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Abstract

We study the symmetry resolution of the entanglement entropy of an interval in two-
dimensional conformal field theories (CFTs), by relating the bipartition to the geometry
of an annulus with conformal boundary conditions. In the presence of extended symme-
tries such as Kac-Moody type current algebrae, symmetry resolution is possible only if
the boundary conditions on the annulus preserve part of the symmetry group, i.e. if the
factorization map associated with the spatial bipartition is compatible with the symme-
try in question. The partition function of the boundary CFT (BCFT) is then decomposed
in terms of the characters of the irreducible representations of the symmetry group pre-
served by the boundary conditions. We demonstrate that this decomposition already
provides the symmetry resolution of the entanglement spectrum of the corresponding
bipartition. Considering the various terms of the partition function associated with the
same representation, or charge sector, the symmetry-resolved Rényi entropies can be de-
rived to all orders in the UV cutoff expansion without the need to compute the charged
moments. We apply this idea to the theory of a free massless boson with U(1), R and Z2
symmetry.
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1 Introduction

Since the early days of quantum mechanics entanglement has been considered one of the
crucial and most interesting properties of quantum systems [1]. In the last two decades, a
renewed interest in this subject has led to many insights into various branches of physics,
ranging from quantum gravity and holography to critical and topological many-body systems
[2–6]. Quantifying the entanglement between a spatial region A in a given system and its
complement B is particularly important. We assume that the Hilbert space H of the entire
system factorizes as H = HA ⊗HB, where HA encodes the degrees of freedom in the region
A and HB the ones in B. Given a pure state |ψ〉 ∈ H, the reduced density matrix of A is then
given by ρA ≡ trB|ψ〉〈ψ|, where trB is the trace over the Hilbert space HB. The Rényi entropies,
defined as

Sn =
1

1− n
ln trρn

A , (1)

quantify the bipartite entanglement, where n is integer. Upon analytic continuation to complex
values of n, the limit n→ 1 of the Rényi entropies yields the entanglement entropy

S1 = −tr (ρA lnρA) . (2)

For convenience, in this text we refer to both entanglement entropy (2) and Rényi entropies
(1) simply as entanglement entropies. Entanglement and its measures proved to be extremely
useful in the study of critical systems, which in the continuum limit can be described by con-
formal field theories (CFT). In a 1+1-dimensional CFT with central charge c, when the entire
system on an infinite line is in the ground state and A is an interval of length ℓ, the entangle-
ment entropies obey the following behaviour [7–10]

S1 =
c
3

log
ℓ

ε
, Sn =

c
6

n+ 1
n

log
ℓ

ε
, (3)
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at leading order in the UV cutoff ε≪ ℓ. This result and the others corresponding to different
states where A is still a single interval can be retrieved by mapping the geometry of interest to
an annulus and exploiting boundary conformal field theory (BCFT) techniques [11–13]. An
important feature of this approach is the possibility to access the entanglement spectrum of
the theory upon determining the conformal dimensions of the operators in the BCFT. This is
usually not achieved through other methods, as for instance the twist fields method, which
only provide the moments of the reduced density matrix.

Recently, sparked by experimental results [14–17] and the developments of new theoret-
ical tools [18–20], a growing interest in the interplay between entanglement and symmetries
emerged. Given a system with a global symmetry and a spatial bipartition as described above,
the amount of entanglement in the different charge sectors can be quantified by the symmetry-
resolved entanglement entropies. The symmetry-resolved entanglement entropies have been
computed in 2D CFTs [19–28], integrable and free quantum field theories [29–36], as well
as lattice models [23, 26, 37–52]. Moreover, the symmetry resolution of other entanglement
quantifiers, such as negativity [53–57], relative entropies and distances [58, 59] and opera-
tor entanglement [60,61] has been studied in the CFT setup as well. The symmetry-resolved
entanglement entropies have been also considered in the context of the AdS/CFT correspon-
dence and computed in some examples [62–66], finding the expected matching between bulk
and boundary results.

Despite the number of results, a better understanding of the symmetry resolution of entan-
glement is still desirable. It will be interesting to understand better the conditions necessary
for the equipartition of entanglement namely the fact that, at leading order in the cutoff ex-
pansion, the symmetry-resolved entanglement entropies are independent of the charge sector.
Computing the symmetry-resolved entanglement entropies requires in principle the knowledge
of the entanglement spectrum resolved in the various charge sectors, which is a formidable
task from the analytic point of view. This problem is bypassed by first computing partition
functions on Riemann surfaces with flux, known as charged moments, which then lead to the
symmetry-resolved entropies through a Fourier transform. Studying theories where the exact
resolution of the entanglement spectrum is known can help in obtaining new insights into the
relation between entanglement and symmetries. Moreover, this would allow accessing the
symmetry-resolved entanglement entropies without first computing the charged moments, c.f.
the examples in [40,41], where the analytic knowledge of the resolution of the entanglement
spectrum in XXZ spin chains was used to achieve this.

The goal of this paper is to advance the understanding of symmetry-resolved entangle-
ment entropy in the BCFT setup. The BCFT description is useful, since it provides access to
the full spectrum of the subregion density matrix [20]. This not only allows for the computa-
tion of the charged moments but also the direct computation of the charged partition function,
and therefore, as we show below, for an easier, more efficient computation of the symmetry-
resolved entanglement entropy. Indeed, in presence of a symmetry, the BCFT partition function
decomposes into contributions from the various charge sectors. The symmetry-resolved entan-
glement entropy in a given charge sector can be directly computed from the terms in the BCFT
partition function associated with that charge. This was first noted in the appendix of [22].
Furthermore, the BCFT picture allows for a regularization more in the spirit of quantum field
theory [12]. Instead of putting the theory on the lattice, the BCFT prescription maps the en-
tangling interval to an annulus with boundary conditions on both ends (see figure 1). Indeed,
since fields are distribution valued, spacetime boundaries need the specification of boundary
conditions.

We apply the general BCFT formalism to the compact and non-compact free boson CFTs.
Calculations of the total entanglement of the compact boson from this perspective are found
in [67–69]. We resolve entanglement with respect to the symmetry groups U(1), R and Z2.
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Particular attention is directed to the fact that the boundary conditions need to not only pre-
serve Virasoro symmetry but also the additional symmetry with respect to which we wish to
resolve. In the case of the free compact boson, this additional symmetry group is U(1), in
the case of the non-compact free boson R. Since Z2 is a subgroup of both U(1) and R, it is
also a symmetry of the free boson CFT. For the CFTs we consider, certain boundary conditions
indeed break the U(1) or R symmetry, respectively, and therefore resolution with respect to
these groups is no longer possible. In these cases we show, using the BCFT approach outlined
above, that symmetry resolution with respect to a remnant Z2 is still possible. In general,
this new approach provides access to all higher order terms in the UV cutoff expansion of
symmetry-resolved Rényi entropies. We expand on the analysis of [20] by the consideration of
the non-compact case, the Z2 symmetry and the incorporation of the higher order terms in the
symmetry-resolved entanglement entropy. The results for U(1) and R resolutions we report
here are obtained in two ways. The main results are calculated directly from the BCFT parti-
tion functions. They are cross-checked by computing the charged moments and their Fourier
transform.

The paper is structured as follows. In section 2 we give a general introduction to symmetry-
resolved entanglement entropy and define the charged moments and charged partition func-
tions. In section 3 we review the BCFT setup for entanglement entropy and review the factor-
ization mapping given in [12]. We introduce the boundary states of the compact free boson
CFT and give the partition functions for different boundary conditions. We discuss the de-
compactification limit to obtain the partition functions for the non-compact free boson. From
the partition functions we calculate the entanglement entropies and show that this approach
recovers the universal term in the lowest order of the system size. In section 4, we present our
calculation of the symmetry-resolved entanglement entropy directly from the BCFT spectrum.
We report the symmetry-resolved entanglement entropy for the compact and non-compact free
boson. We check these calculations with a more conservative approach, where we calculate
the charged moments and their Fourier transform using the BCFT approach. We also provide
a resolution with respect to Z2 from the exact knowledge of the spectrum. This resolution is
also possible for boundary conditions which break the U(1) and R symmetries. We provide
a summary of our results and further directions for research in section 5. Furthermore, we
provide three appendices, appendix A, appendix B and appendix C, in which we clarify and
extend certain aspects of the analysis in the paper.

2 Symmetry-Resolved Entanglement

Consider a quantum system endowed with a global abelian symmetry group G, generated
by the charge operator Q. Under the assumption that the charge is local, we can decom-
pose it into the contribution in the subsystem A and the one in its complement, namely
Q = QA ⊗ 1B + 1A ⊗QB, where 1i is the identity in the Hilbert space Hi , i = A, B. We are
interested in the cases where the system is in a pure state |ψ〉, which is an eigenstate of Q.
When this happens, we have [|ψ〉〈ψ|,Q] = 0 and, tracing this commutator over HB, it follows
that [ρA,QA] = 0, where ρA is the reduced density matrix of A. The last identity implies that
ρA has a block-diagonal structure, where each block corresponds to an eigenvalue Q of the
charge operator QA. It reads

ρA =
⊕

Q
ΠQρA =

⊕

Q
PA(Q)ρA(Q) , (4)

where ΠQ is the projector onto the eigenspace associated to Q and PA(Q) ≡ tr(ΠQρA) is the
probability of having Q as outcome of a measurement of QA. Notice that, since G is an abelian

4

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.049


SciPost Phys. Core 6, 049 (2023)

group, the eigenvalues Q label the irreducible representations of the group itself.
The decomposition (4) ensures the normalization trρA(Q) = 1 for any value of Q and

therefore one can quantify the amount of entanglement in the sector with charge Q via the
symmetry-resolved Rényi entropies

Sn(Q) =
1

1− n
ln trρA(Q)

n , (5)

and the symmetry-resolved entanglement entropy

S1(Q) = −tr [ρA(Q) lnρA(Q)] . (6)

The block-diagonal structure in (4) allows to decompose the total entanglement entropy as

S1 =
∑

Q

PA(Q)S1(Q)−
∑

Q

PA(Q) ln PA(Q)≡ S1,c + S1,f . (7)

The first summand in (7) is known as configurational entanglement entropy [14,70–72], while
the second one as fluctuation (or number) entanglement entropy [14, 73–75]. They encode
information about the entanglement within each charge sector and the fluctuations between
different sectors, respectively. Notice that a decomposition similar to (7) does not hold in
general for the Rényi entropies. However, we observe that, under certain assumptions, it is
still possible to identify a configurational and a fluctuational contribution to Sn. In order to do
so, let us plug (4) into (1) and, exploiting the fact that the trace of a block diagonal matrix is
the sum of the traces of the individual blocks, we obtain

Sn =
1

1− n
ln





∑

Q

[PA(Q)]
n trρA(Q)

n



 . (8)

In the most general case, the logarithm in (8) does not split into the sum of logarithms and
therefore configurational and a fluctuational contributions cannot be identified. However, we
can assume equipartition, i.e. that trρA(Q)n does not depend on the charge Q. Then, after
defining Rn ≡ trρA(Q)n, we can rewrite (8) as

Sn =
1

1− n
ln Rn +

1
1− n

log





∑

Q

[PA(Q)]
n



≡ Sn,c + Sn,f . (9)

By taking the limit n→ 1 of Sn,c and Sn,f we obtain, within the restricted case we are consider-
ing, S1,c and S1,f respectively. For this reason, one can interpret Sn,c and Sn,f as configurational
and fluctuation Rényi entropies, but only when trρA(Q)n does not depend on Q. Notice that,
when this happens, the system is characterised by an exact equipartition of the entanglement,
namely (5) and (6) do not depend on Q at any order. In section 4, we discuss an instance
where trρA(Q)n is actually independent of the charge sector and therefore the decomposition
(9) is valid.

