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Abstract

We study dynamical phase transitions occurring in the stationary state of the dynam-
ics of integrable many-body non-hermitian Hamiltonians, which can be either realized
as a no-click limit of a stochastic Schrödinger equation or using spacetime duality of
quantum circuits. In two specific models, the Transverse Field Ising Chain and the Long
Range Kitaev Chain, we observe that the entanglement phase transitions occurring in
the stationary state have the same nature as that occurring in the vacuum of the non-
hermitian Hamiltonian: bounded entanglement entropy when the imaginary part of the
quasi-particle spectrum is gapped and a logarithmic growth for gapless imaginary spec-
trum. This observation suggests the possibility to generalize the area-law theorem to
non-Hermitian Hamiltonians.
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1 Introduction

Entanglement is one of the key properties [1] characterizing the statics and dynamics of quan-
tum many-body systems [2, 3]. The scaling of the entanglement entropy of a subsystem with
respect to its linear size L, for example, gives clear indications on its simulability, e.g. with ten-
sor network algorithms [4]. For ground states, entanglement is closely connected to spectral
properties [5–7]: in one dimension for example depending on whether the system is gapped
or gapless one can expect either a bounded entanglement entropy or logarithmic scaling with
subsystem size [4, 8]. With the notable exception of quantum scars [9], for highly excited
states the entanglement entropy is instead expected to obey the volume law [10–15] as the
thermodynamic one does. For quantum chaotic systems, this is direct consequence of the
eigenstate thermalization hypothesis [16] which implies that coherent thermal states cannot
be distinguished from mixed ones on the basis of bipartite entanglement. Only a more sophis-
ticated look at entanglement, for example focusing on its multipartiteness [17,18] reveals the
nontrivial entanglement structure behind coherent thermal states.

Entanglement is either produced via interactions or degraded by dephasing and mea-
surements [19]. As thermodynamic phase transitions result from the competition between
minimization of energy and maximization of entropy, the competition between interaction
induced unitary dynamics and measurements leads to phase transitions witnessed by en-
tanglement [20–22]. Unitary dynamics in both circuit models [23–32] and many-body sys-
tems [33–36] when punctuated by either projective or weak measurements, gives rise to an
entanglement phase transition where the two phases correspond to an area law one (strong
mesurement phase) and volume law (weak measurement). While circuit models allow a sim-
ple understanding of these transitions in connection to models in classical statistical mechan-
ics [37,38], a comparative phenomenology is observed in the unitary dynamics of interacting
systems subject to continuous measurements [39] (as described by a stochastic Schrödinger
equation [19]). While this limit, which is in a sense more realistic [40–43], is only amenable to
numerical simulations, the dynamics of the quantum trajectory corresponding to the no-click
limit is reduced to that generated by a non-hermitean Hamiltonian [44,45]. Interestingly, this
trajectory, even though exponentially improbable, displays the same transition observed in the
presence of quantum jumps for these models. Understanding the origin and generality of this
fact could simplify the analysis of these transitions in various cases, for example in the case of
long-range interactions [38,46–48].

In this paper we give a contribution in this direction by revisiting Measurement-Induced
phase transitions in the zero-click trajectories of the quantum Ising chain subject to local trans-
verse field measurements. In addition we analyze the zero-click dynamics of a long-range Ki-
taev Model in one dimension subject to density measurements. We show that for both models,
which are integrable in terms of free fermions, the entanglement properties of the vacuum
of the non-Hermitian Bogoliubov quasiparticles are the same of the steady state of the zero-
click trajectories. In addition, we observe that the entanglement properties of the vacuum
can be understood as a generalization of the area-law theorem for the ground-state of Her-
mitian Hamiltonians [4, 8]: with a gap in the imaginary part of the spectrum the bipartite
entanglement entropy is bounded while when the gap closes the entanglement entropy scales
logarithmically with the dimension of the subsystem. More specifically, for the Long-range Ki-
taev Model, where the long range pairing decays with distance as a power-law with exponent
d two regimes are found: in the first, d < 1, a phase transition occurs from a logarithmic
phase to another logarithmic phase at a critical measurement rate γ= γc . Even for γ > γc the
entanglement does not appear to be bounded: since if d < 1 the gap in the imaginary part of
the spectrum is always closed this is consistent with the generalized area-law conjecture. For
d > 1, we observe instead in the thermodynamic limit a phase transition from a phase where
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the entanglement entropy obeys a logarithmic law (γ < γc) to an area-law phase. Since in this
regime the gap opens if γ > γc this is again consistent with the generalized area law theorem.

The article is organized as follows: in Section 2 the non Hermitian Hamiltonians for the
two models are analyzed in detail; in Section 3 the results for the Transverse Field Ising Model
are presented, and the area-law conjecture is introduced; in Section 4 the results for the Long
Range Kitaev Chain are reported.

