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Abstract

Clock-spin models are attracting great interest, due to both their rich phase diagram and
their connection to parafermions. In this context, we derive an exact local mapping from
clock-spin to fermionic partition functions. Such mapping, akin to techniques introduced
by Fedotov and Popov for spin

1
2 chains, grants access to well established numerical tools

for the perturbative treatment of fermionic systems in the clock-spin framework. More-
over, in one dimension, it allows to use bosonization to access the low energy properties
of clock-spin models. Finally, aside from the direct application in clock-spin models,
this new mapping enables the conception of interesting fermionic models, based on the
clock-spin counterparts.
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1 Introduction

Mappings– exact or approximate –are essential tools for the understanding of interacting many
body systems. Due to the fact that most often the statistics of the low energy excitations of
a physical system does not correspond to that of its elementary constituents, such mappings
usually connect operators satisfying different algebras. This fact may be particularly useful
when dealing with spin systems. Indeed, even when the mapping does not provide an exact
solution, representing spins in terms of fermions and bosons naturally gives access to Wick’s
theorem and so to all the well established tools based on diagrammatic expansions [1–4].

A prominent example of mapping between spins and bosons is the Holstein-Primakoff
transformations [5], that has been used to effectively describe the emergence of magnons and
their interactions [6]. The mappings between spins and fermions define an even richer play-
ground: different schemes can be applied and selected to simplify a given problem. The first of
its kind and most widely known was formulated in 1928 by Jordan and Wigner [7], recogniz-
ing that spin-1/2 particles possess the same Hilbert space dimension as a single fermionic state.
However, to ensure off-site fermionic anticommutation relations they had to introduce string
operators rendering the mapping genuinely non-local. The Jordan-Wigner transformation led
to countless, important analytical results in models related to the quantum Ising chain [8–15],
even out of equilibrium [16–19]. As a source of complexity, however, the intrinsic non local-
ity of the mapping can make the treatment of correlation functions between points that are
far away from each other, and the analysis of systems with long range interactions, rather
involved. A way out was later provided by Fedotov and Popov [20], who took a different
approach: Instead of aligning the Hilbert space dimension, they first focused on ensuring the
proper commutation relations by associating two species of fermions to each spin-1/2 operator.
Obviously, only a subspace of the fermionic system – dubbed as physical – can then represent
the original model and excessive states have to be projected out. Crucially, the Fedotov-Popov
approach preserves the locality of the Hamiltonian even in fermionic language, thus making
it extremely useful in perturbative methods such as Diagrammatic Monte Carlo simulations.
Notably, several extensions of the Fedotov-Popov mapping have been proposed to generalize
the scheme to higher spins [21,22].

An interesting close relative of spin models, is represented by the so-called clock-spin mod-
els [23–31]. In contrast to usual spin operators, clock-spin operators obey a generalized Clif-
ford algebra, where on-site commutation of clock-spins acquires a phase factor. This inherent
property gives clock-spins a genuine relation to (non-Abelian) anyons with the same on-site
commutation relations. The compelling off-site commutation relations present for anyonic
particles can again be introduced by virtue of Jordan-Wigner strings [29,32], as first shown by
Fradkin and Kadanoff [23]. Just as clock-spin models present a generalization of the quantum
Ising model, the corresponding anyonic or parafermionic models can be interpreted as gener-
alizations of the Kitaev chain [33], where the topological phase is characterised by unpaired
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parafermionic modes exponentially localized at the boundaries [34,35]. Such modes are not
only interesting from a fundamental perspective but also due to their potential applications in
topological quantum computing [35,36]. In addition to their relation to parafermions, clock-
spin models have been demonstrated to be able to show many-body localization [37] and
time-crystalline behavior [37, 38]. Moreover, their phase diagram is extremely rich [39–45]–
much richer than the phase diagram of the Ising chain –as gapless incommensurate phases
and even phase transitions [46] of the Kosterlitz-Thouless type can take place [47,48]. Finally,
from the experimental point of view, Rydberg atom chains have been shown to possess phase
transitions in the same universality class as the ones characterizing clock-spin models [49].

In this work, we develop a mapping that transforms clock-spins directly to fermions. The
mapping, which is exact and local, borrows ideas from the Fedotov-Popov transformation.
We provide two versions of the mapping, which differ from each other for the choice of
the fermionic subspace replicating the clock-spin space. We discuss the implications of these
choices and present explicit examples for both cases. Importantly, the mapping ensures iden-
tical thermodynamic properties of the Hamiltonians on either end of the transformation. This
opens the possibility of studying clock-spin models as well as their anyonic counterparts in a
full fermionic language, with the use of established numerical tools, and, in one dimension, of
bosonization to assess the low energy physics. The usefulness of the mapping, however, goes
beyond numerical computations. With an explicit example we demonstrate that, starting from
a known clock-spin model that exhibits exotic ground-state properties, the mapping can also
be used in an approximate way to find fermionic models manifesting intriguing behaviour.

The paper is organized as follows: in section 2 we introduce the clock-spin algebra and
discuss the general traits of the mapping, recalling the Fedotov-Popov theory and extending it
to the case at hand. In section 3 we present a first version of the mapping, characterized by
a minimal physical subspace; we give explicit examples of the full mapping for the n = 3 and
n = 4 cases. In section 4 we present a second version for the mapping, characterized by an
enlarged physical sector. In this case, we provide a full explicit expression of the mapping for
any odd n, complemented with the concrete example for n = 3. In section 5 we investigate a
clock-spin model with exotic features, that – by virtue of our mapping – can be translated to
properties correspondingly found in a more realistic fermionic model. Finally, in section 6 we
draw our conclusions.

2 General traits of the clock-spin to fermions mapping

We consider a generic d-dimensional lattice Ω of n-th order clock-spins including a total num-
ber of N sites. Moreover, we denote the clock-spin operators at site j as σ j and τ j . These
operators commute at different lattice sites, while on the same site they satisfy the following
commutation relations

σ jτ j =ωτ jσ j , σn
j = τ

n
j = 1 , σ†

j = σ
n−1
j , τ†

j = τ
n−1
j , (1)

with ω = exp
�

i 2π
n

�

. For a single site, an explicit representation of the n-th order clock-spin
operators in a basis in which σ is diagonal is given by

σ =















1 0 0 · · · 0
0 ω 0 · · · 0

0 0 ω2 . . .
...

...
...

. . . . . . 0
0 0 · · · 0 ωn−1















, τ=













0 0 · · · 0 1
1 0 · · · 0 0
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0













. (2)
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Note that clock-spin operators of order n = 2, σ and τ, correspond to the well known Pauli
matrices σz and σx . In this sense the clock-spin operators are a generalization of the spin-1

2
operators and the associated Lie-algebra. A renowned example in this respect is the generaliza-
tion of the Z2 symmetric Ising model, which becomes a Zn symmetric clock-spin model [29].

The goal of the present paper is to transfer the ideas of the Fedotov-Popov theory [20] for
spins to the context of generic order clock-spins. In other words, we aim to develop a local
mapping under which clock-spin operators transform into fermionic ones while maintaining
the partition function, i.e. identical thermodynamic properties. Our mapping can be applied
to an arbitrary clock-spin model. In the following we will generically write the Hamiltonian
as a function of the clock-spin operators at each site of the lattice

H(n) = H(n)({σi}i∈Ω, {τi}i∈Ω) . (3)

For the sake of simplicity, we first consider single-site clock-spin operators. The starting
point is to map the n-th order clock-spin operators σ and τ onto an appropriate combination
of n fermionic creation and destruction operators. For the remainder of this section, they are
denoted as f †

α and fα respectively (α = 1, . . . , n). They satisfy the usual canonical anticom-
mutation relations for fermions: { f †

α , fα′} = δα,α′ and { fα, fα′} = 0. In the following we refer
to the greek letter identifying the different fermions on each lattice site as the fermionic fla-
vor. For later convenience, we can extend the range of the flavor index α to generic positive
integers, with the prescription that the fermionic species are identified by α mod n, e.g. fn+1
destroys to the same fermion as f1.