The key object to compute is the replica partition function Zn(Q) at fixed charge Q,

Zn(Q) = tr
�

ΠQρ
n
A

�

, (10)

which allows to write the symmetry-resolved entanglement entropies as

Sn(Q) =
1

1− n
log

Zn(Q)
Z1(Q)n

, S1(Q) = lim
n→1

Sn(Q) . (11)
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The computation of Zn(Q) requires the knowledge of the entanglement spectrum and its sym-
metry resolution. This information is often difficult to access, in particular through analytic
techniques. A possible way to overcome this problem relies on suitably re-expressing the pro-
jector ΠQ. More explicitly, let us consider two particular cases, namely G = U(1), G = R and
G = ZN . When G = U(1) or G = R, we can exploit a Fourier representation of the projector
ΠQ and Zn(Q) can be written as [19,20]

Zn(Q) =
1

2π

∫ λ

−λ
dµ e−iµQtr

�

eiµQAρn
A

�

. (12)

When the charges Q are discrete (U(1) group), the integration bound is λ = π, whereas for
continuous charges Q (R group), the integration bound tends to infinity, λ→∞. We observe
that Zn(Q) is the Fourier transform of the charged moments

Zn(µ) = tr
�

eiµQAρn
A

�

. (13)

When G = ZN , the restricted charge operator has N eigenvalues. The projector ΠQ can be
expanded over the N elements of the group and Zn(Q) reads [19]

Zn(Q) =
1
N

N−1
∑

j=0

e−
2πi jQ

N tr
�

e
2πi jQA

N ρn
A

�

, (14)

which leads to the definition of the corresponding charged moments

Zn( j) = tr
�

e
2πi jQA

N ρn
A

�

, Zn(Q) =
1
N

N−1
∑

j=0

e−
2πi jQ

N Zn( j) . (15)

In section 4.2, we work out the case of Z2 as explicit example.
By first computing the charged moments and then Zn(Q) using (12) and (14), the symmetry-
resolved entanglement entropies have been successfully computed in various theories and for
different entangling regions [19, 20, 29, 37, 63–65]. This is usually done exploiting the fact
that the charged moments can be seen as partition functions of QFTs defined on an n-sheeted
Riemann surface pierced by an Aharanov-Bohm flux [19]. As we will explain in detail in section
3, the BCFT approach for the computation of the entanglement entropies is particularly useful
for the purpose of the symmetry resolution, as it gives directly access to how the elements of
the entanglement spectrum are distributed in the various symmetry sectors. Thus, one can
compute Zn(Q) and the symmetry-resolved entanglement entropies without resorting to the
charged moments and, moreover, to all orders in the UV cutoff. In section 3, we expand on
this idea and we provide various examples involving free CFTs.

3 Entanglement Entropy and BCFT

It has been observed in [12] that the standard procedure of decomposing Hilbert space
H =HA⊗HB where A, B are spatial regions is a priori incomplete when working with quantum
fields. Quantum fields are distributions and need to be smeared over regions of space, and
thus a spatial domain cannot simply be cut sharply into separate spatial regions A, B without
indicating how the fields should behave at the boundaries between A and B. In short boundary
conditions need to be specified at ∂ A and ∂ B.

When A is a single entangling interval this is achieved as pictorially represented in figure 1.
First, small disks1 of radius ε, which takes on the role of UV cutoff, are excised around the two

1A priori one might choose any shape. However, any shape, topologically equivalent to a disk, can be mapped
into a disk by a conformal transformation. Disks respect the local rotation invariance and thus they represent an
optimal choice for our purposes.

6

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.049


SciPost Phys. Core 6, 049 (2023)

<latexit sha1_base64="2P7imsTtPTCh1CfQBL2LNug22x8=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJRBJQBGspEIiRSYkXnyyaccj5bd3tIkZUvoIWKDtHyQRT8C7ZxAQlTjWZ2tbMTxFIYdN1Pp7Syura+Ud6sbG3v7O5V9w/uTWQ1hw6PZKR7ATMghYIOCpTQizWwMJDQDaY3md99BG1EpO5wFoMfsokSY8EZplL7alituXU3B10mXkFqpEBrWP0ajCJuQ1DIJTOm77kx+gnTKLiEeWVgDcSMT9kE+ilVLATjJ3nQOT2xhmFEY9BUSJqL8HsjYaExszBIJ0OGD2bRy8T/vL7F8aWfCBVbBMWzQygk5IcM1yJtAOhIaEBkWXKgQlHONEMELSjjPBVtWkkl7cNb/H6Z3J/VvfN6o92oNa+LZsrkiByTU+KRC9Ikt6RFOoQTIE/kmbw41nl13pz3n9GSU+wckj9wPr4BM76RUw==</latexit>

A <latexit sha1_base64="yuQkX8PZ7kf3O0p1T/W/wDLZx74=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJRBJRRaCgTiTykxIrOl0045Xy27vaQIitfQAsVHaLlgyj4F2zjAgJTjWZ2tbMTxFIYdN0Pp7S2vrG5Vd6u7Ozu7R9UD496JrKaQ5dHMtKDgBmQQkEXBUoYxBpYGEjoB/ObzO8/gDYiUne4iMEP2UyJqeAMU6nTGldrbt3NQf8SryA1UqA9rn6OJhG3ISjkkhkz9NwY/YRpFFzCsjKyBmLG52wGw5QqFoLxkzzokp5ZwzCiMWgqJM1F+LmRsNCYRRikkyHDe7PqZeJ/3tDi9NpPhIotguLZIRQS8kOGa5E2AHQiNCCyLDlQoShnmiGCFpRxnoo2raSS9uGtfv+X9C7q3mW90WnUmq2imTI5IafknHjkijTJLWmTLuEEyCN5Is+OdV6cV+fte7TkFDvH5Bec9y81TZFU</latexit>

B
<latexit sha1_base64="yuQkX8PZ7kf3O0p1T/W/wDLZx74=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJRBJRRaCgTiTykxIrOl0045Xy27vaQIitfQAsVHaLlgyj4F2zjAgJTjWZ2tbMTxFIYdN0Pp7S2vrG5Vd6u7Ozu7R9UD496JrKaQ5dHMtKDgBmQQkEXBUoYxBpYGEjoB/ObzO8/gDYiUne4iMEP2UyJqeAMU6nTGldrbt3NQf8SryA1UqA9rn6OJhG3ISjkkhkz9NwY/YRpFFzCsjKyBmLG52wGw5QqFoLxkzzokp5ZwzCiMWgqJM1F+LmRsNCYRRikkyHDe7PqZeJ/3tDi9NpPhIotguLZIRQS8kOGa5E2AHQiNCCyLDlQoShnmiGCFpRxnoo2raSS9uGtfv+X9C7q3mW90WnUmq2imTI5IafknHjkijTJLWmTLuEEyCN5Is+OdV6cV+fte7TkFDvH5Bec9y81TZFU</latexit>

B
<latexit sha1_base64="7l3Vm0YE2ck72UwmCQF1qAoTKTo=">AAACDnicbVC7TsNAEDzzDOEVoIPmIEKiimwUAWUEDWWQyEOKrWh9LOHE+WzdrZGQicQn8BW0UNEhWn6Bgn/BCS4gMNVoZle7M2GipCXX/XCmpmdm5+ZLC+XFpeWV1craetvGqRHYErGKTTcEi0pqbJEkhd3EIEShwk54fTLyOzdorIz1Od0mGEQw0PJSCqBc6lc27/ztOz9EAu4b0AOF/nZB+pWqW3PH4H+JV5AqK9DsVz79i1ikEWoSCqzteW5CQQaGpFA4LPupxQTENQywl1MNEdogG2cY8t3UAsU8QcOl4mMRf25kEFl7G4X5ZAR0ZSe9kfif10vp8ijIpE5SQi1Gh0gqHB+ywsi8HOQX0iARjD5HLjUXYIAIjeQgRC6meVvlvA9vMv1f0t6veQe1+lm92jgumimxLbbD9pjHDlmDnbImazHB7tkje2LPzoPz4rw6b9+jU06xs8F+wXn/An7lm/E=</latexit>||�ii<latexit sha1_base64="lEOS3MGxsMz+i7dQS7voU3lyFeA=">AAACDnicbVDLSgNBEJz1GeMr6k0vE4PgKeyKqMegF48RzAOyIfROOsng7Owy0ytIEvAT/AqvevImXv0FD/6LmxhBE+tUVHXTXRXESlpy3Q9nbn5hcWk5s5JdXVvf2MxtbVdtlBiBFRGpyNQDsKikxgpJUliPDUIYKKwFNxcjv3aLxspIX9NdjM0Qulp2pABKpVZu11eguwr9/A8BFfdg4OcHrVzBLbpj8FniTUiBTVBu5T79diSSEDUJBdY2PDemZh8MSaFwmPUTizGIG+hiI6UaQrTN/jjDkB8kFijiMRouFR+L+HujD6G1d2GQToZAPTvtjcT/vEZCnbNmX+o4IdRidIikwvEhK4xMy0HelgaJYPQ5cqm5AANEaCQHIVIxSdvKpn140+lnSfWo6J0Uj6+OC6XzSTMZtsf22SHz2CkrsUtWZhUm2D17ZE/s2XlwXpxX5+17dM6Z7OywP3DevwDkLZwv</latexit>hh↵||

<latexit sha1_base64="lEOS3MGxsMz+i7dQS7voU3lyFeA=">AAACDnicbVDLSgNBEJz1GeMr6k0vE4PgKeyKqMegF48RzAOyIfROOsng7Owy0ytIEvAT/AqvevImXv0FD/6LmxhBE+tUVHXTXRXESlpy3Q9nbn5hcWk5s5JdXVvf2MxtbVdtlBiBFRGpyNQDsKikxgpJUliPDUIYKKwFNxcjv3aLxspIX9NdjM0Qulp2pABKpVZu11eguwr9/A8BFfdg4OcHrVzBLbpj8FniTUiBTVBu5T79diSSEDUJBdY2PDemZh8MSaFwmPUTizGIG+hiI6UaQrTN/jjDkB8kFijiMRouFR+L+HujD6G1d2GQToZAPTvtjcT/vEZCnbNmX+o4IdRidIikwvEhK4xMy0HelgaJYPQ5cqm5AANEaCQHIVIxSdvKpn140+lnSfWo6J0Uj6+OC6XzSTMZtsf22SHz2CkrsUtWZhUm2D17ZE/s2XlwXpxX5+17dM6Z7OywP3DevwDkLZwv</latexit>hh↵|| <latexit sha1_base64="7l3Vm0YE2ck72UwmCQF1qAoTKTo=">AAACDnicbVC7TsNAEDzzDOEVoIPmIEKiimwUAWUEDWWQyEOKrWh9LOHE+WzdrZGQicQn8BW0UNEhWn6Bgn/BCS4gMNVoZle7M2GipCXX/XCmpmdm5+ZLC+XFpeWV1craetvGqRHYErGKTTcEi0pqbJEkhd3EIEShwk54fTLyOzdorIz1Od0mGEQw0PJSCqBc6lc27/ztOz9EAu4b0AOF/nZB+pWqW3PH4H+JV5AqK9DsVz79i1ikEWoSCqzteW5CQQaGpFA4LPupxQTENQywl1MNEdogG2cY8t3UAsU8QcOl4mMRf25kEFl7G4X5ZAR0ZSe9kfif10vp8ijIpE5SQi1Gh0gqHB+ywsi8HOQX0iARjD5HLjUXYIAIjeQgRC6meVvlvA9vMv1f0t6veQe1+lm92jgumimxLbbD9pjHDlmDnbImazHB7tkje2LPzoPz4rw6b9+jU06xs8F+wXn/An7lm/E=</latexit>||�ii