2 Models and zero-click limit

The main purpose of this work will be to study the dynamics of specific trajectories (i.e. se-
quences of measurement outcomes) in many-body systems coupled to a local measurement
apparatus described in terms of positive operator-valued measurements (POVM) [19]. In gen-
eral in this limit the stochasticity of the outcome of the measurements imply that the variation
of the wavefunction of the system at each time step is random as well and described by a
stochastic Schrödinger equation [19]. For example for a quantum Ising chain

H0 = −J
N
∑

i=1

σ̂x
i σ̂

x
i+1 − h

N
∑

i

σ̂z
i , (1)

subject to a continuous monitoring of on-site spin by the measuring operators n̂i =
1−σ̂z

i
2

(and
1+σ̂z

i
2 ), the equation takes the form [39]

d |ψ(t)〉= −iĤ0 |ψ(t)〉 d t−
γ

2

∑

i

�


n̂i

�

−n̂i

�

|ψ(t)〉 d t+
∑

i

δNi(t)
�

1− n̂i
q




1− n̂i

�

−1
�

|ψ(t)〉 . (2)

Here
�

δNi(t)
	

i=1,..,N are stochastic variables that describe the measurement outcomes
(δNi(t) = 1 when the measurement apparatus clicks, i.e. a local down projection is mea-
sured, zero otherwise). Notice that if δNi = 0 for all sites and for a certain interval of time
(no-click limit), then the evolution of the system is determined by the effective Hamiltonian
Ĥ = Ĥ0 − i γ2
∑

i

�


n̂i

�

− n̂i

�

. If on the other hand δNi = 1 for some i then the wave-function
changes discontinuously and the evolution has a quantum jump. The set of values of the vari-
ables δNi(t) determines the realization of the interaction of the external environment with
the system.

In the no-click limit the effective Hamiltonian determining up to a c-number the evolution of
the wave function is

HQI = −J
N
∑

i=1

σ̂x
i σ̂

x
i+1 −
�

h+ i
γ

4

�
N
∑

i

σ̂z
i , (3)

and the evolution is given by

|ψ(t)
�

=
e−iĤQI t |ψ0

�

||e−iĤQI tψ0||
. (4)

A similar measurement setting can be thought for a fermionic long-range version of Eq.(3)
where, after the Jordan-Wigner transformation, a long range pairing term is introduced. The
long range pairing term connects sites at all distances with a coupling constant decaying as a
power law (the Long-Range Kitaev Chain in D=1 spatial dimension)

HK = −J
∑

i

(ĉ†
i ĉi+1 + h.c)−

J
2

∑

i

L−1
∑

r=1

1
ld

�

ĉ†
i ĉ†

i+r + h.c.
�

−
�

h+ i
γ

4

�
∑

i

(1− 2ĉ†
i ĉi) , (5)
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where the power d controls the decay as a function of the distance l (that is l =min{r, L− r},
we use antiperiodic boundary conditions). The procedure used for the diagonalization of the
quantum Ising chain can be applied here as well.

The advantage of the no-click limit is that in this case the Hamiltonian can be mapped ex-
actly in a free-fermionic model with nearest neighbour hopping by means of the Jordan-Wigner
transformation; one then proceeds diagonalizing the Hamiltonian by means of a generalized
Bogoliubov rotation. All the details concerning the diagonalization can be found in Appendix
A. For both models the diagonalized Hamiltonian takes the form

Ĥ =
∑

k>0

λkγ̂
∗
kγ̂k −λkγ̂−kγ̂

∗
−k =
∑

k>0

λk(γ̂
∗
kγ̂k + γ̂

∗
−kγ̂−k)−Λ0 , (6)

where Λ0 =
∑

k>0λk, γ̂ are the non-hermitian quasiparticle annihilation operators and λk are
the ( complex ) eigenvalues which are specific of the model considered. We find that for the
Quantum Ising model

λk = ±

√

√

√

4
�

h− J cos k+ i
γ

4

�2

+ 4J2 sin2 k , (7)

while for the Long Range Kitaev model

λk = ±

√

√

√

4
�

h− J cos k+ i
γ

4

�2

+ J2 gd(k)2 , (8)

where gd(k) =
∑L−1

r=1
sin(kr)

ld . The sign is chosen in such a way that the sign of the imaginary
part of λk is negative [49]. Thus the non-hermitian Hamiltonian right vacuum

γ̂k|0γ
�

= 0 , γ̂−k|0γ
�

= 0 (9)

can always be construct as the state with largest imaginary part (not lowest real part). Because
of the normalization factor in Eq.(4), the stationary states of the dynamics will be a linear
combination of the vacuum and of quasi-particle states such that Γk ≡ Im[λk] = 0, while all
amplitudes of the other quasi-particle states will decay to zero at long times.
Armed with full knowledge of the quasi-particles describing the zero-click limit we are now
ready to describe the stationary state of the non-hermitean dynamics and its entanglement
properties.