The fermionic Hilbert space of n fermions possesses a dimension of 2n, whereas the original
clock-spin space has dimension n. In order to achieve a valid mapping it is necessary to take
care of the 2n−n1 fermionic excess states with no corresponding clock-spin state. One way to
do so is to label some fermionic states as physical and the remaining ones as unphysical, and
deal with the latter in such a way that they do not contribute in the computation of physical
quantities.

The choice of the fermionic states used to form the physical subspace is a crucial step in the
development of the mapping. For example, a natural choice may be to consider as physical the
n states with occupation number (N̂ =

∑n
α=1 f †

α fα) equal to one. However, as will be shown
below, this is not the only way to proceed. For reasons that will become clear in the subsequent
sections, we require that the mapping has the following generic features:

(i) The physical subspace can be divided in an integer number ℓ of subsets, each containing
n states and independently mapping to the whole clock-spin space.

(ii) The representation of the clock-spin operators in terms of fermions, that we denote here
as σ̃ and τ̃, live on a Hilbert space of dimension 2n. They act on the physical states just
as the clock-spin operators act on the corresponding clock-spin states, while giving zero
when acting on the unphysical states.

(iii) σ̃ and τ̃ only contain terms which are product of an even number of fermionic cre-
ation/destruction operators.

Once the correct mapping for the σ and τ operators on a single site has been established, it
can be extended identically to any site. This is done by defining fermionic destruction and
creation operators f j,α and f †

j,α on every site of the lattice Ω. Then, σ̃ j and τ̃ j are found by
replacing the fermionic operators in the single site expressions (which satisfy the conditions
(i), (ii) and (iii)) with those at site j. In particular, condition (iii) ensures that [σ̃i , τ̃ j] = 0 for

1In this work, we discuss two valid versions of the mapping that deal with a different number of fermionic
excess states: 2n − n and 2n − 2n, respectively.
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i ̸= j. This enables us to write down the mapping from the clock-spin Hamiltonian (3) to the
corresponding fermionic one:

H(n) 7→ H(n)F = H(n)({σ̃i}i∈Ω, {τ̃i}i∈Ω) . (4)

By construction, the action of H(n)F on the physical states – that for the lattice are defined as the
tensor product of physical states on every site – is the same as that of H(n) on the corresponding
clock-spin states. Then, the partition function corresponding to the clock-spin Hamiltonian,

that we denote as Zc.s., can be equivalently computed by taking the trace of e−βH(n)F just on the
physical states

Trc.s. e−βH(n) = Trphys e−βH(n)F . (5)

The right and left side of Eq. (5) are identical up to an integer factor (ℓN ) accounting for the
ratio between the dimension of the physical subspace and that of the actual clock-space (if
different from unity).

Following Ref. [20], the next step consists of extending the trace over the whole fermionic
Hilbert space while preserving the above identification. For that, we need to add a suitable
imaginary interaction term iO(n)F to the Hamiltonian, such that the trace over the unphysical
states does not contribute to the final result

Trc.s. e−βH(n) = Tr e−β(H
(n)
F +iO(n)F ) . (6)

Suppose that the imaginary interaction term has the same form on each site, so that it can
be decomposed as

O(n)F =
N
∑

j=1

O(n)F j
, (7)

with each of the O(n)F j
terms involving just operators on site j. Furthermore, assume that O(n)F j

consists only of combinations of fermionic number operators, i.e. terms of the form f †
jα f jα.

Now let us focus on the following family of states defined on the whole lattice

|s〉= |unphi〉 {⊗ j ̸=i |s j〉} , (8)

that present an unphysical state at site i and any state, either physical or unphysical, at the

other sites. We want to compute the trace of the operator e−β(H
(n)
F +iO(n)F ) over the different un-

physical states at site i, while leaving the part of the state concerning the other sites unchanged.
That is

∑

unphi

{⊗ j ̸=i 〈s j|} 〈unphi| e
−β(H(n)F +iO(n)F ) |unphi〉 {⊗ j ̸=i |s j〉} . (9)

In order to simplify the notation, from here until the end of this section we omit the (n)
superscript on the operators. Let us denote with HFi

(OFi
) the part of HF (OF) that collects all

the fermionic operators at site i and with H ′Fi
(O′Fi

) the remaining part of the operator. Now, if
the condition

HFi
|unphi〉= 0 (10)

is fulfilled– which is indeed the case if σ̃i |unphi〉= 0= τ̃i |unphi〉 as required from condition
(ii) –then Eq. (9) reduces to

{⊗ j ̸=i 〈s j|}e
−β(H ′Fi

+iO′Fi
){⊗ j ̸=i |s j〉}

∑

|unphi〉

〈unphi| e
−iβOFi |unphi〉 , (11)
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as demonstrated in appendix A. Thus, to ensure that the unphysical states do not contribute
to the trace, one has to choose the form of OFi

such that

∑

|unphi〉

〈unphi| e
−iβOFi |unphi〉= 0 . (12)

Indeed, if condition (12) is satisfied then

Tr e−β(HF+iOF) = Trphys e−β(HF+iOF) . (13)

The remaining last step consists in relating the trace over the physical states of e−β(HF+iOF) to
the clock-spin partition function. However, this identification strictly depends on the choice
made about the physical subspace and on the explicit form of OF.

Now that the general framework of the theory has been set up, we proceed with the actual
development of the mapping. The task will be addressed in two distinct ways, that differ for
the choice of the physical subspace at each site of the lattice: in the next section we choose
the n states with occupation number N̂ j = 1 to form the physical subspace at site j. Instead,
in Sec. 4 we build the physical sector from the n states with occupation number N̂ j = 1, and
those with occupation number N̂ j = n− 1.

3 Minimal physical subspace mapping

In this section we develop the mapping choosing as physical states those with occupation
number equal to one. Although this choice makes the implementation straightforward, it also
induces a major issue: With this version of the mapping it is not possible to provide a general
expression for the imaginary interaction term iO(n)F as a function of the clock-spin order n.
Here we will focus on the derivation of its expression just for the two examples of n = 3 and
n = 4. Though similar procedures could be followed for higher values of n, a closed formula
cannot be given.

Let us first consider a single site. After all, as outlined in Sec. 2, once the single site oper-
ators are mapped to fermions, the extension of the mapping to the whole lattice is trivial. We
denote the physical states as f †

α |0〉 , α ∈ {1, . . . , n}. As a starting point, we follow Abrikosov’s
proposal [50] to map spin 1

2 operators to fermions, and write

σ̃A =
n
∑

α,β=1

f †
ασαβ fβ , (14)

τ̃A =
n
∑

α,β=1

f †
αταβ fβ , (15)

with σαβ and ταβ the matrices defined in Eq. (2). Then, the action of σ̃A and τ̃A on the
physical states is given by

σ̃A f †
α |0〉=ω

α−1 f †
α |0〉 , (16)

τ̃A f †
α |0〉= f †

α+1 |0〉 , (17)

where the identification f †
n+1 = f †

1 is implied in the second line. From Eq. (16) and Eq. (17),
it seems to be well justified to identify the eigenstate with eigenvalue ωα−1 of σ with the
fermionic state f †

α |0〉. However, a problem arises when we consider the action of these opera-
tors on the states that we labeled as unphysical. It is easy to see that the action of both σ̃A and

6
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τ̃A on these states is nor zero – except for those with occupation number N̂ = 0 and N̂ = n –
neither the same as on the states we dubbed as physical. In order to achieve the desired action
on all the unphysical states, we modify the above expressions of σ̃A and τ̃A in the following
way

σ̃ =
n
∑

α=1

ωα−1n̂α

n
∏

ρ=1
ρ ̸=α

(1− n̂ρ) , (18)

τ̃=
n
∑

α=1

f †
α+1 fα

n
∏

ρ=1
ρ ̸=α,α+1

(1− n̂ρ) , (19)

where n̂α = f †
α fα is the occupation number operator associated to the flavor α. One can see

that these new definitions leave the action of σ̃ and τ̃ unchanged in the physical subspace.
However, the introduction of the products of terms (1− n̂ρ) assures that they yield zero when
acting on any fermionic state with occupation number different from one. The fermionic oper-
ators in Eq. (18) and Eq. (19) correctly reproduce the commutation relations of their clock-spin
counterparts (see Eq. (1)). This fact is most easily verified by computing and comparing the
action of σ̃τ̃ and τ̃σ̃ on a complete basis of fermionic states. For what it concerns the physical
sector σ̃ and τ̃ act on the fermionic states as σ and τ act on the corresponding clock-spin
states, so that the correct algebra is automatically implemented. Moreover, also in the un-
physical sector the commutation relations are trivially satisfied thanks to the fact that σ̃ and
τ̃ are zero on the whole subspace.

