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Abstract

In this paper, we propose using the nonlinear sigma model (NLSM) with the Wess-
Zumino-Witten (WZW) term as a general description of deconfined quantum critical
points that separate two spontaneously symmetry-breaking (SSB) phases in arbitrary di-
mensions. In particular, we discuss the suitable choice of the target space of the NLSM,
which is in general the homogeneous space G/K , where G is the UV symmetry and K is
generated by k = h1 ∩ h2, and hi is the Lie algebra of the unbroken symmetry in each
SSB phase. With this specific target space, the symmetry defects in both SSB phases are
on equal footing, and their intertwinement is captured by the WZW term. The DQCP
transition is then tuned by proliferating the symmetry defects. By coupling the G/K
NLSM with the WZW term to the background gauge field, the ’t Hooft anomaly of this
theory can be determined. The bulk symmetry-protected topological (SPT) phase that
cancels the anomaly is described by the relative Chern-Simons term in odd spacetime
dimensions or mixed θ term in even dimensions. We construct and discuss a series of
models with Grassmannian symmetry defects in 3+1d. We also provide the fermionic
model that reproduces the G/K NLSM with the WZW term.
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1 Introduction

The continuous symmetry-breaking transitions are well described within the Landau-Ginzburg-
Wilson (LGW) paradigm, the local order parameter acquires a non-zero expectation value in
the spontaneous symmetry breaking (SSB) phase, and vanishes continuously when approach-
ing the transition point. However, within the LGW paradigm, two SSB phases cannot be joined
by a continuous transition but only first order or level crossing. Quantum effects open the pos-
sibility to have a such continuous transition, and the first explicit example is the deconfined
quantum critical point (DQCP) between the VBS phase and Néel phase in 2+1d quantum
magnet [1–4].

The ordinary symmetry breaking transition can be alternatively understood by proliferat-
ing the symmetry defects in the SSB phase to arrive at the disordered phase. This point of view
is particularly useful to understand the DQCP - the symmetry defect in the VBS phase is deco-
rated with the quantum number of the spin SU(2) symmetry, proliferating which will restore
the lattice rotation symmetry but break the spin symmetry, and arrive at the Néel phase [5].
Decorated symmetry defects are also studied in other beyond LGW quantum transitions [6–8].
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Figure 1: G is the UV symmetry and K is generated by the Lie algebra k = h1 ∩ h2,
where h1,h2 are the Lie algebras of unbroken symmetries H1, H2 of SSB phases. The
different SSB phases are obtained by condensing order parameters Φi as in the left
graph. Alternatively, the right graph emphasizes using the symmetry defects in the
homogeneous space G/K where the bosonic field lives in. Proliferating symmetry
defects Di will drive the transition from one SSB phase to the other due to the addi-
tional charges assigned by WZW term.

Intertwinement of symmetry defects in different SSB phases, i.e. the symmetry defect in
one SSB phase carries the quantum number of the broken symmetry of the other SSB phase,
is the prominent and ubiquitous feature of the DQCP theories. To properly describe the sym-
metry defects and their intertwinement, we consider the following generic symmetry breaking
pattern of DQCP theory as shown in Fig. 1. Once condensing the order parameter Φi , one ar-
rives at different SSB phases with unbroken symmetry Hi . Further condensing the other order
parameter, one arrives at the minimal symmetry K . We will show that the symmetry defects in
G/K incorporate all the symmetry defects in both SSB phases Sec. 5. The reason is based on
that the codimension-(q+1) symmetry defect in each SSB phase is classified by πq(G/Hi) [9],
and π⋆(G/K) contains roughly the generators of these homotopy groups. Moreover, the gen-
erators of the homotopy group are related to the differential forms via the Hurewicz theorem,
then these symmetry defects are described by the differential form in the Lagrangian, and this
term corresponds to the charge operator of symmetry defect. Technically, we use de Rham
cohomology to find the generators of the cohomology group of G/K . The intertwinement of
symmetry defects is essentially captured by the linking number of their corresponding charge
operators, and the Wess-Zumino-Witten term in the action assigns phase to the linking number.
Therefore, we propose using the nonlinear sigma model (NLSM) with the target space G/K to
describe the DQCP between two SSB phases with unbroken symmetry H1, H2, and the inter-
twinement of symmetry defects is described by the Wess-Zumino-Witten (WZW) term. We also
use G/K NLSM in short. The DQCP transition is driven by proliferating symmetry defects Di
in G/K along the red arrows in the right graph of Fig. 1. We will provide details and examples
in the Sec. 5.

Intertwinement of symmetry defects in different SSB phases is also the manifestation of
the (mixed) ’t Hooft anomaly of the global symmetry. When global symmetry has ’t Hooft
anomaly, the theory is still well-defined unless the symmetry is gauged. The ’t Hooft anomaly
of global symmetry constrains the infrared phases not being trivial gapped phases but either
SSB phase, gapless or topological order. The phase diagram of DQCP theory, namely two SSB
phases connected by a gapless phase, agrees with the consequence of the ’t Hooft anomaly. The
anomaly of 1+1d, 2+1d DQCP theories have been carefully analyzed in [10–12]. However,
previous anomaly analysis is based on gauge theories, we focus on the anomaly analysis of
NLSM description in terms of coupling the theory to background gauge fields. Since G is
anomalous but K is non-anomalous, the NLSM with target space G/K saturates the anomaly
of G. We provide a detailed calculation of coupling the WZW term to the background gauge
field and show the gauged WZW term gives the ’t Hooft anomaly [13–15]. By anomaly inflow,

3

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.047


SciPost Phys. Core 6, 047 (2023)

the ’t Hooft anomaly in even spacetime dimensions is canceled by one higher dimensional
bulk (relative) Chern-Simons term [16–18] and discussed in Sec. 4, while in odd spacetime
dimension, the ’t Hooft anomaly is canceled by bulk mixed θ term [13–15]. The lattice models
that describe DQCP do not need additional higher dimensional bulk, it is because some of
the global symmetries are acting in the non-onsite way, when it flows to IR, the field theory
description requires these symmetries to be internal but with the ’t Hooft anomaly [19,20]. We
should point out that the NLSM has long been used to describe the Goldstone mode in the SSB
phase [21–23], and the additional Wess-Zumino-Witten term is used to match the anomaly
in the ultraviolet [24]. Recently, the gauge theory and its dual NLSM with Stiefel manifold
or Grassmannian manifold as the target space have been studied in the context of spin liquid
and quantum critical point beyond the LGW paradigm [25–27]. In current paper, we present
a general construction of NLSM with WZW that describes any given DQCP with continuous
symmetry breaking. In the following, we explore its connection to the mixed ’t Hooft anomaly,
relative Chern-Simons term, and the intertwinement of different symmetry defects.

Inspired by recent work on deconfined quantum criticality (which can be critical point or
critical phase depending on the model details) among grand unified theories [28–30], we apply
our framework to construct the theory of 3+1d deconfined quantum critical phase (DQCPh)
with global symmetry G = SO(2n) that separates two SSB phases with unbroken symmetries
H1 = U(n), H2 = SO(2n− 2m)× SO(2m), and K = SU(n−m)×U(1)× SU(m)×U(1). The
symmetry defects are then described by π2(G/K) = ker (π1(K) → π1(G)) = Z ⊕ Z. This is
particularly interesting since the symmetry defect in the SSB phase with unbroken symme-
try H2 is Grassmannian manifold and has topological charge π2(G/H2) = Z2, which cannot
be captured by de Rham cohomology, but once embedding into the larger space G/K , the
topological charge becomes integer, and it has corresponding differential form via de Rham
cohomology. This manifests the similar way that the non-perturbative SU(2) anomaly (due to
π4(SU(2)) = Z2) can be perturbatively found by embedding SU(2) ,→ SU(3) [24,31,32], and
here we embed G/H2 ,→ G/K . This series of 3+1d DQCPh theories has “new SU(2) anomaly”
of the global symmetry SO(2n) [33], and it is matched by symmetry-protected topological
phase in 5d bulk described by w2w3(SO(2n)) [28–30]. The mixed anomaly is obtained by
pull-back via the embedding map of the subgroup into G. Recently, this embedding procedure
is rigorously analyzed using bordism theory [34,35].

We then present the alternative fermionic model that reproduces the G/K NLSM with WZW
term. The fermions are coupled to the fluctuating bosonic fields which live in the homoge-
neous space, the bosonic fields parameterize the mass manifold of the fermions. We dub such
fermionic construction of the nonlinear sigma model as fermionic sigma model [36]. When
integrating out the massive fermions, the effective action is the nonlinear sigma model with
level-1 WZW term [36,37]. For generic homogeneous space G/K , the fermion mass manifold
needs to be properly chosen. This fermionic model also implies that the nonlinear sigma model
with level-1 WZW term needs a spin structure which is used to define the parallel transport
of spinor fields, though the Goldstone boson fields are bosonic [38]. We then construct the
fermionic sigma model of the 4d DQCPh theories and explicitly show the charge operators of
two symmetry defects in different SSB phases link together.

The paper is structured as follows, we review the essential ingredients of the nonlinear
sigma model and Wess-Zumino-Witten term as well as Lie group cohomology in Sec. 2. Then
we review the ’t Hooft anomaly and anomaly matching by WZW term in Sec. 3. Readers who
are familiar with these can safely skip Sec. 2 and Sec. 3 but skimming through the notations
would be helpful. We present the gauged WZW term and its anomaly matching with the
bulk (relative) Chern-Simons term for generic spontaneously symmetry breaking in Sec. 4. We
construct specific DQCP theories in Sec. 5 and present the fermionic sigma model description
in Sec. 6. We summarize our results and list further directions in Sec. 7. Finally, there are two
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appendices about de Rham cohomology of Lie group in Appendix. A and Cartan homotopy
method in Appendix. B that are used to derive an explicit formula for the various WZW terms
and Chern-Simons terms.

2 Review of nonlinear sigma model and Wess-Zumino-Witten term
for general homogeneous space G/H

2.1 The Lagrangian of NLSM and WZW term

Supposing the UV theory has global symmetry G, which can contain spacetime symmetry
as well as internal symmetry. In the IR, the symmetry is spontaneously broken down to H,
then the IR theory contains the part with unbroken global symmetry H and the gapless Gold-
stone mode lives on the coset G/H. For example, the 3+1d N f flavors fermion couples to
SU(n) gauge field, the global symmetry SU(N)L × SU(N f )R is spontaneously broken down to
SU(N)diag, the coset where the Goldstone boson lives in is simply the Lie group SU(N) [24].
Or the Heisenberg spin in 2+1d, the spin rotation symmetry SO(3)S is spontaneously bro-
ken down to SO(2)S , and the Goldstone mode lives in the coset S2S =

SO(3)S
SO(2)S

[39]. Before
parametrizing the coset G/H, let’s take the Goldstone boson lives in an arbitrary closed man-
ifold M .

The Goldstone bosons are described by the nonlinear sigma model, where the scalar field
takes value in the target manifold M . The field configuration is represented by a map from
d-dimensional spacetime manifold X to the target manifold M ,

U(xµ) : X → M , (1)

where xµ is the coordinate of X and U lives in M . The kinetic term is,

S0 =
1
2

∫

X
dd x tr(U−1∂µUU−1∂ µU) . (2)

where repeated indices mean summation. Besides the kinetic term, one can define the WZW
term by pull-back the closed form Γ (d+1) on M . It seems the WZW term depends on the
additional dimension, however, since the variation of the closed (d + 1)-form yields the exact
form, δΓ (d+1) = dη(d), according to the Stokes’ theorem, the equation of motion is indeed in
d-dimension and does not rely on the fictitious extra dimension. We may view the spacetime
manifold X as the boundary of a certain bulk manifold Y , such that ∂ Y = X , and extend the
map Ũ : Y → M , the WZW action is,

SWZW = 2πki

∫

Y
Ũ∗(Γ (d+1)) , (3)

where Ũ∗ is the pull-back map, k is the quantized level which is important for the theory to
be well-defined and not depend on an extension to the bulk Y . Suppose we have another
extension Ȳ which is the orientation reverse of Y , and Y ∪ Ȳ is a closed manifold, then the
integral over this combined manifold should be 2kπi, k ∈ Z, such that the WZW term does not
depend on the extension, otherwise, there is a phase ambiguity for different extensions. Γ (d+1)

is actually the generator of integral cohomology of M , Γ (d+1) ∈ H(d+1)(M ,Z). If the closed form
is also exact, then the WZW term is a term expressed in the d-dimensional spacetime.