3 Quantum Ising chain and generalized area law conjecture

Let us now focus on the dynamics of the system: in order to be specific we will consider as
initial state

|ψ0

�

= ⊗L
i |0

i
c

�

, (10)

where |0i
c

�

is defined as the vacuum of the Jordan-Wigner fermions on the site i. Notice how-
ever that most of the arguments presented below are not dependent on this choice. This state
can be written as a linear combination of all the eigenstates of the non-Hermitian Hamiltonian.
After a long time of evolution only the unsuppressed states of the initial linear combination,
the vacuum and eventually the state with the two quasiparticles γ̂∗−q∗ and γ̂∗q∗ , will give a non
negligible contribution to the linear combination, i.e.

|ψ(t)〉=
e−iĤ t |ψ0〉
||e−iĤ t |ψ0〉 ||

≈ A|0γ
�

+ eiφ(t)B|q∗,−q∗
�

, (11)
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Figure 1: Scaling of the average entanglement entropy as a function of the dimension
of the interval LA =

L
4 , h= 1p

2
. The oscillations are due to the relative phase between

|0〉 and γ̂∗−q∗ γ̂
∗
q∗ |0〉 and have been dealt with by averaging over the time, ideally

Snc = limT→∞
1

T−T0

∫ T
T0

d tS(t), in accordance with the method used in [39].

where |q∗,−q∗
�

= γ̂∗−q∗ γ̂
∗
q∗ |0γ
�

, q∗ defined as the momentum in the First Brillouin Zone where
Γq∗ = 0 if such momentum exists, and φ(t) is the relative phase between the two kets due to
the evolution. The same argument holds for all possible initial states, provided that they have
a non-zero superposition with |0γ

�

and |q∗,−q∗
�

. The explicit expression of the steady state
after a long time of evolution allows us to compute the entanglement entropy of an interval of
size LA with respect to the rest of the system by means of the Majorana Fermions correlation
matrix (see Appendix B). The result is shown in Fig. 1 for the quantum Ising chain, for vari-
ous γ as a function of system size. As previously discussed in Ref. [39, 50] it clearly displays
a dynamical transition as γ is increased towards a critical γc(h) = 4

p
1− h2: for γ < γc(h)

the entropy scales logarithmically with the interval size LA, while for γ > γc(h) the entropy
is constant and satisfies an area law. Interestingly, for γ < γc(h) the quasi-particle spectrum
has a gapless imaginary part at q∗ = arccos h (corresponding to Γq∗ = 0, see Fig.2) while for
γ > γc(h) a gap opens in the imaginary part of the spectrum [50]. Therefore while below γc
the stationary state is a linear superposition of |0γ

�

and |q∗,−q∗
�

for γ > γc this two particle
state is absent.
Even though apparently the entanglement phase transition is associated to the disappearance
of the state |q∗,−q∗

�

from the stationary state, we will show that it is actually a consequence
of the properties of the non-hermitean vacuum |0γ

�

. As shown in Fig. 2, where the scaling
of the entanglement entropy as a function of the size of the interval is reported , the entropy
computed on the vacuum has exactly the same properties as the stationary state. It is however
intriguing that, as in the case of ground state quantum phase transitions, where the dichotomy
between bounded and logarithmic entanglement is associated to the presence or absence of a
gap in the spectrum [4, 8], in this example an analogous conjecture could be formulated for
the entanglement properties of the vacuum of non-hermitian hamiltonians: a bounded entan-
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Figure 2: Left: Entanglement entropy of the vacuum as a function of the dimension
of the interval LA =

L
4 , h = 1p

2
; Inset: L=250, real and imaginary part of the hamil-

tonian eigenvalues as a function of k in the FBZ, lattice spacing a=1,J = 1, h = 1p
2
.

Right: Entanglement entropy of the vacuum as a function of the dimension of the
interval LA =

L
4 , h = 1p

2
; Inset: L=250, real and imaginary part of the hamiltonian

eigenvalues as a function of k in the FBZ, lattice spacing a=1, J = 1, h= 1p
2

.

glement entropy is associated to a gapped imaginary part of the spectrum while logarithmic
growth is observed otherwise(see insets of Fig. 2).

In Fig 3 it is shown that the contribution of the two-particle state is inessential by plotting
the relative difference between the entanglement entropy in the vacuum and the entanglement
entropy in the steady state. It is not surprising that the entanglement properties are encoded
in the non-hermitian vacuum. Indeed, although the vacuum does not contain non-Hermitian
quasiparticles, it is a state rich in Hermitian quasiparticles η̂k, η̂†

k diagonalizing the quantum
Ising chain for γ= 0. We can indeed write it as

�

�0γ
�

=
∏

k>0

(γ̂kγ̂−k)
�

�0η
�

=
∏

k>0

(αk + βkη̂
†
−kη̂

†
k)
�

�0η
�

, (12)

where αk and βk are normalized coefficients, that can be easily obtained by writing the quasi-
particles γ̂k in terms of the Jordan-Wigner fermions ĉk and then substituting them with their
expression in terms of the quasiparticles η̂k .

The logarithmic scaling is a remarkable result if we consider that for ground states such
scaling is expected only for critical states. In the present case, the critical scaling of the entan-
glement entropy in the gapless phase (of the imaginary part of the spectrum) is expected to be
S(LA) = c ln(LA)+b both for the one computed on the stationary state and in the no-click limit.
In order to study the dependence of c on the parameters γ, h, one can consider the incremental
ratio of the bipartite entanglement entropy when a site is added to the considered interval,
∆S = S(LA+ 1)− S(LA): clearly in an area law phase the variation is equal to zero, while in
the logarithmic phases we have ∆ ∼ c

LA
in the thermodynamic limit. We can then estimate c

as c =∆S LA. The resulting c(γ) for different h is shown in Fig. 4.
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Figure 3: Difference between the entanglement entropy of the zero click trajectories
and the one in the vacuum for different dimensions of the system L, and LA =

L
4

relative to the vacuum entanglement entropy.