We can now extend the mapping to the whole lattice, by associating n fermionic operators
to each site. Then, the operators at site j will be written in terms of fermionic operators at site
j only, with the same functional dependence derived for the single site

σ̃ j =
n
∑

α=1

ωα−1n̂ j,α

n
∏

ρ=1
ρ ̸=α

(1− n̂ j,ρ) , (20)

τ̃ j =
n
∑

α=1

f †
j,α+1 f j,α

n
∏

ρ=1
ρ ̸=α,α+1

(1− n̂ j,ρ) . (21)

We note that this implementation of the mapping automatically ensures the condition

H(n)F j
|unph j〉= 0 . (22)

Moreover, since σ̃ j and τ̃ j only contain terms which are the product of an even number of
fermionic operators at site j, condition (iii) is naturally satisfied. Then we have

[σ̃i , τ̃ j] = [τ̃i , τ̃ j] = [σ̃i , σ̃ j] = 0 ,

for any i ̸= j. Henceforth, the mapped fermionic operators correctly reproduce the off-site
commutation relations of the clock-spin operators.

In the remainder of this section we use Eqs. (20) and (21) to explicitly derive the mapping
for the cases n = 3 and n = 4. While working out these examples, we also derive appropriate
expressions for the imaginary interaction term iO(n)F , proceeding case by case. By doing so, it
becomes clear what hinders the derivation of a closed formula for a generic order n, at least
inside the framework provided by the present mapping. For the case of odd order clock-spins
this problem is overcome in the next section, where we develop the mapping starting from a
doubled physical subspace.
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3.1 The n= 3 case

As a first example, we consider the n= 3 case. To simplify the notation, in this subsection we
denote the annihilation operators associated with the three fermions involved in the mapping
for each site j as a j , b j , c j instead of f j,1, f j,2, f j,3.

Before deriving the full expression of the correct mapping according to Eqs. (20) and (21),
it can be interesting to focus on a single site again and try to consider the Abrikosov-like
implementation, that is

σ̃A = a†a+ωb† b+ω2c†c , (23)

τ̃A = b†a+ c† b+ a†c , (24)

where, being n = 3, ω = ei 2π
3 . As outlined in former sections, these operators correctly re-

produce the action of the clock-spin operators on the clock-spin states, as far as the physical
subspace is concerned. However, the action on the unphysical states is given by

σ̃A |0,0, 0〉= 0 , τ̃A |0, 0,0〉= 0 , (25)

σ̃A |1,1, 0〉= (1+ω) |1,1, 0〉 , τ̃A |1, 1,0〉= |1,0, 1〉 , (26)

σ̃A |1,0, 1〉= (1+ω2) |1, 0,1〉 , τ̃A |1, 0,1〉= |0,1, 1〉 , (27)

σ̃A |0,1, 1〉= (ω+ω2) |0,1, 1〉 , τ̃A |0, 1,1〉= |1,1, 0〉 , (28)

σ̃A |1,1, 1〉= (1+ω+ω2) |1, 1,1〉= 0 , τ̃A |1,1, 1〉= 0 . (29)

Here we see explicitly what we asserted at the beginning of this section: if one implements the
mapping as in Eqs. (14) and (15), then the action on some of the unphysical states– those with
occupation number N̂ = 2 for the present example –does not yield zero, nor the same as on the
physical states. This justifies the mapping in Eqs. (18) and (19), which in some sense projects
the states onto the physical subspace. With this in mind, we can proceed to use Eqs. (20) and
(21) to write down the complete mapping of the clock-spin operators for the whole lattice.
Shifting to the present notation and performing some minor algebraic simplifications we find

σ̃ j = a†
j a j(1− b†

j b j − c†
j c j) +ωb†

j b j(1− a†
j a j − c†

j c j) +ω
2c†

j c j(1− a†
j a j − b†

j b j) , (30)

τ̃ j = a†
j c j(1− b†

j b j) + b†
j a j(1− c†

j c j) + c†
j b j(1− a†

j a j) . (31)

By plugging these expressions into any H(3) clock-spin Hamiltonian akin to Eq. (4), we obtain
the corresponding fermionic Hamiltonian, H(3)F .

Next, we start looking for a suitable imaginary interaction term. Recall that we require it to
be decomposable as O(3)F =

∑N
j=1 O(3)F j

, with each of the O(3)F j
having the same functional form

and being built from fermionic number operators at site j only. Moreover, O(3)F j
must satisfy

Eq. (12) for any site index j.
Suppose first that, for the sake of simplicity, we try to take O(3)F j

symmetric for the exchange
of any two fermionic operators at site j, meaning that

O(3)F j

�

{ f j,α}, { f
†
j,α}
�

= O(3)F j

�

{ f j,p(α)}, { f
†
j,p(α)}

�

, (32)

for any permutation p of the flavor indices. If this condition holds, then clearly O(3)F j
will have

to be degenerate on any subspace with fixed fermionic on-site number N̂ j =
∑n
α=1 f †

j,α f j,α. If
we introduce a set of coefficients ηk, k ∈ {0, . . . , n}, such that

O(3)F j
|N̂ j = k〉= β−1ηk |N̂ j = k〉 , (33)

8

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.055


SciPost Phys. Core 6, 055 (2023)

then Eq. (12) becomes
∑

|unph j〉

〈unph j| e
−iβO(3)F j |unph j〉=

�

3
0

�

e−iη0 +
�

3
2

�

e−iη2 +
�

3
3

�

e−iη3 = 0 . (34)

Unfortunately, a set of parameters ηℓ for which the above sum yields zero cannot be found.
This can be easily understood by taking the norm of the sum and applying the triangular
inequality. The only way to satisfy Eq. (12) is then to pick an operator O(3)F j

that is asymmetric
in fermionic operators. Choosing

O(3)F j
=
π

3β
(a†

j a j(1+ 2c†
j c j) + b†

j b j(1+ 2a†
j a j) + c†

j c j(1+ 2a†
j a j)) , (35)

we have

O(3)F j
|0,0, 0〉 j = 0 , (36)

O(3)F j
|1,1, 0〉 j =

4π
3β
|1,1, 0〉 j , (37)

O(3)F j
|1,0, 1〉 j =

6π
3β
|1,0, 1〉 j , (38)

O(3)F j
|0,1, 1〉 j =

2π
3β
|0,1, 1〉 j , (39)

O(3)F j
|1,1, 1〉 j =

9π
3β
|1,1, 1〉 j , (40)

and, thus, Eq. (12) is satisfied:
∑

|unph j〉

〈unph j| e
−iβO(3)F j |unph j〉= 1+ e−i 4π

3 + e−i 6π
3 + e−i 2π

3 + e−i 9π
3 = 0 . (41)

Of course the choice of O(3)F j
is not unique: different asymmetric implementations would still

give the desired result, as long as the condition of the trace over the unphysical sector being
zero is satisfied. To conclude, we observe that the action of O(3)F j

is the same on any of the
physical states at site j,

O(3)F j
|phys j〉=

π

3β
|phys j〉 . (42)

Then, as the last step, we redefine the total O(3)F operator as follows

O(3)F =
N
∑

j=1

π

3β
[(a†

j a j(1+ 2c†
j c j) + b†

j b j(1+ 2a†
j a j) + c†

j c j(1+ 2a†
j a j))]−

π

3β
N , (43)

so that its action on the physical states yields zero. Crucially, adding a constant term to O(3)F

has no effect on the trace over the unphysical states. Indeed, if we replace O(3)F j
by O(3)F j

+ C in
Eq. (41) (C ∈ R) we get

∑

|unph j〉

〈unph j| e
−iβ(O(3)F j

+C)
|unph j〉= e−iβC

∑

|unph j〉

〈unph j| e
−iβO(3)F j |unph j〉= 0 , (44)

so that the trace over the unphysical states still add up to zero.
Eventually, we obtain

Tr e−β(H
(3)
F +iO(3)F ) = Trphys e−β(H

(3)
F +iO(3)F ) = Trphys e−βH(3)F = Trc.s. e−βH(3) . (45)

The partition function corresponding to the original clock-spin Hamiltonian is just the same
as the one corresponding to the non-Hermitian fermionic Hamiltonian H(3)F + iO(3)F .
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3.2 The n= 4 case

For n= 4 we can proceed along the same lines as for n= 3, except for one notable difference:
in this case the single-site interaction term O(4)F j

can be chosen symmetric for the exchange of
the fermionic operators, in the sense of Eq. (32).

