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Abstract

We present a theoretical analysis of a non-equilibrium dynamics in a model system con-
sisting of two particles which move randomly on a plane. The two particles interact via a
harmonic potential, experience their own (independent from each other) noises charac-
terized by two different temperatures T1 and T2, and each particle is being held by its own
optical tweezer. Such a system with two particles coupled by hydrodynamic interactions
was previously realised experimentally in Bérut et al. [EPL 107, 60004 (2014)], and the
difference between two temperatures has been achieved by exerting an additional noise
on either of the tweezers. Framing the dynamics in terms of two coupled over-damped
Langevin equations, we show that the system reaches a non-equilibrium steady-state
with non-zero (for T1 ̸= T2) probability currents that possess non-zero curls. As a con-
sequence, in this system the particles are continuously spinning around their centers of
mass in a completely synchronized way - the curls of currents at the instantaneous po-
sitions of two particles have the same magnitude and sign. Moreover, we demonstrate
that the components of currents of two particles are strongly correlated and undergo a
rotational motion along closed elliptic orbits.
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1 Introduction

Within the recent years there was much interest in stochastic dynamics of out-of-equilibrium
multicomponent systems, different components of which are connected to thermostats kept at
different temperatures. On the theoretical side, several minimalistic (albeit experimentally-
realisable) models have been worked out, providing deep insights into the general aspects
of an emerging non-trivial and sometimes even a counterintuitive dynamical behavior. Such
models were also used as a framework for checking the validity of various fluctuation relations
and theorems [1–8] and also for justifying the notion of effective temperatures [8, 9]. A few
stray examples are the Brownian gyrator model [10, 11] and its various generalizations [12–
23], models of interacting particles connected to different heat baths [24, 25], models of the
directional influence between cellular processes [26], coupled Kuramoto oscillators kept at
different temperatures [27], bead-spring models [28–30] and the molecular “spinning tops”
in two-dimensional systems [31]. A common feature of several of these theoretical models is
that they exhibit a motor effect, in the form of particle translational or rotational motion, as a
consequence of both the broken spatial symmetry and the lack of thermal equilibrium.

On the experimental side, the behavior predicted by the theoretical analysis of the Brown-
ian gyrator model has been validated experimentally. It was done by either constructing equiv-
alent electric circuits [13,14], or by studying directly the dynamics of a Brownian colloidal par-
ticle that is optically trapped in an elliptical potential well and is simultaneously coupled to two
heat baths kept at different temperatures acting along perpendicular directions [32]. Similarly,
such out-of-equilibrium systems were experimentally realised in a single-electron box consist-
ing of two islands with a tunnel junction [33] and with two optically-trapped viscously coupled
particles, in contact with two effective baths maintained at different temperatures [34,35].

The experimental set-up in [34,35] consists of a disc-shaped cell (with 18 mm in diameter
and 1mm in depth) in which there are two suspended micrometer-sized beads - 1 and 2 - that
are confined by optical tweezers centered at two distinct spatial positions (see also [36] for a
similar set-up) at distance 15µm above the lower surface of the cell and some distance 2x0
apart of each other. The two beads are experiencing two different effective temperatures - T1
and T2, respectively: this crucial condition is experimentally realised in [34, 35] by adding a
Gaussian white noise to the position of either of the tweezers. As shown in [34], once the
amplitude of the displacement is sufficiently small to ensure the validity of a linear regime,
such an additional random force does not affect the stiffness of the tweezer (which therefore
remains constant) but merely increases the effective temperature. Lastly, in such a set-up the
beads are hydrodynamically coupled to each other; that being, they interact between them-
selves through the motion of a surrounding viscous fluid. Formulating the model in terms of
coupled Langevin equations for the positions of the beads and introducing the forces through
the Rotne-Prager diffusion tensor, it was demonstrated in [34,35] (see also the earlier [36] for
the analysis in the T1 = T2 case) that the inter-bead interaction is elastic, i.e., is a quadratic
function of the instantaneous distance between the beads, and the proportionally factor in
this function is dependent in the leading order only on the fixed distance 2x0 between the
centers of the optical traps. A comparison of the solutions against an experimental data has
shown that such an approximation is quite accurate. Clearly enough, this picture is only valid
for sufficiently stiff traps such that the beads do not travel far away from the centers of their
respective optical traps. For “loose” traps this is not the case, and this is not the case either in
situations when the distance 2x0 becomes large and the beads get effectively decoupled from
each other.