3.1 Perturbed no-click limit for the quantum Ising chain

The phase transition observed in the zero-click limit appear to have the same properties of the
one observed in the presence of quantum jumps [39], a result that has been discussed and
understood using semi-classical considerations [51]. We are now interested in extending the
generalized area law conjecture away from the zero-click limit by considering the addition of
rare jumps. We have found that the properties of interest (the scaling of the entanglement
entropy) are satisfied in this regime too. At the same time, we will see that the area law
conjecture discussed in the previous section is satisfied in this limit as well.

In a typical trajectory the system at each time step has a certain probability to jump,

δp = δt
∑

l

γ



1− ĉ†
l ĉl

�

. (13)

Each jump introduces in the system quasiparticles with all possible momenta. In the fol-
lowing we will consider trajectories where the jumps are very sparse. The perturbed zero-click
limit in particular is defined as the limit in which the time between jumps is sufficiently long
so as to make all quasiparticles with a finite lifetime decay. In this case right before every other
jump we have that

|ψ(t)〉 := A
�

�0γ
�

+ eiφ(t)B |q∗,−q∗〉 , (14)

if γ < γc and where φ(t) is the relative phase between the two kets due to the real part of
the eigenvalues of the Hamiltonian. The parameters A and B are the only parameters needed
to describe the jump. If γ > γc the steady state after long time is instead ψ(t) = |0γ

�

.
In the perturbed no-click limit, the study of the evolution of the system due to jumps is

reduced to the study of the evolution of the two parameters A and B. Indeed while a jump gen-
erates quasi-particles of all momenta they will again all decay except the ones with momentum
±q∗, i.e. right before the new jump the state will be again of the form |ψ

�

= A′|0γ
�

+B′|q∗,−q∗
�

.
Hence the description of the evolution due to jumps is reduced to the characterization of the
discrete map (A, B)→ (A′, B′).
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Figure 4: Value of the parameter c as a function of γ, where c is defined as
S = c ln(LA) + b . Different values of the magnetic field are considered.

For γ < γc starting from the state |ψ
�

= A|0γ
�

+B|q∗,−q∗
�

the wave-function after a jump is

|ψ(t)〉 → |ψ(t + d t)〉=
(1− ĉ†

n ĉn)
q



1− n̂n

�

t

|ψ(t)〉 . (15)

In order to compute |ψ(t + d t)〉 we have to write ĉ†
n ĉn = 1/L
∑

k,k′ e
i(k′−k)Rn ĉ†

k ĉk′ in terms of
the non-hermitean quasi-particle modes γ̂k.

The expressions depend on the sign of k, k′: there are four cases k, k′ > 0; k < 0, k′ > 0;
k > 0, k′ < 0; k, k′ < 0. For example for k > 0, k′ > 0,

∑

k,k′>0

ei(k−k′)Rn ĉ†
k′ ĉk =
∑

k>0,k′>0

ei(k−k′)Rn
1

det(Vk′)

�

uk′ γ̂
∗
k′ − vk′ γ̂−k′
�

(ukγ̂k + vkγ̂
∗
−k) ,

where

Vk =

�

u −λk−a
b∗ u∗

λk−a
b u u∗

�

, (16)

and uk = 1/
Ç

1+ |λk−a
b |2, vk =

λk−a
b u, a = 2(h− J cos(k)) + i γ2 , b = 2iJ sin(k).

Applying this operator as well as those with different combinations of k, k′ to the state
Eq. 14 and letting all states with k ̸= q∗ decay according to the assumptions of this limit we
finally obtain that if t ′ >> t + d t and no other jumps occurred in the interval [t,t’] the wave
function is

�

�ψ(t ′)
�

≈
�

A−
2
L

�∑

k>0

|u|2
(λk − a)2

|b|2
A+

1

det
�

Vq

�

λq − a

b
u2 B
��
�

�0γ
�

(17)

+
�

B −
2
L

� 1

det
�

Vq

�u∗2
λq − a

b∗
A+
� |u|2

det
�

Vq

� +
∑

k>0,k ̸=q

|u|2

det(Vk)
(λk − a)2

|b|2
�

B
��

|q∗,−q∗〉 .

Since at each step the state that describes the system is normalized and independent of a
global phase, the complex ratio x = A

B is the only relevant quantity; hence only two degrees
of freedom describe the dynamics of the system. Furthermore, the non Hermitian evolution
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provides a stochastic phase between A and B due to the different (real part of the) energy
between |0γ
�

and |q∗,−q∗
�

. At each step of the dynamics we therefore have x → eiφ(t)x ′, with

x ′ =
(C1 − 1)x + C2

C3 x + C4 + C5 − 1
, (18)

where

C1 =
∑

k

2
L det(Vk)

�(λk − a)2

|b|2
|u|2
�

, C2 =
2u2

L det
�

Vq

�

λq − a

b
, C3 =

2u∗2

L det
�

Vq

�

λq − a

b∗
,

C4 =
2|u|2

L det
�

Vq

� , C5 =
∑

k>0,k ̸=q

2|u|2

L det(Vk)
(λk − a)2

|b|2
.