In analogy to what was done in the previous example, we will denote the annihilation oper-
ators associated to the four fermions involved in the mapping (for each site j) as a j , b j , c j , d j
respectively. According to Eq. (20), the σ operator at site j (σ j) is mapped into

σ̃ j = a†
j a j(1− b†

j b j − c†
j c j − d†

j d j + b†
j b jc

†
j c j + b†

j b jd
†
j d j + c†

j c jd
†
j d j)

+ωb†
j b j(1− a†

j a j − c†
j c j − d†

j d j + a†
j a jc

†
j c j + a†

j a jd
†
j d j + c†

j c jd
†
j d j)

+ω2c†
j c j(1− b†

j b j − a†
j a j − d†

j d j + b†
j b ja

†
j a j + b†

j b jd
†
j d j + a†

j a jd
†
j d j)

+ω3d†
j d j(1− b†

j b j − c†
j c j − a†

j a j + b†
j b jc

†
j c j + b†

j b ja
†
j a j + c†

j c ja
†
j a j) ,

(46)

where in this case ω= i. Furthermore, following Eq. (21), τ j transforms as

τ̃ j = a†
j d j(1− b†

j b j − c†
j c j + b†

j b jc
†
j c j)

+ b†
j a j(1− c†

j c j − d†
j d j + c†

j c jd
†
j d j)

+ c†
j b j(1− a†

j a j − d†
j d j + a†

j a jd
†
j d j)

+ d†
j c j(1− a†

j a j − b†
j b j + a†

j a j b
†
j b j) .

(47)

As desired, the operators defined this way act on the physical states at site j (N̂ j=1) as the orig-
inal clock-spin operators act on the corresponding clock states. On the other hand, they yield
zero when applied onto the unphysical states at site j (N̂ j ∈ {0, 2,3, 4}). Next, we determine

the operator O(4)F =
∑N

j=1 O(4)F j
.

As done for the n = 3 case, we first look for solutions of Eq. (12) that are symmetric
under the exchange of any two fermionic operators at site j. Then, leaning on the the same
arguments supporting Eq. (33), we write

O(4)F j
|N̂ j = k〉= β−1ηk |N̂ j = k〉 . (48)

Consequently, Eq. (12) becomes

∑

|unph j〉

〈unph j| e
−iβO(4)F j |unph j〉=

�

4
0

�

e−iη0 +
�

4
2

�

e−iη2 +
�

4
3

�

e−iη3 +
�

4
4

�

e−iη4 = 0 . (49)

In contrast to n = 3, the above equation can indeed be satisfied for a proper choice of the
phases. For example, if one takes η0,η3,η4 to be integer multiples of 2π and η2 = π+ 2πℓ
with ℓ ∈ Z, then

∑

|unph j〉

〈unph j| e
−iβO(4)F j |unph j〉= 1− 6+ 4+ 1= 0 . (50)

We note that the existence of such an easy solution for the n= 4 case is quite peculiar. Indeed
for higher (even) values of n, solutions of the equations corresponding to Eq. (49) with all the
phases equal to ±1 rarely exist and, in general, possible solutions sensitively depend on n.

It is now straightforward to write down a proper candidate for O(4)F . The explicit calcu-
lations are done in appendix B; here we simply report two of many possible solutions. An
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expression of O(4)F that involves one and two-particle interactions only is given by

O(4)F =
π

β

N
∑

j=1

�

a†
j a j + b†

j b j + c†
j c j + d†

j d j

+ (a†
j a j b

†
j b j + a†

j a jc
†
j c j + a†

j a jd
†
j d j + b†

j b jc
†
j c j + b†

j b jd
†
j d j + c†

j c jd
†
j d j)

�

−
π

β
N . (51)

In case one wants to avoid one-particle terms– that give non zero contribution in the physical
sector –another possible choice is

O(4)F =
π

β

N
∑

j=1

(a†
j a j b

†
j b j + a†

j a jc
†
j c j + a†

j a jd
†
j d j + b†

j b jc
†
j c j + b†

j b jd
†
j d j + c†

j c jd
†
j d j)

+ (a†
j a j b

†
j b jc

†
j c j + a†

j a j b
†
j b jd

†
j d j + a†

j a jc
†
j c jd

†
j d j + b†

j b jc
†
j c jd

†
j d j) . (52)

One can readily check that both these expressions are such that Eq. (6) holds.

4 Doubled physical subspace mapping

In this section we provide an alternative implementation of the mapping, which mainly differs
from the previous one in the partitioning of physical and unphysical sectors. We will see that
for this new version of the mapping, at least in the case of odd clock-spin order n, we will be
able to write down a generic formula for the imaginary potential term. The price to pay in
order to get this appealing feature, which was absent in the first version of the mapping, is
that one has to deal with more complicated expressions for the mapped fermionic operators.
In order to avoid confusion between the two versions of the mapping, we will denote these
latter fermionic representations of the clock-spin operators as σ̄ and τ̄ instead of σ̃ and τ̃.

The idea here is to consider as physical both the states with occupation number 1 and n−1.
Indeed, there are exactly as many states with occupation number n − 1 as with occupation
number 1, that is,

�n
1

�

=
� n

n−1

�

= n. Using Eqs. (18) and (19) as a starting point, we need to
add a second term each with non-zero action on the N̂ = n − 1 subspace only. These terms
are chosen in such a way that the action of τ̄ and σ̄ in this subspace is perfectly equivalent to
that in the N̂ = 1 subspace. These considerations suggest the following identification for the
single site clock-spin operators in terms of fermions

σ̄ =
n
∑

α=1






ωα−1n̂α

n
∏

ρ=1
ρ ̸=α

(1− n̂ρ) +ω
n−α(1− n̂α)

n
∏

ρ=1
ρ ̸=α

n̂ρ






, (53)

τ̄=
n
∑

α=1

f †
α+1 fα







n
∏

ρ=1
ρ ̸=α,α+1

(1− n̂ρ) +
n
∏

ρ=1
ρ ̸=α,α+1

n̂ρ






. (54)

It is straightforward to check that the new terms added to σ̄ and τ̄ have non-zero action just
on the subspace with occupation number n−1. The action on the states with N̂ = 1 coincides
with that of σ̃ and τ̃, which has already been discussed. In the occupation number basis, it
can be represented as

τ̄ |0, . . . , 0, 0, 1
︸︷︷︸

α

, 0, 0, . . . , 0〉= |0, . . . , 0, 0, 0, 1
︸︷︷︸

α+1

, 0, . . . , 0〉 ,

σ̄ |0, . . . , 0, 0, 1
︸︷︷︸

α

, 0, 0, . . . , 0〉=ωα−1 |0, . . . , 0, 0, 1
︸︷︷︸

α

, 0, 0, . . . , 0〉 .
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On the other hand, the action of τ̄ on a state with occupation number n− 1 is

τ̄ |1, . . . , 1, 1, 0
︸︷︷︸

α

, 1, 1, . . . , 1〉= |1, . . . , 1, 0
︸︷︷︸

α−1

, 1, 1, 1, . . . , 1〉 .