The theoretical analysis in [34, 35] focused on the behavior of the effective heat fluxes
between the two beads in the out-of-equilibrium state with T1 ̸= T2. It was demonstrated
that these fluxes obey an exchange fluctuation theorem in the stationary state and moreover,
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the total hot-cold flux satisfies a transient exchange fluctuation theorem at any time, while the
total cold-hot flux obeys this theorem only at large enough times. However, these conceptually
important results were derived under an assumption that the stochastic dynamics of the two
particles can be viewed as an effectively one-dimensional process that evolves along the line
connecting the centers of two optical traps. Within such an assumption, the model becomes
mathematically equivalent to the bead-spring model considered in [28, 29] or the Brownian
gyrator model with an external forcing [19, 37]. Then, a legitimate question is whether due
to such a restriction some remarkable features of the dynamical behavior are overlooked.

In the present paper, motivated in part by the “spinning tops” model put forth in our recent
paper [31], we revisit the dynamical behavior in the system considered in [34, 35], allowing
now the beads to move on a plane, which is somewhat closer to the actual geometrical set-up.
Apart from the additional spatial dimension, our model here remains essentially the same as
the one formulated in [34,35]: Each bead it optically trapped by its tweezer and the tempera-
tures T1 and T2 at which the particles live are not equal to each other. We proceed to show that
the dynamical behavior is indeed much more complex than in the 1D case: In fact, it appears
that the two beads undergo a completely synchronized spinning around their centers of mass
due to a systematic torque exerted on the particles. The term “completely synchronized” here
means that not only the sign but also the magnitude of the curls of currents at the instan-
taneous positions (x1, y1) and (x2, y2) of the two particles on a plane are exactly the same.
Moreover, examining the behavior of currents in a four-dimensional space (x1, x2, y1, y2), we
present an evidence that the components of the currents of two particles are correlated and
perform a rotational motion along closed elliptic orbits, which behavior resembles the dynam-
ics of a Brownian gyrator [10–23]. We stress that here, however, such a dynamical behavior
is observed for the like components of currents of the two particles (i.e., for the components
x1 and x2, or y1 and y2), such that no net rotation of particles themselves around the origin
or the centers of the traps takes place.

The paper is organized as follows: we introduce the model in section 2. Analytical expres-
sions for the position probability density function and the probability currents in the steady-
state are derived in section 3. The synchronized spinning motion of the two particles is dis-
cussed in section 4. The results of this section in the limit of a vanishingly small coupling
parameter, in which limit they attain a very compact form, are presented in Appendix A. Fur-
ther on, the section 5 presents an analysis of the correlated behavior of currents in a four-
dimensional space. We finally conclude in section 6 with a brief recapitulation of our results.

2 The model

Consider a two-dimensional system with two particles - 1 and 2, which are respectively con-
fined by two optical tweezers centered at two distinct positions. Without a lack of generality,
we assume that the centers of the traps are located on the x-axis. We denote the positions of
the centers of optical traps by vectors −r = (−x0, 0) and r = (x0, 0), which are both defined
relative to the origin of the plane, and hence, the distance between the centers of the traps is
fixed and equal to 2x0. In turn, the instantaneous positions of particles are specified by vec-
tors z1 = (x1, y1) and z2 = (x2, y2), which are defined in the frames of reference centered at
positions of the optical traps. According to such a definition, these vectors therefore determine
the displacements of respective particles from the centers of two potential wells.

As shown in [34, 35], in realistic physical systems containing a solvent, the particles 1
and 2 are hydrodynamically coupled to each other - they interact through the motion of a
surrounding viscous fluid. If the particles are sufficiently close to each other, the interaction
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Figure 1: A geometrical set-up of the two-dimensional model under study. Filled
(blue) circles denote the particles 1 and 2. The vectors r and−r determine the centers
of the fixed optical traps, while the vectors z1 and z2 show the instantaneous positions
of the two particles on the (x , y)-plane, relative to the centers of their respective
traps. The distance between the centers of the traps is fixed and equal to 2x0.

potential U(ρ) is a quadratic function of the inter-particle distance ρ = |z1 − z2 + 2r|,

U(ρ) =
u
2
ρ2 , (1)

where u is the constant coupling parameter (see [34, 35]). Lastly, due to the tweezers, the
particles are confined by the potential wells such that the overall potential energy H(z1,z2) is
given by

H
�

z1,z2

�

=
1
2
γz2

1 +
1
2
γz2

2 +
1
2

u
�

z1 − z2 + 2r
�2

, (2)

where the constant parameter γ > 0 defines the stiffness of the tweezers. We stress that in
the physical situation considered in [34,35] the form in Eq. (1) and hence, the total potential
energy defined in Eq. (2), are only valid for sufficiently small values of x0. For larger value of
x0 the hydrodynamic coupling between the particles vanishes and hence, Eq. (1) is no longer
valid. Moreover, the parameter γ should be sufficiently large such that the excursions of both
particles away from the centers of their respective traps should be small, in order to ensure the
validity of the form in Eq. (1). Having in mind these restrictions, we provide in what follows
a formal solution of the model in Eq. (2) for arbitrary values of γ > 0 and arbitrary values
of u, which may also attain negative values such that u > −γ/2. The meaning of the latter
inequality will be made clear below.