The stochasticity of the time between jumps is encoded in the stochasticity of the relative phase
eiφ(t).

In particular the time between one jump and the following is ∆t = λδt + τ, where λ is the
number of steps necessary to let all modes with k ̸= q∗ decays and τ is generated randomly by
assuming it is distributed according to an exponential distribution with average time τ= 1

δp ,

δp = γδt

∑

i(1− c†
i ci)
�

ψ
.

In order to better understand what are the key ingredients of the dynamics let us first con-
sider the map in the absence of a stochastic phase, x → x ′. Under this assumption the map
has two fixed points and after few iterations it collapses on the attractor. In the corresponding
state the parameter c characterizing the log-growth of the entanglement entropy as a function
of the dimension of the subsystem is reported in figure Fig.5(a). The apparent jump observed
at the transition turns out to be an artifact of setting the phase φ = 0. Indeed, if the jumps are
performed periodically with a fixed phase x → eiφ x ′,eiφ ̸= 1, the position of the fixed points
changes and at the transition the incremental ratio is smooth (see Fig.5(b)).

Let us now consider the stochastic jump dynamics in this limit averaging the entropy over
several trajectories at time T = Noλδt +

∑No
i=1τi , where No is the number of jumps and τi

are intervals of time stochastically generated for a system that has not jumped in the previ-
ous λδt time. In the perturbed zero-click trajectories the scaling of the entanglement entropy
witnesses a transition in γ = γc from a logarithmic to a bounded entanglement phase. In
both 5(b) and 5(c) the coefficient c of the logarithm, S1 = c ln(L) + b, seems to go to zero
without discontinuity for large values of γ: at γ ∼ γc a smooth cross-over instead of a phase
transition can be found, a fact that we interpret as a finite-size effect, as in [39]; the transition
point is however unchanged by the presence of rare jumps. We have seen that the perturbed
zero-click limit shows clearly an entanglement phase transition as for the zero-click limit. In
particular, since the form of the state is always as in Eq.(14), the entanglement will be essen-
tially determined, except for a transient, by the quasi-particle vacuum. Hence the validity of
the perturbed zero-click limit implies that of the generalized area-law conjecture.

The problem however of putting the connection above on solid mathematical grounds
remains open because the perturbed zero-click limit is an approximation valid only for finite
size systems and away from the critical point γc .

In order to see this notice that we can estimate the condition of validity of the perturbed
no-click limit by asking for instance that the suppression due to the deterministic evolution of

9
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(a) (b)

(c)

Figure 5: Variation of the parameter c, where S1 = c ln(LA) + b,(a) in the attractor
if φ(t) = 0 as a function of the coupling with the bath γ, for different values of the
magnetic field LA =

L
4 , (b) in the attractor if φ(t) = π

2 as a function of the coupling
with the bath γ, for different values of the magnetic field,(c) obtained by fitting the
scaling of the average entanglement entropy over Nt r = 20 trajectories for h= 1p

2
.

all decaying modes is at least of one order of magnitude. We can estimate λ as

e−λ|Γk|δt ∼
1

10L

→ λ∼
log(10L)
|Γk|δt

. (19)

Provided γ2

γ2
c
< 1− 1

L and for k ≃ q∗ we have

Γk =
∂

∂ k
Γk

�

�

�

�

q∗
(k− q∗) ,

∂

∂ k
Γk

�

�

�

�

q∗
=
±2γ
r

1− γ
2

γ2
c

. (20)

Inserting this expression in equation 19

λδt ∼
L log(10L)
r

1− γ
2

γ2
c

2πγ
. (21)

This quantity has to be compared with the the average time between one jump and the other,
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(a) (b)

Figure 6: Incremental ratio of the Entanglement entropy, for LA = 200, as a function
of γ for different values of d in a system characterized by L=2000, h=0.1.

defined by the unit time probability of having a measure on each site

δp = δtγ
∑

i




cic
†
i

�

ψ
∼ γδtM , (22)

where M =
∑

i




cic
†
i

�

ψ
is an extensive quantity. Assuming an exponential distribution [51],

we obtain τ = 1/(γM)∝ 1/L. It is evident from these estimates therefore that the decay of
all modes except q∗ is complete if λδt < τ which however can be satisfied only for sufficiently
small systems, certainly not in the thermodynamic limit. In Eq.21 one could be tempted to
argue that setting γ ≈ γc could help, however this is an artifact of the linear expansion used
in Eq.20 and since close to γc we still have Γk ∼ |k − q∗|

1
2 that vanishes at q∗ it is easy to see

that also in this case we are limited to small system sizes.

4 The long range Kitaev chain

Let us now turn to the no-click limit of our second model, the long-range Kitaev chain. In
this section we will analyze the entanglement phase transition observed in the quasi-particle
vacuum of this model. Notice however that the same conclusions can be reached by studying
also in this case the stationary state of the no-click limit.