In other words, τ̄moves the only occupied state in the elements of the subspace N̂ = 1 “to the
right”, while moving the empty state in the elements of the subspace N̂ = n− 1 “to the left”.
Instead, the action of σ̄ just yields a phase

σ̄ |1, . . . , 1, 1, 0
︸︷︷︸

α

, 1, 1, . . . , 1〉=ωn−α |1, . . . , 1, 1, 0
︸︷︷︸

α

, 1, 1, . . . , 1〉 ,

σ̄ |1, . . . , 1, 0
︸︷︷︸

α−1

, 1, 1, 1, . . . , 1〉=ωn−α+1 |1, . . . , 1, 0
︸︷︷︸

α−1

, 1, 1, 1, . . . , 1〉 .

This justifies the opposite sign of the phases in the second part of σ̄: it is chosen to ensure that
the on-site commutation relations are satisfied on the N̂ = n− 1 subspace too. The extension
of the mapping to the whole chain is performed again by defining fermionic operators f j,α, f †

j,α
for each site to get

σ̄ j =
n
∑

α=1






ωα−1n̂ j,α

n
∏

ρ=1
ρ ̸=α

(1− n̂ j,ρ) +ω
n−α(1− n̂ j,α)

n
∏

ρ=1
ρ ̸=α

n̂ j,ρ






, (55)

τ̄ j =
n
∑

α=1

f †
j,α+1 f j,α







n
∏

ρ=1
ρ ̸=α,α+1

(1− n̂ j,ρ) +
n
∏

ρ=1
ρ ̸=α,α+1

n̂ j,ρ






. (56)

Next, we derive an explicit expression for the imaginary potential term. The constraints
we demand for O(n)F are the same we discussed in the previous section: we assume that it can

be decomposed as a sum of operators O(n)F j
, each of which has the same functional form and

only contains number operators at site j. Moreover, we require each addendum O(n)F j
to be

invariant under the exchange of any two fermionic operators at site j. Similar to Secs. 3.1 and
3.2, we denote

O(n)F j
|N̂ j = k〉= β−1ηk |N̂ j = k〉 , (57)

for any site- j state with occupation number equal to k.
Then the condition of Eq. (12) yields

∑

|unph j〉

〈unph j| e
−iβO(n)F j |unph j〉=

n
∑

k=0
k ̸=1,n−1

�

n
k

�

e−iηk = 0 . (58)

In the case of odd n, we can write n= 2m+ 1 and separate the sum as follows

n
∑

k=0
k ̸=1,n−1

�

n
k

�

e−iηk =
m
∑

k=0
k ̸=1

�

2m+ 1
k

�

e−iηk +
2m+1
∑

k=m+1
k ̸=2m

�

2m+ 1
k

�

e−iηk . (59)

Using
�n

k

�

=
� n

n−k

�

, one can finally rewrite Eq. (59) as

m
∑

k=0
k ̸=1

�

2m+ 1
k

�

[e−iηk + e−iη2m+1−k] = 0 . (60)
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The easiest way to satisfy this condition is to choose the parameters ηk in such a way that

ηk = η2m+1−k + (2ℓ+ 1)π , ℓ ∈ Z . (61)

A trivial solution to Eq. (61) is given by ηk = kπ, which corresponds to O(n)F j
= β−1N̂ jπ.

However, it is necessary that η1 and η2m do not satisfy the above condition: in that case the
contribution to the trace from the physical states with N̂ j = 1 would cancel out with the one
coming from those with N̂ j = n− 1. This issue can be solved by adding an appropriate term

to O(n)F j
, which prevents the cancellation of the physical contributions to the trace. A possible

solution is:

O(n)F j
= β−1π






N̂ j +

n
∑

α=1

(1− n̂ j,α)
n
∏

ρ=1
ρ ̸=α

n̂ j,ρ






. (62)

We show in appendix C that if O(n)F j
is defined this way (i.e. symmetric for the exchange of

any two fermionic operators and made out of number operators only), then it necessarily
commutes with the operators σ̄i and τ̄i , both for j ̸= i (trivial) and for j = i. This implies that
O(n)F commutes with the Hamiltonian and so one can factorize the exponential in the partition
function. In the end, for odd values of n we find

Tr e−β(H
(n)
F +iO(n)F ) = Trphys e−β(H

(n)
F +iO(n)F ) = TrN̂ j=1 e−βH(n)F ×(−1−1)N = (−2)N Trc.s. e−βH(n) . (63)

Unfortunately this derivation cannot be extended to the case of even n. Indeed, if we consider
n= 2m and we impose the same constraints on OF j

as in the odd case, then Eq. (60) becomes

m−1
∑

k=0
k ̸=1

�

2m
k

�

[e−iηk + e−iη2m−k] +
�

2m
m

�

e−iηm = 0 . (64)

In general, for arbitrary n there is no set of ηℓ satisfying this equation. Moreover, even for the
cases where such a solution actually exists, it is cumbersome to derive it analytically. In that
case, in order to find an operator O(n)F for which Eq. (12) holds one would have to relinquish
the symmetry constraint. This makes the search for the imaginary term as hard as for the
first version of the mapping. Thus, the “symmetrized” version of the mapping with a doubled
physical sector turns out to be advantageous with respect to the “asymmetric” one just when
considering clock-spin models with odd order.

4.1 A special case: n= 3

As a concrete example, let us consider the case n = 3. The mapping is simply achieved by
explicitly rewriting Eq. (55) and Eq. (56) for n = 3. Analogously to Subs. 3.1, we shift to the
notation a j , b j , c j for the destruction fermionic operators at site j. Straightforward algebra
yields:

σ̄ j = a†
j a j +ωb†

j b j +ω
2c†

j c j −ωa†
j a j b

†
j b j + 2ωa†

j a jc
†
j c j −ωb†

j b jc
†
j c j , (65)

τ̄ j = b†
j a j + c†

j b j + a†
j c j , (66)

with ω = ei 2π
3 . As already discussed in Sec. 2, these choices for σ̄ j and τ̄ j ensure that they

act on the physical states at site j, both with N̂ j = 1 and with N̂ j = 2, the same way as the
original clock-spin operators σ j and τ j act on the corresponding clock-spin states. Although
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this is evident for the N̂ j = 1 states, it may be worth working out the explicit calculation for
the N̂ j = 2 states

σ̄ j |1,1, 0〉 j = |1,1, 0〉 j , τ̄ j |1, 1,0〉 j = |1, 0,1〉 j ,

σ̄ j |1,0, 1〉 j =ω |1, 0,1〉 j , τ̄ j |1, 0,1〉 j = |0, 1,1〉 j ,

σ̄ j |0,1, 1〉 j =ω2 |0,1, 1〉 j , τ̄ j |0, 1,1〉 j = |1, 1,0〉 j .

At the same time we have that

τ̄ j |0, 0,0〉 j = τ̄ j |1,1, 1〉 j = 0= σ̄ j |0, 0,0〉 j = σ̄ j |1,1, 1〉 j , (67)

as requested for the unphysical states.
Finally, we need to determine the imaginary interaction term. According to Eq. (62), a

possible choice for O(3)F j
is

O(3)F j
=
π

β
[N̂ j + a†

j a j b
†
j b j + a†

j a jc
†
j c j + b†

j b jc
†
j c j − 3a†

j a j b
†
j b jc

†
j c j] . (68)

Note that, however, just for the case n = 3 the desired result can also be achieved with
a simpler imaginary operator. Following the derivation in [20] for the spin 1 case, using

O(3)F =
πN̂
3β

, then we see that

O(3)F j
|N̂ j = 0〉= 0 ,

O(3)F j
|N̂ j = 1〉=

π

3β
|N̂ j = 1〉 ,

O(3)F j
|N̂ j = 2〉=

2π
3β
|N̂ j = 2〉 ,

O(3)F j
|N̂ j = 3〉=

π

β
|N̂ j = 3〉 ,

which satisfies Eq. (12)
∑

|unph j〉

〈unph j| e
−iβO(3)F j |unph j〉= 1+ e−iπ = 0 . (69)

Therefore, given that (up to a phase) the traces over the physical states with N̂ j = 1 and N̂ j = 2
lead to the very same result, we obtain

Tr e−β(H
(3)
F +iπN̂/3β) = Trphys e−β(H

(3)
F +iπN̂/3β) = TrN̂ j=1 e−βH(3)F × [e−iπ/3 + e−2πi/3]N . (70)