Apart from the closed (d+1)-form which can be used to define the WZW term, other closed
q-form with q < d can be used to represent the charge operators of the possible topological
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defects. The topological defects are classified by the homotopy group [9], and the qth homo-
topy group of M is isomorphic to the homology group of M via the Hurewicz theorem if M is
(q−1)-connected. Therefore, the charge operator of possible codimension-(q+1) topological
defect is given by the generator of Hq(M ,Z). This charge operator is like a counter, if the
defect matches, then yield 1, and 0 otherwise. For example, the baryon in 4d SU(N) gauge
theory is classified by π3(SU(N f )) = Z, the charge operator or the baryon number current is
Γ (3) ∈ H3(SU(N f ),Z), and it couples to the U(1) background gauge field A as,

exp

�

i

∫

X 4

A∧ Γ (3)
�

. (4)

This reproduces the Goldstone-Wilczek current [40,41].
To sum up, the WZW term and the charge operators of the topological defects in SSB phases

are given by the generators of the integer coefficient cohomology group of the target space with
a certain degree. In the following, we are using de Rham cohomology to find these generators.
Since the coefficient of de Rham cohomology is R, one needs to normalize these generators
such that the integral on the generator of the corresponding homotopy group yields 1 [38].
After normalization, this gives the generators of the cohomology group with Z coefficient and
can be used to define the WZW term and charge operators of the topological defects.

2.2 Construction of the coset

The Goldstone boson field U lives in the coset G/H, meaning that the Goldstone boson
fields are equivalent under the right multiplication of the elements in H, U ∼ U ′h, h ∈ H.
We need the following parametrization of the coset G/H [21]. We denote the genera-
tors of compact Lie group G as TA, A = 1, ..., dim G, and the subgroup H has generators
Tα,α = dim G − dim H + 1, ..., dim G. The orthogonal part of the h in g is f = g − h, de-
noted as T a, a = 1, ..., dim G − dim H (capital letters are for generators in g, greek letters are
for those in h and lower case letters are for f). We have grouped the indices such that g= f⊕h.
These generators in general satisfy the algebraic relation [h,h] ⊂ h, [h, f] ⊂ f, [f, f] ⊂ g.
We often encounter that the coset G/H is a symmetric space, in this case, the relation is,
[h,h] ⊂ h, [h, f] ⊂ f, [f, f] ⊂ h. For h = ∅, the coset is simply G. The Goldstone boson field
U(π(x)) is parametrized by the Nambu-Goldstone boson πa(x) as [21–23],

U(π) = eiπa(x)T a
, T a ∈ f . (5)

A general element g in G acting on the coset U(π) gives,

g−1U(π) = eiπ′a(π,g)T a
eiλα(π,g)Tα = U(π′)h−1(π, g) . (6)

The group transformation is equivalent to g : U(π)→ U(π′) = g−1U(π)h(π, g), where h(π, g)
as well as π depend on the spacetime coordinate. π(x) is in general transformed in a compli-
cated nonlinear way. But when restricted to H, one can always choose the Goldstone boson
π(x) transformed in a linear way.

2.3 Cohomology of the homogeneous space

The generators of the cohomology group are particularly relevant to the terms that describe
the symmetry defects and the WZW term. The cohomology of homogeneous space G/H is
given by the closed G-invariant forms on G/H modulo exact G-invariant forms. We first discuss
differential forms on G and then restrict them on G/H. These differential forms are constructed
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by the basis of left-invariant 1-forms, the Maurer-Cartan 1-form on G,1

θ ≡ U−1(π)dU(π) = θATA . (7)

where TA is the Lie algebra generator and θA is the component. The Maurer-Cartan 1-form is
Lie-algebra valued 1-form on G, and its component satisfies the Maurer-Cartan equations,

dθ C = −
1
2

f ABCθA∧ θ B , (8)

where f ABC is the structure constant of the Lie group. Then the general left-invariant n-form
on G is given by, Ω(n)G = 1

n!(ΩG)A1,...,An
θA1 ∧ ...∧θAn . If the left-invariant n-form on G is closed,

dΩ(n)G = 0, but non-exact, Ω(n)G ̸= dη(n−1)
G , then it gives the generator of the cohomology groups

of G.
On the other hand, the invariant n-form on G/H should satisfy, a) the indices vanish on h,

and b) invariant under the adjoint action of h. These two conditions can be explicitly expressed
using the component of Maurer-Cartan 1-form, namely,

Ω(n) =
1
n!
Ωa1,...,an

θ a1 ∧ ...∧ θ an , (9)

LαΩ(n) = −
n
∑

i=1

1
n!
Ωa1,...,an

f b j ,α,a jθ a1 ∧ ...∧ θ b j ∧ ...∧ θ an = 0 . (10)

Then the cohomology of G/H is given by,

H∗(G/H,R) =
invariant closed n-form on G/H
invariant exact n-form on G/H

. (11)

Note that the de Rham cohomology of G/H is isomorphic to the relative Lie algebra cohomol-
ogy, H∗(G/H,R) = H∗(g,h;R), therefore, we use de Rham cohomology of G/H and relative
Lie algebra cohomology interchangeably.

It is convenient to decompose the g-valued 1-form θ into h-valued and f-valued parts,

θ = U−1dU = (U−1dU)|f + (U−1dU)|h ≡ φ + V , (12)

and in the component form, θ = θATA = θ aT a+θαTα = φ+V . The above conditions can be
intuitively understood by doing the group action on the 1-forms according to Eq. (6),

θ → h−1θh+ h−1dh , (13)

V → h−1Vh+ h−1dh, φ→ h−1φh , (14)

therefore, φ = θ aT a transforms under the adjoint action of h, while V = θαTα transforms as
the h-valued connection. The invariant n-form on G/H is then given by the combination of φ
and curvature W = dV + V ∧ V or using the component form under the condition Eq. (9).

2.4 Generators of cohomology group on G/H

Among these invariant n-forms on G/H, the cohomology on G/H is obtained by closed invari-
ant n-form modulo invariant exact n-form. We postpone the detailed algorithm that finds the
generators of the cohomology group to Appendix. A. For physical relevance, we are interested
in the generator with a degree less than 6, for example, the degree 5 generator may correspond
to the 4d WZW term, and the degree 3 generator corresponds to 2d WZW term.

1The Maurer-Cartan 1-form is on G instead of G/H, additional conditions need specifying as discussed later.
More details can be found in, for example, [14]
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Compact Lie group G For H = ∅, the cohomology group of G has degree 3 generator for
all compact Lie group (SU,SO,Sp), and degree 5 generator only for SU group [42]. The
generators are given by,

x (3) =
1
3

tr(U−1dU)3 =
1
3

trθ3 , x (5) =
1

10
tr(U−1dU)5 =

1
10

trθ5 . (15)

These generators are of cohomology group with R coefficient, and they need to be normalized
such that the integral over the generator of π3(G) = Z, π5(SU) = Z equal to 1 [38, 43]. The
normalized forms are the generators of H3(G,Z), H5(SU,Z). These generators can be written
in the component form as,

x (3) =
1
6

fABCθ
A∧ θ B ∧ θ C , (16)

x (5) =
1

40
dA1BC fBA2A3

fCA4A5
θA1 ∧ θA2 ∧ θA3 ∧ θA4 ∧ θA5 , (17)

where fABC = tr(TA[T B, T C]) is the structure constant, dABC = tr(TA{T B, T C}) is the totally
symmetric rank 3 tensor. The totally symmetric rank 3 tensors are non-zero for SU(N) group
with N > 2.

Homogeneous space G/H The cohomology of homogeneous space is much richer, the gen-
erators in general should satisfy Eq. (9). Before case-by-case discussion of the homogeneous
spaces, the non-trivial generators of H3(G/H,Z), H5(G/H,Z) that may correspond to 2d and
4d WZW terms or codimension-4, 6 symmetry defects are given by,

y(3) =
1
3

tr(3φW +φ3) , y(5) =
1
5

tr
�

φ5 +
10
3

Wφ3 + 5φW 2
�

, (18)

where W = dV +V ∧V is the curvature of V . Since V transforms as h-valued connection based
on Eq. (13), its curvature will transform as adjoint action under H as well asφ. The generators
y(3), y(5) are invariant under G. One can express these generators in terms of Goldstone boson
field by φ = (U−1dU)|f, V = (U−1dU)|h. We postpone the derivation of these generators to
the discussion of its corresponding anomaly.

Similarly, we can express these generators in terms of components,

y(3) =
1
6
(dad fd bc − 2daβ fβ bc)θ

a ∧ θ b ∧ θ c , (19)

y(5) =
1

60
(3da1 bc fba2a3

fca4a5
− 4da1 bγ fba2a3

fγa4a5

+ 8da1βγ
fβa2a3

fγa4a5
)θ a1 ∧ θ a2 ∧ θ a3 ∧ θ a4 ∧ θ a5 , (20)

where the lower case letters are for f part, and the Greek letters are for h part. dab = tr({T a, T b})
is the totally symmetric rank-2 tensor, which is proportional to Kronecker delta for the most
cases.

The 5th cohomology groups are non-vanishing for SU(n)/SO(n), n ≥ 3 and
SU(2n)/Sp(n), n≥ 2 which are relevant to the spontaneous symmetry breaking of QCD with
SO gauge group and Sp gauge group. More details can be found in Appendix. A.3.

Besides the generators that correspond to WZW terms, there are low degree cohomology
generators corresponding to the charge operators of topological defects. The second cohomol-
ogy group is of particular interest in the following specific models since the generators of it
correspond to the charge operators of codimension 3 topological defects, they are particle-like
in 3d and string-like in 4d. The second cohomology on G/H is related to the first Chern class,
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evaluated on h-valued gauge field on G/H [14]. In terms of the 1-forms, the generator of
y(2) = H2(G/H,R) is given by,

y(2) = mα0
Wα0 =

1
2

mα0
f α0 bcθ b ∧ θ c , (21)

where α0 is the index for the U(1) factor in h, if h has the decomposition h= h1+ ...+u(1)+ ....
The elements in hi vanish similar to that the first Chern class of non-abelian gauge field van-
ishes. We will demonstrate this explicitly in the following specific models.

The 4th cohomology is constructed in a similar way by using the symmetric tensor mα,β
that is invariant under the adjoint transformation of H,

y(4) = mα,βWα ∧Wβ . (22)

The non-vanishing 2nd and 4th cohomology of some homogeneous spaces G/H are listed in
the Appendix. A.3 [42].

3 Review of ’t Hooft anomaly and anomaly matching by WZW term

3.1 ’t Hooft anomaly and anomaly inflow

The theory with global symmetry that has ’t Hooft anomaly is still well-defined but the anoma-
lous symmetry cannot be gauged, otherwise, the anomaly is lifted to gauge anomaly and
the theory is inconsistent. Recent understanding of symmetry-protected topological (SPT)
phases gives a general picture of anomaly matching, the anomalous theory in d-dimension
can be viewed as the boundary of d+1-dimension SPT (or invertible phase), and the anomaly
is canceled by the bulk, therefore, the bulk-boundary combined system is non-anomalous
[17,18,44].

The ’t Hooft anomaly for global symmetry G of a quantum field theory constrains the
infrared phases to be

• gapless with G symmetry

• spontaneously symmetry breaking

• topological order

but never a trivial gapped phase. The theory with ’t Hooft anomaly is dubbed as “anomalous
theory T ”. The ’t Hooft anomaly of the global symmetry in a theory can be found by cou-
pling the theory to the background gauge field associated with its global symmetry. When
performing a gauge transformation on the background gauge field, the partition function of
the anomalous theory on spacetime manifold X instead of being invariant becomes,

ZT [A+δλA]→ ZT [A]e
i
∫

X α(λ,A) . (23)

where λ is some gauge parameter. The partition function suffered from the ambiguity that
different regularization yields different results. Some ambiguity can be cured by adding local
counterterms, but for anomalous theory, the phase remains.