Figure 1: The BCFT setup of the entanglement entropy. Small disks of radius ε are
excised around the entangling point (left panel). The resulting manifold is mapped
into an annulus (right panel) by a conformal transformation in such a way that the
small disks encircling the entangling points become the boundaries of the annulus
(blue circles).

endpoints of A. Second, boundary conditions α and β are imposed on these cutoff disks. Since
A and B share their boundaries, the Hilbert space for B is also characterized by the boundary
conditions α and β . This procedure is encoded in a factorization map [12]

ι : H→HA,αβ ⊗HB,αβ , ι : |ψ〉 7→ ι |ψ〉 , (16)

for |ψ〉 ∈ H. The boundary conditions thus depend on the particular choice of factorization
ι. The reduced Hilbert space HA,αβ and its reduced density matrices are obtained by tracing
over HB,αβ ,

ρA = TrHB,αβ

�

ι |ψ〉 〈ψ| ι†
�

. (17)

Our interest lies on CFT and we choose boundary conditions α,β which preserve conformal
symmetry, i.e. T = T̄ |boundar y [76, 77]. The new manifold with excised disks is mapped
[12] into an annulus by a conformal transformation, see the right panel in figure 1. In this
coordinate frame, traces of ρn

A are readily evaluated as BCFT partition functions. When n ̸= 1,
n annuli are glued along A to construct a replica annulus [12,13] of width W and circumference
2πn. In the ground state of an infinite system, such as the one leading to (3), the width is
W = 2 log

�

ℓ
ε − 1

�

≈ 2 log ℓε +O(ε), where ℓ is the length of the interval A; the width W is
discussed in [13] for various other states.

In terms of the modular nome,

q = e2πiτ = e−2π2/W , q̃ = e−2πi/τ = e−2W , τ= iπ/W , (18)

the reduced density matrix is [13]

ρA =
qL0−c/24

Zαβ
. (19)

Thus, one arrives at a relation between the traces of the density matrix and BCFT partition
functions

Zn = Trαβ
�

ρn
A

�

=
Zαβ(qn)

(Zαβ(q))n
, (20)

where we abbreviated the symbol for the trace TrHA,αβ
→ Trαβ and used the standard expres-

sion for a BCFT partition function, Zαβ(q) = Trαβ
�

qL0−
c

24
�

with the Virasoro zero mode L0 and
the central charge c. The denominator ensures Trαβ[ρA]=1.

In this work, we consider CFTs with extended symmetries, namely with a symmetry algebra
larger than the Virasoro algebra. A BCFT has in general less symmetry than the original CFT
since the introduction of a boundary breaks some symmetries and so the mapping (16) breaks
these as well. The remaining symmetry algebra, after imposing ι, is called A in the following.
In these cases, the Hilbert space decomposes,

HA,αβ ≡Hαβ =
⊕

i

H⊕ni
αβ

i , (21)
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where i runs over the allowed representations of the extended symmetry algebra A. Since
we require the boundary conditions to preserve conformal symmetry, the extended algebra
contains the Virasoro algebra, Vir ⊂A. The multiplicities ni

αβ
are determined by the imposed

boundary conditions α and β . The BCFT partition function decomposes then into characters
χi(q) = TrHi

�

qL0−
c

24
�

for representations i,

Zαβ(q
n) =

∑

i

ni
αβ χi(q

n) = 〈〈α∥q̃
1
n(L0−

c
24)∥β〉〉 . (22)

In the last equality, the BCFT partition functions are computed in the S-dual channel via bound-
ary states

∥α〉〉=
∑

j

B j
α| j〉〉 , (23)

where | j〉〉, satisfying (Ln − L̄−n)| j〉〉 = 0, is an Ishibashi state for the jth representation of
A. An example is given below for the free boson. They satisfy an “orthogonality relation”
〈〈 j|q̃L0−

c
24 |i〉〉 = χi(q̃)δi j . The coefficients B j

α stand in relation with the ni
αβ

via the Cardy
constraint and the reader is referred to [13,78] for details.

3.1 Free Boson BCFT

The ideas of the previous subsection are now exemplified in the free boson CFT. This section
recapitulates results which already exist in the literature, see for instance [67].

The free boson CFT on the plane is governed by the action

S =
g
2

∫

Σ

dτdσ(∂µϕ) (∂
µϕ) = g

∫

Σ

d2z(∂ ϕ)(∂̄ ϕ) . (24)

This action is invariant under conformal transformations and also under U(1) transformations
implemented by ϕ + const. In fact, the symmetry algebra of the massless free boson is given
by a û(1)× û(1) Kac-Moody algebra and two copies of the Virasoro algebra, generated by the
currents

J =
∑

n∈Z
anz−n−1 , T =

∑

n∈Z
Lnz−n−2 , J̄ =

∑

n∈Z
ānz̄−n−1 , T̄ =

∑

n∈Z
L̄nz̄−n−2 . (25)

The U(1) symmetry responsible for the shift ϕ + const. is generated by the U(1) charge
a0. Additionally, there are the spectrum generating modes an with n ̸= 0. Together they form
the û(1) algebra. The modes satisfy the algebra

[an, am] = nδn+m,0 , (26a)

[Ln, am] = −man+m , (26b)

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 , (26c)

and similarly for ān and L̄n. The spectrum of the compact boson with periodicityϕ ≃ ϕ+2πR is
given by primary states |(m, w)〉 and their descendants, where m ∈ Z is a momentum quantum
number and w ∈ Z is one for the winding sectors. The primaries have conformal weights and
û(1) charges

hm,w =
Q2

m,w

8πg
, Qm,w =

m
R
−

4πg wR
2

, (27a)

h̄m,w =
Q

2
m,w

8πg
, Qm,w =

m
R
+

4πg wR
2

. (27b)
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BCFTs are defined on Riemann surfaces with a boundary, usually taken to be the upper half
plane or an annulus. Two types of boundary conditions may be imposed on these boundaries,
which preserve a single copy of û(1), defined by the gluing conditions J = ±J̄ |bd y . Hence, in
the notation of the previous section, A= û(1).

For J = J̄ |bd y the gluing conditions result in Neumann (N) boundary conditions

∂σϕ|bd y = 0 , (28)

and for J = −J̄ |bd y they result in Dirichlet (D) boundary conditions

∂τϕ|bd y = 0 . (29)

In the D case, the value of the bosonic field may take different values, ϕ0 and ϕ′0, at the two
boundaries of the annulus, see figure 1. In the case of N boundary conditions, the structure
is identical when describing the model in terms of the dual bosonic field θ [78]. If the boson
ϕ is decomposed into left- and right-movers, ϕ = φ + φ̄, then the dual field is decomposed
as θ = φ − φ̄. In the case of N boundaries, the dual field θ assumes fixed values θ0 and θ ′0
to either end of the annulus. The boundary conditions (28) and (29) can be expressed as
boundary states, which are reported in appendix A.1.

In the following we state the partition functions and spectra of all combinations of N and
D conditions on the boundaries, expressed once via the boundary modes and thereafter via
the bulk modes. Derivations would lead us too far afield and thus are not provided here. The
reader can find a good introduction in [78].

The partition functions are computed from (22). For the case of Neumann boundaries to
either end with θ0 and θ ′0 it is

ZNN (q) =
∑

m∈Z
χ(∆θ0)

m (q) = g2
N

∑

w∈Z
e2πi gwR∆θ0χ(0,w)(q̃) , (30)

where ∆θ0 = θ0 − θ ′0. The second and third expressions here correspond to the second and
third expressions in (22)2. We have introduced û(1) characters and the Dedekind η function

χ(∆θ0)
m (q) =

qh
(∆θ0)
m

η(q)
, χ(m,w)(q) =

qhm,w

η(q)
, η(q) = q

1
24

∞
∏

n=1

(1− qn) . (31)

The boundary fields have conformal dimensions h(∆θ0)
m = (Q(∆θ0)

m )2

8πg , where the û(1) charges lie
in the NN spectrum σNN given by

Q(∆θ0)
m = 4πg

�

m
2πgR

+
∆θ0

2π

�

, m ∈ Z . (32)

Comparing with (22), the first equality of (30) shows that all û(1) families with conformal
weight h(∆θ0)

m appear for m ∈ Z with multiplicity nm
θ ′0,θ0

= 1. The second equality phrases the

partition function in the S-dual channel, revealing which bulk modes run through the annulus:
as can be read off from (22) and the boundary state (A.1) in appendix A.1, these are the ones
with û(1) charges Q0,w, c.f. (27).

Similarly, for the case of DD boundary conditions withϕ0 andϕ′0 to each end of the annulus

ZDD(q) =
∑

w∈Z
χ(∆ϕ0)

w (q) = g2
D

∑

m∈Z
ei m

R∆ϕ0χ(m,0)(q̃) , (33)

2The way to derive (30) is to take the ∥N(θ0)〉〉 and compute their overlap 〈〈N(θ ′0)∥q̃
L0−1/24∥N(θ0)〉〉 exploiting

that 〈〈(0, w′)|q̃L0−1/24|(0, w)〉〉 = δw′ ,wχ(0,w)(q̃). This provides the third expression in (30). A subsequent Poisson
resummation yields the second expression.

9

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.049


SciPost Phys. Core 6, 049 (2023)

where ∆ϕ = ϕ0 − ϕ′0. The boundary fields have conformal dimensions h(∆ϕ0)
w = (Q(∆ϕ0)

w )2

8πg ,
where the û(1) charges lie in the DD spectrum σDD given by

Q(∆ϕ0)
w = 4πg

�

wR+
∆ϕ0

2π

�

, w ∈ Z . (34)

The first equality of (33) shows that all û(1) families with conformal weight h(∆ϕ0)
w appear for

w ∈ Z with multiplicity nw
ϕ′0,ϕ0

= 1. The second equality in (33) phrases the partition function

in the S-dual channel, revealing which bulk modes run through the annulus, namely the ones
with charge Qm,0 in (27).

The partition function for mixed boundary conditions, DN and ND, is

ZDN (q) = ZN D(q) = q
1
48

∞
∏

n=1

(1− qn− 1
2 )−1 = gNgD

�

q̃
1
24

∞
∏

k=1

(1+ q̃k)

�−1

. (35)

Note that this partition function does not have U(1) symmetry [78, 79], indicated by the fact
that ZN D does not decompose into û(1) characters χQ built from an modes for n ∈ Z. Instead,
the spectrum is given by a twisted û(1) representation built on a primary twist field σ of
dimension hσ = 1/16. This Fock space is constructed by modes ar with half-integral index,
r ∈ Z+ 1

2 ,
HN D =

�

a−r1
a−r2

. . . a−rk
|σ〉
	

. (36)

Importantly, this implies the absence of the U(1) charge operator a0. This breaking of the
U(1) symmetry by mixed boundary conditions is demonstrated with standard field theoretic
methods in appendix A.2.