In the end we have
Tr e−β(H

(3)
F +iπN̂/3β) =

�

−i
p

3
�N

Zc.s. . (71)

This result is especially relevant: given that the imaginary term is simply an addition to the
chemical potential, it enters the fermionic Matsubara Green function [51] at the zeroth level

G(ϵ, iωFν) =
1

iωFν − ϵ − iπ/3β
, (72)

with ωFν =
2π
β (ν+ 1/2) the fermionic Matsubara frequencies. As duly noted by Fedotov and

Popov [20] this correction to the propagator corresponds to a redefinition of the Matsubara
frequencies

ω′Fν
=ωFν −

π

3β
=

2π
β
(ν+ 1/2− 1/6) =

2π
β
(ν+ 1/3) . (73)

Thus, in this case, the introduction of the imaginary interaction term does not introduce new
vertices in the diagrammatic perturbative expansion.
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5 A mapping-inspired interesting fermionic model

The mapping presented in the previous sections was developed with the main goal of im-
proving numerical calculations for clock-spin models, by making available the Wick theorem
once the Hamiltonian is rewritten in fermionic language. However, as we anticipated in the
introduction, it can also provide fruitful intuitions for conceiving fermionic models with ex-
otic properties. To see why this may be the case, let us consider the zero-temperature limit.
In this case the imaginary term, that is proportional to β−1, disappears, so that the mapped
fermionic Hamiltonian becomes Hermitian. This results in coinciding low energy spectra of
both the clock-spin and the fermionic Hamiltonian and the fermionic model inherits all the
ground-state physics of its corresponding clock-spin parent.

To provide an interesting explicit example, we consider the clock-spin model proposed in
a recent paper by Hu and Watanabe [52], which comprises recently discovered unexpected
even-odd effects [53–57]. The Hamiltonian of the model is

H = −
1
2

N
∑

j=1

�

(σ jσ j+1 +σ
†
j+1σ

†
j ) + g(τ j +τ

†
j )
�

, (74)

with a transverse field of strength g > 0 on a lattice with N sites and periodic boundary
conditions, so that σN+1 = σ1. We assume the clock-spin operators σ and τ to be of order
three, which implies ω= ei 2π

3 .
In Ref. [52], the authors show that for g ≪ 1 this model gives rise to spontaneous symmetry

breaking (SSB), though its features are drastically different for chains with an even or odd
number of sites. In the even case, the model exhibits all the well known traits of SSB: the
ground state is (three-fold) degenerate in the limit g = 0 and the energy splitting shrinks
exponentially in the thermodynamic limit for g ≪ 1. Moreover, upon the introduction of a
symmetry breaking field ϵ the thermodynamic limit (N →∞) and the vanishing field limit
(ϵ→ 0) are found to be non commuting. On the other hand, the odd case is found to be quite
peculiar: Although for odd N the ground state is unique even in the ordered phase (g ≪ 1),
the two limits of the mean value of the order parameter are nonetheless non-commuting. The
authors conclude that, since the thermodynamic properties should not depend on the system
size or boundary conditions, the model with odd N actually represents an example of SSB in
the absence of exact symmetry or degeneracy.

Interestingly, our mapping allows to reproduce the physics of the model in a fermionic
system (at zero temperature). To show this, we first have to pick one of the two mappings
developed, and use it to map the Hamiltonian (74) into its fermionic counterpart. One could
wonder about which version of the mapping is the most suitable for the present task. How-
ever, as long as we are only interested in the ground state properties of the model, we can
greatly simplify the mapping and still land on a fermionic Hamiltonian with the same ground
state as the ones obtained by an exact application of the mappings. Let us prove this point.
The Hamiltonian obtained by applying the first and second version of the mapping would be
respectively given by

H̃F = −
1
2

N
∑

j=1

�

(σ̃ jσ̃ j+1 + σ̃
†
j+1σ̃

†
j ) + g(τ̃ j + τ̃

†
j )
�

, (75)

H̄F = −
1
2

N
∑

j=1

�

(σ̄ jσ̄ j+1 + σ̄
†
j+1σ̄

†
j ) + g(τ̄ j + τ̄

†
j )
�

. (76)

Notice that although the two Hamiltonian are formally identical, the operators σ̃ j and τ̃ j are
given in Eq. (30) and Eq. (31) respectively, while σ̄ j and τ̄ j are given in Eq. (65) and Eq. (66);
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hence the two actually differ from each other. We will be interested in the ordered phase
(g ≪ 1), so we consider g = 0 for now. Moreover, we fix the total number of fermions in the
chain to be equal to the number of sites N .

Given the Hamiltonian in Eq. (75) (Eq. (76)), for a pair of adjacent sites the energy is
minimized when σ̃ jσ̃ j+1 (σ̄ jσ̄ j+1) assumes the value +1. Thus, if the state at either the site
j or j + 1 is one of the unphysical states, the action of σ̃ jσ̃ j+1 (σ̄ jσ̄ j+1) yields zero, and the
energy is not minimized. The physical states for the first mapping are those with N̂ j = 1 on
each site; this is consistent with having fixed the total number of fermions to N . For the second
mapping, as we discussed in full detail in Sec. 4, also the states with N̂ j = 2 are labeled as
physical. However, having the total number of fermions fixed to N implies that for a physical
state with N̂ j = 2 at site j there will necessarily be an unphysical state with N̂ j′ = 0 at some
site j′: therefore such a configuration does not minimize the energy. In light of this, we can
safely restrict to the subspace with N̂ j = 1 at each site. Once this is done, both versions of the
mapping reduce to the Abrikosov-like implementation, that we reported for the single-site in
Eqs. (23) and (24)

σ̃A j
= a†

j a j +ωb†
j b j +ω

2c†
j c j , (77)

τ̃A j
= b†

j a j + c†
j b j + a†

j c j . (78)

The resulting fermionic Hamiltonian– that we denote as HF –is explicitly given by

HF = −
1
2

N
∑

j=1

�

(2a†
j a ja

†
j+1a j+1 + 2b†

j b jc
†
j+1c j+1 + 2c†

j c j b
†
j+1 b j+1

− a†
j a j b

†
j+1 b j+1 − a†

j a jc
†
j+1c j+1 − b†

j b ja
†
j+1a j+1

− c†
j c ja

†
j+1a j+1 − b†

j b j b
†
j+1 b j+1 − c†

j c jc
†
j+1c j+1)

+ g(a†
j b j + b†

j c j + c†
j a j + b†

j a j + c†
j b j + a†

j c j)
�

.

(79)

Crucially, we observe that the Hamiltonian (79) is such that [HF, N̂ j] = 0 ∀ j, implying that
the time evolution preserves the occupation number at each site. This, together with the fact
that the mapping in Eqs. (77) and (78) is exact and bijective upon restriction to the N̂ j = 1
subspace, adds consistency to our simplification of the mapping.

It is easy to show that for g = 0, in the case of even N there are three degenerate ground
states, given by

|S1〉=
N
∏

j=1

a†
j |0〉 , |S2〉=

N/2
∏

j=1

b†
2 j−1c†

2 j |0〉 , |S3〉=
N/2
∏

j=1

c†
2 j−1 b†

2 j |0〉 , (80)

while for odd N there is a unique ground state, that is

|S1〉
′ =

N
∏

j=1

a†
j |0〉 . (81)

In both cases the excited states are gapped.
We now introduce a symmetry breaking field, following [52]

V (ϵ) = −
1
2
ϵ

 

ω−1
N
∑

j=1

σ̃
(−1) j−1

A j
+ h.c.

!

, (82)

where the identification σ−1
A j
≡ σ†

A j
– which is indeed valid upon restriction to the N̂ j = 1 sub-

space –is assumed. In the even-N case, the introduction of this term in the Hamiltonian (79)
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clearly favours one of the three ground states (|S2〉), so that the limits of the mean value of
the order parameter on the ground state necessarily do not commute. Explicitly:

lim
N→∞

lim
ϵ→0+
〈Ψ0(ϵ)|

1
N

N
∑

j=1

σ̃
(−1) j−1

A j
|Ψ0(ϵ)〉 ̸= lim

ϵ→0+
lim

N→∞
〈Ψ0(ϵ)|

1
N

N
∑

j=1

σ̃
(−1) j−1

A j
|Ψ0(ϵ)〉 , (83)

where |Ψ0(ϵ)〉 is the ground state of the Hamiltonian given by HF+V (ϵ). This can be easily seen
in the g ≪ 1 limit: in this special case, for ϵ→ 0 the ground state is a symmetric combination
of |S1〉 , |S2〉 and |S3〉, so that the LHS of Eq. (83) goes to zero. The RHS on the other hand
will give ω as a result, since for g = 0 and ϵ ̸= 0 the ground state is given by |S2〉.