However, one can eliminate the ambiguity by viewing the anomalous theory T as the
boundary of certain SPT phase I. We can extend the background gauge field to the bulk Y ,
∂ Y = X , the partition function of the SPT phase under the gauge transformation is,

ZI[A] = e−i
∫

Y ω(A)→ ZI[A+δλA] = e−i
∫

Y ω(A)−i
∫

X α(λ,A) . (24)
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Figure 2: Bulk-boundary combined system is invariant under the gauge transforma-
tion.

Therefore, the bulk-boundary combined system is invariant under the gauge transformation,

ZT [A]ZI[A]→ ZT [A+δλA]ZI[A+δλA] = ZT [A]ZI[A] . (25)

The pictorial description is shown in Fig. 2. Using the bulk SPT to cancel the ’t Hooft anomaly
of the boundary theory is called anomaly inflow. On the other hand, the bulk SPT determines
the ’t Hooft anomaly of the boundary theory.

3.2 Anomaly matching by Wess-Zumino-Witten term

The ’t Hooft anomaly is a property of the Hilbert space, therefore, it should be matched in the
ultraviolet and the infrared theory. From UV to IR, a common scenario is that the theory has
spontaneously symmetry breaking. Suppose the UV theory TUV has the global symmetry G,
and it is spontaneously broken down to H in the IR, the IR theory contains the TIR with the
unbroken H symmetry and Goldstone bosons U lives in the coset G/H. If the UV theory TUV
has an anomaly, then the IR theory TIR together with the Goldstone boson U should match
the anomaly in TUV . We can break the sufficient symmetry such that TIR does not suffer from
the anomaly and all the UV anomaly is matched by the Goldstone boson that lives in the
homogeneous space G/H.

The chiral anomaly is an example that the local (perturbative) anomaly which can be
seen from the triangle diagram is known to be matched by the Goldstone boson with WZW
term [45, 46]. However, the global (non-perturbative) anomaly is more subtle and needs a
proper definition for the WZW term [38,47,48]. In some cases, the non-perturbative anomaly
can be found perturbatively by embedding the group into a larger group [24].

Coupling the WZW term to gauge field and constructing gauge invariant gauged WZW
term has been extensively studied over the three decades [13, 49–51], and it has very rich
mathematical structures [52–54]. The gauged WZW term for general coset was studied in
Ref. [15,55].

In the following, we discuss a bulk-boundary combined construction of the gauged WZW
term that could match general ’t Hooft anomaly [18]. More specifically, assuming the d-
dimensional UV theory has an anomaly described by d + 1-dimension SPT phase I, and the
anomalous symmetry G is spontaneously broken down to (anomalous or not) H in the IR.
Ref. [18] defines the general WZW term associated with I so that the anomalies of UV and IR
are matched.

As presented in Sec. 2.2, the Goldstone boson lives in the coset G/H, where G can contain
both spacetime and internal symmetries. Another view of the coset G/H is that the Goldstone
boson locally takes value in G and has gauge symmetry H, or cover of H. The Goldstone boson
transforms under G as Eq. (6). Consider the connection A on the principal G-bundle, A is the
background gauge field associated with the global symmetry G, the gauge transformation of
A is given by,

A→ Ag = g−1Ag + g−1d g . (26)
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Figure 3: Pictorial description of the construction of WZW term. The left manifold
Y describes the SPT with symmetry G whose connection is the background gauge
field A. With the transition function U , the left manifold Y can be glued with the
middle cylinder [0,1]× X , where the WZW term lives in. The path [0, 1] connects
the connection AU and AU

h , where the background gauge field AU
h can be extended to

the right manifold Ȳ with global symmetry H. The WZW term on the cylinder then
describes the Goldstone boson in the symmetry breaking phase with G→ H.

We can use the Goldstone boson field as the transition function to define the new connection,

AU ≡ U−1AU + U−1dU , (27)

which transforms as H connection under G action according to Eq. (6),

AU → h−1AUh+ h−1dh . (28)

Therefore, AU is the connection of the principal H-bundle. Note that the Lie algebra valued
1-form θ = U−1dU is precisely AU |A=0. Similarly, we can decompose the connection into h and
f part, they transform under G action as,

AU = AU
h + AU

f → (h
−1AU

h h+ h−1dh) + (h−1AU
f h) , (29)

where AU
h is the connection of H-bundle and AU

f transforms under the adjoint action of H.
Since AU and AU

h are the connections of the same bundle, we can consider the interpolation of
these connections,

AU(t) = AU
h + (1− t)AU

f =

¨

AU , t = 0 ,

AU
h , t = 1 .

(30)

As shown in Fig. 3, one can imagine a cylinder where the leftmost is the connection AU , and the
rightmost is the connection AU

h . The leftmost gauge field AU is extended to the bulk SPT with
anomalous symmetry G via the transition function U , while the rightmost gauge field AU

h is
extended to the bulk with anomalous symmetry H (if H is non-anomalous, then the extension
is not needed).

The general gauged WZW term in [18] is defined by taking the partition function of the
invertible theory on the total manifold Ytotal = Y ∪ (X × [0, 1]) ∪ Ȳ0. The resulting partition
function is gauge invariant. The Goldstone boson field U is defined on the cylinder X × [0, 1],
therefore, the WZW term actually only depends on the dynamics of U on d-dimensional man-
ifold X . The connection AU at the left-most of the cylinder is extended to Y by transition
function U , AU

h is extended to Ȳ0.
However, this construction is slightly different from the ordinary understanding of the

WZW term, namely the WZW term only depends on the spacetime manifold X , though it is
written in one higher dimension. In the following section, we provide an alternative con-
struction of the gauged WZW term that is in accordance with the pictorial understanding of
anomaly inflow in Fig. 2
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Figure 4: Instead of defining WZW term on a cylinder as discussed in Fig. 3, we bend
the cylinder such that the anomaly matching agrees with the gauge invariant bulk-
boundary combined system in Fig. 2, and the WZW term only depends on spacetime
manifold X = ∂ Y . However, the bulk SPT is now described by relative Chern-Simons
term in odd spacetime dimensions and mixed θ term in even spacetime dimensions.

4 (Relative) Chern-Simons functional, gauged WZW term and its
anomaly

We first recall the setup of our system - given an anomalous UV global symmetry G, and it is
spontaneously broken down to anomalous or not symmetry H in the IR, then the UV anomaly
is matched by the Goldstone boson in G/H and IR theory with unbroken symmetry H. In-
stead of the construction in Sec. 3.2, we give an alternative construction of gauged WZW term
that agrees with the anomaly inflow picture in Fig. 2, however, as shown in Fig. 4, the price
is that the bulk SPT is described by the more complicated relative Chern-Simons functional
(for H = ∅, the relative Chern-Simons term reduces to the Chern-Simons term) in the odd
spacetime dimensions. For the even spacetime dimensional bulk, the bulk SPT is described by
the mixed θ term, i.e. wedge product of various curvature tensor, and the gauged WZW term
can be written as the derivative of a lower degree form [13–15]. For our purpose, we will only
consider odd spacetime dimensional bulk in the following, which is relevant to the DQCP of
GUTs in Sec. 5.2, and mention the even dimensional case in Sec. 5.1.

For two connections A, A′ on the principle H-bundle, and a path of connection that inter-
polates these two, the relative Chern-Simons term is defined by the form that trivializes the
difference between the curvature characteristic forms of different connections [16],

dCS(2n+1)(A, A′) = ch(2n+2)(A)− ch(2n+2)(A′) , (31)

where ch(2n)(A) = 1
n! tr(iF/(2π))

n, F = dA+ A∧ A is the curvature of the connection A. The
Chern-Simons form is then the special case of the relative Chern-Simons form with A′ = 0,
dCS(2n+1)(A) = ch(2n+2)(A).

As reviewed in the previous section, the theory with the ’t Hooft anomaly needs to be
matched with bulk SPT. The SPT I with U or SU symmetry can be expressed as Chern-Simons
functional, and many other SPTs can be obtained by higgsing the gauge field, for example,
discrete gauge theories can be obtained from the Chern-Simons functional [56, 57]. We take
the SPT I to be described by the Chern-Simons functional or more general the relative Chern-
Simons functional [18,58],

ZI[A] = exp

�

ik

∫

Y
CS(A)

�

, ZI[A, A′] = exp

�

ik

∫

Y
CS(A, A′)

�

. (32)
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where k ∈ Z is the level, k = 1 for SPTs. The anomaly associated with these SPTs is matched
by the gauged WZW term in the following form,

¯
Γ (d+1)(U , A, Ah)≡ CS(AU , AU

h )−CS(A, Ah) = Γ
(d+1)(U) + dα(d)(U , A, Ah) , (33)

where α(d)(U , A, Ah) is a d-form, and it is clear that the gauged WZW term does not depend on
the extra dimension, since the first term is a closed (d + 1) form whose variation depends on
the d-dimensional boundary X and the second term only depends on the boundary X by the
Stokes’ theorem. The relative Chern-Simons form CS(A, A′) manifests the gauge invariance
under H transformation, and the gauged WZW term is invariant under U → Uh without any
counterterms. If h=∅, then the gauged WZW term is given by the Chern-Simons form,

¯
Γ (d+1)(U , A)≡ CS(AU)−CS(A) = Γ (d+1)(U) + dα(d)(U , A) . (34)

We note that the gauged WZW term in Eq. (33) indeed reproduces the ’t Hooft anomaly
under the global symmetry G. Let’s first focus on the case when h = ∅, the connection
A→ g−1Ag + g−1d g and Goldstone boson field U → g−1U under the G transformation. AU is
then invariant under this transformation, therefore, the first termCS(AU) is invariant under the
gauge transformation of G. However, the second term −CS(A) contributes to the anomalous
phase under the transformation of G by the descent equation argument.

For the case when h ̸= ∅, under the G transformation, the connection transforms as
A → g−1Ag + g−1d g and Goldstone boson goes as U → g−1Uh, both AU and AU

h transform

as the connection on H according to Eq. (29). The CS(2n+1)(AU , AU
h ) is invariant under the

gauge transformation, this can be explicitly checked. But the second term −CS(2n+1)(A, Ah)
part will give the anomaly associated with the symmetry G and H which needs to be canceled
by the SPT in the bulk, this mechanism is called anomaly inflow [17], and the bulk boundary
combined system is non-anomalous. In short, the gauged WZW term Eq. (33) has the anomaly
associated with the bulk SPT which is described by CS(2n+1)(A, Ah). If we assume there is no
anomaly associated to the symmetry H, then the gauged WZW term matches with the anomaly
of the bulk SPT described by CS(2n+1)(A, Ah) and dCS(2n+1)(A, Ah) = ch(2n+2)(A).

We summarize the anomaly matching by WZW term in the following, given the WZW
term Γ (d+1)(U) with field U lives in G/H, couple it to the background gauge fields A, A′ asso-
ciated with global symmetry G, H and get

¯
Γ (d+1)(U , A, A′). Under the gauge transformation,

the anomalous phase of the gauged WZW term is canceled by the bulk SPT described by the
(relative) Chern-Simons term.

Another way to see the necessity of relative Chern-Simons term is as follows, supposing
the UV symmetry G has ’t Hooft anomaly and it is matched by CS(2n+1)(A), the IR symmetry H
also has the ’t Hooft anomaly and matched by CS(2n+1)(Ah). The gauged WZW term together
with the IR anomaly should match the UV anomaly, in other word, the gauged WZW term
should yields the same anomalous phase as CS(2n+1)(A)− CS(2n+1)(Ah) which is roughly the
relative Chern-Simons termCS(2n+1)(A, Ah) = CS(2n+1)(A)−CS(2n+1)(Ah)+dβ (2n)(A, Ah), where
β (2n)(A, Ah) is some 2n-form depending on A, Ah.

In the following, we will use the Cartan homotopy method to find the explicit form of
CS(AU , AU

h ), α
(d)(U , A, Ah), and compare them with the simple case when h=∅.

