
SciPost Phys. Core 6, 058 (2023)

On the quantum simulation of complex networks

Duarte Magano1,2, João P. Moutinho1,2 and Bruno Coutinho1

1 Instituto de Telecomunicações, Physics of Information and Quantum Technologies Group,
Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal

2 Instituto Superior Técnico, Universidade de Lisboa,
Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Abstract

Quantum walks provide a natural framework to approach graph problems with quantum
computers, exhibiting speedups over their classical counterparts for tasks such as the
search for marked nodes or the prediction of missing links. Continuous-time quantum
walk algorithms assume that we can simulate the dynamics of quantum systems where the
Hamiltonian is given by the adjacency matrix of the graph. It is known that such can be
simulated efficiently if the underlying graph is row-sparse and efficiently row-computable.
While this is sufficient for many applications, it limits the applicability for this class
of algorithms to study real world complex networks, which, among other properties,
are characterized by the existence of a few densely connected nodes, called hubs. In
other words, complex networks are typically not row-sparse, even though the average
connectivity over all nodes can be very small. In this work, we extend the state-of-the-art
results on quantum simulation to graphs that contain a small number of hubs, but that
are otherwise sparse. Hopefully, our results may lead to new applications of quantum
computing to network science.

Copyright D. Magano et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 10-02-2023
Accepted 20-07-2023
Published 24-08-2023

Check for
updates

doi:10.21468/SciPostPhysCore.6.3.058

Contents

1 Introduction 2

2 Summary 3
2.1 Hub-sparse networks 3
2.2 Input model 4
2.3 Main results 5

3 Preliminaries 7
3.1 Block-encodings 7
3.2 Linear combination of unitaries 7
3.3 Fast-forwarding 8
3.4 Hamiltonian simulation in the interaction picture 8
3.5 Amplitude amplification 10

4 Oracle conversions 10

1

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCore.6.3.058&domain=pdf&date_stamp=2023-08-24
https://doi.org/10.21468/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

5 Fast-forwarding hubs 11

6 Hub-sparse networks in the interaction picture 13

7 Discussion 15

A Spectral decomposition of the G matrix 17

B Block-encoding the matrices A−, Ah, and Ar 19

References 23

1 Introduction

A network is a set of distinct interacting elements, often represented as a graph. Such a
general description can be applied to many complex systems from diverse fields such as biology,
medicine, technology, finance, sociology and others [1, 2]. The modeling of such networks
has proven to be of practical interest in understanding these complex systems. To give a
few examples, today’s disease spreading algorithms use social network data to improve their
accuracy [3,4], and the human interactome (the set of all protein-interactions in the human
cell) is a valuable tool in the discovery of new cancer genes [5] and drug combinations [6].
The computational cost of analyzing complex networks is constantly growing, as more data
becomes available and finer details are modeled [7,8]. Considering the number of elements
alone, complex networks with up to billions of nodes appear in different fields, for example, the
neuronal network in the human brain [9] or the World Wide Web [10]. Overall, it is essencial
to develop novel and more efficient algorithms for complex network analysis.

With the first working quantum processors on the horizon, it is fair to wonder what may
be their applications to network science. Quantum computers are already known to have an
advantage over classical ones for a number of graph problems. During the past twenty-five years
quantum algorithms have been put forward for traversing graphs [11,12], computing NAND
trees [13], finding marked nodes in graphs [14,15], solving optimization problems [16,17],
and predicting missing links in a network [18,19]. All the aforementioned algorithms are based
on continuous-time quantum walks. That is to say that they rely on the ability to transform
quantum states as

|ψ0〉 → |ψ(t)〉 := e−iAt |ψ0〉 , (1)

where A is the adjacency matrix of the underlying graph. For example, Ref. [18] implements
eiAt ± e−iAt to encode weighted sums of even/odd powers of the adjacency matrix, which are
then used as path-based prediction scores for new links. As another example, Ref. [15] performs
the time evolution e−iAt for an appropriately chosen random time t, preparing a mixed state
that is later measured to find marked nodes.

Why should we expect to be able to implement the transformation (1)? Quantum walk
algorithms often treat the unitary e−iAt as if it was a native operation of the quantum computer.
But one must consider the actual cost of implementing it on a universal quantum computer.
Childs et al [12] showed how to simulate a quantum walk on a graph of glued trees (provided
with a proper edge coloring). Modern algorithms on Hamiltonian simulation can implement

2

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

a quantum walk on any graph whose adjacency matrix is row-sparse1 and efficiently row-
computable [20–22]. Concretely, consider an input model where we can query the entries of
the matrix A and of the adjacency list of the graph. Then, if every node in the graph has degree
at most d we can approximate e−iAt up to precision ε using

O (d t + log(1/ε)) (2)

queries [22].
If we want to run quantum walks on complex networks, these algorithms become inefficient

[19]. Indeed, a defining characteristic of complex networks, found in networks with completely
different origins, is the presence of a heavy-tailed distribution of the degrees of the nodes (such
as a power-law, or a log-normal distribution). That is, the tail of the degrees’ distribution is
not exponentially bounded, implying a non-negligible probability of observing hubs, nodes
with a much larger number of connections than the rest of the network. Clearly, a network
with hubs is not sparse. In these cases, the d factor in expression (2) cannot be described as a
polylogarithmic function of the size of the network and we lose the notion of efficiency in the
simulation of the quantum walk.