We define next the dynamics of our model. Expanding the right-hand-side of Eq. (2) and
dropping the constant term, which is irrelevant for the further analysis, we rewrite the total
potential energy as

H
�

z1,z2

�

=
1
2
κz2

1 +
1
2
κz2

2 − u (z1 · z2) − 2u (r · z1) + 2u (r · z2) , (3)

where the parameter κ = γ+ u and ( · ) denotes the scalar product. Then, we stipulate that
the deviations z1 and z2 of the particles positions from the centers of their respective traps
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obey a pair of coupled over-damped Langevin equations:

d
d t

z1(t) = −∇1H
�

z1,z2

�

+ ξ1(t) ,

(4)

d
d t

z2(t) = −∇2H
�

z1,z2

�

+ ξ2(t) ,

in which the symbols ∇i denote the gradient operators while the vectors
ξi = (ξ

x
i , ξy

i ) , (i = 1, 2) stand for statistically-independent thermal noises, with zero mean
and the correlation function

〈ξαi (t)ξ
β
j (t
′)〉 = 2Ti δαβ δi j δ(t − t ′) , (5)

where T1 and T2 are the temperatures at which the particles 1 and 2 live. In the general case,
T1 ̸= T2, meaning that there is no unique temperature characterising the system and hence, the
system does not converge to thermal equilibrium in the limit t →∞. We concentrate in what
follows precisely on this out-of-equilibrium case seeking its consequences on the behavior of
some observable properties.

3 Solution in the steady-state

Let Pt

�

z1,z2

�

denote the position probability density function at time t and P
�

z1,z2

�

stand for
its limiting form attained when t →∞. In this limit, the Fokker-Planck equation associated
with the Langevin equations (4) has the form

0=∇1

�

T1∇1P
�

z1,z2

�

+ P
�

z1,z2

�

∇1H
�

z1,z2

�

�

+ ∇2

�

T2∇2P
�

z1,z2

�

+ P
�

z1,z2

�

∇2H
�

z1,z2

�

�

.
(6)

Introducing the probability currents

j1
�

z1,z2

�

= T1∇1P
�

z1,z2

�

+ P
�

z1,z2

�

∇1H
�

z1,z2

�

,

(7)

j2
�

z1,z2

�

= T2∇1P
�

z1,z2

�

+ P
�

z1,z2

�

∇2H
�

z1,z2

�

,

one can conveniently rewrite the above Fokker-Planck equation (6) as

∇1 j1
�

z1,z2

�

+ ∇2 j2
�

z1,z2

�

= 0 , (8)

which implies that the total current is conserved.
Because the total potential energy in Eq. (3) is the quadratic function of the particles’

positions, the solution is evidently a Gaussian function of the form

P
�

z1,z2

�

= Z−1 exp
�

−
1
2
κAz2

1 −
1
2
κB z2

2 + uC (z1 · z2) + 2uD (r · z1) − 2uE(r · z2)
�

, (9)

where Z is a normalization constant,

Z =

∫ ∫

dz1 dz2 exp
�

−
1
2
κAz2

1 −
1
2
κB z2

2 + uC (z1 · z2) + 2uD(r · z1) − 2uE(r · z2)
�

=
4π2

ABκ2 − C2u2
exp

�

2x2
0u2(κ(AE2 + BD2)− 2uC DE)

ABκ2 − C2u2

�

, (10)
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and the coefficients A, B, C , D and E are to be defined. In order to determine the unknown
coefficients, we first substitute Eqs. (9) and (3) into Eqs. (7), to get the following expressions
for the currents

j1
�

z1,z2

�

=
�

κ
�

1− AT1

�

z1 + u
�

C T1 − 1
�

z2 + 2u
�

DT1 − 1
�

r
�

P
�

z1,z2

�

, (11)

j2
�

z1,z2

�

=
�

κ
�

1− BT2

�

z2 + u
�

C T2 − 1
�

z1 − 2u
�

ET2 − 1
�

r
�

P
�

z1,z2

�

. (12)

Inserting next the above expressions into the Fokker-Planck equation (8), we obtain six equa-
tions for five unknown coefficients A, B, C , D and E:

A(1− AT1)−
u2

κ2
C(C T2 − 1) = 0 , (13)

B(1− BT2)−
u2

κ2
C(C T1 − 1) = 0 , (14)

A(1− 2C T1) + B(1− 2C T2) = −2C , (15)
u
κ
(E + C(1− 2ET2)) + (A+ D− 2ADT1) = 0 , (16)

u
κ
(D+ C(1− 2DT1)) + (B + E − 2BET2) = 0 , (17)

κ(1− AT1) + κ(1− BT2) + 2
u2 x2

0

κ
(D(DT1 − 1) + E(ET2 − 1)) = 0 . (18)

From Eqs. (13) to (15), we readily find that A, B, and C obey

A=
1
T1
+

u2(T2
1 − T2

2 )

(4κ2T1T2 + u2(T1 − T2)2)T1
, (19)

B =
1
T2
−

u2(T2
1 − T2

2 )

(4κ2T1T2 + u2(T1 − T2)2)T2
, (20)

C =
2κ2(T1 + T2)

4κ2T1T2 + u2(T1 − T2)2
. (21)

Then, Eqs. (16) and (17) give

D =
4κ2T2 + 2κu(T1 − T2)

4κ2T1T2 + u2(T1 − T2)2
, (22)

E =
4κ2T1 + 2κu(T2 − T1)

4κ2T1T2 + u2(T1 − T2)2
. (23)

Note that for the above solution the Eq. (18) holds as an identity, so that the system of equa-
tions (13) to (18) is not overdetermined, and also that the coefficients are actually independent
of the distance 2x0 between the centers of the optical traps, which enters only in Eq. (18).

We are now equipped with all necessary ingredients to find explicit expressions for the
normalisation Z and the probability currents. Inserting Eqs. (19) to (23) into Eq. (10), we
have

Z =
π2((T2 − T1)2u2 + 4T1T2κ

2)
κ4 −κ2u2

exp

�

8x2
0(T1 + T2)u2κ2

(u+ κ)((T2 − T1)2u2 + 4T1T2κ2)

�

. (24)

Note that the normalization constant Z , Eq. (24), is bounded when γ > 0 and positive
whenever κ2 > u2, in which case the system is stable. The latter inequality is realised when
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u> −γ/2, (recall that κ= u+γ), which explains the above imposed constraint (see the para-
graph below Eq. (2)). Note, as well, that the parameter u can therefore be negative meaning
that our analysis is also valid for the systems in which the particles (sufficiently weakly) repel
each other. In turn, the probability currents are given explicitly by

j1
�

z1,z2

�

=
u(T2 − T1)P
�

z1,z2

�

4κ2T1T2 + u2(T1 − T2)2

×
�

κu(T1 + T2)z1 − ((T2 − T1)u
2 + 2κ2T1)z2 + 2((T2 − T1)u

2 + 2uκT1) r
�

,

j2
�

z1,z2

�

=
u(T1 − T2)P
�

z1,z2

�

4κ2T1T2 + u2(T1 − T2)2

×
�

κu(T1 + T2)z2 − ((T1 − T2)u
2 + 2κ2T2)z1 + 2((T1 − T2)u

2 + 2uκT2) r
�

.

(25)

Therefore, in out-of-equilibrium conditions (i.e. for T1 ̸= T2), and also for a non-zero
coupling between the two particles (i.e. when u ̸= 0), there exist non-vanishing probability
currents in the steady-state. Below we discuss some remarkable features of the dynamical
behavior, which originate from this latter circumstance.

4 Synchronous spinning of particles

Our aim now is to demonstrate that the probability currents possess a non-zero curl, i.e.,
the velocity field undergoes a circulation. The curls S1(z1,z2) and S2(z1,z2) are formally
defined as the circulation density at “point” (z1,z2) of the field, i.e., S1(z1,z2) = (∇1 × j1) · k̂
and S2(z1,z2) = (∇2 × j2) · k̂, where k̂ is the unit vector in the direction orthogonal to the
(x , y)-plane and the symbol ( × ) denotes the vector product. Taking advantage of the above
equations (25), we readily find that the curls are given explicitly by

S1

�

z1,z2

�

=
2uλκ(T1 − T2) [2x0u(y1 + y2) + (x2 y1 − x1 y2)(u+ κ)]

(T1 − T2)2u2 + 4T1T2κ2
P
�

z1,z2

�

, (26)

and

S2

�

z1,z2

�

=
2uλκ(T1 − T2) [2x0u(y1 + y2) + (x2 y1 − x1 y2)(u+κ)]

(T1 − T2)2u2 + 4T1T2κ2
P
�

z1,z2

�

. (27)