4.1 Cartan’s homotopy method and relative Chern-Simons term

We postpone the detailed review of Cartan’s homotopy method to Appendix. B [59]. For any
invariant polynomial S(A, F) of connection A and curvature F = dA+A∧A, (dA can be substi-
tuted by F − A2 and dF is substituted by −[A, F]), we have the following formula,

(dℓt + ℓt d)S(At , Ft) = δt
∂

∂ t
S(At , Ft) , (35)
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where the operator ℓt is an anti-derivative operator,

ℓt(η
(p) ∧ω(q)) = (ℓtη

(p))∧ω(q) + (−1)pη(p) ∧ (ℓtω
(q)) . (36)

If A0, A1 both are connections on the same bundle, one can define a one-parameter family,
At = A0+ t(A1−A0), and the curvature is given by Ft = dAt +At ∧At . The operator ℓt acts on
At , Ft as,

ℓtAt = 0 , ℓt Ft = δt(A1 − A0) . (37)

Integrating over t from 0 to 1 on both sides of Eq. (35), we have,

S(A1, F1)− S(A0, F0) =

�

d

∫

t
ℓt +

∫

t
ℓt d

�

S(At , Ft) . (38)

4.1.1 Relative Chern-Simons form

Since the Chern class is even degree closed form ch(2n) = 1
n! tr(

iF
2π)

n, it can be locally written
as an exact form, ch(2n+2)(F) = dCS(2n+1)(A). But this is not globally true, if true then the
integral of Chern class on any closed manifold would yield 0. From Eq. (32), the difference of
two Chern classes with curvature F, F ′ can be written as the relative Chern-Simons term. And
according to Cartan’s homotopy formula,

ch(2n+2)(F)− ch(2n+2)(Fh) =

�

d

∫

t
ℓt+

∫

t
ℓt d

�

ch(2n+2)(Ft) = d

∫

t
ℓtch

(2n+2)(Ft)≡ dCS(2n+1)(A, Ah) , (39)

where Ft = dAt + A2
t , and At = Ah + tAf as discussed around Eq. (30). The relative Chern-

Simons term is given by,

CS(2n+1)(A, Ah) =

∫

t
ℓtch

(2n+2)(Ft) =
1
n!

�

i
2π

�n+1
∫

d t tr(AfF
n
t ) . (40)

More explicitly, we have

CS(2n+1)(A, Ah) =
1
n!

�

i
2π

�n+1
∫

d t tr(Af(Fh + tDhAf + t2Af)
n) , (41)

where Dh is the covariant derivative with respect to h-connection, DhAf = dAf + {Ah, Af}, and
{A, B}= AB + BA. The relative Chern-Simons terms with degrees 3 and 5 are,

CS(3)(A, Ah) = −
1

4π2
tr
�

AfFh +
1
2

AfDhAf +
1
3

AfAfAf

�

, (42)

CS(5)(A, Ah) = −
i

16π3
tr

�

AfF
2
h +

1
2

Af{Fh,DhAf}+
2
3

FhA
3
f +

1
3

Af(DhAf)
2 +

1
2

A3
fDhAf +

1
5

A5
f

�

. (43)

Since Af, the curvature of Ah and the covariant derivative with respect to Ah are all transformed
under adjoint action of H, the relative Chern-Simons term is manifestly invariant under the H
transformation as well as G transformation. If H =∅, Af is identified with the G-connection A,
the curvature Fh = 0 and DhAf = dA, then,

CS(3)(A) = −
1

8π2
tr
�

AdA+
2
3

A3
�

, (44)

CS(5)(A) = −
i

48π3
tr
�

A(dA)2 +
3
2

A3dA+
3
5

A5
�

, (45)

which reproduce the Chern-Simons forms with only the background field associated with the
global symmetry G.
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4.1.2 Explicit form of gauged WZW term

According to the definition of gauged WZW term
¯
Γ (d+1)(U , A, Ah) in Eq. (33), the gauged WZW

term is obtained by the difference of relative Chern-Simons terms with connection AU and A
which result in a closed d+1-form Γ (d+1)(U) only depending on the Goldstone boson configu-
ration U and an exact d+1-form expressed as dα(d)(U , A) which depends on the configuration
U as well as the gauge field A. We will use Cartan’s homotopy formula to obtain the explicit
form of the d-form α(d) and give the explicit form of the gauged WZW term.

The closed d + 1-form Γ (d+1)(U) is easily obtained by turning off the background gauge
field A in the relative Chern-Simons forms Eq. (42) and Eq. (43). The connection AU defined
in Eq. (27) and Eq. (29) can be decomposed as,

AU = AU
h + AU

f = (U
−1AhU + V ) + (U−1AfU +φ) . (46)

Once turning off the background gauge field, AU
h = V, AU

f = φ and the curvature of Ah becomes

W = dV + V 2, then Γ (d+1)(U) becomes,

Γ (3)(U) = CS(3)(θ , V ) =−
1

4π2
tr
�

φW +
1
2
φDVφ +

1
3
φ3
�

∈ H3(G/H,R) , (47)

Γ (5)(U) = CS(5)(θ , V ) =−
i

16π3
tr

�

φW 2 +
1
2
φ{W,DVφ}+

2
3

Wφ3

+
1
3
φ(DVφ)

2 +
1
2
φ3DVφ +

1
5
φ5

�

∈ H5(G/H,R) , (48)

where DVφ = dφ + {V,φ} = 0. One can check when H = ∅, φ is identified with θ , the
curvature W vanishes and the covariant derivative DVφ = dθ = −θ ∧ θ , the WZW terms
become,

Γ
(3)
G (U) = −

1
24π3

trθ3 = −
1

24π3
tr(U−1dU)3 ∈ H3(G,R) , (49)

Γ
(5)
G (U) = −

i
480π3

trθ5 = −
i

480π3
tr(U−1dU)5 ∈ H5(G,R) . (50)

These match with the standard WZW term for WZW conformal field theory in 2d and chiral
symmetry breaking in 4d. The WZW terms for G and G/H obtained by the Cartan homotopy
method reproduce those in Sec. 2.

The gauged WZW defined in Eq. (33) can be obtained by considering the interpolation
At = tU−1AU + θ , Ah,t = tU−1AhU + V , in this case the Cartan homotopy formula becomes,

CS(2n+1)(AU , AU
h )−CS

(2n+1)(θ , V ) =

�

d

∫

t
ℓt +

∫

t
ℓt d

�

CS(2n+1)(At , Ah,t)

= dα(2n) +

∫

t
ℓt(ch

(2n+2)(Ft)− ch
(2n+2)(Fth)) = dβ (2n) +CS(2n+1)(A)−CS(2n+1)(Ah) . (51)

Since there is no anomaly for H, the Chern-Simons term for gauge field Ah vanishes. The
Chern-Simons term CS(2n+1)(A) differs from the relative Chern-Simons term CS(2n+1)(A, Ah)
by a total derivative dβ (2n), therefore, the gauged WZW term is,

¯
Γ (2n+1)(U , A)≡ CS(2n+1)(AU , AU

h )−CS
(2n+1)(A, Ah) = Γ

(2n+1)(U) + d(α(2n) + β (2n)) , (52)

where the 2n-form α depends on U , A, Ah while β depends only on the background gauge
fields. For example, β (2) = tr(A∧Ah),α(2) = tr(φU−1(A+Ah)U). If H =∅, β (2n) vanishes, and
α(2n) is obtained by,

∫

t
ℓt tr(CS

(2n+1)(tA+ dUU−1)) . (53)
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This gives, for example, α(2) = 1
2 tr(dUU−1A). More details can be found in Appendix. B.

5 Nonlinear sigma model of DQCP theories

With the gears presented in the previous sections, we will show that the WZW term captures
the intertwinement of the topological defects and matches with the ’t Hooft anomaly in the
anomalous theory. We use the charge operators of topological defects to construct the WZW
term and use the gauged WZW term to match the mixed anomaly in the theory.

We are interested in the critical points or phases between spontaneously symmetry-
breaking phases in the presence of the ’t Hooft anomaly, and the manifestation of the ’t Hooft
anomaly in different symmetry-breaking phases. This situation is along with many deconfined
quantum critical point theories. We begin by revisiting the intertwinement in the DQCP theory
of the 3d quantum magnet [10,12], and then construct a series of 4d DQCP theories which is
motivated by recent work on DQCP among grand unified theories [28–30]. The new set of 4d
deconfined quantum criticality theories is the higher dimensional generalization of 3d DQCP
theories, and the new 4d DQCP (DQCPh) theories are governed by ’t Hooft anomaly of global
SO(2n) symmetry which turns out to be a variation of the new SU(2) anomaly [28–30,33].

5.1 Revisiting deconfined quantum critical point in 3d quantum magnet

As mentioned in the introduction, the continuous global symmetry of the 3d quantum magnet
is G = SO(3)S × SO(2)R, which corresponds to spin and lattice rotation symmetry. The Néel
phase in this system is the antiferromagnetic phase, with spins pointing up or down. This
phase has HNéel = SO(2)S × SO(2)R symmetry, broken by the easy-axis spin configuration.
The Goldstone boson in the Néel phase lives in the coset G/HNéel

∼= SO(3)S/SO(2)S ∼= S2S .
The possible topological defect is classified by π2(S2S) = Z, corresponding to codimension 3
integer-valued defect, which is the hedgehog defect in the Néel phase. On the other hand,
the lattice rotation symmetry is broken in the VBS phase, HVBS = SO(3)S . The corresponding
Goldstone boson lives in the coset G/HVBS = SO(2)R ∼= S1R. The possible topological defect is
classified by π1(S1R) = Z, which corresponds to codimension 2 integer-valued defects, this is
the vortex line in the VBS phase.

It is very interesting that the vortex core in the VBS phase carries spin-1
2 degree of freedom

[5]. When proliferating the vortices in the VBS phase, the defects will destroy the VBS ordered
phase, but due to the additional spin-1

2 degree of freedom at the vortex core, the system will
become the ordered Néel phase. In other words, the disorder operator of lattice rotation
symmetry carries the symmetry charge of the spin rotation symmetry, which is reminiscent of
the mixed ’t Hooft anomaly of these two symmetries.

The ’t Hooft anomaly should match along the renormalization group flow, meaning that all
possible phases should have such an anomaly. In the ordered phases, although some defects
may be suppressed by energy, their intertwined feature should manifest thanks to the anomaly.
We can deform the theory by tuning the relevant operators such that the theory flow to the IR
phase with the smallest symmetry K and there is no anomaly with K , hence, the anomaly in
the UV is matched by the Goldstone boson in the coset G/K .

Theories with the same symmetry properties and anomaly will be dual to each other, in
the sense that they describe the same IR phase with different UV details [60]. We consider
the deformation of the theory to the spontaneous symmetry breaking phase with unbroken
symmetry K = HNéel ∩HVBS = SO(2)S . Then the gapless theory of the Goldstone boson living
in the coset G/K = S2S ×S

1
R with WZW term would be a suitable dual description of the DQCP

theory. Indeed, we will show this construction is related to the O(5) nonlinear sigma model
that served as the dual theory of various gauge theory descriptions of 3d DQCP [12]. Both
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topological defects in Néel and VBS phase are present in this Goldstone boson theory, since
πk(S2S × S

1
R) = πk(S2S)×πk(S1R). The symmetry-breaking routes are summarized as follows,

G = SO(3)S × SO(2)R

HNéel = SO(2)S × SO(2)R HVBS = SO(3)S

K = HNéel ∩HVBS = SO(2)S

〈ΦN 〉̸=0 〈ΦV 〉̸=0

〈ΦV 〉≠0 〈ΦN 〉̸=0

(54)

We denote the generators of SO(3)S as {T1, T2, T3} and SO(2)R as {T4}. Supposing the
generators of HNéel are {T3, T4}, then the charge operators of the topological defects in the
Néel and VBS phase are represented by,

η̃(1) = θ4 ∈ H1(G/HVBS,R) , ξ̃
(2)
= θ1 ∧ θ2 ∈ H2(G/HNéel,R) . (55)

In the ordered phase with global symmetry K = HNéel∩HVBS = SO(2)S , the generator is {T3},
and the cohomology generators are,

η(1) = θ4 ∈ H1(G/K ,R) , ξ(2) = θ1 ∧ θ2 ∈ H2(G/K ,R) . (56)

In this case, η̃(1) = η(1) and ξ̃
(2)
= ξ(2) since the global symmetry G is the tensor product of

two subgroups. Wedge product of the two generators yields a generator of the higher degree
cohomology group, η(1) ∧ ξ(2) = θ4 ∧ θ1 ∧ θ2 ∈ H3(G/K ,R).