In the odd N case, although the ground state is unique, still the two limits will differ.
Indeed, if we assume that g = 0 and we first take the ϵ → 0 limit (LHS in Eq. (83)), we get
that the mean value of the order parameter has to be computed over the |S1〉 state, giving 1
as a result. Taking the N →∞ limit first (RHS of Eq. (83)), the state

|S2〉
′ =

 

(N−1)/2
∏

j=1

b†
2 j−1c†

2 j

!

b†
N |0〉 , (84)

which for ϵ = 0 is an excited state, becomes the lowest one in energy: the mean value of the
order parameter over this state yields ω as a result. The explicit calculations are reported in
appendix D. However, we remark that upon restriction to the subspace with N̂ j = 1– a choice
which is consistent with the dynamical evolution of the system –our mapping becomes exact
and bijective. Therefore all the discussions and results reported in [52] hold in our fermionic
representation as well, and we refer the interested reader to the work of Hu and Watanabe for
more details.

In the end, by virtue of our mapping, we were able to take off from a clock-spin model
exhibiting SSB with non conventional features and land on a fermionic model manifesting
similar behaviour. Interestingly, chains of interacting fermions like the one described by the
Hamiltonian in Eq. (79) can be effectively simulated on quantum computers [58].

6 Discussion and outlook

In the present work, we have shown an exact mapping between clock-spin and fermionic par-
tition functions. The mapping is based on an extension of the Fedotov-Popov theory to clock-
spins. In particular, we have mapped a generic n-th order clock-spin model onto a fermionic
counterpart in a local way: this is done by associating n fermions to each lattice site and identi-
fying a portion of the fermionic Hilbert-space, dubbed as physical, with the clock-spin Hilbert-
space. The clock-spin operators are then mapped onto local combinations of the fermionic
creation and destruction operators, in such a way that they act on the physical states just as
the original clock-spin operators act on the corresponding clock-spin states, while yielding
zero when acting on the other– unphysical –states. In order to avoid contributions from the
unphysical states in the computation of the fermionic partition function, a suitable imaginary
interaction term is added to the mapped fermionic Hamiltonian. Most notably, in particular
for mimicking clock-spin models on quantum simulators, such imaginary interaction terms are
not necessary if the simulator has a fixed number of fermions per site. We finally prove that
the resulting fermionic non-Hermitian model has the same partition function as the original
clock-spin one.

We have explicitly derived two distinct mappings, both sharing the general properties just
recalled, but differing among each other for the choice of the physical subspace. We have
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shown that the identification of the physical sector is a crucial step in the development of
the mapping, with the two possibilities assessed leading to two mappings with quite different
properties. In particular, for the version of the mapping with doubled physical subspace we
have derived a general expression for the imaginary interaction term, valid for any odd clock-
spin order. For both the versions we have investigated explicit examples, where, interestingly,
in the case of clock-spins of order n= 3 with the second version of the mapping the imaginary
interaction term can be taken simply proportional to the number operator.

These results are particularly relevant for numerical computation, since they allow the
use of various numerical tools for computing fermionic correlation functions in the study of
clock-spin models. Moreover, in one dimension, they allow to use the substantial literature
about bosonization of fermionic systems to assess the low energy physics of clock-spin models.
Finally, as we have shown in Sec. 5, the mapping can also be used to conceive new inter-
esting fermionic models with peculiar features starting from their already known clock-spin
counterparts, or vice versa.

As a perspective of our work, we point out that the mapping can be seen as a first step for
a more ambitious result: it is well known that parafermionic models are related to clock-spin
ones, into which they can be mapped via a non-local transformation akin to Jordan-Wigner.
Up to date, a truly local mapping on the level of operators from parafermions to fermions has
not been achieved yet, despite attempts in this direction [32]. The present work constitutes
the first half of the bridge that needs to be built in order to locally connect parafermions to
(non-Hermitian) fermions.

Acknowledgments

Funding information N.T.Z. acknowledges the funding through the NextGenerationEu Cu-
riosity Driven Project “Understanding even-odd criticality”. C.F. acknowledges support from
the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation program (grant agreements No. 679722 and No. 101001902)

A Computation of the trace

In this appendix we give a proof of Eq. (11). Let us first consider an operator e(A+B) with
A =

∑

i j Ai
1 ⊗ Aj

2 and B = I⊗ B2, and a state |s〉 = |s1〉 ⊗ |s2〉 such that Ai
1 |s1〉 = 0 for every i.

Then one has that

e(A+B) |s〉=
∑

l

(A+ B)l

l!
|s〉=

∑

l

Bl

l!
|s〉= eB |s〉 . (A.1)

Indeed, for any positive integer m,

ABm |s〉=
∑

i j

Ai
1 ⊗ Aj

2Bm
2 |s1〉 ⊗ |s2〉=

∑

i j

Ai
1 |s1〉
︸ ︷︷ ︸

0

⊗Aj
2Bm

2 |s2〉= 0 . (A.2)

We now add a third operator, defined as C = C1 ⊗ I, with the property C1 |s1〉 = α1 |s1〉. C
does not necessarily commute with A, but it commutes with B. Thus, any term of the Taylor
expansion of exp(A+ B + C) presenting the B or C operators at the right of an A operator can
be rewritten as some string of powers of A, B and C , times a term ABmCk, for some integers
m and k. Moreover

ABmCk |s〉=
∑

i j

Ai
1Ck

1 |s1〉 ⊗ Aj
2Bm

2 |s2〉= αk
1

∑

i j

Ai
1 |s1〉 ⊗ Aj

2Bm
2 |s2〉= 0 . (A.3)
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In light of this, we have

e(A+B+C) |s〉=
∑

l

(A+ B + C)l

l!
|s〉=

∑

l

(B + C)l

l!
|s〉= eB+C |s〉= eBeC |s〉 , (A.4)

where the last equivalence is due to the fact that [B, C] = 0. As claimed in the main text, this
proves Eq. (11). It is sufficient to make the following identifications in order to get the thesis:
|s〉= |unphi〉 ⊗ j ̸=i |si〉, A= HFi

, B = H ′Fi
+O′Fi

and C = OFi
.

B Derivation of the OF operator in the n= 4 case

We focus on deriving the form of the operator O(4)F on a single site, being the extension to
the whole lattice trivial. By doing so, we can omit the lattice site index. The most general
operator that one can build satisfying the condition stated in the main text (which include
symmetry under the exchange of fermionic operators) has the following form, at least up to a
term proportional to the identity

O(4)F =
π

β

�

α(a†a+ b† b+ c†c + d†d)

+η(a†ab† b+ a†ac†c + a†ad†d + b† bc†c + b† bd†d + c†cd†d)

+ γ(a†ab† bc†c + a†ab† bd†d + a†ac†cd†d + b† bc†cd†d)

+ δa†ab† bc†cd†d
�

,

(B.1)

with α, η, γ and δ real coefficients. To determine the appropriate values for the parameters, it
is useful to build a table that reports the eigenvalues of O(4)F on each eigenstate of the number

operator. Recall that, by construction, O(4)F is degenerate over the subspaces with fixed N̂ .
From Tab. 1 it is straightforward to see that two of the (many) possible combinations of

the parameters yielding the desired phases are

(α,η,γ,δ) = (1, 1,0,0) , (B.2)

(α,η,γ,δ) = (0, 1,1,0) . (B.3)

Table 1: Result of the action of the single-site O(4)F operator on the unphysical states.
The eigenvalue λs is defined by OF |s〉 = λs |s〉, |s〉 being on each line the indicated
unphysical state. On the last column are reported the desired phases, as discussed in
the main text.

|s〉 λs ϕ

N̂ = 0 |0, 0,0, 0〉 0 2kπ
N̂ = 2 |1, 1,0, 0〉 , . . . π

β [2α+η] (2k+ 1)π
N̂ = 3 |1, 1,1, 0〉 , . . . π

β [3α+ 3η+ γ] 2kπ
N̂ = 4 |1, 1,1, 1〉 π

β [4α+ 6η+ 4γ+δ] 2kπ

C Proof of commutation

Let us consider the case in which n is odd and we choose to pick as physical both the states
with occupation number N̂i = 1 and N̂i = n − 1. Once the imaginary potential is chosen in
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such a way that the trace over the unphysical states does not give a contribution to the final
result, one is left with having to compute

Trphys e−β
�

H(n)F +iO(n)F

�

,

where |phys〉 = ⊗N
i=1 |physi〉. We now prove that if O(n)Fi

is made of number operators at site i
only and, moreover, is symmetric under the exchange of any of them, then it commutes with
the rest of the Hamiltonian. In particular, the operator in Eq. (62) satisfies these conditions.