Before concluding our review of the free boson BCFT, we consider the decompactification
limit R→∞, so that the target space of the boson becomes R. In the NN case the partition
function becomes

Z (∞)NN =
1
η(q)

∫

R
dαq

α2
8πg = g2

N ,∞
1
η(q̃)

, (37)

where the g-factor is now g2
N ,∞ =

p

4πg. This means that all û(1) families occur in this BCFT

with multiplicity one and conformal dimension hα =
α2

8πg . This is in line with setting α= 2m/R
in (32). The parameter θ0 must vanish in the R→∞ limit as can be seen from the phases in
the boundary state (A.1a) of appendix A.1, which would otherwise be ill-defined; θ0 is thus
dropped henceforth from all N labels in the decompactification limit. Only a single û(1) family
of bulk modes is required to describe this BCFT, namely that of the unit field with h= 0, as is
indicated by the absence of any summation or integration in q̃ expression of (37).

In the DD case

Z (∞)DD =
q

g
2π (∆ϕ0)2

η(q)
= g2

D,∞

∫

R
dβ eiβ∆ϕ0

q̃hβ

η(q̃)
, (38)

with g-factor g2
D,∞ =

1p
4πg

. Observe that there is only one û(1) family amongst the boundary

spectrum, that of conformal dimension h(∆ϕ0)
0 , c.f. (34). This is the well known observation

that winding modes, w ̸= 0, are too heavy to be present in the decompactification limit. Note
that the parameter ϕ0 is still non-vanishing. It is now the bulk channel in which all û(1)
families appear in the annulus partition function. They have dimension hβ =

β2

8πg .
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4 A New Take on Symmetry Resolution

In this section we present a shift of perspective on the subject of symmetry resolution, which is
possible whenever the spectrum of the entanglement BCFT is accessible. The focus is shifted
away from charged moments toward the actual structure of the entanglement spectrum (21).
As will become clear, this new approach simplifies the computations of symmetry-resolved
entanglement significantly and provides new structural insights into the entanglement of the
free boson theory.

In order for the setup and the cutting operation described in section 3 to work for SREE,
additional constraints need to be imposed. As noted in [12], the cutting operation ι does not
necessarily preserve all symmetries of the system. Since the cutting operation ι is not unique,
one chooses one that preserves half of the Virasoro symmetry to utilize BCFT methods. This
corresponds to placing conformal boundary conditions at the entangling points.

In order to calculate the SREE for a system with some additional symmetry group, the
cutting operation must also preserve said additional symmetry. This is vital, as the reduced
density matrix after the cutting (16) needs to decompose as in (4). This fact can formally
be expressed as follows: The condition that implies the reduced density matrix to be block-
decomposed into the various charge sectors is [ρA,QA] = 0, where both operators in the
commutator are restricted to the subsystem of interest. In the language of [12], this condition
can be expressed as

TrHB,αβ

�

ι[|ψ〉 〈ψ| ,Q]ι†
�

= 0 . (39)

To check its validity, one should access the explicit form of the mapping ι defined in (16), which
in general is not known. However, one can say that any ι which maps the initial CFT to a given
BCFT which breaks the symmetry generated by Q cannot satisfy (39). In the following we
mention a case where the U(1) symmetry of a compact boson CFT (as well as the R symmetry
of a non-compact boson) is broken once the theory is considered on the annulus with DN or
ND boundary conditions and we argue that for this choice (39) cannot hold.

In the following we calculate the charged partition functions (10) for the compact and
the non-compact free boson on the annulus with NN or DD boundaries. We consider the
symmetry resolution of entanglement with respect to various symmetry groups. The results
obtained are cross-checked by computing the charged moments and, in doing this, we expand
on the calculation of [20] by explicitly investigating different boundary conditions. Fourier
transforming the charged moments yields the Zn(Q), which match the results obtained with
the previous approach.

4.1 U(1) Resolution for NN and DD Boundaries Revisited

In order to calculate the symmetry-resolved entanglement entropy, the starting point is the
decomposition of the Hilbert space (21) into charge sectors in the presence of an additional
symmetry G. The crucial observation is that the projector in the definition of the charged
partition function (10) simply selects precisely one representation Hi . The action of the free
boson, eq. (24), is invariant under a translation of the angular variable, ϕ→ ϕ+a. This leads
to the conservation of a U(1) charge Q given by the zero mode of the current J(z). Without
boundaries, the symmetry is in fact U(1)× U(1). Upon implementing DD or NN boundaries,
this is broken to a single U(1), c.f. appendix A.2 for a derivation. The Hilbert space of the
corresponding quantum theory therefore decomposes into û(1) representations HQ,

Hαα =
⊕

Q∈σαα

HQ . (40)

The charge eigenvalues Q lie in the sets σαα provided in (32) for NN boundaries and in (34)
for DD boundaries. To improve readability, we drop the indices of the charges provided there,
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e.g. Q(∆θ0)
m →Q. The decomposition (40) is the free boson analog of (21). As explained above,

ND and DN boundaries break U(1) symmetry and hence do not decompose as (40). This case
is discussed later.

Each representation HQ consists of a U(1) primary state |Q〉 with charge eigenvalue Q and
its descendants constructed via the modes a−n. These representations are irreducible3. The
states of charge Q are also Virasoro primaries with conformal dimension hQ =

Q2

8πg [81], where
g is the coupling introduced in the free boson action (24).

Compact Free Boson: DD and NN boundary conditions: To calculate the charged partition
functions (10) for the free boson, note that the spectra (30) and (33) decompose into û(1)
representations. This means that the projector ΠQ in (10) simply selects a particular û(1)
character if the charge Q is in the spectrum, and otherwise this expression vanishes. The
probability distribution reads

PA(Q) = Trαα
�

ΠQρA

�

=

¨

χQ(q)
Zαα

, Q ∈ σαα ,

0 , otherwise ,
(41)

where the normalization Zαα is given in (22). By construction,
∑

Q∈σαα PA(Q) = 1. For general
n, this becomes

Zn(Q) = Trαα
�

ΠQρ
n
A

�

=

¨χQ(qn)
Zn
αα

, Q ∈ σαα ,

0 , otherwise .
(42)

The characters are χQ(q) =
qhQ

η(q) , where hQ are the conformal weights corresponding to the
U(1) charges in σαα, c.f. (32) and (34). Similar observations have been also made in [22],
without providing explicit formulas and examples.

The fact that the form of the Zn(Q) in all the considered U(1) cases are the same can be
understood as follows: They contain information about the partition function in a particular
U(1) sector and therefore are fully determined by the symmetry. The role of the boundary
conditions is to determine which charges enter in the spectrum to begin with.

The entanglement entropy, given by (7), depends on the spectrum and therefore on the
boundary conditions. A detailed discussion of the entanglement and Rényi entropies in the
free boson CFT is provided in appendix B. In contrast, the form of the symmetry-resolved
entanglement entropies only depend on the form of the characters χQ and therefore they have
the same form independent of the boundary conditions, although the individual charges in the
spectrum differ. Remember that here we focus on the same boundary conditions on both ends
of the cylinder.

This new perspective also makes equipartition evident to all orders in the cutoff, indepen-
dent of the boundary conditions. It follows directly from (42) for charges Q ∈ σαα that

Sααn (Q) =
1

1− n
log

�

Zn(Q)
�

Z1(Q)
�n

�

=
1

1− n
log

�

ηn(q)
η(qn)

�

=
W
12

n+ 1
n
+

1
1− n

∞
∑

k=1

log

�

(1− e−2W k)n

1− e−2W k/n

�

−
1
2

log
�

W
π

�

+
1
2

log n
1− n

. (43)

In going to the second line, the conformal weights carrying the charge dependence have simply
cancelled due to the explicit form of the characters, leading to equipartition of entanglement.
Furthermore η(q̃) =

p
−iτη(q) was used. The terms of order W and log W in (43) have been

3There are no null vectors built purely from an modes, which is a direct consequence of the algebra (26a). In
contrast, representations built with Virasoro modes at c = 1 may indeed have null vectors [80,81].
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first found in [20]. In this manuscript, we extend the analysis to all orders in the UV cutoff
expansion, discussing the consequences of choosing different boundary conditions.

Note that the result in (43) does not explicitly depend on the compactification radius R,
apart from the fact that Q ∈ σαα, where σαα is dependent on R. Therefore, this result also
holds for the non-compact free boson theory. A very important lesson from this section is that
symmetry-resolved entanglement in the case of the free boson simply computes the entangle-
ment of a single U(1) character. It is hence no surprise that (43) coincides with the Rényi
entropies of the non-compact free boson with DD boundaries, (B.4) in appendix B, since that
partition function consists only of a single character, which explains the occurence of the log W
term.

Equipartiton of entanglement is also reflected in the Rényi entropies

Sααn =
1

1− n
log

�

ηn(q)
η(qn)

�

+
1

1− n
log





∑

Q∈σαα qnhQ

�∑

Q∈σαα qhQ
�n





=
1

1− n
log

�

ηn(q)
η(qn)

�

+
1

1− n
log





∑

Q∈σαα

�

PA(Q)
�n



= Sααn,c + Sααn,f , (44)

where the expressions in terms of q of (30) and (33) were used. The second summand stems
from the û(1) primaries in the theory and, as explained in (7), it is the fluctuation Rényi
entropy Sααn,f , accounting for fluctuations between charge sectors. Again, this result is exact
to all orders in the cutoff and holds for all Rényi parameters n. The first term must thus be
the configurational Rényi entropy Sααn,c , describing the entanglement in one charge sector. It
accounts for the Fock space structure of the û(1) towers built on each primary state and is
responsible for the well-known leading term of the Rényi entropy,

Sααn,c =
1

1− n
log

�

ηn(q)
η(qn)

�

=
1

1− n
log

�

ηn(q̃)

η(q̃
1
n )

p
−inτ

(
p
−iτ)n

�

=
W
12

n+ 1
n
+

1
1− n

∞
∑

k=1

log

�

(1− e−2W k)n

1− e−2W k/n

�

−
1
2

log
�

W
π

�

+
1
2

log n
1− n

, (45)

where η(q̃) =
p
−iτη(q) has been used in the first and τ= iπ/W and q̃ = e−2W in the second

line. Note that this expression is exact, and it is clear that performing ε → 0, i.e. W →∞,
suppresses the infinite series, which stems from the û(1) descendants in the q̃ channel. Observe
that Sααn,c = Sααn (Q), i.e. the symmetry-resolved Rényi entropies account for the configurational
Rényi entropies. As stressed in section 2, the decomposition in the last step of (44) holds only
in case of exact equipartition of entanglement entropies, which is what we find here for the
compact massless free boson.

The n → 1 limit of the configurational entropy SDD
n,c is straightforwardly taken in the ex-

pression (45). The full expression for the entanglement entropy is

S1 = lim
n→1
(Sααn,c + Sααn,f ) = lim

n→1

1
1− n

log
�

ηn(q)
η(qn)

�

−
∑

Q∈σαα

PA(Q) log [PA(Q)] . (46)

Note that the last two terms in (45) cancel out with terms of fluctuation entropy, once it is
expressed in terms of q̃, at least for finite compactification radius. In the rest of this subsection
we encounter an example where the fluctuation entropy is identically zero, and the final two
terms indeed appear in the full entanglement entropy, perhaps contrary to expectations.
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Non-compact Free Boson: DD and NN boundary conditions: It is illuminating to consider
the decompactification limit R→∞. We begin with the DD case, for which the entire spectrum
consists only of the w = 0 û(1) family, see (38). Thus PA(Q) = 1 if Q = Q(∆ϕ0)

0 and zero
otherwise, see (34). The Rényi entropies become

SDD,(∞)
n =

1
1− n

log





Z (∞)
D(ϕ′0),D(ϕ0)

(qn)
�

Z (∞)
D(ϕ′0),D(ϕ0)

(q)
�n



=
1

1− n
log

�

ηn(q)
η(qn)

�

= SDD
n,c . (47)

There is no fluctuation entropy, SDD
n,f = 0, as expected, since a second charge sector would

be required for fluctuations to occur. Put another way, there is no uncertainty in the charge
measurement. No g-factor appears in the final result. It would, if one were to neglect the
higher orders and approximate to keep only the leading terms in q̃, since it cancels out in the
transformation from q̃ to q.