The WZW term in the 2+1d DQCP assigns a phase to the linking between the VBS vortex
and hedgehog defect or the linking between S2S and S1R in S4 [61]. The way to define the
linking is to find the surface D2

R that is bounded by the circle S1R and the intersection with S2S
gives the linking number. The form on D2

R is denoted by η̂(1) and the WZW term is,

Γ (4) = ξ(2) ∧ dη̂(1) . (57)

More explicitly, we can parameterize S2S and S1R by 3-component unit-vector nS and 2-
component unit-vector nR, then ξ(2) = εabcn

a
Sdnb

S ∧ dnc
S , η(1) = n1

Rdn2
R. The 1-form is closed

when restricting on the circle, but not closed on the disk, dη̂(1) = dn1
Rdn2

R. Therefore, the
WZW term is given by Γ (4) = εabcdena

Sdnb
S dnc

Sdnd
Rdne

R, which appears in the SO(5) NLSM of
DQCP [12,62–65].

When coupled to the background gauge field the anomaly of the gauged WZW term comes
from the mixed θ term in 4d which matches the anomaly in the bulk SPT phase with global
symmetry SO(3)S×SO(2)R. We can further embed SO(3)S×SO(2)R ,→ SO(5), the correspond-
ing anomaly is described by 1

2 w4 ∈ H4(BSO(5), U(1)), upon pull-back to SO(3)S × SO(2)R,
the anomaly becomes,

1
2

w4(AS ⊕ AR) =
1
2

w2(AS)w2(AR) =
1
2

FR

2π
w2(AS) , (58)

where FR = dAR and w2 is the second Stiefel Whitney class of SO(3) bundle. This anomaly also
matches with that in 3d CP1 model in [10,11]. The same anomaly in WZW theory and 3d CP1

model is also a check of the infrared duality of the different theories [12, 60]. Recent works
on quantum spin liquid have examined related gauge theories and their corresponding NLSM
with WZW term, and the target spaces of the NLSM are Stiefel manifold or Grassmannian
manifold [25–27]. It would also be interesting to construct other 2+1d DQCP theories that
saturate the anomaly discussed in [47, 48]. Similar construction and anomaly matching can
be applied to 1+1d system [7,66–69].
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5.2 Deconfined quantum critical point and intertwinement of topological de-
fects in 4d

In contrast to the extensive theoretical and numerical studies of deconfined quantum critical
points in 2d and 3d, the 4d generalization of DQCP is rarely explored. One difficulty is that the
gauge fields tend to be deconfined in higher dimensions and many gauge theories then describe
the deconfined quantum critical phases instead of critical points. Nevertheless, previous works
focus on the gauge theory description and find interesting examples of deconfined quantum
critical point with mixed ’t Hooft anomaly that implies the intertwinement of symmetries [70].

Regardless of the specific models and their critical behaviors, it is interesting to study the
intertwinement of topological defects in 4d which manifests the ’t Hooft anomaly in the UV
theory, since there are more types of topological defects in higher dimensions. This also offers
a way to understand the higher dimensional SPTs, since the WZW term essentially describes
the linking between extended operators in the bulk where the SPT lives in.

We construct the nonlinear sigma model with WZW term to describe this phenomenon in
the following subsections and construct the corresponding fermionic parton theories in Sec. 6.
Our construction turns out to describe the deconfined quantum critical phase (DQCPh), since
the minimal fermionic parton theory contains U(1) gauge field, which is deconfined in the
3+1d [28–30]. Because the inputs of our construction are the global symmetries and corre-
sponding mixed ’t Hooft anomaly, it may have different gauge theory descriptions with the
same global symmetry and anomaly. It is interesting to find specific gauge theory description
that realizes the deconfined quantum critical point.

From the previous discussion, the DQCP theory is anomalous and can be thought of as
the boundary of one higher dimensional SPT. The 4d DQCPh theory can serve as the bound-
ary of 5d SPT. The 5d SPT with only ZT

2 symmetry is Z2 classified, this SPT is described by
∫

Y 5 w2w3 [71, 72] and recently studied in [73–75], where wi ∈ H i(Y 5,Z2) is the ith Stiefel-
Whitney class. In the presence of symmetry, similar topological terms are possible for the
all-fermion electrodynamics [76] and the new SU(2) anomaly [33]. Hence, it is possible to
have an anomalous theory at the boundary of the nontrivial SPT with the anomaly described
in the above mentioned examples. In the following, we will discuss a series of models with the
new SU(2) anomaly, these models describe the gapless theories between two spontaneously
symmetry-breaking phases.

5.2.1 Symmetry breaking and topological defects

Recent work shows that the DQCP (or DQCPh, depending on the model details) can
present among the Grand Unified Theories (GUTs) in which the standard model with
global symmetry generated by kSM = su(3) ⊕ su(2)L ⊕ u(1)Y ⊕ u(1)X can be embedded,
the three GUTs are SO(10) GUT with gSO(10) = so(10), Pati-Salam (PS) model with
hPS = so(6) ⊕ so(4) = su(4) ⊕ su(2)L ⊕ su(2)R and Georgi-Glashow (GG) model with
hGG = su(5) ⊕ u(1)X [28–30]. The gauge symmetry is “ungauging” such that they can be
viewed as global symmetries. In other words, the dynamical gauge fields in the original theo-
ries are background gauge fields in these alternative theories. Therefore, the Higgs phases and
transitions become symmetry-breaking phases and transitions. When condensing the symmet-
ric Φ54 or antisymmetric Φ45 scalar fields charged under SO(10) in the SO(10) GUT described
in [30], one can get the symmetry breaking phases with unbroken symmetry hPS or hGG respec-
tively, these symmetries can be further broken down to kSM . The symmetry-breaking pattern
is summarized as follows.
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gSO(10)

hPS hGG

kSM = hPS ∩ hGG

〈Φ54 〉̸=0 〈Φ45 〉̸=0

〈Φ45 〉̸=0 〈Φ54〉≠0

(59)

where Φ45,Φ54 are traceless symmetric and antisymmetric higgs fields of SO(10). The possible
topological defects in the PS and GG phases are classified by,

π2

�

SO(10)
SO(6)× SO(4)

�

= Z2 , π2

�

SO(10)
U(5)

�

= Z . (60)

The topological defects in the symmetry breaking phases are codimension 3 defects corre-
sponding to the line operators in 4d. The topological defects in the PS phase are Grassmannian
manifold and Z2 classified, meaning that two of such defects can be deformed to nothing.

As discussed around Eq. (4) and Sec. 5.1, since the coset SO(2n)/(SO(2m)×SO(2n−2m))
and SO(2n)/U(n) have vanishing π1 and π0, the 2nd homotopy group is isomorphic to the
2nd homology group. We can use the corresponding cohomology generators as the charge
operators of these topological defects. However, it is impossible to directly express the charge
operator of Z2 classified topological defect of SO(2n)/(SO(2m) × SO(2n − 2m)) within the
de Rham cohomology, more generally it is impossible for the Zn classified topological defects,
since the normalized generator of de Rham cohomology yields Z-valued closed form. Math-
ematically, one may consider mod n reduction of the cohomology group or using the Cech
cohomology. But the current situation is reminiscent of the non-perturbative SU(2) anomaly
which is characterized by π4(SU(2)) = Z2 [32], the way to reproduce the non-perturbative
anomaly perturbatively is by embedding SU(2) ,→ SU(3), and the non-perturbative SU(2)
anomaly is seen by the WZW term of SU(3) group [24]. As in Sec. 5.1, we attempt to em-
bed the space SO(2n)/(SO(2m) × SO(2n − 2m)) into a larger space, the natural choice is
the Goldstone boson in the SM phase with both order parameters condensed and the unbro-
ken symmetry is K . Indeed, we find that the embedding into G/K can capture both topo-
logical defects even this Z2 classified topological defects in the PS phase with target space
SO(2n)/(SO(2m)× SO(2n− 2m)).

The above statement can be seen by examining the homotopy group of the tar-
get space G/K . The short exact sequence of the global symmetry G, K and coset is
0 → K → G → G/K → 0, this induces the long exact sequence for the homotopy group,
and the relevant part is,

...→ π2(G)→ π2(G/K)→ π1(K)→ π1(G)→ π1(G/K)→ ... (61)

The homotopy groups of G = SO(n) is known, π2(SO(n)) = 0,π1(SO(n)) = Z2, n ≥ 3 and
G/K is contractible π1(G/K) = 0, the long exact sequence becomes,

0→ π2(G/K)→ π1(K)→ Z2→ 0 . (62)

Therefore π2(G/K) = π1(K) = π1(SU(3) × SU(2) × U(1) × U(1)) = Z ⊕ Z quotient by Z2,
where the two Zs correspond to the topological defects in PS and GG phase respectively. This
construction is valid for a series of theories with G = SO(2n), n≥ 2.

5.2.2 Construction of Lie algebras

In this subsection, we describe the embedding of so(2m)⊕so(2n−2m) and u(n) into the so(2n)
Lie algebra. The so(2n) Lie algebra is represented by n(2n − 1) 2n × 2n anitsymmetric real
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matrices, which generate the rotation of a 2n-vector. so(2m) ⊕ so(2n − 2m) consists of the
2n × 2n anitsymmetric real matrices that rotate within the first 2m elements, or within the
last 2(n − m) elements in the 2n-vector. The u(n) is embedded in the so(2n) by Kronecker
producting the symmetric generators of u(n) with iσ2 and antisymmetric generators of u(n)
with iσ0.

In our case, m= 2⌊n/2⌋ in so(2m)⊕ so(2n− 2m), where m is taking the floor of n/2. The
intersection of u(n) and so(2m)⊕ so(2n− 2m) is isomorphic to u(m)⊕ u(n−m) and always
contain two u(1)s, in the upper-left block u(1)+ and lower-right block u(1)− of the original
so(2n) respectively. Hence, u(1)+ + u(1)− ⊂ u(n) rotates the upper and lower block with the
same phase, while u(1)+ − u(1)− ⊂ so(2m)⊕ so(2n− 2m) rotates the upper and lower block
with the opposite phase.

Since the intersection of Lie algebras is u(m)⊕u(n−m), the symmetry K generated by this
Lie algebra contains two U(1) factors, π2(G/K) = π1(K) = Z ⊕ Z due to Eq. (62). We have
identified that one of the U(1) factors is in U(n), the other relates to SO(2m)×SO(2n− 2m).
Hence, the topological defects in G/K correspond to those in symmetry breaking phases with
only unbroken U(n) or SO(2m)× SO(2n− 2m). Since they are Z classified, we can find the
de Rham cohomology expressions of the charge operators corresponding to the topological
defects,

η(2) ∈ H2(G/K ,R) , ξ(2) ∈ H2(G/K ,R) , (63)

where η(2) = η̃(2) ∈ H2(G/U(n),R) corresponds to the charge operator of topo-
logical defect in G breaking down to HU = U(n) phase, and ξ(2) should relate to

ξ̃
(2) ∈ H2(G/SO(2m)SO(2n − 2m),Z2) which corresponds to the charge operator of topo-

logical defect in G breaks down to HSO = SO(2m)× SO(2n− 2m) phase.
For SO(8), these generators of the cohomology group is given by,

η
(2)
U = θ

1 ∧ θ7 + θ6 ∧ θ12 + θ2 ∧ θ8 + θ3 ∧ θ9 + θ4 ∧ θ10 + θ5 ∧ θ11 ∈ H2(G/K ,R) , (64)

ξ
(2)
SO = −θ

1 ∧ θ7 + θ6 ∧ θ12 + θ14 ∧ θ20 + θ15 ∧ θ21 + θ16 ∧ θ22 + θ17 ∧ θ23 ∈ H2(G/K ,R) , (65)

where the indices 1 ∼ 12 are the generators of the coset so(8)/u(4), while
{2, 3,4,5, 8,9, 10,11, 14,15, 16,17, 20,21, 22,23} are the generators of the coset
so(8)/so(4) ⊕ so(4). The η(2)U ∈ H2(G/K ,R) coincides with the nontrivial generator in

H2(SO(8)/U(4),R). And it is worth mentioning that the first two terms in ξ(2)SO will cancel
each other when pull-back to S2, the remain terms are all in so(8)/so(4)⊕ so(4), this further
supports that ξ(2)SO relates to the generator in H2(SO(8)/SO(4)SO(4),Z2).