The long-range Kitaev model has two types of measurement induced phase transition de-
pending on the value of the exponent that characterizes the power-law decaying interactions
∼ 1/rd .

Let us start by considering the regime d < 1. As discussed before, a compact way to detect the
phase transition is to plot the incremental ratio of the entanglement entropy with respect to
the subsystem size ∆S = S(LA+ 1)− S(LA). As we see in Fig. 6(a) for d < 1 we clearly detect
a phase transition as a discontinuity in the derivative of ∆S(γ). For γ > γc the incremental
ratio does not appear to vary significantly, in particular as the system size L increases towards
the thermodynamic limit. Most importantly, however, it is not zero but finite. In addition
assuming that ∆S = c/LA and therefore plotting LA∆S (see Fig. 7 (a)) we see that in both
regime the entropy is clearly logarithmic and what has a singular behavior is the coefficient
c(γ) at the phase transition. Interestingly, the imaginary part of the quasi-particle spectrum
is in both cases gapless, consistently with the generalized area-law conjecture. Indeed since
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(a) (b)

Figure 7: Incremental ratio of the entanglement entropy normalized by the length of
the interval, in the vacuum, for h= 0.1, LA =

L
4 , (a) d=0.2, (b) d = 1.7.

λk = ±

√

√

4
�

h− J cos k+ i γ4

�2

+ J2 gd(k)2 as reported in 8, the eigenvalues have zero imag-

inary part at finite momentum q∗, Γq∗ = 0, if the relation h = Jcos(q∗) is satisfied provided
γ < γc where γc = 2J gd(q∗) (the function gd(q) in the thermodynamic limit L→∞ is known
in literature as Clausen functions). However for d < 1 and k→ 0, at leading order

λk ≈
�

�

�

�

cos
πd
2
Γ (1− d)

k1−d

�

�

�

�

�

1+
�

ζ(d − 1) cos
πd
2
Γ (1− d)k2−d

+
�

(h− J)2 −
γ2

16
+ i
γ

2
(h− J)
�

k2d−2

�

cos
�

πd
2

�

Γ (1− d)
�2

��

+O(k3−d) .

Therefore the real part of the eigenvalue diverges as Re{(λk)} ∼
1

k1−d while the imaginary part
goes to zero as Im{(λk)} ∼ k1−d for every value of γ. Because of that in the regime d < 1 in
the thermodynamic limit the gap never opens in the imaginary part of the spectrum .

A completely different behavior is observed for d > 1 (see Fig.6(b) and Fig.7(b)): in this
case while for γ < γc we still observe a logarithmic behavior the scaling with γ but for γ > γc
the scaling with LA does not lead to data collapse. However, the data for γ > γc as a function
of L tend to zero for large γ and show that in this case LA∆S appears to go to zero (Fig.7(b))
in the thermodynamic limit, consistently with a bounded entanglement phase. This is clearly
seen also in Fig.8, where the incremental ratio of the bipartite entanglement entropy as a
function of the parameter d is considered, for a fixed value of γ > γc(d, h) for all d here
considered (see also Fig.9 for the behaviour of c). Notice that also in this case we observed
that the imaginary part of the spectrum is gapless in correspondence of the logarithmic scaling
of the entanglement entropy, gapfull otherwise.

5 Conclusions

We have analyzed measurement induced phase transitions in the zero-click trajectories for two
different models, the Transverse Field Ising Model and the Long Range Kitaev chain in 1D.
Starting from the Transverse Field Ising Model, we observed that the entanglement properties
of the vacuum of the non-Hermitian Bogoliubov quasiparticles are the same of the steady state
of the zero-click trajectories: the bipartite entanglement entropy of the vacuum state scales

12
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Figure 8: Incremental ratio of the bipartite entanglement entropy, scaled by the rel-
ative dimension of the intervals, as a function of d, for fixed value of γ= 5, h= 0.1.
Here γ > γc for every value of the parameter d considered. Different dimensions of
the global system were considered, while the partition is always LA =

L
5 .

Figure 9: Variation of the parameter c as a function of γ for different values of d,
where S1 = c ln(LA) + b, obtained by means of fit of the scaling of the entanglement
entropy as a function of LA in the vacuum.

logarithmically with the dimension of the subsystem if γ < γc , while if γ > γc the bipartite
entanglement entropy obeys an area law. The non-Hermitian non-decaying quasiparticles γ̂∗q
and γ̂∗−q do not change the qualitative behaviour of the state in |ψ〉 = A

�

�0γ
�

+ Bγ̂∗−qγ̂
∗
q

�

�0γ
�

.
This motivated us to formulate a generalized area law conjecture: the entanglement entropy is
bounded whenever the imaginary part of the spectrum of non-hermitean quasi-particles is gap-
full, while it scales logarithmically with subsystem size when it is gapless. We prove that this
is the case also in the perturbed no-click limit, a finite size approach that describes the steady
state in the presence of rare jumps. Finally, we studied the entanglement phase transitions in
the no-click limit of the Long-Range Kitaev model as a function of the power-law d controlling
the decay of the interaction with distance, ∼ 1

rd . We observe that for d < 1 there is a transition
between two logarithmic phases while for d > 1 the transition is between a logarithmic phase
and an area law one. Also in this case the generalized area law conjecture appears to be satis-
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fied. This results, together with those recently reported in Ref. [52] which further support the
generalized area law conjecture, suggest that this connection could be framed in a more precise
and mathematical language. We leave this issue to further investigations.
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A Diagonalization of the non-Hermitian Hamiltonian

In the no-click limit the effective Hamiltonian determining up to a c-number the evolution of
the wave function for the Quantum Ising model is

HQI = −J
N
∑

i=1

σ̂x
i σ̂

x
i+1 −
�

h+ i
γ

4

�
N
∑

i

σ̂z
i , (A.1)

for the Transverse Field Ising Model.

