupling to a thermal reservoir is
necessary to have spin selectivity [37–40].

Of course, this is the bare-bones model for the spintronics of chiral molecules. The nature
of the environment coupling to electron transport should be developed in much more detail
to assess its quantitative correctness. Incorporating the interplay between orbital and spin
degrees of freedom, not yet addressed to our knowledge, should enrich further the possibilities
of the theory to describe, more completely, the CISS effect.

In summary, one of our main conclusions in that decoherence effects, even those associated
with small coupling constants, can translate into significant changes in spin polarization. This
important result allows for a Büttiker-probe representation of several mechanisms, including
electron-electron and electron-phonon interactions, that can be related to the CISS effect.
There is an important connection between our treatment and a Liouville equation description
of electron transfer in molecules [41], that we will explore extensively in a forthcoming article.
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Figure 13: Temperature dependence of spin polarization as a function of the barrier
length and occupation of the Büttiker’s probe for k = 0.4 nm−1, kso = 0.1 nm−1,
k0 = 1 nm−1, x0 = 1.5 nm and ε = 0.1 (same as those of Fig. 11). The polarization
increases with temperature for the range of parameters chosen.
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A Coupling Büttiker’s Probe

To implement Büttiker’s probe, we divide the scattering problem into four regions, two inside
the barrier to accommodate for a probe at site x0.
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2

1−s
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�

eikx +
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�

e−ikx ,

ψ2 =
α
p

2

�

1
i

�

eiq++ x +
β
p

2

�

1
−i

�

eiq+− x +
γ
p

2

�

1
i

�

eiq−+ x +
δ
p

2

�

1
−i

�

eiq−− x ,

ψ
probe
± =

p
N (ζ±eiκy + e−iκy)

�

1
±i

�

,

ψ3 =
α′
p

2

�

1
i

�

eiq++ x +
β ′
p

2

�

1
−i

�

eiq+− x +
γ′
p

2

�

1
i

�

eiq−+ x +
δ′
p

2

�

1
−i

�

eiq−− x ,

ψ4 =

�

D+
D−

�

eikx , (A.1)

where now α,β ,γ,δ, and α′,β ′,γ′,δ′ correspond to amplitudes at either sides of x0. We as-
sume the wideband limit for the probe leads so that the reservoir lead can carry any wavevector
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Figure 14: Dependence of the polarization on the probe position x0 under the barrier,
for the parameters of Fig.11, k = 0.4 nm−1, kso = 0.1 nm−1, k0 = 1 nm−1 for different
probe barrier couplings ε. We see the sensitivity of the polarization to the coupling
of the probe and the smooth behavior of the polarization with the probe position.

under the barrier without wavevector-dependent scattering [42]. A, and B were defined be-
low Eq.26 Such amplitude are now related by the scattering matrix





p
Nζ+
α′

γ



=





−(A+B) −
p
εeiq−+ x0

p
εeiq++ x0

p
εe−iq++ x0 −Ae−2i∆x0 B

−
p
εe−iq−+ x0 B −Ae2i∆x0









p
N
γ′

α



 , (A.2)

and




p
Nζ−
β ′

δ



=





−(A+B) −
p
εeiq−− x0

p
εeiq+− x0

p
εe−iq+− x0 −Ae−2i∆x0 B

−
p
εe−iq−− x0 B −Ae2i∆x0









p
N
δ′

β



 . (A.3)

The parameters were all defined below Eq.26. Each matrix equation involves and single spin
orientation in a separate lead. N involves the reservoir parameters and is common to the two
reservoir leads. The system has fourteen unknowns and fourteen conditions from which all
variables can be found explicitly.

Here we give the expressions for the polarized transmission amplitudes:

(Deiak/∆)t+ =B3(k−∆)2
¦

k(1+ i)(1− is)ei(a+x0)(q−−+q+−+q++)+i x0q−+
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+
p
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�
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�

+iA3(k−∆)3
p

2Nε
�

eia(q+−+q−++q++)+i x0(q−−+q+−+q++) − eia(q−−+q+−+q++)+i x0(q+−+q−++q++)
�

+iB2(k−∆)2(k+∆)
p

2Nε
�

eia(q+−+q−++q++)+i x0(q−−+q+−+q−+)

−eia(q−−+q+−+q++)+i x0(q−−+q−++q++)
�

−i(k+∆)3
p

2Nε
�

queia(q−−+q−++q++)+i x0(q−−+q+−+q−+)

−eia(q−−+q+−+q−+)+i x0(q−−+q−++q++)
�©

, (A.5)

D =
�

−A2(k−∆)2 ei(aq+−+x0(q−−+q+−)) +A(k2 −∆2)
�

ei(aq+−+2x0q−−) + ei(aq−−+2x0q+−)
�

+ei x0(q−−+q+−)(B2(k−∆)2eiaq+− − (k+∆)2eiaq−−)
�

×
�

A2(k−∆)2 ei(aq+++x0(q−++q++)) −A(k2 −∆2)
�

ei(aq+++2x0q−+) + ei(aq−++2x0q++)
�

+ei x0(q−++q++)
�

−B2(k−∆)2eiaq++ + (k+∆)2eiaq−+
��

. (A.6)
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