Remarkably, the curls S1(z1,z2) and S2(z1,z2) are a) both non-zero in out-of-equilibrium con-
ditions and for u ̸= 0 and moreover, b) are exactly equal to each other at any point (z1,z2).
First, this implies that if the particles were to have a finite-size, the field will create a net torque
on each particle such that it will steadily spin about its center of mass. Second, such a spin-
ning motion of the two particles will be completely synchronized in the sense that both the
sign and the magnitude of the curls S1(z1,z2) and S2(z1,z2) are exactly the same. For u > 0
and T1 > T2, the curls will be positive if the coordinates of particles’ displacements from the
centers of the optical traps obey

2x0u(y1 + y2) + (x2 y1 − x1 y2)(u+ κ)> 0 , (28)

and will be less than zero, otherwise. When Eq. (28) becomes an equality, the curls vanish
such that the spinning motion stops. This happens, in particular, when both particles appear
at the centers of their respective optical traps.
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The curl of either of the currents, e.g., of j1
�

z1,z2

�

, integrated over all possible positions
of either of the particles vanishes, i. e.,

∫

dz1 S1

�

z1,z2

�

=

∫

dz2 S1

�

z1,z2

�

= 0 . (29)

By symmetry, the same is true for S2

�

z1,z2

�

. It seems interesting, however, to determine a
property which does not vanish when it is integrated over positions of the particles. To this
end, we consider the absolute values of the curls integrated over all possible positions of one
of the particles with the second one being fixed at the center of the optical trap:

〈|S1|〉=
∫

dz2|S1(0,z2)| ,

〈|S2|〉=
∫

dz1|S1(z1, 0)| .
(30)

Inserting our expressions (26) and (27) into Eqs. (30) and performing the integrations, we
find after some algebra

〈|S1|〉=
4κ(γ+ 2u)x0u2γ2|(T2 − T1)|

π3/2σ3
1

√

√ (u+ γ)
(T1 + T2)2u2 + 8T1T2uγ+ 4T1T2γ2

× exp

�

−4(u+ γ)γx2
0u2

(γ+ 2u)σ2
1

�

,

〈|S2|〉=
4κ(γ+ 2u)x0u2γ2|(T2 − T1)|

π3/2σ3
2

√

√ (u+ γ)
(T1 + T2)2u2 + 8T1T2uγ+ 4T1T2γ2

× exp

�

−4(u+ γ)γx2
0u2

(γ+ 2u)σ2
2

�

,

(31)

where we have used the shortened notations

σ2
1 ≡ (T1 + T2)u

2 + 4T1uγ+ 2T1γ
2 , (32)

σ2
2 ≡ (T1 + T2)u

2 + 4T2uγ+ 2T2γ
2 . (33)

Hence, the integrated absolute values of the curls 〈|S1|〉 and 〈|S2|〉 do not vanish when the
product x0u(T2−T1) ̸= 0. This occurs when the following three conditions are simultaneously
met: the temperatures are different, the coupling between particles and also the distance
between the two optical centers are not equal to zero. The non zero values of 〈|S1|〉 and 〈|S2|〉
imply that there exists a synchronized motion of particles in the stationary state.

It may be also instructive to consider the ratio of 〈|S1|〉 and 〈|S2|〉. From Eqs. (31) we find

〈S1〉
〈S2〉

= exp

�

8κx2
0λ

2u2(T1 − T2)

4κ4T1T2 − u4(T1 − T2)2 +κ2u2(T1 − T2)2

��

�

�

�

u2(T2 − T1) + 2κ2T2

u2(T1 − T2)− 2κ2T1

�

�

�

�

3/2

. (34)

Expanding the latter expression in powers of the coupling parameter u, we have

〈|S1|〉
〈|S2|〉

=
�

T2

T1

�3/2

+
u2

4κ2

(T1 − T2)
T1T2

�

T2

T1

�3/2
�

8κx2
0 + 3T1 + 3T2

�

+O
�

u3
�

, (35)

where the symbol O
�

u3
�

signifies that the omitted correction terms are proportional to u3.
Equation (35) implies that 〈|S1|〉 and 〈|S2|〉 can be disproportionally different, if the tempera-
tures are very different. In particular, 〈|S1|〉 can be much larger than 〈|S2|〉 if T2≪ T1.
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Figure 2: Streamplots of the probability currents j1

�

(x ′1, y1),z2 = 0
�

(left panel)
- a vector with components j1,x

�

(x ′1, y1), (0, 0)
�

and j1,y

�

(x ′1, y1), (0, 0)
�

, and
j2
�

z1 = 0, (x′2,y2)
�

(right panel) - a vector with components j2,x

�

(0,0), (x ′2, y2)
�

and
j2,y

�

(0,0), (x ′2, y2)
�

. Here, x ′1 = x1 − x0 and x ′2 = x2 + x0 are the x-coordinates in
the laboratory reference frame (see Fig. 1). The values of the parameters are: γ= 1,
u= 1/2, x0 = 1, T1 = 1 and T2 = 2.