The terms in H(n)F involving fermionic operators at site i will be those coming from the
fermionic counterparts of σi and τi . As can be seen from Eq. (55), σ̄i only contains number
operators at site i. Then, if O(n)Fi

satisfies the above assumptions, it is trivial to conclude that

�

σ̄i , O(n)Fi

�

= 0 . (C.1)

On the other hand τ̄i (Eq. (56)) contains the terms f †
i,α+1 fi,α, that may not commute with

O(n)Fi
. However this is not the case, thanks to the requirement that O(n)Fi

be invariant under the
exchange of any two fermionic operators. Indeed, given that

[ f †
i,α+1 fi,α, f †

i,α+1 fi,α+1] = − f †
i,α+1 fi,α , [ f †

i,α+1 fi,α, f †
i,α fi,α] = + f †

i,α+1 fi,α , (C.2)

if to any term in O(n)Fi
containing the product of a certain combination of number operators

at site i, among which there is n̂i,α, corresponds a symmetric one where n̂i,α is replaced by
n̂i,α+1, then their contributions to the commutator with f †

i,α+1 fi,α cancel out. If this happens

for any α ∈ {1, . . . , n}, which is indeed the case if O(n)Fi
is invariant under exchange of any two

fermionic operators, then O(n)Fi
actually commutes with τ̄i as defined in Eq. (54)

�

τ̄i , O(n)Fi

�

= 0 . (C.3)

But then we have that
[HF, OF] = 0 . (C.4)

In light of this we can factorize e−β(H
(n)
F +iO(n)F ) = e−βH(n)F e−iβO(n)F .

D Explicit proof of SSB

We discuss in two separate subsections the even and odd N cases.

D.1 N even

For g = 0, upon restriction to the N̂ j = 1 subspace, the three degenerate ground states of the
Hamiltonian in Eq. (79) are

|S1〉=
N
∏

j=1

a†
j |0〉 , |S2〉=

N/2
∏

j=1

b†
2 j−1c†

2 j |0〉 , |S3〉=
N/2
∏

j=1

c†
2 j−1 b†

2 j |0〉 . (D.1)

One can readily check that the action of the Hamiltonian on these states gives
E1 = E2 = E3 = −N . Following [52], we introduce the order parameter

ẑ =
1
N

N
∑

j=1

σ̃
(−1) j−1

A j
=

1
N
(σ̃A1

+ σ̃†
A2
+ . . . σ̃AN−1

+ σ̃†
AN
) , (D.2)
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and the symmetry breaking field

V (ϵ) = −
1
2
ϵN(ω−1ẑ + h.c.) , (D.3)

which commutes with H(g = 0). Then we have

ẑ |S1〉= 1 |S1〉 , (D.4)

ẑ |S2〉=ω |S2〉 , (D.5)

ẑ |S3〉=ω2 |S3〉 , (D.6)

and, as a consequence

[H(g = 0) + V ] |S1〉= [−N − Nϵ cos(ω)] |S1〉 , (D.7)

[H(g = 0) + V ] |S2〉=
�

−N −
Nϵ
2
(ω−1ω+ h.c.)

�

|S2〉= [−N − Nϵ] |S2〉 , (D.8)

[H(g = 0) + V ] |S3〉= [−N − Nϵ cos(ω)] |S3〉 . (D.9)

So the symmetry breaking (SB) field selects the ground state |S2〉. Thus the large system size
limit and vanishing field limit of the order parameter cannot commute. Explicitly,

lim
N→∞

lim
ϵ→0+
〈Ψ0(ϵ)|ẑ|Ψ0(ϵ)〉= 0 , (D.10)

lim
ϵ→0+

lim
N→∞
〈Ψ0(ϵ)|ẑ|Ψ0(ϵ)〉=ω , (D.11)

where |Ψ0(ϵ)〉 is the ground state of the Hamiltonian given by HF+V (ϵ). The first limit is zero
because for ϵ = 0 and g ≪ 1 the ground state is a symmetric combination of the three above
(Ψ0(0)∝ (|S1〉+ |S2〉+ |S3〉)), and 1+ω+ω2 = 0 since ω = exp(i2π/3). The second one is
ω because for ϵ ̸= 0 (and g = 0) the SB field selects the ground state |S2〉.

D.2 N odd

For g = 0, upon restriction to the N̂ j = 1 subspace the ground state is unique

|S1〉
′ =

N
∏

j=1

a†
j |0〉 . (D.12)

And its energy is E′1 = −N . The states corresponding to |S2〉 and |S3〉, that we denote here
with a prime, are given by

|S2〉
′ =

 

(N−1)/2
∏

j=1

b†
2 j−1c†

2 j

!

b†
N |0〉 , |S3〉

′ =

 

(N−1)/2
∏

j=1

c†
2 j−1 b†

2 j

!

c†
N |0〉 . (D.13)

These are now excited states, with energy E′2 = E′3 = −(N −1)+ 1
2 = −N + 3

2 . So the gap with
respect to the ground state |S1〉

′ is∆= 3
2 . The order parameter is defined similarly to the even

case

ẑ =
1
N

N
∑

j=1

σ̃
(−1) j−1

A j
=

1
N
(σ̃A1

+ σ̃†
A2
+ . . . σ̃AN−2

+ σ̃†
AN−1
+ σ̃AN

) , (D.14)

so that again we get

ẑ |S1〉
′ = 1 |S1〉

′ , (D.15)

ẑ |S2〉
′ =ω |S2〉

′ , (D.16)

ẑ |S3〉
′ =ω2 |S3〉

′ . (D.17)
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Then, introducing the same SB field as before

V (ϵ) = −
1
2
ϵN(ω−1ẑ + h.c.) , (D.18)

one has

[H(g = 0) + V ] |S1〉
′ = [−N − Nϵ cos(ω)] |S1〉

′ , (D.19)

[H(g = 0) + V ] |S2〉
′ = [−N +

3
2
− Nϵ] |S2〉

′ , (D.20)

[H(g = 0) + V ] |S3〉
′ = [−N +

3
2
− Nϵ cos(ω)] |S3〉

′ . (D.21)

Then E′1(ϵ)− E′2(ϵ) = −
3
2 +Nϵ(1− cosω), which is positive for fixed ϵ and N →∞. Then the

SB field selects a different ground state in the odd case as well. Thus, the large system size
limit and vanishing field limit of the order parameter cannot commute, despite the fact that
the ground state is unique.

Explicitly,

lim
N→∞

lim
ϵ→0+
〈Ψ0(ϵ)|ẑ|Ψ0(ϵ)〉= 1 , (D.22)

lim
ϵ→0+

lim
N→∞
〈Ψ0(ϵ)|ẑ|Ψ0(ϵ)〉=ω , (D.23)

where |Ψ0(ϵ)〉 is the ground state of the Hamiltonian given by HF + V (ϵ). The first limit is 1
because for ϵ = 0 (and g = 0) the ground state is |S1〉

′. The second one isω because for ϵ ̸= 0
(and g = 0) the SB field selects as ground state the state |S2〉

′.
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