In the following we will diagonalize the non-Hermitian Hamiltonian by means of a Jordan-
Wigner transformation followed by a Bogoliubov rotation.
Introducing the fermionic operators ci , c†

i through the relations

σ̂z
i = 1− 2ĉ†

i ĉi , σ̂
y
i = iK̂i(ĉ

†
i − ĉi) , σ̂x

i = K̂i(ĉi + ĉ†
i ) ,

K̂i =
∏

j<i

(1− 2ĉ†
j ĉ j) , (A.2)

we obtain
Ĥ = −J
∑

i

ĉ†
i ĉi+1 + ĉ†

i ĉ†
i+1 + h.c.−
�

h+ i
γ

4

�
∑

i

(1− 2ĉ†
i ĉi) , (A.3)

which is integrable.

The diagonalization proceeds by first introducing the operators ĉk and ĉ†
k by means of the

Fourier transform

ĉk =
1
p

L

∑

Ri

e−ikRi ĉi , ĉi =
1
p

L

∑

k

eikRi ĉk . (A.4)

Where the momenta depends on the parity of the system: we will use

κPBC =
§

k|k =
2πn

L
, n ∈
¦

−
L
2

, ....,
L
2
− 1
©

ª

, (A.5)

for the periodic boundary conditions (PBC), while

κABC =
§

k|k =
π(2n+ 1)

L
, n ∈
¦

−
L
2

, ....,
L
2
− 1
©

ª

, (A.6)

for the antiperiodic boundary conditions (ABC). Without loss of generality we restrict ourselves
to an initial state characterized by an even number of fermions; because of this, in the following
analysis we will use ABC. The Fourier transform allows us to write the Hamiltonians HQI as

Ĥ =
∑

k>0

Ĥ(k) , (A.7)
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where

ĤQI(k) =
�

ĉ†
k ĉ−k

�

�

2(h− J cos(k)) + i γ2 2iJ sin(k)
−2iJ sin(k) −2(h− J cos(k))− i γ2

��

ĉk

ĉ†
−k

�

. (A.8)

The diagonalization of the hamiltonian proceeds now by rotating both Ĥ(k) in diagonal form
and correspondigly introduce, through a generalized Bogoliubov transformation, the non-
hermitian quasi-particles. For HQI , first of all introduce the matrix Vk diagonalizing Ĥk, i.e.
such as

V−1
k ĤkVk =

�

λk 0
0 −λk

�

, (A.9)

where the eigenvalue is expressed in terms of a = 2(h− J cos(k)) + i γ2 , b = 2iJ sin(k) as

λk = ±
Æ

a2 + |b|2 = ±

√

√

√

4
�

h− J cos k+ i
γ

4

�2

+ 4sin2 k , (A.10)

the sign chosen in such a way that the sign of the imaginary part of λk is negative. The matrix
Vk is in general non unitary [44] and is

Vk =

�

u −λk−a
b∗ u∗

λk−a
b u u∗

�

, (A.11)

where u= 1/
Ç

1+ |λk−a
b |2.

For the quantum Ising chain the non-hermitian quasi-particles are then [49,50,53]

γ̂k =
1

det(Vk)

�

u∗ ĉk +
λk − a

b∗
u∗ ĉ†
−k

�

, γ̂∗−k =
1

det(Vk)

�

−
λk − a

b
uĉk + uĉ†

−k

�

, (A.12)

γ̂∗k =
�

uĉ†
k +
λk − a

b
uĉ−k

�

, γ̂−k =
�

−
λk − a

b∗
u∗ ĉ†

k + u∗ ĉ−k

�

. (A.13)

The quasi-particle operators satisfy simple commutation relations

{γ̂k, γ̂∗−k}= 0 , {γ̂k, γ̂∗k}= 1 , (A.14)

and diagonalize the Hamiltonian

Ĥ =
∑

k>0

λkγ̂
∗
kγ̂k −λkγ̂−kγ̂

∗
−k =
∑

k>0

λk(γ̂
∗
kγ̂k + γ̂

∗
−kγ̂−k)−Λ0 , (A.15)

with Λ0 =
∑

k>0λk. Notice in particular that, by construction, the right vacuum defined as

γ̂k

�

�0γ
�

= 0 , γ̂−k

�

�0γ
�

= 0 (A.16)

is the state with largest imaginary part (not lowest real part). By construction, because of the
normalization factor in Eq.(4), the stationary states of the dynamics will be therefore a linear
combination of the vacuum and of quasi-particle states such that Γk ≡ Im[λk] = 0, while all
amplitudes of the other quasi-particle states will decay to zero at long times.