5 Correlated behavior of currents

In this section we discuss an emerging cooperative behavior of the probability currents defined
in Eqs. (25). To this end, we study the correlations between the components of the probability
currents in a four-dimensional space (x1, x2, y1, y2), accessing them via the streamplots of the
projections on different planes.

Figure 2 shows streamplots of the currents j1
�

(x1, y1),z2 = 0
�

, i.e., the current associ-
ated with the particle 1 with the particle 2 being fixed at the center of its optical trap, and
j2
�

z1 = 0, (x2, y2)) - the current associated with particle 2 with the particle 1 being fixed at
the center of its trap. In this and the subsequent figure we choose the following values of the
parameters: γ = 1, u = 1/2, x0 = 1, T1 = 1 and T2 = 2. We observe that the streamplot
of j1
�

(x1, y1),z2 = 0) consists of curves which travel from infinity to some fixed point, while
the one for j2
�

z1 = 0, (x2, y2)) consists of curves which starts from some point and travel to
infinity. In both cases the curves are not closed, as it happens for the Brownian gyrator (see
e.g. [19]); the reason for such a behavior is that both components of each current are living
at the same temperature.

We consider next the behavior of the x-components of the two currents, which are subject
to two different temperatures, as well as the behavior of the y-components. In the left panel
in Fig. 3 we present a streamplot of the vector with components

�

j1,x

�

z1,z2

�

, j2,x

�

z1,z2

��

.
Observe that the behavior is completely different from the one presented in Fig. 2 - the
x-components of the two currents perform a circulation on the (x1, x2)-plane along closed
elliptic curves. Essentially the same behavior, which reveals an emerging cooperativity, is ex-
hibited by the y-components of the two currents as depicted on the left panel in Fig. 3. This is
precisely what was previously observed for the Brownian gyrator model on a plane with differ-
ent temperatures along the two Cartesian directions. Here, however, neither of the particles
themselves performs a gyration along some point on a plane but rather the components of the
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Figure 3: Streamplots of the vectors

�

j1,x

�

z1,z2

�

, j2,x

�

z1,z2

��

with fixed
y1 = 1, y2 = 2 (left panel), and

�

j1,y

�

z1,z2

�

, j2,y

�

z1,z2

��

with x ′1 = 1, x ′2 = 2 (right
panel), where x ′1 = x1 − x0 and x ′2 = x2 + x0 are the x-coordinates in the absolute
reference frame (see Fig. 1). Here, γ= 1, u= 1/2, x0 = 1, T1 = 1 and T2 = 2.

currents of two particles circulate along closed orbits in a correlated manner.
To further characterise the circulation of the probability currents on the planes (x1, x2) and

(y1, y2), evidenced in Fig. 3, we evaluate below several additional properties. These are a)
the values of the curls of the probability currents at positions of the optical traps, b) the mean
angular momenta and c) the mean angular velocities of the circulation.

a) Consider first the curls of the probability currents on the planes (x1, x2) and (y1, y2)
defined as

Sx

�

z1,z2

�

=
∂

∂ x1
j2,x

�

z1,z2

�

−
∂

∂ x2
j1,x

�

z1,z2

�

, (36)

and

Sy

�

z1,z2

�

=
∂

∂ y1
j2,y

�

z1,z2

�

−
∂

∂ y2
j1,y

�

z1,z2

�

. (37)

Taking advantage of Eqs. (25), we find that the values of these curls at the locations of the
centers of the optical traps are given explicitly by

Sx({0, y1}, {0, y2}) =
2uκ∆(T1 − T2)

((T1 − T2)2u2 + 4T1T2κ2)2
P
�

{0, y1}, {0, y2}
�

,

Sy({x1, 0}, {x2, 0}) =
2uκ2(T2

2 − T2
1 )

(T1 − T2)2u2 + 4T1T2κ2
P
�

{x1, 0}, {x2, 0, }
�

,

(38)

where

∆= 8x2
0(T1 − T2)

2u4 − (T1 − T2)
2u2(T1 + T2 + 16x2

0u)κ

+ 16x2
0(T

2
1 + T2

2 )u
2κ2 − 4T1T2(T1 + T2)κ

3 .
(39)