The result (47) has interesting consequences for the entanglement entropy,

SDD,(∞)
1 =

W
6
−

1
2

log
�

W
π

�

−
1
2
−
∑

k=1

�

log
�

1− e−2W k
�

−
2W k

e2W k − 1

�

. (48)

The second and third term is usually associated with the SREE for a charge sector Q. Here,
however, it already appears in the regular entanglement entropy, since there are no contribu-
tions from the fluctuation entropy to cancel these terms.

The NN partition function of the non-compact boson includes, in contrast to the DD case,
all û(1) families, c.f. (37). The configurational entropy remains as it is, and may be directly
read off from (45). It remains to calculate the fluctuation Rényi entropy, which in this case is

SNN ,(∞)
n,f =

1
1− n

log





∫

R qnα2/(8πg)dα
�∫

R qβ2/(8πg)dβ
�n



= logg2
N ,(∞) +

1
2

log
�

W
π

�

−
1
2

log n
1− n

, (49)

where gN ,∞ = (4πg)
1
4 . The second and third terms cancel in the Rényi entropy with terms

of the configurational Rényi entropy (45) and in the limit n → 1 the entanglement entropy
reads,

SNN ,(∞)
1 =

W
6
+ logg2

N ,(∞) −
∑

k=1

�

log
�

1− e−2W k
�

−
2W k

e2W k − 1

�

. (50)

Observe that, in contrast to the DD case, the g-factor now appears and the log W term is absent.
Before moving on to check these results using the charged moments, we comment on

the case of mixed boundary conditions, i.e. DN and ND. While it is possible to calculate the
entanglement entropy in these cases, it is not possible to resolve with respect to U(1), because
the mixed boundary conditions break this symmetry. This can be seen either from the boundary
term required in the conservation equations of the U(1) charges, as reviewed in appendix A.2,
or from the modes ar . Indeed, the modes acquire half-integer indices, r ∈ Z + 1

2 , for mixed
boundaries and therefore the conserved U(1) charge a0 is not defined. Therefore, resolution
with respect to U(1) is not possible in these cases, which can be rephrased by saying that (39)
does not hold when αβ = ND/DN, and Q given by the U(1) generator. However, the ND and
DN spectra still contain Z2 representations, with respect to which we resolve in section 4.2.

4.1.1 Cross-check: Compact Boson

In this section we confirm our previous results by employing the standard method in symmetry
resolution, namely the U(1) charged moments of the compact boson CFT. In order to calculate
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the charged moments to all orders, we employ the boundary state approach. We advocate for
this approach as it allows to calculate to arbitrary orders in the UV cutoff. Therefore it is a
vital addition to the usual symmetry resolution toolkit, which is based mainly on charged twist
fields, which only allow to extract the leading terms. We note that this formalism has already
been employed in [20], but has garnered little attention since.

The charged moments (13) for a U(1) theory read

Zααn (µ) =
1

Zn
αα

trHαα

�

(qn)L0−
1
24 eiµQ

�

, (51)

where α still labels boundary conditions, Hαα is the corresponding Hilbert space. In the case
of the free boson, (40) leads to the decomposition of the charged moments into charged U(1)
characters,

Zααn (µ) =
1

Zn
αα

∑

Q∈σαα

χQ(q
n,µ, 0) , (52)

where σαα is the spectrum of charges in the Hilbert space with boundary condition α, given
by (32) in the case of NN boundaries and (34) for DD boundaries. For a continuous spectrum,
such as that of the non-compact boson, the sum becomes an integral. The charged characters
are defined as

χQ(q,µ, u) = ei8π2 gutrHû(1)
Q

�

qL0−
1
24 eiµQ

�

= ei8π2 gueiµQ qhQ

η(q)
. (53)

The necessity of the phase parameter u will become evident below.
This expression is unfortunately not useful in the W → ∞ limit, in which q → 1−. In

the S-dual frame on the other hand, the expansion variable q̃ tends to zero for W → ∞.
Charged moments can readily be computed in this frame by virtue of boundary states 〈〈α∥.
These are given in appendix A.1, for N boundaries in (A.1a) and for D boundaries in (A.1b).
These allow for a straightforward expansion in orders of q̃. For U(1) characters the S-modular
transformation is represented by a Fourier transformation, and thus the charged characters
transform as

∫

dQ′SQ,Q′χQ′(q,µ, u) = χQ

�

q̃,−
µ

τ
, u−

1
2τ

� µ

2π

�2�

. (54)

Here SQ,Q′ =
1p
4πg

ei QQ′
2g are the matrix elements of the S transformation [82].

Looking at the definition (13) of the charged moments, we observe that they are essentially
partition functions with an inserted exponential. Therefore, using the transformation law
of the charged characters and (22), the charged moments can be expressed in terms of the
boundary states, in this case given by (A.1) in appendix A.1. The charged moments read

Zααn (µ) =
1

Zn
αα

q̃
1
n 2πg( µ2π)

2

〈〈α∥
�

q̃
1
n

�L0−
1
24 e−i µnτQ∥α〉〉 . (55)

Calculating the charged moments using (55) yields

ZDD
n (µ) =

1
Zn

DD

∑

Q∈σDD

1
η(qn)

q
n

8πg Q2
eiµQ , (56a)

ZNN
n (µ) =

1
Zn

NN

∑

Q∈σNN

1
η(qn)

q
n

8πg Q2
eiµQ . (56b)

We note that similar expressions were already presented in [20], albeit restricted to only two
values of ∆ϕ0 and ∆θ0. Here, we generalize to all possible values of ∆ϕ0 and ∆θ0.
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To calculate the Zn(Q), the charged moments have to be Fourier transformed. In the
compact case a subtlety arises, since the values of Q are neither integer nor continuous for
finite, non-zero compactification radius. By standard Fourier theory this leads to all functions
of µ being periodic with period 2πR and 4π

R , respectively. By rescaling the integration variable
and substitution in the Fourier transformation, the new function can be made to be 2π periodic.
For both boundary conditions,

Zααn (Q) =
1

Zn
αα

qn Q2

8πg

η(qn)
, Q ∈ σαα . (57)

This result agrees with our previous result in (42).
The difference between DD and NN boundary conditions again is that the charges in the

spectrum take different values depending on the compactification radius R.

4.1.2 Cross-check: Non-compact Boson

A cross-check similar to the one discussed in the previous subsection can be done for the non-
compact boson theory. In this case the boundary states (A.1) are replaced by

∥N〉〉∞ = gN ,∞|0〉〉 , (58a)

∥D(ϕ0)〉〉∞ = gD,∞

∫

R
dQe−iQϕ0 |Q〉〉 . (58b)

Here |Q〉〉 are the Ishibashi states, given in (A.2) of appendix A.1, and ϕ0 remains the boundary
value of the field ϕ. Note that only a single Ishibashi state contributes in the NN case, c.f.
section 3.1. The g-factors are now

gD,∞ = 〈0∥D(ϕ0)〉〉∞ = (4πg)−
1
4 , (59)

gN ,∞ = 〈0∥N〉〉∞ = (4πg)
1
4 . (60)

In the case of NN boundary conditions,

ZNN
n (µ) = g2

N ,∞
q̃

1
n 2πg( µ2π)

2

Zn
NNη(q̃

1
n )
=

g2
N ,∞

Zn
NN
χ0

�

q̃
1
n ,−

µ

nτ
,−

1
2

� µ

2π

�2�

. (61)

This result is exact to all orders of ε. In the S-dual picture, i.e. in the q̃ expression, only one
of the bulk modes is allowed to propagate for NN boundary conditions. Since the S transfor-
mation acts as a Fourier transform, we expect that all BCFT modes are allowed to propagate,
which can be seen from the fact that the matrix elements S0,Q′ =

1p
4πg

are independent of Q′.

Therefore all U(1) representations contribute equally in the partition function and the charged
moments and the expression in terms of q reads

ZNN
n (µ) =

1
Zn

NN

∫

dQχQ (q
n,µ, 0) , (62)

where χQ (qn,µ, 0) is defined in (53). Furthermore we see from (61) that the leading order
in q̃ produces the charged moments computed in the twist field picture and the holographic
calculation [63],

ZNN
n (µ)∼ g2(1−n)

N ,∞ q̃
2πg

n (
µ

2π)
2
+ 1

24 (n−
1
n ) . (63)
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Fourier transforming the exact result (61), we obtain for Q ∈ R

ZNN
n (Q) =

1
Zn

NN

qn Q2

8πg

η(qn)
=

1
Zn

NN
χQ(q

n, 0, 0) . (64)

This result is consistent with (42). Observe that the boundary states automatically contain
the information about which charges enter the spectrum, c.f. the discussion in section 3.1.
In the case of DD boundary conditions the analysis of the boundary states yields the charged
moments

ZDD
n (µ) =

g2
D,∞

Zn
DD

q̃
1
n 2πg( µ2π)

2
∫

dQe−iQ∆ϕ0 e−i µnτQ q̃
1
n

Q2

8πg

η(q̃
1
n )

. (65)

In contrast to the NN case all bulk modes propagate in the q̃ expression. In the BCFT picture,
the charged moments read

ZDD
n (µ) =

1
Zn

DD

1
η(qn)

eiµ2g∆ϕ0qn2πg
�

∆ϕ0
2π

�2

=
1

Zn
DD
χ2g∆ϕ0

(qn,µ, 0) . (66)

Instead of consisting of a single bulk mode in q̃ expression, the charged moments consist of a
single mode in the q expression, again c.f. section 3.1.

Fourier transforming the charged moments gives

ZDD
n (Q) =

1
Zn

DD

qn Q2

8πg

η(qn)
δ (Q− 2g∆ϕ0) . (67)

This is again consistent with (42). The Dirac distribution appearing in this result corroborates
that the spectrum of the free boson with DD boundary conditions consists of only one û(1)
representation.

We find it worth stressing again that (67), (64) and (57) confirm the discussion reported
in section 4.1, where we pointed out that the charged partition functions Z(Q) have the same
expression in all the U(1) and R cases. Different boundary conditions and considering the
compact or the non-compact abelian symmetry group only determine which charges enter in
the spectrum.

4.2 Z2 Symmetry Resolution

We now turn our attention to resolution with respect to the simplest finite discrete group,
namely Z2. The DD, NN and ND partition functions carry Z2 representations so that their
entanglement structure can be unveiled. The reader will not be surprised to find that there is
a close relationship with the conventional Z2 orbifold of the bosonic theory [80]. For all the
boundary conditions considered here we compute the charged partition function (10) directly
from the knowledge of the projectors in the two charge sectors. This is in the spirit of sec-
tion 4.1. As a consequence, we do not compute and exploit the charged moments as in (14)
and (15) with N = 2.