5.2.3 Wess-Zumino-Witten term

As illustrated in Sec. 5.1, one can construct a WZW term by wedge product of the charge
operators,

η
(2)
U ∧ ξ

(2)
SO ∈ H4(G/K ,R) . (66)

However, to properly include the linking information, an additional degree of freedom should
be included. Intuitively, two 2-spheres can link with each other in S5 but cannot be properly
described in 4-dimension, this is similar to the lower dimension example that the linking of
two circles needs to be embedded in S3 and the linking is essentially the intersection between
one circle and the disk that is bounded by the other circle. Following this procedure, one needs
to find the 3-disk D3 that is bounded by one of the 2-spheres, say corresponding to ξ(2)SO, then

ξ
(2)
SO is no longer closed, and the WZW term that encodes the linking of two topological defects

is,
Γ (5) = η(2)U ∧ dξ(2)SO ∈ H5(ÕG/K ,R) , (67)
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whereÕG/K is the extension of G/K such that it contains a 3-disk which is bounded by
a 2-sphere. This term corresponds to φW1W2 in Eq. (48). As mentioned in [28], the
mixed anomaly of U(n) and SO(2m) × SO(2n − 2m) is contained in SO(2n). The gauged
WZW term then matches with the anomaly from the Chern-Simons term, for the SO(2n)
global symmetry, dCS(5) = W3(SO(2n))2 ∈ H6(BSO(2n),Z), whose mod 2 reduction is
w3(SO(2n))2 ∈ H6(BSO(2n),Z2) corresponding to the image of w2w3(SO(2n)) [38]. This
model is akin to the Stiefel liquid in 2+1d, where the target space is Stiefel manifold, and the
anomaly is carefully studied in [25,26].

5.2.4 Intertwinement of the topological defects and higher linking number

Since both topological defects are codimension 3 and Z classified, their charge operators are
represented by the generators of the second cohomology of G/K , H2(G/K ,Z) = Z ⊕ Z. As
discussed previously, the two Zs correspond to the two u(1) factors in K and one is in the u(n),
another is in the so(2m) ⊕ so(2n − 2m). To illustrate the intertwinement of the topological
defects, we consider two 2-spheres embedded in the target space G/K ,

S2U ⊔ S
2
SO

f
−→ G/K . (68)

where ⊔ is the disjoint union of two manifolds. Intuitively, we are considering the map-
ping that sends two disjoint 2-spheres into the homogeneous space G/K , such that the
second cohomology of G/K is pull-back via f ∗ to the second cohomology of each sphere,
f ∗η(2)U = ω(2)U ∈ H2(S2U,R) and f ∗ξ(2)SO = ω

(2)SO ∈ H2(S2SO,R). The two different topological
defects are then simply understood by these two spheres. The linking of the two spheres is
characterized by the degree of the map that sends the disjoint spheres into S5 [77]. We can

further embed S5
h
,−→ÕG/K , then the map is summarized as,

S2U ⊔ S
2
SO

g
−→ S5

h
,−→ÕG/K . (69)

Hence, the WZW term Γ (5) in Eq. (67) is pull-back via h∗ to the non-trivial element of H5(S5,R),
and deg(g) = −Lk(S2U,S2SO) is the linking number of S2U and S2SO in S5 [77]. The WZW term
on S5 captures the essential intertwinement of the different topological defects in G/K .

5.2.5 Explicit construction for G = SO(2n), n≥ 4

In the following example, we are focusing on global symmetry SO(8), and the subgroups are
HSO = SO(4)× SO(4) and HU = U(4). This construction also applies to G = SO(2n), n≥ 4.

We first construct the map from S2U ⊔ S
2
SO → G/K , the two spheres are related to the two

u(1) factors in K . The 2-sphere can be viewed as the homogeneous space S2 = SO(3)
SO(2) , thus,

we take the generators of SO(3) ⊂ G and modulo the subgroup SO(2) ⊂ G. Since the two S2s
do not intersect with each other, we take two commuting so(3) to construct S2s, the starting
point is,

TA = {σ20,σ12,σ32} , T̃A = {σ02,σ21,σ23} . (70)

We choose one element of each set as the generator of SO(2), then the Goldstone boson field
for each S2 is given by, for example,

(θ1,φ1) ∈ S2U→ U1 = ei(θ1 sinφ1,θ1 cosφ1)·(T1,T2)⊺ ∈ SO(3)/SO(2) ,

(θ2,φ2) ∈ S2SO→ U2 = ei(θ2 sinφ2,θ2 cosφ2)·(T̃1,T̃2)⊺ ∈ SO(3)/SO(2) . (71)
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It is easy to show that (UidUi)2 corresponds to the generator of H2(S2i ,R). The Goldstone
boson fields are equivalent under the right multiplication of h ∈ H, therefore, we have

U1 = n1 · (TA)⊺ , U2 = n2 · (T̃A)⊺ , (72)

where ni = (sinθi cosφi , sinθi sinφi , cosθi) is the 3-vector on the 2-sphere, and generator of
the second cohomology is given by det(ni , dni , dni). Moreover, one can construct the 6-vector
on 5-sphere by interpolating the ni vector, the 6-vector is given by n = (cosψn1, sinψn2),
ψ ∈ (0,π]. The corresponding Goldstone boson field is cosψ(σ1⊗U1) + sinψ(σ3⊗U2). The
5-form is given byω(5) = det(n, dn, dn, dn, dn, dn) which is the volume form of S5, when pull
back to S2U ⊔ S

2
SO, the integral on S5 gives the linking number of S2U and S2SO in S5 [77].

The skeleton theory of the Eq. (67) together with the kinetic term is given by the O(6)
nonlinear sigma model with WZW term,

∫

X

1
2g
(∂µn)2 +

2πi
Ω5

∫

Y
εabcde f nadnb ∧ dnc ∧ dnd ∧ dne ∧ dn f , (73)

where Ω5 = π3 is the area of 5-sphere. Similar action appears in Ref. [78] and previously in
Ref. [79]. The Eq. (73) can be viewed as the boundary of the bulk SPT with SO(6) symmetry
which is described by the nonlinear sigma model with θ -term [80, 81]. With this skeleton
theory Eq. (73), one can see that the charge operators of the topological defects are given by
ω
(2)
U = εabcn

adnb ∧ dnc and ω(2)SO = εde f nd dne ∧ dn f where a, b, c are in {1,2, 3} and d, e, f
are in {4,5, 6}. The WZW term in Eq. (73) calculates the linking number between the two
charge operators,

2πi
Ω5

∫

Y
εabcde f nadnb ∧ dnc ∧ dnd ∧ dne ∧ dn f = 2πi

∫

Y
ω
(2)
U ∧ dω(2)SO = 2πiLk(S2U,S2SO) . (74)

If fixing the position of one charge operator ω(2)U , and move the other charge operator ω(2)SO
around the fixed position one ω(2)U , then the WZW term describes that the worldsheet of the

moving monopole ω(2)SO detects the flux of ω(2)U . And the WZW term assigns phase to their
linking number, this demonstrates essentially the intertwinement of charge operators of topo-
logical defects.

Since the nonlinear sigma model with the WZW term can be viewed as the boundary theory
of the bulk SPT, one can instead see the intertwinement in the bulk SPT. Once coupling the
charge operators of the defects to 2-form background gauge fields B(2), C (2), the bulk SPT is
described by, 1

π

∫

Y B(2) ∧ dC (2). The linking between the surface operators ei
∮

B, ei
∮

C is also
given by the above linking number [82].

These bosonic fields can be further embedded into G/K by embedding the generators
TA, T̃A into the generators of G/K . In the following section Sec. 6.3, we will couple these
Goldstone boson fields to the fermionic field and construct the fermionic sigma model. The
fermionic sigma model also shows the intertwinement of the charge operators is related to the
higher linking number of two S2s in S5.

6 Fermionic sigma model and WZW term

In this section, we construct the fermion model that reproduces NLSM with WZW for general
homogeneous space G/H. The fermions are coupled to the fluctuating bosonic fields living in
G/H. After integrating out the fermion fields [36,37], the resulting effective action is the NLSM
with WZW given in Sec. 5. We call such models as fermionic sigma model and they provide
an alternative insight into the intertwinement of symmetry defects in higher dimensions.
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6.1 General G-symmetric action and fermionic sigma model

The bosonic fields introduced in Sec. 2.2 transforms nonlinearly under the global symmetry G
as in Eq. (6). We can consider a field χ that transforms under G as,

χ
g
−→ χ ′ = D(h−1(g,π))χ , (75)

with some representation D. The χ field is like a representative point on the coset, and it can
be rotated to the general one by the Goldstone boson field. The χ field can be converted into
the field ψ= U(π)χ that transforms as an ordinary linear transformation under G,

ψ(x)
g
−→ψ′(x) = D(U(π′))χ ′(x)

= D(g−1U(π)h(g,π))D(h−1(g,π))χ(x) = D(g−1)D(U(π))χ(x) = D(g−1)ψ(x) . (76)

We can also introduce the covariant derivative, DVχ. Under the G transformation it becomes,

DVχ = (∂µ + V )χ
g
−→ ∂µ(h−1(π, g)χ) + (V + h−1dh)h−1(π, g)χ = h−1(π, g)DVχ . (77)

Meanwhile, as in Eq. (13), φ
g
−→ h−1φh. Therefore, the general G invariant action can be

constructed by χ,DVχ,φ, which is also invariant under the unbroken symmetry H [21–23].
To construct the fermionic sigma model, we introduce a mass matrix M0 as a reference

point, and it satisfies,
hM0h−1 = M0 . (78)

For example, M0 = diag(1, .., 1,−1, ...,−1) with n times +1, m times -1, is the matrix that
breaks SO(n+m)→ SO(n)× SO(m). The χ̄M0χ is then G-symmetric,

g : χ̄M0χ → χ̄D(h−1)−1M0D(h−1)χ = χ̄M0χ . (79)

Upon rewriting the term in the ψ basis, the G-symmetric action is,

ψ̄iγµ∂µψ+ ψ̄U(π)M0U(π)−1ψ , (80)

where ψ is the complex fermion that transforms linearly under G. Eq. (80) is the general
fermionic sigma model where the fermion mass manifold G/H is parameterized by the bosonic
field U .

6.2 Reproducing the WZW term from the fermionic sigma model

We follow the Ref. [36] and recent presentation in Ref. [37] to derive the Wess-Zumino-Witten
term by integrating out the fermion, the partition function of the anomalous theory depends
on the Goldstone boson field is,

ZT [U] =

∫

Dψ̄Dψe−S[ψ̄,ψ,U] , (81)

S[ψ̄,ψ, U] =

∫

dn x ψ̄(iγµ∂µ + imU(π)M0U(π)†)ψ

≡
∫

dn x ψ̄(i /∂ + imM U)ψ≡
∫

dn x ψ̄D̂ψ , (82)

where M U ≡ U(π)M0U(π)−1 and ZT [U] contains the kinetic term and possible Wess-Zumino-
Witten term of the Goldstone boson. Following the standard derivation, the WZW action is,

SWZW = −
1

2π
1

(4π)d/2
Γ ( d

2 + 1)

Γ (d + 1)

∫

Y
dudn x tr

� n
∏

i=1

(γµa∂µa
M U)M U†∂uM U

�

, (83)
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where u is the extra coordinate on Y , ∂ Y = X , Γ (z) is the Gamma function Γ (n+ 1) = n! for
integer n. Since the WZW term is written locally in 1 higher dimension than the spacetime
manifold, we have extended M U as the map from Y to the mass manifold. After straightfor-
ward calculation, the WZW term for G/H is in general given by,

Γ (d+1)(U) = −
1

2π
2⌊d/2⌋

(4π)d/2
Γ ( d

2 + 1)

Γ (d + 2)
tr
�

[M0, U−1dU]d+1M†
0

�

, (84)

where ⌊x⌋ is the floor function. Recalling that U−1dU can be decomposed into h and f parts,
U−1dU = V +φ, and [M0, Tα] = 0, Tα ∈ h, we have,

[M0, U−1dU] = [M0,φ] = [M0,θ aT a] , a ∈ f . (85)

It turns out, for example,

Γ (5) = −
1

480π3
tr
�

[M0, U−1dU]5M†
0

�

∈ H5(G/H,R) (86)

= −
i

16π3
tr

�

φW 2 +
1
2
φ{W,DVφ}+

2
3

Wφ3 +
1
3
φ(DVφ)

2 +
1
2
φ3DVφ +

1
5
φ5

�

. (87)

This shows that the fermionic sigma model in Eq. (80) reproduces the WZW term for G/H
homogeneous space.