Note that there is no symmetry between the expressions in the first and the second line in Eqs.
(38), which is due to the fact that the centers of both optical traps are located on the x-axis.
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b) The angular momentum (per unit mass) for the rotation of the probability current on
the (x1, x2)-plane is defined as

Lx1,x2
= x1 j2,x − x2 j1,x , (40)

such that its averaged value is given by




Lx1,x2

�

=

∫ ∫

dz1dz2

�

x1 j2,x − x2 j1,x

�

. (41)

Similarly, the angular momentum for the rotation on the (y1, y2)-plane and its averaged
value follow

L y1,y2
= y1 j2,y − y2 j1,y , (42)

and



L y1,y2

�

=

∫ ∫

dz1dz2

�

y1 j2,y − y2 j1,y

�

. (43)

Using our Eqs. (25) and performing the integrals, we find that the averaged values of the
angular momenta on the (x1, x2) and (y1, y2) are exactly equal to each other and are both
given by a very simple expression




Lx1,x2

�

=



L y1,y2

�

=
u(T2 − T1)

κ
. (44)

The equality of both averaged angular momenta is rather surprising in view of the fact that
the values of the curls on these planes are very different - see Eqs. (38). The averaged angular
momenta defined in Eq. (44) are depicted on the left panel in Fig. 4 as functions of the
coupling parameter u, (recall that κ = u + γ). The prediction in Eq. (44) is confirmed by
numerical simulations by using an Euler-Maruyama method [38] with time step δt = 2×10−3

and the total elapsed time t f = 2000. Each simulation result (given by filled circles in Fig. 4)
is an average performed over 48 to 96 independent runs.

c) Lastly, we calculate the averaged angular velocities



ωx1,x2

�

and



ωy1,y2

�

of circulations
of the probability currents on the planes (x1, x2) and (y1, y2) which are defined as




ωx1,x2

�

=

∫ ∫

dz1dz2

�

x1 j2,x − x2 j1,x

x2
1 + x2

2

�

,




ωy1,y2

�

=

∫ ∫

dz1dz2

�

y1 j y
2 − y2 j y

1

y2
1 + y2

2

�

.

(45)

Performing the integrals, we eventually find




ωx1,x2

�

= u(T2 − T1)

√

√ κ2 − u2

(T1 − T2)2u2 + 4T1T2κ2

× exp

�

−
8x2

0(T1 + T2)u2κ2

(u+κ)((T2 − T1)2u2 + 4T1T2κ2)

�

,




ωy1,y2

�

= u(T2 − T1)

√

√ κ2 − u2

(T1 − T2)2u2 + 4T1T2κ2
.

(46)

Equation (46) implies that the ratio of the averaged angular velocities obeys



ωx1,x2

�




ωy1,y2

� = exp

�

−
8x2

0(T1 + T2)u2κ2

(u+ κ)((T2 − T1)2u2 + 4T1T2κ2)

�

< 1 , (47)
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Figure 4: Left panel: Averaged angular momenta



Lx1,x2

�

and



L y1,y2

�

as functions
of the coupling parameter u. Numerical results are given by the full circles, while the
analytical expression (44) is given by the solid curve. Right panel: Averaged angular
velocities



ωx1,x2

�

and



ωy1,y2

�

as functions of u. Numerical results are denoted by
full circles and the analytical expressions (46) are denoted by solid curves. In both
panels γ= 1, T1 = 1 and T2 = 3.

i.e., this ratio is always less than unity, despite the fact that the averaged angular momenta
and correspondingly, the torques are equal to each other (see Eq. (44)). Consequently, the
averaged angular velocity for the rotations on the (y1, y2)-plane is always greater than the one
for the rotations on the (x1, x2)-plane, for an arbitrary sign of the coupling parameter u.

Overall,



ωy1,y2

�

and



ωx1,x2

�

are non-monotonic functions of the parameter u with a
minimum attained at some u = u∗ < 0. For large positive values of u the behavior of




ωy1,y2

�

and



ωx1,x2

�

is markedly different:



ωy1,y2

�

diverges in proportion to a square-root of u:




ωy1,y2

�

≃
T2 − T1

T2 + T1

p
γu , (48)

while



ωx1,x2

�

attains a maximal value when you u approaches

u=
(T1 − T2)2

8x2
0(T1 + T2)

, (49)

and then decreases exponentially,




ωx1,x2

�

≃
T2 − T1

T2 + T1

p
γu exp

�

−
4x2

0(T1 + T2)u

(T2 − T1)2

�

. (50)

The behavior of



ωy1,y2

�

and



ωx1,x2

�

as functions of u is depicted on the right panel in Fig. 4
together with the results of numerical simulations which confirm our analytical predictions.