4.2.1 Z2 Symmetry Resolution for DD and NN

While treating the DD and NN cases, we restrict to the simple cases∆ϕ0 = 0=∆θ0. It is then
also useful to introduce a common notation for the primaries in both boundary theories, we
call them |s〉, s ∈ Z with a0 |s〉=Qs |s〉, where Qs stands for either Q(0)w from (34) or Q(0)m from
(32).
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Denoting Z2 = {e, g}, where e is the unit element, the non-trivial element g acts on the
Fock modes via g−1ak g = −ak. For k = 0 this implies the Z2 action flips the sign of the U(1)
charge, Qs→−Qs, and so we can identify g |s〉= |−s〉.

A projector onto g = ±1 eigenspaces, required for (10), is Π± =
e±g

2 . We are thus led to
evaluate traces of the type TrHαα

[gqL0], where Hαα is the Hilbert space of either the DD or NN
theory. For their evaluation it is convenient to reorganize the spectrum in states of the form

ak1
ak2

. . . akl
(|s〉 ± |−s〉) , (68)

which are eigenstates of g. For a fixed configuration of modes a j , these pairs of states con-
tribute with opposite sign to TrHαα

[gqL0] and thus cancel away, as long as s ̸= 0. This rear-
rangement of the Hilbert space has the following physical meaning. Each of the U(1) sectors
of the theory discussed in section 4.1 contains a Z2-even and a Z2-odd part. Thus, in order to
access the two Z2 sectors it is necessary to decompose the U(1) sectors and reorganize them,
as done by the change of basis (68).

What remains is to evaluate the trace in the s = 0 sector, which is done by elementary
methods [80],

TrHαα

�

gqL0−
1

24

�

= Trs=0

�

gqL0−
1
24

�

= q−
1
24

∏

k=1

1
1+ qk

=

√

√

2
η(q)
θ2(q)

=

√

√

√

2
η(q̃)
θ4(q̃)

, (69)

where θi are modular Jacobi theta functions. A summary of their properties can be found in
appendix C.

The trace (10) for the two possible Z2 representations, labelled ±, can thus be evaluated

Zααn (±) = TrHαα
[Π±ρ

n
A]

=
1

(Zαα(q))n
TrHαα

h e± g
2

qn(L0−
1
24 )
i

=
1

2(Zαα(q))n

 

Zαα(q
n)±

√

√

√

2
η(q̃1/n)
θ4(q̃1/n)

!

=
1

2(Zαα(q))n

�

g2
α

e2W/(24n)
∏∞

k=1(1− e−2W k/n)

∑

s∈Z
e−2Whs/n

±
p

2
e−W/(24n)

∏∞
k=1(1− e−W (2k−1)/n)

�

, (70)

with hs = Q2
s /(8πg). When W → ∞, the first summand goes with e

W
12n , while the second

term decays rapidly with e−
W

24n . Without computing the symmetry-resolved entanglement form
these replica partition functions, we can thus already infer that equipartition holds at leading
order, thereby confirming the results of [32]. When including all orders, however, it is clear
that equipartition cannot hold, since (70) depends on the chosen sign. Observe that Z1(+) is
proportional to the holomorphic part of the projected untwisted sector of the conventional Z2
orbifold [80].

Finally, the symmetry-resolved Rényi entropies are

Sααn (±) =
1

1− n
log

�

Zααn (±)
�

Zαα1 (±)
�n

�

. (71)

When either ∆ϕ0 = 0 or ∆θ0 = 0, we can expand (71) as

Sααn (±) =
1+ n
12n

W − ln 2+ lng2
α + . . . , (72)
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where the dots denote the subleading corrections which vanish exponentially in W as the UV
cutoff goes to zero, and are responsible for the breaking of the entanglement equipartition.
The term ln2 is nothing but the logarithm of the number of Z2 sectors, and is the leading
contribution to the fluctuation entropy. In other words, no double logarithmic corrections
arise in the Z2 symmetry-resolution of the entanglement [32].

4.2.2 Z2 Symmetry Resolution for DN

It is convenient rewrite the ND BCFT partition function (35) as

ZN D(q) =

√

√

√ η(q)
θ4(q)

, (73)

which makes evident that this spectrum is equivalent to the holomorphic part of the unpro-
jected twisted sector of the bosonic Z2 orbifold found in [80]. It carries Z2 representations
with respect to which we wish to resolve. To that end, it is convenient to split (36) into g = ±1
eigenspaces,

H(+)DN = {a−r1
. . . a−r2k

|σ〉} , (74)

H(−)DN = {a−r1
. . . a−r2k+1

|σ〉} , (75)

with ri ∈ Z+
1
2 .

The projector onto these eigenspaces is still Π± =
e+g

2 , and we consider

TrHDN
[gqL0−

1
24 ] =

√

√ η(q̃)
θ3(q̃)

, (76)

whose derivation can be found in [80]. The replica partition function (10) is thus

ZDN
n (±) =

1
2(ZDN (q))n

 
√

√

√ η(qn)
θ4(qn)

±
√

√ η(qn)
θ3(qn)

!

=
1

2(ZDN (q))n

 
√

√

√ η(q̃1/n)
θ2(q̃1/n)

±

√

√

√ η(q̃1/n)
θ3(q̃1/n)

!

=
1

2(ZDN (q))n

�

gNgD eW/(12n)
∞
∏

k=1

(1− e−2W k/n)−1 ±
∞
∏

k=1

(1+ e−W (2k−1)/n)−1

�

. (77)

where we used gDgN = 1/
p

2, see (A.3). Again it is clear that for W → ∞, the first term
dominates and hence equipartition is guaranteed at leading order. Similar to before, equipar-
tition breaks down once all orders are included. Observe that Z1(+) is proportional to the
holomorphic part of the projected twisted sector of the conventional Z2 orbifold [80].

Finally, the symmetry-resolved Rényi entropies are

SN D
n (±) =

1
1− n

log

�

ZDN
n (±)

�

ZDN
1 (±)

�n

�

. (78)

For the leading orders one finds

SN D
n (±) =

1+ n
12n

W − ln 2+ ln(gDgN ) + . . . , (79)

where the dots have the same meaning, and the ln 2 the same interpretation discussed below
(72).
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5 Conclusions

5.1 Discussion

In this article we investigated the symmetry resolution of entanglement in 2D CFTs by em-
ploying the BCFT approach for the computation of the entanglement entropies [12,13]. More
concretely, any factorization of Hilbert space associated with spatial domains requires the im-
position of boundary conditions at the entangling surface in a QFT, see (16). These boundary
conditions determine the field content in the entanglement spectrum. If, furthermore, the sys-
tem is governed by a symmetry group G, said entanglement spectrum decomposes into charge
sectors labelled by irreducible representations of G. In this paper we showed that symmetry
resolution with respect to G = U(1),R,Z2 is achieved in the free boson CFT by extracting
the characters of said irreducible representations, c.f. (10) and (42), and by computing their
entanglement entropy (11). We found that this approach has a number of advantages:

• It bypasses the potentially laborious computation of charged moments (13). While in
the case of U(1), calculating the charged moments directly does not pose any great
obstacle, it will demand involved techniques for non-abelian groups. See for instance
the case of Lie groups [22], for which we sketch below how to apply our method. While
still tractable in the case of Lie groups, it is currently unknown how to compute charged
moments for other non-abelian groups. One example is the Virasoro group, where it is
unclear how a charged moment should be computed. In particular, there is no twist field
prescription similar to the one in [19]. However, our method proves to not only extract
the symmetry-resolved entropies, but also does it very efficiently [83]. We emphasize
that our method is to be viewed as complementary to the charged moments, as examples
exist where our method is difficult to implement, yet the charged moments are easily
accessible. This is for instance the case in bottom-up holographic constructions [63,64].

• In contrast to the charged twist field approach [19], which only provides the leading
contributions in a UV cutoff expansion, the setup here provides symmetry-resolved en-
tanglement entropies to all orders in the UV cutoff. This is similar to the situation with
regular twist fields, which provide the cW/6 term in the entanglement entropy, but not
the higher lying terms described in [12].

• It provides conceptual insight. For instance, it explains the origin of equipartition of en-
tanglement, if present. This is a simple consequence of the structure of the characters of
the symmetry group. Equipartition has been studied in the case of U(1) before in [20]
and for Z2 in [32]. In both cases equipartition had been established to leading orders
in the UV cutoff. Our setup allows us to extend their analysis to all orders and confirm
U(1) equipartition (43), while we find breaking of Z2 equipartition, c.f. (70) and (77).
While the equipartition of symmetry-resolved entropies at leading orders is a universal
feature, the equipartition to all orders in the cutoff expansion pointed out in this work
is a direct consequence of the regularization chosen, as encoded in the boundary condi-
tions. We stress that in the present manuscript we have mostly considered NN and DD
boundary conditions, which are the ones preserving the maximal amount of symmetries
(see appendix A.2). It would be interesting to compare the non-universal corrections
associated to this choice of boundary conditions with the ones arising from the lattice
regularization in critical models with the free boson CFT as continuum description. Par-
ticularly promising boundary conditions towards this goal are the NN ones, which have
been found to reproduce the low-lying part of the entanglement spectrum of blocks of
consecutive oscillators in infinite harmonic chains [84,85].
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We find it worth stressing that to obtain the symmetry-resolved entanglement entropies
to all orders in the cutoff expansion it is necessary to know the boundary states exactly. This
fact is true also for the total entanglement entropies, as highlighted in [12], and therefore is
inherited for the case of symmetry resolution. On the other hand, the leading behaviour in
the cutoff expansion is provided by the lowest-lying state of the BCFT conformal spectrum and
does not depend on the chosen boundary conditions [12,13]. This statement is valid both for
the total entanglement entropies, allowing us to retrieve the known logarithmic scaling, and
for the symmetry-resolved entropies, in the latter case giving rise to the equipartition behavior
to leading order [20].

Another aspect we find worth stressing is the role of boundary conditions imposed on
the annulus geometry. Typically, the boundary conditions considered in BCFT are conformal
boundary conditions, which deny energy-momentum flow across the boundary. From the point
of view of symmetries, this means that the holomorphic and the anti-holomorphic Virasoro
algebrae reduce to a single Virasoro algebra. If the theory has an additional global symmetry,
the boundary conditions may break this symmetry. If we want to compute the symmetry-
resolved entanglement with respect to a given group G, we must choose boundary conditions
that preserve such a group. In the cases considered in this article, we observed that NN and DD
boundary conditions preserve one of the two U(1) (or R) symmetries of the theory without
boundaries. The U(1) preserved in the NN case is different from the one preserved in the
DD case, c.f. appendix A.2 for more details. In both cases, a symmetry resolution of the
entanglement entropies can be achieved in the BCFT setup. On the other hand, when we
impose ND or DN boundary conditions, the only residual symmetry is Z2 and therefore it is
not possible to resolve the spectrum of the BCFT, i.e. the entanglement spectrum, with respect
to U(1) (or R). In this latter case, the partition function of the BCFT is expanded in terms of
the characters of twisted U(1) representations [78,79]. Thus, even if there is no U(1) charge
present for ND or DN boundary conditions, the theory bears remnants of the U(1) × U(1)
symmetry present without boundaries, i.e. before the mapping the theory to the annulus.

We point out that our results, much as all other results on U(1) symmetry resolution of the
free boson in the literature, apply to fermionic models with quartic interactions by virtue of
bosonization. Since our approach is based on the powerful tools of representation theory, we
believe however that it provides significant leverage over conventional tools when considering
more general interacting models. For instance, Virasoro minimal models lend themselves nat-
urally to our method and will be discussed in an upcoming article [83]. A further advantage of
explicit use of conformal boundary conditions is that they capture the low-lying entanglement
spectrum of gapped phases adjacent to a quantum critical point [86]. This adds further weight
to the BCFT approach advanced in the present work.