6.3 Fermionic sigma model and intertwinement of mass manifolds

In this section, we present the construction of a fermionic sigma model that could reproduce
the WZW term in Sec. 5.2. There are two types of topological defects in the symmetry breaking
phases, both of them are characterized by the charge operators as the generators of the second
cohomology H2(G/K). We then consider embedding two S2s into G/K , the linking number
of these two spheres is the degree of the mapping from two S2 to S5. More explicitly, to
illustrate the intertwinement of the topological defects, we consider the mapping in Eq. (69),

S2U ⊔ S
2
SO

g
−→ S5

h
,−→ÕG/K .

We are focusing on the case where the global symmetry is SO(8), the generalization of this
construction to SO(2n) can be obtained by embedding SO(8) ,→ SO(2n). The embedding of
two disjoint S2s into G/K is obtained by considering two commuting so(3)s and modulo the
so(2) subalgebra.

The Goldstone boson fields in Eq. (71) can be used to rotate the mass matrix and coupled
to the fermions. Therefore, we can construct the fermionic sigma model that reproduces the
WZW term, or the charge operators of the topological defects. Here we consider the fermions
that are transformed under vector representation of the global flavor symmetry SO(2n) and
the mass matrix can be an antisymmetric or symmetric representation of SO(2n).

As noted in Sec. 5.2 and [28–30], the higgs fields Φ45,Φ54 which are used to approach
GG and PS phase have different symmetry properties, they are symmetric and antisymmetric
respectively. The mass matrix of the fermion model can be chosen in a way that aligns with
the symmetry properties, once integrating out the fermion fields, the corresponding charge
operators of the topological defects could match with the symmetry constraints of the higgs
fields Φ45,Φ54. We are considering this symmetry constraint also applies to the SO(2n), n≥ 4
model.

However, the so(3)matrices considering in Eq. (70) are all antisymmetric. The way to ren-
der the antisymmetric matrix to a symmetric one is to Kronecker product additional σ2 to the
antisymmetric matrices, to preserve the antisymmetry, one needs to Kronecker product addi-
tional σ0 to the antisymmetric matrices. Due to the symmetry constraint [28–30], we would
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like to construct one set with all symmetric matrices and the other set with all antisymmetric
matrices.

S ym :
�

σ220,σ212,σ232
	

, As ym :
�

σ002 ,σ021,σ023
	

. (88)

Hence, the first set of SU(2) matrices is symmetric, the second set is antisymmetric. The
above matrices are ready to couple to complex fermions. In the Majorana basis, the mass
matrix should be antisymmetric, and the general form of the mass matrices in 4d is,

M = σ21 ⊗ S1 +σ
23 ⊗ S2 , (89)

where Si are the symmetric matrices, σ21,σ23 are the γmatrices. We need further add indices
to the two sets of matrices and make them symmetric,

S ym :
�

σ0220,σ0212,σ0232
	

, S ym :
�

σ2002,σ2021,σ2023
	

. (90)

It is convenient to block diagonalize the matrices by doing the unitary transformation eiπ4σ
1200

,

M → eiπ4σ
1332

Me−iπ4σ
1332

: S ym :
�

σ0220,σ0212,σ0232
	

, S ym :
�

σ3202,σ3221,σ3223
	

. (91)

One can freely choose the representative matrix in each set, and the other matrices can be
obtained by doing the SU(2) transformation,

MSO
0 = σ0220 , T a =

�

σ0012,σ0032
	

, (92)

MU
0 = σ

3202 , T̃ a =
�

σ0021,σ0023
	

. (93)

Since the mass matrices are block-diagonal, one can rotate the upper block or the lower block
separately by

MSO
0 = σ0220 , T a

± =

�

σ0012 ±σ3012

2
,
σ0032 ±σ3032

2

�

(94)

MU
0 = σ

3202 , T̃ a
± =

�

σ0021 ±σ3021

2
,
σ0023 ±σ3023

2

�

. (95)

Hence, we obtain the map from S2 to the SU(2) mass matrices,

(θ1,φ1) ∈ S2→ MSO
± = U1MSO

0 U−1
1 ∈ SU(2) , U1 = ei(θ1 sinφ1,θ1 cosφ1)·(T1

±,T2
±)
⊺
, (96)

(θ2,φ2) ∈ S2→ MU
± = U2MU

0 U−1
2 ∈ SU(2) , U2 = ei(θ2 sinφ2,θ2 cosφ2)·(T̃1

±,T̃2
±)
⊺
, (97)

where MSO
± , MU

± satisfy [MSO
± , MU

± ] = 0. We first find that the charge operators of the topolog-
ical defects can be reproduced by the fermions coupled to the mass manifolds and evaluated
on a submanifold,

MSO
± dMSO

± dMSO
± = volS2σ200

± , MU
± dMU

± dMU
± = volS2σ200

± , (98)

where volS2 = sinθidθidφi is the volume form of the S2. More interestingly, if we interpolate
the mass matrix in Eq. (89) by,

SU ∋ M(u,θ1,φ1,θ2,φ2) = σ
21 ⊗ uMSO +σ23 ⊗

p

1− u2MU , (99)

such that M(0) = σ23⊗MU, M(1) = σ21⊗MSO. Note that the two mass matrices play different
roles, one is the identity mass, and the other one relates to the chiral mass. When integrating
out the fermion fields, the WZW term is,

SWZW =
2π

960π3

∫

S2×S2×I
tr(M−1dM)5

=
2π

960π3

∫

S2×S2×I
120tr(σ000)u2
p

1− u2 sinθ1 sinθ2dθ1dφ1dθ1dφ1du . (100)
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When evaluating the WZW term on an interval u ∈ [0, 1],

SWZW =
2π

960π3

∫ 1

0

∫

S2

∫

S2

120tr(σ000)u2
p

1− u2 sinθ1 sinθ2dθ1dφ1dθ1dφ1du (101)

=

∫

S2×S2

−i sinθ1 sinθ2

8π
dθ1dφ1dθ2dφ2 (102)

= 2πi= 2πiLk(S2,S2) , (103)

where Lk(S2,S2) is the linking number of two S2 in S5 [77,82]. This WZW term corresponds
to φW1W2 in the previous section, where W1, W2 are the curvature of the two 2-spheres corre-
sponds to the generator of H2(G/Hi ,R) and φ is f-valued 1-form, but interestingly, φ relates
to the chiral rotation U(1) in the global symmetry of the fermionic sigma model, which corre-
sponds to the exchange of two symmetry defects in the G/K NLSM in Eq. (67).

7 Summary and comments

Summary We propose the nonlinear sigma model with target space G/K and Wess-Zumino-
Witten term as the general description of deconfined quantum critical point theory, based on
the very important features of the symmetry defects and their intertwinement in the DQCP
theories. We show the topological defects in G/K precisely correspond to the symmetry defects
in each spontaneous symmetry breaking phase in the DQCP phase diagram. The WZW term
decorates the symmetry defects in one SSB phase with the charge of the broken symmetry
of the other SSB phase. By proliferating the symmetry defects, the broken symmetry of one
SSB phase is restored but the additional charge breaks the symmetry, leading to the other SSB
phase.

We connect this NLSM description with the ordinary ’t Hooft anomaly matching argu-
ment by explicitly calculating the gauged WZW term and its corresponding bulk SPT. When
the anomalous UV symmetry G is spontaneously broken to non-zero subgroup H (which can
be anomalous or non-anomalous), the odd spacetime dimensional bulk SPT is in general de-
scribed by relative Chern-Simons term and mixed θ term for even dimensional bulk. We pro-
vide an alternative fermionic sigma model that reproduces the NLSM with the WZW term.
This alternative fermionic model gives insight into the detailed global symmetry actions.

We apply our framework to several examples - first revisit the ordinary 2+1d DQCP be-
tween Néel and VBS phases. Then motivated by recent works on deconfined quantum critical-
ity among different grand unified theories [28–30], we studied the deconfined quantum critical
theories between two SSB phases with unbroken symmetries HSO = SO(2m)× SO(2n− 2m)
and HU = U(n), and they come from the theory with G = SO(2n) global symmetry by con-
densing the order parameters. Applying the G/K NLSM description (K = U(m)×U(n−m)), we
are able to find operators that correspond to the symmetry defects in both SSB phases, due to
π2(

G
U(m)×U(n−m)) = Z⊕Z. It is interesting because the symmetry defect in the SSB phase with

unbroken symmetry HSO is Grassmannian manifold and has Z2 valued topological charge,
which does not have a corresponding de Rham cohomology description. Embedding G/HSO
into larger space G/K is reminiscent of finding non-perturbative SU(2) anomaly by embed-
ding SU(2) ,→ SU(3), and the non-perturbative anomaly associated with π4(SU(2)) = Z2 can
be seen from SU(3) WZW term via perturbative calculation. Then we construct the WZW
term and examine the corresponding anomaly which descends from the SO(2n) anomaly
[28–30,33].

Furthermore, the symmetry defects in this complicated homogeneous space can be un-

derstood by examining the embedding S2 × S2
f
−→ G/K . Hence, the G/K NLSM becomes the
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ordinary O(6) nonlinear sigma model with the WZW term. The first and last three components
of the O(6) vector describe the 2-spheres corresponding to different symmetry defects. The
WZW term then assigns the phase to the linking of the two 2-spheres in S5.

We provide an alternative fermionic sigma model to reproduce the NLSM. The fermions
are coupled to the fluctuating bosonic fields living in the homogeneous space G/K , when
integrating out the fermions, the resulting effective action is the G/K NLSM with level-1 WZW
term. As an example, we embed the two 3-component unit vectors into G/K and construct the
fermionic model of O(6) NLSM. We should point out that since the SO(6) is explicitly broken
down to SO(3) × SO(3), the chiral U(1) rotation in the fermion model is crucial to get the
correct linking between symmetry defects in different SSB phases. This rotation is in SO(6)
but not in SO(3)× SO(3).

Comments The G/K NLSM with WZW description discussed in this paper is applicable to any
dimensions and different continuous symmetries of DQCP theory. However, this description
focuses on the kinematics of the DQCP theory, namely the symmetry defects, their intertwine-
ment, and ’t Hooft anomaly. The dynamics of the DQCP theory is much more complicated
- the operator contents and their scaling dimensions are not universal, and the renormaliza-
tion group schemes vary from different dimensions and different models. Nevertheless, the
symmetry of the G/K NLSM would imply infrared duality of gauge theories, for example, the
discrete symmetry that exchanges two types of symmetry defects becomes particle-vortex like
duality of gauge theories [12, 60, 83]. Furthermore, the duality between different quantum
field theories relates the operator contents and set the constraints on the scaling dimensions
which reveals information on dynamics [12,84,85].

Despite the difficulty in extracting specific dynamical information, our proposal captures
the essential features for which the DQCP is beyond ordinary symmetry-breaking transition.
In this point of view, the DQCP is not rare, and it can be more ubiquitous if incorporating
higher-form symmetry [86–90], categorical symmetry [91,92], and loop group symmetry for
the system with a fermi surface [93–95]. The ongoing exploration of non-invertible symme-
tries should also have their corresponding DQCP theory provided the symmetries have mixed
anomaly [96–98]. One can also apply the current approach to understand multicritical point
joined by several SSB phases. This formalism can also be used to construct DQCP models
involving average symmetries [99–101].
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A de Rham cohomology of Lie groups and homogeneous spaces

A.1 de Rham complex

Let ei denote the basis for the Lie algebra g and θ i for the 1-forms for g∗, which is the dual
space of g. The p-forms on g are the alternating multi-linear maps ω : g× ...× g→ R. For xa
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being the basis for space V , the V -valued p-form on g, ω ∈ Λp(g∗, V ) can be written as,

ω= Aαi1,..,ip
xαθ

i1 ∧ ...∧ θ ip . (A.1)

For example, the Maurer-Cartan 1-forms are Lie algebra valued 1-forms,

θ = θATA ∈ Λ1(g∗,g) . (A.2)

The exterior derivative sends the p-forms to p + 1-forms d : Λp(g∗, V )→ Λp+1(g∗, V ) and
follows the rule,

dθ i = −
1
2

f i
jkθ

j ∧ θ k , dxα = Bβαi xβθ
i , (A.3)

where f i
jk is the structure factor for the Lie algebra and Bβαi is a certain linear map for the

V -space. For h ⊂ g being a subalgebra of g, the relative cochain is given by,

Λp(g∗,h, V ) = {ω ∈ Λp(g∗, V )|iy(ω) = 0 and iy(dω) = 0,∀y ∈ h} , (A.4)

where iy is the interior product, in other words, the forms ωs as well as dωs do not contain
θ is from the subalgebra h parts, and the forms are invariant under adjoint action of H. In the
following, we will mainly consider Λp(g∗,R) and Λp(g∗,h,R) which is relevant to the Wess-
Zumino-Witten term for G, G/H and other topological terms in the physical actions, thus, no
xα dependence.