6 Conclusion

To conclude, we presented here a detailed theoretical analysis of an out-of-equilibrium dy-
namics of two interacting, randomly moving particles in a two-dimensional system, which
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was realised experimentally in [34, 35]. More specifically, the experimental set-up in these
references consisted of a disc-shaped shallow cell filled with a solvent and containing two
suspended micrometer-sized beads, each being held by its own optical tweezer. One of the
tweezers was subject to an additional, externally-imposed noise such that the particle held by
this very tweezer lived at an effectively different temperature as compared to the other one.
Due to the presence of a solvent, the particles were coupled by hydrodynamic interactions.

References [34, 35] focused on the behavior of the effective heat fluxes between the two
beads in the out-of-equilibrium state with unequal temperatures and developed both experi-
mental and theoretical analyses. On the theoretical side, the dynamics was framed in terms of
two coupled over-damped Langevin equations with effective harmonic interactions between
the particles, the parameters of which were deduced from the Rotne-Prager diffusion tensor.
It was demonstrated that the heat fluxes obey, e.g., an exchange fluctuation theorem which
result was confirmed both experimentally and theoretically, with a very good agreement be-
tween the two approaches. In turn, it proved directly the validity of the theoretical description
based on the Langevin dynamics.

On the other hand, the theoretical analysis in [34, 35] was based on the assumption that
the stochastic dynamics of the two particles can be viewed as an effectively one-dimensional
process that evolves along the line connecting the centers of two tweezers. Here, we addressed
a conceptually important question what physical effects can be potentially overlooked due to
such an assumption. To this end, we formulated and analysed essentially the same model but
with two particles evolving on a plane, which is in fact closer to the actual experimental set-up.

We have shown that, indeed, a reduction of the dynamics to a one-dimension misses some
rather spectacular effects. We demonstrated that in case when the temperatures at which the
particles live are different, the system reaches a steady-state with non-zero probability currents
which possess non-zero curls. As a consequence, in such a system the particles are continuously
spinning around their centers of mass in a completely synchronized way - the curls of currents
at the instantaneous positions of two particles have the same magnitude and sign. Further on,
our analysis revealed emerging correlations between the probability currents. In particular,
we realised that the x- components (and also the y-components) of the currents undergo a
rotational motion along closed elliptic orbits.

Acknowledgments

The authors wish to thank Luca Peliti for many helpful discussions.

A Small coupling limit

In this appendix we focus on the behavior in the limit of a vanishingly small coupling parameter
u, in which case our results attain very simple forms. For u→ 0, Eqs. (11) and (12) become

j1
�

z1,z2

�

≃ u
T1 − T2

2T2
z2 P
�

z1,z2

�

, (A.1)

j2
�

z1,z2

�

≃ u
T2 − T1

2T1
z1 P
�

z1,z2

�

, (A.2)

and the probability density function P
�

z1,z2

�

in Eq. (9) attains the form

P
�

z1,z2

�

≃ Z−1 exp
�

−
γ

2T1
z2

1 −
γ

2T2
z2

2 + u
(T1 + T2)

2T1T2
(z1 · z2) +

2u
T1
(r · z1) −

2u
T2
(r · z2)
�

, (A.3)
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with

Z ≃
4π2T1T2

γ2
. (A.4)

Using Eqs. (A.1) and (A.2), one readily calculates the curls of the probability currents to get

S1

�

z1,z2

�

=∇1 × j1 =
∂

∂ x1
j1,y −

∂

∂ y1
j1,x

= u
T1 − T2

2T2

�

y2
∂

∂ x1
P
�

z1,z2

�

− x2
∂

∂ y1
P
�

z1,z2

�

�

≃ u
T1 − T2

2T1T2

�

2u
�

r× z2

�

− γ
�

z1 × z2

�

�

P
�

z1,z2

�

. (A.5)

The above expression simplifies considerably in case when the particle 1 resides in the center
of its optical trap, i.e. z1 = 0,

S1

�

0,z2

�

≃ u2 (T1 − T2)
T1T2

�

r× z2

�

P
�

0,z2

�

, (A.6)

or explicitly,

S1

�

0,z2

�

≃
u2γ2

4π2

(T1 − T2)
T2

1 T2
2

�

r× z2

�

exp
�

−
γ

2T2
z2

2 −
2u
T2
(r · z2)
�

. (A.7)

Equation (A.7) shows in a transparent way that the curl of the probability vanishes when the
temperatures T1 and T2 are equal to each other, and also when the coupling parameter u or
the stiffness γ of the optical trap are equal to zero.
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