5.2 Summary of Results

We have focused on the cases where the target space of the bosonic field is a circle (symmetry
group U(1)) or non-compact (symmetry group R). In both cases, we computed the charged
partition function Zn(Q) from the characters contained in the BCFT partition function, c.f.
(42) for generic n and in (41) for n = 1. The corresponding symmetry-resolved Rényi en-
tropies are given in (43). We applied the same procedure for the resolution with respect to
the Z2 symmetry. For this case, the charged partition functions are given in (70) for NN or DD
boundary conditions, and in (77) for ND boundaries. The corresponding symmetry-resolved
Rényi entropies are straightforwardly computed using these results. We now provide a detailed
discussion of each of these results.

Our first example is the compact boson resolved with respect to the global U(1) symmetry.
The symmetry-resolved entropies for this theory have been first considered in [20], where the
leading order contributions in the UV cutoff expansion were computed and found to be inde-
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pendent of the choice of boundary conditions on the annulus. We extend the analysis of [20]
by calculating all the possible higher-order terms for all allowed combinations of boundary
conditions. We in particular considered two choices of boundary conditions, DD and NN, both
of which allowing for a residual U(1) symmetry. Our results (43) exhibit some very interesting
features: First, the equipartition of entanglement holds to all orders in the cutoff expansion.
This is an extension of the results in [20], which reported equipartition to leading order. Our
result originates from the explicit form of the U(1) characters χQ(q) = qhQ/η(q). This particu-
lar form implies that hQ cancels out in the ratio Zn(Q)/(Z1(Q))n, so that no charge dependence
remains, as is seen in (41) and (42). This is the first main result of the paper. Moreover, the
explicit expressions of the symmetry-resolved entanglement entropies are the same for both
the NN and DD case. The only difference lies in the allowed values of the charges Q, which
are determined by the choice of the boundary conditions.

As a further example, we considered the decompactification regime of the compact free bo-
son theory, namely the limit R→∞. The resulting theory has a symmetry given by the group
R. Thus, its symmetry resolution can be regarded as a first simple example of symmetry-
resolved entanglement in presence of a non-compact symmetry group. Also in this case the
expression for the symmetry-resolved entropies (43) only depends on the charge allowed by
the boundary conditions. We find it worthwhile to stress an interesting feature of the non-
compact boson with DD boundary conditions: its spectrum consists only of a single charge
sector and therefore the only non-vanishing symmetry-resolved entanglement entropies coin-
cide with the total entanglement entropies. This is somewhat surprising, since it shows that
the double logarithmic correction in the symmetry-resolved entanglement entropies is also
present in the full entanglement entropies, which, to our knowledge, has not been reported
so far.

The BCFT approach also allowed us to compute the entanglement entropies resolved with
respect to a Z2 symmetry. These results are reported in (71) for NN and DD boundary condi-
tions. Interestingly, in presence of DN and ND boundary conditions the Z2 symmetry is still
present and therefore the symmetry-resolved entropies can be computed. They are given in
(78). Again, these results are exact in the cutoff expansion, and reduce to the findings of [32]
to leading order in the cutoff expansion. Our results for U(1) and R have been cross-checked
in sections 4.1.1 and 4.1.2 by computing first the charged moments and then performing the
Fourier transform.

5.3 Outlook

Based on the findings of our work, there are many future directions to pursue: First, we
have come across twisted U(1) representations in the case of mixed boundary conditions.
These arise from a twisted U(1) and retain some of the features of the untwisted case. For
instance, the structure of the û(1) Kac-Moody algebra persists, in that the modes still satisfy
[ar , as] = −rδr+s,0 where the indices are half-integral. In the picture put forward in section 4,
symmetry-resolution is achieved by isolating a character. We can therefore resolve with respect
to these characters, i.e. with respect to the twisted U(1) symmetry. Nevertheless it is not
clear what the physical charge operator is for this representation. In particular, as shown in
appendix A.2, Noether’s procedure does not provide a conserved charge operator in this case.
The identification of such charges is therefore an interesting route to take. This question is
by no means of pure mathematical nature, as physical systems have already been identified
which feature ND boundaries at their entangling points, see [84]. We point out that for ND/DN
boundaries, the entanglement spectrum consists of only a single twisted character. In this
regard, the ND case is very similar to the case of DD boundaries for the non-compact boson.

Second, our construction of section 4 can naturally be extended to non-abelian cases, which
provide an example of more involved global symmetries. Take for instance the Wess-Zumino-
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Witten (WZW) model ŝu(2)1. If we consider this model in the geometry of an annulus, as
explained in detail in [78, 87], the boundary conditions can be represented by the boundary
states ∥ j〉〉, which are labelled by a spin quantum number j = 0, 1/2. If we want to resolve with
respect to su(2) representations of spin J (of the finite-dimensional Lie group, not its affine
extension) we should decompose the spectra of the BCFT with respect to such representations.
For instance, the spectrum of a BCFT with boundary conditions given by j = 0 decomposes as
Hŝu(2)1

00 = ⊕I∈N0
V (I)⊗HVir

I , where V I is a spin-I representation of su(2) and HVir
I is a Virasoro

representation of pertaining to a Virasoro primary field of weight h= I2/4 [78,87]. This lends
itself to the computation of the charge-projected partition functions for spin-J representations

Z00
n (J) = TrH00

[ΠJρ
n
A] =

1
Zn

00

TrV (J)[1]TrHVir
J
[qn(L0−1/24)] =

dim(V (J))
(Z00(q))n

χVir
J (qn) , (80)

if J is even and zero otherwise. This expression can now be used to derive a SRRE,

S00
n (J) = log[2J + 1] +

1
1− n

log

�

χVir
J (qn)

(χVir
J (q))n

�

. (81)

Of course, leading orders in the cutoff expansion are only extracted after a modular S-
transformation, but, as first observed in [22], we can already notice a term of order one,
whose J -dependence breaks the equipartition. The general structure of integrable modules of
affine Lie algebras suggest that (81) emerges for general WZW models, but the explicit form of
the Virasoro characters χVir

J (q) depends on the theory under consideration. We leave a more
detailed analysis involving the choice of specific theories and higher rank symmetry groups for
future investigations. In fact, the treatment of Virasoro representations and conformal symme-
try have recently been discussed in-depth in [83]. Given a WZW model with global symmetry
G, our approach also makes evident how to resolve with respect even to subgroups of H ⊂ G.
What is required is to decompose representations of G into those of H. Going one step further
using character decompositions, it will even be possible to resolve coset models, for which
no results exist at present. Such coset models appear in higher spin holography [65, 88, 89],
as well as in exactly solvable top-down models of AdS3/CFT2 [90]. Therefore our approach
applies to a large number of CFTs, and does so to all orders in the UV cutoff.

Third, One of the abelian symmetry groups considered in this work is the group R, which
is non-compact. The results discussed in Sec. 4 provide a first entanglement resolution with
respect to a non-compact, albeit simple, symmetry. Along this line, it would be interesting to
consider the resolution of entanglement in presence of non-abelian, non-compact groups. A
promising candidate for this purpose is SL(2,R), whose irreducible representations, crucial
for applying the BCFT approach, are known [91].

Fourth, in the present manuscript, we consider the bipartition of an infinite line into an
interval and its complement. The subsystem can be changed by modifying the function W
corresponding to the width of the annulus. Following [12, 13], our results can be extended
to a finite interval either in a finite system in its ground state or in an infinite system at finite
temperature and to an interval at the end of a semi-infinite system in its ground state. Also
the temporal evolution of the entanglement of a semi-infinite subsystem after global or local
quenches can be investigated through this technology [13]. However, the case of a subsystem
given by multiple disjoint intervals cannot be treated within this approach since, after the
regularization, the spacetime cannot be mapped to an annulus. Indeed, the resulting geometry
would have as many boundaries as the number of endpoints. Generalizing this method for
computing entanglement and its symmetry resolution to such geometries is a task that deserves
future investigations.

Fifth, the free fermion CFT is a natural candidate for the application of our approach.
The additional lessons to be learned here come from the spin structure, i.e. anti-periodic
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and periodic boundary conditions which are to be imposed on top of Neumann and Dirichlet
conditions. In [36] it has been observed that the symmetry-resolved entanglement entropies
depend on the chosen spin sector. Moreover, this dependence induces subleading corrections
breaking the equipartition. It would be then interesting to understand more about the interplay
between the spin sectors and the boundary conditions to be imposed on the annulus geometry
in the BCFT approach. Moving further this may allow to resolve supersymmetric models.

Sixth, entanglement is of major importance, via the AdS/CFT correspondence, for the
understanding of space-time itself [92,93]. First results on the symmetry resolution of entan-
glement in holography already exist [62–66,94]. All these works are based on the bottom-up
approach to holography. In contrast, given a top-down model for which the D brane states
are known, it will be possible by using our method to resolve these theories with respect to
their symmetry algebra, to all orders in the UV cutoff, and also in the bulk Newton constant.
Importantly, such studies might provide a geometric interpretation of the non-leading order
terms in the UV cutoff and the bulk Newton constant. The leading order of the entanglement
entropy “builds spacetime” [93], and the higher orders add quantum effects to the classical
spacetime geometry [95, 96]. A possible starting point would be to compare our results for
the free boson with the bulk entanglement calculation of [97].

Finally, analyses relating the entanglement properties of quantum chains in the contin-
uum limit to boundary conditions of BCFT models have been performed for the harmonic
chain [84], for the Ising chain, and also out-of-equilibrium [11, 98]. It is interesting to ap-
ply our method in these cases since they allow direct comparison with simulations. Such an
investigation can potentially allow to separate all lattice contributions from those of the CFT,
providing an estimate for how many orders in UV cutoff of the CFT result should be trusted in
practical applications.
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A A Review on Boundaries in the Free Boson

In this appendix we provide supplementary material on boundary conditions in the free boson.
First, we discuss boundary states of the free boson and thereafter we take a look at the breaking
of U(1) symmetry by boundaries.
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A.1 Free Boson Boundary States

Each boundary condition is encoded in a boundary state

∥N(θ0)〉〉=
Æp

πgR
∑

w∈Z
e2πi g Rwθ0 |(0, w)〉〉N , (A.1a)

∥D(ϕ0)〉〉=
1

q

p

4πgR

∑

m∈Z
ei m

R ϕ0 |(m, 0)〉〉D , (A.1b)

with Ishibashi states built on top of the bulk primaries (27),

N : |(0, w)〉〉N = exp

�

−
∞
∑

n=1

1
n

a−nā−n

�

|(0, w)〉 , (A.2a)

D : |(m, 0)〉〉D = exp

�∞
∑

n=1

1
n

a−nā−n

�

|(m, 0)〉 . (A.2b)

The entropy of the boundary fields is given by Affleck-Ludwig g-factors [99], which in the
model at hand are given by

gN = 〈0∥N(θ0)〉〉=
Æ

R
p
πg , (A.3a)

gD = 〈0∥D(φ0)〉〉=
1

q

R
p

4πg
. (A.3b)

Note that the g-factors are independent of the parameters ϕ0,θ0.
It is important to stress that the modes which appear in the boundary states are not the

eigenstates of the entanglement Hamiltonian. They are degrees of freedom present in the
theory before imposing boundaries. Thus they are called bulk modes and in fact they transform
under two copies of the Virasoro algebra. The eigenstates of the entanglement Hamiltonian
on the other hand, which we refer to as boundary fields, transform only under a single copy
of the Virasoro algebra. They are the fields living at the boundary, i.e. the excised disks, and
the protagonists of the BCFT. The boundary fields and bulk fields are related to each other via
an S-dual transformation. Hence the bulk modes provide a useful means of computing the
spectrum of boundary fields.