An additional peculiarity related to the non-hermiticity of the operators is that



0γ
�

� γ̂∗k ̸= 0 ,



0γ
�

� γ̂∗−k ̸= 0 . (A.17)
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It is evident that an analogous construction can be made for the long range Kitaev Model,

HK = −J
∑

i

(ĉ†
i ĉi+1 + h.c)−

J
2

∑

i

L−1
∑

r=1

1
ld

�

ĉ†
i ĉ†

i+r + h.c.
�

−
�

h+ i
γ

4

�
∑

i

(1− 2ĉ†
i ĉi) . (A.18)

After the Fourier transform we obtain

ĤK =
∑

k>0

ĤK(k) , (A.19)

where

HK(k) =
�

ĉ†
k ĉ−k

�

�

2(h− J cos(k) + i γ2 iJ gd(k)
−iJ gd(k) −2(h− J cos(k))− i γ2

��

ĉk

ĉ†
−k

�

, (A.20)

and we have defined

gd(k) =
L−1
∑

r=1

sin(kr)
ld

. (A.21)

Also in this case a summation over the ABC set of momenta has been considered. Then a
construction analogous to the one of the Transverse Field Ising Model can be made for ĤK
redefining

a = 2(h− J cos(k)) + i
γ

2
,

b = iJ gd(k) .
(A.22)

B The Majorana’s Fermions correlation matrix

The Majorana ’s fermions correlation matrix is defined as

Mmn =




c̆m c̆n

�

ψ

〈ψ|ψ〉
, (B.1)

where

c̆2l−1 = ĉ†
l + ĉl , c̆2l = −i(ĉ†

l + ĉl) .

In a gaussian state if we know the element of the Majorana fermions correlation matrix we
can compute the value of every observables [54]; among them, the bipartite entanglement
entropy, which is relevant in the analysis here reported. If the state that describes the system
is |ψ〉= A|0γ
�

+ Bγ̂∗−qγ̂
∗
q|0γ
�

, A , B ∈ C, and Nk = |u|2 + |
λk−a

b u|2, then




c̆2m−1 c̆2p−1

�

ψ

〈ψ|ψ〉
= δm,p +
∑

k>0

2i sin k(Rp − Rm)

L
2i Im(λk − a)u2

b|Nk|2

+
2i sin q(Rm − Rp)

L 〈ψ|ψ〉
�

A∗B + B∗A
�

+
2i sin q(Rp − Rm)

L 〈ψ|ψ〉

�−2i Im(λq − a)u2

b|Nq|2

�

�

A∗B + B∗A
�

, (B.2)
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c̆2m c̆2p

�

ψ

〈ψ|ψ〉
= δm,p −
∑

k>0

2i sin k(Rp − Rm)

L

2i Im(λq − a)u2

b|Nq|2

+
2i sin q(Rp − Rm)

L 〈ψ|ψ〉
�

A∗B + B∗A
�

−
2i sin q(Rp − Rm)

L 〈ψ|ψ〉

�−2i Im(λq − a)u2

b|Nq|2

�

�

A∗B + B∗A
�

, (B.3)




c̆2m−1 c̆2p

�

ψ

〈ψ|ψ〉
=
−i
L

∑

k>0

�

2cos k(Rm − Rp)
u2 − |v|2

|Nk|2
+ 2i sin k(Rm − Rp)

2Re(λk − a)u2

b|Nk|2

�

+i
2

L det
�

Vq

�

〈ψ|ψ〉

�

2 cos q(Rm − Rp)
�

u2 + v2
�

+ 4i sin q(Rm − Rp)uv
�

×
�

|B|2 + A∗B
−2i Im(λq − a)u2

b|Nq|2

�

−
i

L det
�

Vq

�

〈ψ|ψ〉

�

4 cos q(Rm − Rp)uv + 2i sin q(Rp − Rm)
�

u2 + v2
��

×
�

B∗A− A∗B +
�4i Im(λq − a)u2

b|Nq|2

�

|B|2 −
�2i Im(λq − a)

b|Nq|2
u2
�2

(A∗B + B∗A)
�

, (B.4)




c̆2m−1 c̆2p

�

ψ

〈ψ|ψ〉
=

i
L

∑

k>0

�

2cos k(Rm − Rp)
u2 − |v|2

|Nk|2
+ 2i sin k(Rp − Rm)

2Re(λk − a)u2

b|Nk|2

�

−i
2

L det
�

Vq

�

〈ψ|ψ〉

�

2 cos q(Rp − Rm)
�

u2 + v2
�

+ 4i sin q(Rp − Rm)uv
�

×
�

|B|2 + A∗B
−2i Im(λq − a)u2

b|Nq|2

�

+
i

L det
�

Vq

�

〈ψ|ψ〉

�

4 cos q(Rp − Rm)uv + 2i sin q(Rm − Rp)
�

u2 + v2
��

×
�

B∗A− A∗B +
�4i Im(λq − a)u2

b|Nq|2

�

|B|2 −
�2i Im(λq − a)

b|Nq|2
u2
�2

(A∗B + B∗A)
�

. (B.5)
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