The condition to construct relative cochain implies

Lyω= (diy + iy d)ω= 0 , (A.5)

where Ly is the Lie derivative with respect to y , the relative cochain is then given by,

Λp(g∗,h,R) =
�

ω ∈
p
∧

(g/h)∗
�

�

�Lyω= 0,∀y ∈ h
�

, (A.6)

the Lie derivative action is explicitly expressed in terms of the components of the Maurer-
Cartan 1-form,

Lyω
(n) = −

n
∑

i=1

1
n!
ωa1,...,an

f b j ,y,a jθ a1 ∧ ...∧ θ b j ∧ ...∧ θ an = 0 . (A.7)

The relative cochain can be constructed by first finding the space spanned by
∧p(g/h)∗ and

then using Ly , y ∈ H iteratively to eliminate non-invariant bases.

A.2 Cohomology

A p-form ω ∈ Λp(g∗,h,R) is closed, if dω = 0; and exact if it can be expressed by a (p − 1)-
form η by ω = dη. Since d2 = 0 for any differential forms ω, the exact forms are necessarily
closed but the closed forms can be non-exact.

The cohomology H∗(G,R) and H∗(G/H,R) measures the closed forms not being exact.
Consequently, the p-forms cannot be expressed locally in p− 1 dimension by Stokes theorem.

We explicitly calculate the cohomology group using the basis of the general p-form gen-
erated by the exterior product of the 1-form components θ is. For example, the basis for the
2-forms in Λ2(g∗,R) are,

{θ1 ∧ θ2,θ1 ∧ θ3, ...,θdim(G)−1 ∧ θdim(G)} . (A.8)
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The exterior derivative can therefore be expressed as a matrix d̃ab,

d{(θ i)∧p}a = d̃p
ab{(θ

i)∧(p+1)}b . (A.9)

The matrix d̃p
ab is a
�

dim(G)
p

�

×
�

dim(G)
p+1

�

matrix. The subspace of the closed p-forms C p is the

null-space or the kernel of the matrix (d̃p
ab)

T ,

subspace of the closed p-forms: C p = ker (d̃p
ab)
⊺ . (A.10)

The subspace of the exact p-forms Z p is the the orthogonal complement of the kernel of (d̃p−1
ab ),

subspace of the exact p-forms: Z p = (ker d̃p−1
ab )

⊥ . (A.11)

This can be obtained by Gaussian elimination of the matrix d̃p−1
ab . Therefore, the cohomology

is the quotient,

H p =
ker (d̃p

ab)
⊺

(ker d̃p−1
ab )

⊥
. (A.12)

Algorithmically, we denoted the space of closed p-form as C p and exact p-form as Z p, they are
both matrices, and the cohomology is,

[ker C p · (Z p)⊺ · Z p · (C p)⊺] · C p . (A.13)

For the relative cochain, one needs to further impose the constraint in Eq. (A.6). This con-
straint corresponds to dropping the basis which contains indices corresponding to that in h

and invariant under the adjoint transformation of H. One can start with the basis constructed
by wedge product of θ as, where a ∈ g/h, and then use the Lie derivative for each h ∈ H to
eliminate non-zero bases.

A.3 Examples

Using the de Rham cohomology, we are able to calculate the following examples. And we
compare our results with the general results which are cited from [42] if not citing others.

SU(4): Our calculation gives,

H3(SU(4),R) = R , H5(SU(4),R) = R . (A.14)

In general, H∗(SU(n)) = Λ(e3, e5, ..., e2n−1), where ei ∈ H i(SU(n),R), the cohomology ring is
generated by wedge product.

SO(6)/(SO(4)× SO(2)), dim= 15− 7= 8 even dimensional: Our calculation gives,

H2
�

SO(6)
SO(4)× SO(2)

,R
�

= R , H4
�

SO(6)
SO(4)× SO(2)

,R
�

= R⊕R . (A.15)

In general,

H∗(SO(2n+ 2)/(SO(2n)× SO(2))) = (1+ t2n)(1+ t2 + t4 + ...+ t2n) . (A.16)

For n = 2, H∗(SO(6)/(SO(4)× SO(2))) = 1+ t2 + 2t4 + t6 + t8, where tn corresponds to the
degree n generator, 2t4 means 2 independent degree 4 generators. In general, the Poincare
polynomial for H∗( SO(2n)

SO(2k)×SO(2n−2k)) is in [102],

H∗( SO(8)
SO(4)×SO(4)) 1+ 3t4 + 4t8 + ...

H∗( SO(10)
SO(4)×SO(6)) 1+ 2t4 + t6 + 3t8...

(A.17)
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also,
H∗( SO(8)

SO(2)4 ) 1+ 4t2 + 9t4 + ...

H∗(SO(10)
SO(2)5 ) 1+ 5t2 + 14t4...

. (A.18)

Our explicit calculation of cohomology up to 4 degree agrees with the general results.
SO(6)/U(3): Our calculation gives,

H2
�

SO(6)
U(3)

,R
�

= R , H4
�

SO(6)
U(3)

,R
�

= R . (A.19)

In general, H∗(SO(2n)/U(n)) =∆(e2, e4, ..., e2n−2).
Our calculation of other cohomology of cosets with G = SO,

SO(8)
SO(4)×SO(4) SO(8)/U(4) SO(10)

SO(4)×SO(6) SO(10)/U(5)
H2(G/H,R) ∅(Z2) R ∅(Z2) R

. (A.20)

The torsion Z2 of H2( SO(8)
SO(4)×SO(4)) cannot be detected by de Rham cohomology.

Cohomology of G/K The cohomology of G/K is relevant to the symmetry defects in sponta-
neously symmetry-breaking phases. The Lie group K is generated by the Lie algebra k= h1∩h2,
and our cohomology calculation gives,

SO(6)
SOSO∩U

SO(8)
SOSO∩U

SO(10)
SOSO∩U

H2(G/H,R) R⊕R R⊕R R⊕R
, (A.21)

where R⊕R in H2(SO(6)/(SOSO∩U)) are the same generators of H2(G/H1), H2(G/H2). For
SO(8),SO(10), one is the same generator of SO/U, another is the new from both SO/U and
SO/SO parts.

Other cosets SU(4)/SO(4): Our calculation shows,

H4
�

SU(4)
SO(4)

,R
�

= R , H5
�

SU(4)
SO(4)

,R
�

= R . (A.22)

In general,

H∗
�

SU(n)
SO(n)

,R
�

=

¨

Λ(e5, ..., e4m+1) n= 2m+ 1 ,

Λ(e5, ..., e4m−2)⊗∆(e2m) n= 2m ,
(A.23)

SO(6)/(SO(3)× SO(3)), dim= 15− 6= 9 odd dimensional: Our calculation shows,

H4
�

SO(6)
SO(3)× SO(3)

,R
�

= R , H5
�

SO(6)
SO(3)× SO(3)

,R
�

= R . (A.24)

B Cartan homotopy formula

B.1 Review of Cartan homotopy method

If two connections are of the same bundle, one can consider the interpolation [59],

At =A0 + t(A1 −A0) , Ft ≡ dAt +A2
t . (B.1)
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Another useful formula,

DAη= dη+ [A,η] , (B.2)

[η(p),ω(q)] = η(p) ∧ω(q) − (−1)pqω(q) ∧η(p) . (B.3)

Define the anti-deriviative operator ℓt ,

ℓtAt = 0, ℓtFt = δt(A1 −A0) , (B.4)

ℓt(η
(p)ω(q)) = (ℓtη

(p))ω(q) + (−1)pη(p)(ℓtω
(q)) , (B.5)

we have,

(dℓt + ℓt d)At = δt
∂At

∂ t
, (B.6)

(dℓt + ℓt d)Ft = δt
∂Ft

∂ t
. (B.7)

This shows that for any polynomial S(A,F), we have

(dℓt + ℓt d)S(At ,Ft) = δt
∂

∂ t
S(At ,Ft) , (B.8)

this yields,
S(A1,F1)− S(A0,F0) = (dk01 + k01d)S(At ,Ft) , (B.9)

where

k01S(At ,Ft)≡
∫ 1

0

δtℓtS(At ,Ft) . (B.10)

B.2 Details of gauged WZW term

We would like to use the Carton homotopy method to derive the additional exact form in the
gauged WZW term. As discussed around Eq. (33), the general gauged WZW for symmetry
breaking of G→ H has the form,

¯
Γ (d+1)(U , A, Ah)≡ CS(AU , AU

h )−CS(A, Ah) = Γ
(d+1)(U) + dα(d)(U , A, Ah) . (B.11)

For h=∅, the gauged WZW term is given by the Chern-Simons form,

¯
Γ (d+1)(U , A)≡ CS(AU)−CS(A) = Γ (d+1)(U) + dα(d)(U , A) . (B.12)

For presentation simplicity, we focus on d = 2 and first calculate the case when h = ∅, then
h ̸=∅.

The case when h=∅ Consider the path of interpolation, At = tU−1AU + U−1dU = tU−1AU + θ ,
such that A1 = AU , A0 = θ . The difference between Chern-Simons forms is then,

CS(3)(AU)−CS(3)(θ ) = d

∫

t
ℓtCS

(3)(At) +

∫

t
ℓt dCS

(3)(At) . (B.13)

The last term on the right-hand side (RHS) gives CS(3)(A), while the first term in the RHS
gives,

d

∫

t
ℓt(At Ft −

1
3

A3
t) = −d

∫

t
(AtA) = d(−dUU−1A) , (B.14)
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since ℓt Ft = U−1AU , ℓtAt = 0. Therefore, α(2) = −dUU−1A. In short,

CS(3)(AU)−CS(3)(θ ) = CS(3)(A)− d(dUU−1A) . (B.15)

Hence, the gauged WZW term in d = 2 is,

¯
Γ (3)(U , A) = Γ (3)G (U) + d(dUU−1A) , (B.16)

where Γ (3)G (U) is given in Eq. (49). This indeed shows that the gauge field only supports on
d-dimensional manifold.

The case when h ̸=∅ Consider the path of interpolation, At = tU−1AU + θ , Ah,t = tU−1AhU + V ,
the difference of the relative Chern-Simons form is,

CS(3)(AU , AU
h )−CS

(3)(θ , V ) = d

∫

t
ℓtCS

(3)(At , Ah,t) +

∫

t
ℓt dCS

(3)(At , Ah,t) . (B.17)

Similarly, the last term in the RHS gives CS(3)(A, Ah), the first term in RHS is,

d

∫

t
ℓt tr

�

(At − Ah,t)Ft + (At − Ah,t)Fh,t + ...

�

= d

∫

t
tr(tU−1AfU +φ)U

−1(A+ Ah)U

= dtr(UφU−1(A+ Ah)) , (B.18)

where ℓt Ft,i = Ai , ℓtAi = 0, and ... is the polynomial A2
t −AtA

2
h,t −

1
3(A

3
t −A3

h,t) which vanishes
under ℓt . Then the gauged WZW term is given by,

¯
Γ (3)(U , A, Ah) = CS(AU , AU

h )−CS(A, Ah) = Γ
(3)(U) + dtr(UφU−1(A+ Ah)) , (B.19)

where Γ (3)(U) is given in Eq. (47).
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