A.2 U(1) Symmetry Breaking by ND and DN Boundaries

In this appendix we explain how boundaries affect the U(1)× U(1) symmetry of the bosonic
CFT. We show how NN and DD boundaries select a particular embedding of a conserved U(1)
generator into the original symmetry and move on to show how mixed boundaries deny the
presence of such an operator.

A free massless bosonic field on a two-dimensional Euclidean manifold possesses two con-
served currents and their respective charges. The first is the Noether current and the second
a topological current

jµ = ∂ µϕ , jµtop = ε
µν jν . (A.4)

The Noether current is divergence free, ∂µ jµ = 0 by virtue of the equations of motion while the
topological current is divergence free by construction, ∂µ jµtop = 0. Furthermore, they induce
two natural charge operators

Q=
∫

jτdσ , Qtop =

∫

jτtopdσ , (A.5)
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where the spatial coordinate σ is integrated over its full domain. Equations (A.4) are local
conservation relations. Global properties are investigated by integrating their respective di-
vergences on a spatial domain. For the Noether current this results in

0=

∫

∂µ jµdσ = ∂τQ+ jσ
�

�

bd y= ∂τQ+ ∂σϕ
�

�

bd y . (A.6)

On a manifold without boundary, the second term on the right hand side can be neglected
and as a result Q is conserved. On a manifold with boundary, however, Q is only conserved
in presence of Neumann boundary conditions (28). Taking the solution of the equations of
motion for the bosonic angular variable on a strip geometry4 with τ ∈ R and σ ∈ [0,π] and
Neumann boundaries at σ = 0,π,

ϕNN (τ,σ) = ϕ0 − i
τ
p
πg

a0 +
i
p
πg

∑

k ̸=0

1
k

ake−kτ cos(kσ) , ∂σϕNN

�

�

σ=0,π= 0 , (A.7)

it may easily be verified from (A.5) that Q∝ a0.
Similarly, noting that ∂µ jµtop = 0 implies ∂τ jσ = ∂σ jτ, the temporal derivate of the topolog-

ical charge can be evaluated,

∂τQtop =

∫

∂τ jτtopdσ =

∫

∂τ jσdσ = jτ
�

�

bd y= ∂τϕ
�

�

bd y . (A.8)

On a manifold without boundary, the right hand side can be neglected and as a result Qtop
is conserved. On a manifold with boundary, however, Qtop is only conserved in presence of
Dirichlet boundary conditions (29). Taking the solution of the equations of motion for the
bosonic angular variable on a strip geometry with Dirichlet boundaries at σ = 0,π,

ϕDD(τ,σ) = ϕ0 +
σ
p
πg

a0 +
1
p
πg

∑

k ̸=0

1
k

ake−kτ sin(kσ) , (A.9)

it may easily be verified from (A.5) that Qtop∝ a0.
On a manifold without boundary the charges Q and Qtop generate the U(1)× U(1) sym-

metry of the free boson theory. When imposing a boundary, the symmetry is broken down.
In principle, all symmetry can be broken by a boundary. Special classes of U(1) symmetry-
preserving boundaries can be chosen, such as Neumann and Dirichlet boundary conditions.
These boundaries embed a new U(1) symmetry into U(1)× U(1). The generator of the em-
bedded U(1) is a superposition of the U(1)× U(1) charges,

Qbdy = aQ+ bQtop , (A.10)

where a, b ∈ R and never vanish simultaneously. Taking a temporal derivative,

∂τQbdy = −a ∂σϕ
�

�

bd y+b ∂τϕ
�

�

bd y= −a ∂σϕ
�

�

σ=π
σ=0+b ∂τϕ

�

�

σ=π
σ=0 , (A.11)

reveals how distinct boundary conditions embed a U(1) symmetry into U(1) × U(1). This
used (A.6) and (A.8) and in going to the last expression we have chosen the manifold to be
a strip. Clearly, for (a = 1, b = 0) conservation of Qbdy requires Neumann boundaries, while
(a = 0, b = 1) selects Dirichlet conditions.

4Note that the arguments presented in this appendix are independent of the choice of manifold and demonstrate
how boundaries affect the U(1) symmetry of a theory. In particular, our discussion also applies to the annulus,
which is used throughout the main text. Here we choose the strip since it allows for simple illustration of the
charges via the bosonic solutions (A.7), (A.9), (A.13) and (A.14).
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Turning to mixed boundaries, we choose to have a Neumann condition at σ = π and a
Dirichlet condition at σ = 0. This yields

∂τQbdy = a ∂σϕ(σ = 0) + b ∂τϕ(σ = π) . (A.12)

No parameters a, b can be chosen to have this expression vanish. Hence no conserved U(1)
charge can be embedded into the original U(1) × U(1) symmetry. This may be checked ex-
plicitely using the solution for the free boson,

ϕDN (τ,σ) = ϕ0 −
1
p
πg

∑

r∈Z+ 1
2

1
r

ar e−rτ sin(rσ) . (A.13)

The same conclusion is obtained for the reversed case of a Neumann condition at σ = 0
and a Dirichlet condition at σ = π. Here the bosonic solution is

ϕN D(τ,σ) = ϕ0 +
1
p
πg

∑

r∈Z+ 1
2

1
r

ar e−rτ cos(rσ) . (A.14)

Observe that the mode a0 does not even act on HN D/DN . It has been twisted, a0 → a 1
2
.

Furthermore, [L0, a 1
2
] = −1

2 a 1
2
̸= 0, and thus this mode is no symmetry generator!

An algebraic, fully general, complementary argument for the breaking of the U(1) sym-
metry uses the fact that the gluing automorphisms for Neumann, J = J̄ |bd y , and Dirichlet,
J = −J̄ |bd y , are not compatible. By themselves, they each preserve a U(1) symmetry, which
we have already seen to be distinct. Hence, presence of mixed boundaries breaks the U(1)
symmetry, irrespective of the manifold in use.

B Entanglement in Free Boson Theory

Using the expressions introduced in section 3 for the partition functions in the free boson
theory for NN, DD and DN boundary conditions, we now evaluate the Rényi and entanglement
entropies in all cases.

We begin with the case of DD boundaries in the compact boson. Given the last expression
of the spectrum in (33), and using (20), the Rényi entropies are

SDD
n = logg2

D +
1

1− n



log

�

η(q̃)n

η(q̃
1
n )

�

+ log





∑

m ei m
R∆ϕ0 q̃

hm,0
n

�

∑

k ei k
R∆ϕ0 q̃hk,0

�n







 . (B.1)

The first term is the standard g-factor contribution independent of n [12]. The third term
accounts for the bulk CFT primaries propagating in the BCFT. The second term, accounting for
all descendants in the theory, is responsible for the standard Rényi entropy. Indeed,

1
1− n

log

�

η(q̃)n

η(q̃
1
n )

�

=
W
12

n+ 1
n
+

1
1− n

∞
∑

k=1

log

�

(1− e−2W k)n

1− e−2W k/n

�

, (B.2)

where q̃ = e−2W has been used. It is straightforward to take the n→ 1 limit,

SDD
1 =

W
6
+ logg2

D −
∞
∑

k=1

�

log
�

1− e−2W k
�

+
2W k

1− e2W k

�

+ g2
D

∑

m∈Z
ei m

R∆ϕ0
χm,0(q̃)

ZD(ϕ′0),D(ϕ0)(q)
log

�

−
2Whm,0η(q̃)ZD(ϕ′0),D(ϕ0)(q)

g2
D

�

. (B.3)
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In later sections we illuminate the physics of SDD
1 more clearly by rewriting it in terms of

probability distributions. This analysis is repeated identically for the NN case using the last
expression for the partition function (30). Thus we omit the discussion of the NN case here.

Simplifications occur for the non-compact boson. We begin with the DD case, where it is
actually convenient not to use the last expression of (38) but the one in terms of q, which
provides

SDD,(∞)
n =

1
1− n

log

�

ηn(q̃)

η(q̃
1
n )

p
−inτ

(
p
−iτ)n

�

=
W
12

n+ 1
n
+

1
1− n

∞
∑

k=1

log

�

(1− e−2W k)n

1− e−2W k/n

�

−
1
2

log
�

W
π

�

+
1
2

log n
1− n

. (B.4)

The modular transformation η(q̃) =
p
−iτη(q) has been used in going to the second line. Ob-

serve that a log W term arises. This might surprise readers familiar with symmetry-resolution
in the free boson as this here is the regular entanglement entropy. As will be explained in
detail in section 4, the log W term has to appear here. The limit n→ 1 is easily taken in this
representation.

The NN case for the non-compact boson is in fact very simple, given the last expression in
(37)

SNN ,(∞)
n =

W
12

n+ 1
n
+

1
1− n

∞
∑

k=1

log

�

(1− e−2W k)n

1− e−2W k/n

�

+ logg2
N ,(∞) . (B.5)

Observe the appearance of the g-factor and that it is not accompanied by an n-dependence.
The final case is that of mixed boundaries, ND. Regardless of a compact or non-compact

target space, the partition function takes the form (35)

SDN
n =

W
12

n+ 1
n
+

1
1− n

∞
∑

k=1

log

�

(1+ e−2W k)n

1+ e−2W k/n

�

+ log(gDgN ) . (B.6)

This concludes our review of entanglement in the free boson CFT. These expressions are
used in the following section to discuss the symmetry resolution in this theory in full generality.

C Modular Forms

Given the modular nome q = e2πiτ, the Dedekind eta function is

η(q) = q
1

24

∞
∏

n=1

(1− qn) . (C.1)

The Jacobi theta functions are

ϑ3(q) =
∑

n∈Z
q

n2
2 = q−

1
24 η(q)

∞
∏

n=1

�

1+ qn− 1
2

�2
, (C.2a)

ϑ2(q) =
∑

n∈Z
q

1
2(n− 1

2)
2

= 2q
1

12 η(q)
∞
∏

n=1

(1+ qn)2 , (C.2b)

ϑ4(q) =
∑

n∈Z
(−1)n q

n2
2 = q−

1
24 η(q)

∞
∏

n=1

�

1− qn− 1
2

�2
, (C.2c)
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ϑ1(q) = i
∑

n∈Z
(−1)n q

1
2(n− 1

2)
2

=
1
2

q
1
12 η(q)

∞
∏

n=0

(1− qn)2 = 0 . (C.2d)

The second equality in all these expressions follows from the Jacobi triple product identity

∞
∏

n=1

(1− qn)(1+ qn− 1
2 w)(1+ qn− 1

2 w−1) =
∑

m∈Z
q

1
2 m2

wm . (C.3)

Modular transformations act on the modular parameter as follows

T : τ→ τ+ 1 , S : τ→−
1
τ

. (C.4)

The modular properties of the above modular functions are

η(τ+ 1) = e
iπ
12η(τ) , η

�

−
1
τ

�

=
p

−iτη(τ) , (C.5)

and

ϑ3(τ+ 1) = ϑ4(τ) , ϑ3

�

−
1
τ

�

=
p

−iτϑ3(τ) , (C.6a)

ϑ2(τ+ 1) = e
iπ
12ϑ2(τ) , ϑ2

�

−
1
τ

�

=
p

−iτϑ4(τ) , (C.6b)

ϑ4(τ+ 1) = ϑ3(τ) , ϑ4

�

−
1
τ

�

=
p

−iτϑ2(τ) . (C.6c)
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