In this work, we propose a model of hub-sparse networks, where we add a few densely
connected hub-nodes to an otherwise sparse network, and show that hub-sparse networks can
be efficiently simulated on a quantum computer. While the hub-sparse model is an oversimpli-
fication of real networks, we hope that our results may constitute a relevant first step towards
understanding whether quantum computers can provide an advantage for simulating complex
networks.

The paper is organized as follows. In section 2, we summarize the main ideas of our work:
in section 2.1 we introduce the hub-sparse model, in section 2.2 we lay down the input model
of our problem, and in section 2.3 we state the main theorem and provide a high-level overview
of the proof. In section 3 we review some background material that may help the reader follow
the technical details of our proof. The full proof of the main theorem is detailed in sections 4–6:
section 4 introduces new operators that convey information about the graph and explains how
they can be built from the input model, section 5 shows how to fast-forward the network of
connections between hubs and regular connections, and section 6 presents the final algorithm
based on the interaction picture of quantum simulation. Section 7 concludes the paper with a
discussion of our results.

Notation Whenever talking about graphs, we denote the number of nodes by N . For simplicity,
we assume it to be a power of two: N =: 2n. We write [N] := {0,1, . . . , N − 1}. We use A to
denote the adjacency matrix of the graph. The degree of a node is the number of nodes that
it connects to. When we write log, we mean base 2 logarithm. We adopt the standard “big
O” notation for asymptotic upper bounds. For two functions f and g from N to N we say that
f =O(g) if ∃C , x0 > 0 : ∀x , (x > x0 =⇒ f (x)< C · g(x)), and say that f = Ω(g) if g =O(f).
Finally, we write f (x) = polylog(x) if f (x) =O(logc(x)) for some constant c.

2 Summary

2.1 Hub-sparse networks

In the context of quantum computing, “Hamiltonian simulation” refers to the following problem.
1We follow the computer science convention to define the term “sparse”. We say that a network is “sparse” or

“row-sparse” if the maximum degree is at most polylogarithmic on the total number of nodes. Nonetheless, it should
be noted that the network science community often uses “sparse” to designate any network whose average degree
is much smaller than the number of nodes.

3

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

Definition 2.1 (Hamiltonian simulation). Given a description of a n-qubit Hamiltonian H(τ),
an evolution time t, an initial state |ψ0〉, and a precision ε > 0, implement a unitary Ut such
that

∥Ut |ψ0〉 − |ψ(t)〉 ∥ ≤ ε , (3)

where |ψ(t)〉 is the solution of the differential equation

i∂τ |ψ(τ)〉= H(τ) |ψ(τ)〉 , (4)

at τ= t subject to |ψ(0)〉= |ψ0〉. If H is time-independent, then we just want to approximate
exp(−iH t). We say that a Hamiltonian simulation algorithm is efficient if its complexity is
polynomial in n.

An important sub-class of Hamiltonians are Hermitian matrices with binary entries, as they
can be interpreted as adjacency matrices of graphs. Simulating a N -node graph G means solving
Hamiltonian simulation with the ⌈log(N)⌉-qubit Hamiltonian corresponding to the adjacency
matrix of the graph.

The previous literature on quantum simulation algorithms has worked with sparse graphs, for
which it has been shown that there are efficient Hamiltonian simulation algorithms [20,21,23].
A graph is said to be d-sparse if each node connects to at most d other nodes. By sparse network
we mean that the underlying graph is polylog(N)-sparse. This does not capture the essence of
complex networks due to the existence of densely connected hub-nodes.

In this work, we introduce a broader class of networks that we refer to as hub-sparse
networks. These have a bimodal character. Most of the nodes connect only to a few other
nodes, but a small fraction of nodes connects to almost the entire network. In other words, we
are adding hubs to networks that are otherwise sparse. See Figure 1a for an illustration of this
class of networks. We provide a rigorous definition below.

Definition 2.2 (Hub-sparse networks). A graph G = (V, E) with N nodes is hub-sparse if there
are M , h, s =O(polylog(N)) and a bipartition of the nodes {Vh, Vr} such that

1. |Vh|= M (and so |Vr |= N −M),

2. every node in Vh connects to at least N − h other nodes,

3. every node in Vr connects to at most s other nodes.

We say that a given node is a hub if its degree is Ω(N − polylog(N)), and that it is a regular
node if its degree is O(polylog(N)).

Unless otherwise stated, from now on we will always assume that we are working with
hub-sparse networks. We will also assume that we know the values of M , h, and s, as in
Definition 2.2. For simplicity, we assume that these are powers of two (although not much
changes otherwise).

2.2 Input model

Like in the works on the simulation of sparse Hamiltonians, we assume that we can quickly
recognize and locate the non-zero entries of the adjacency matrix of the graph. Specifically,
denoting A as the adjacency matrix of the graph, one assumes access to a quantum oracle OA
acting as

OA |i, j, z〉=
�

�i, j, z ⊕ Ai j

�

, (5)

with i, j ∈ [N] and z ∈ {0,1}; as well as to another oracle OL such that

OL |i, l〉= |i, r(l, i)〉 , (6)

4

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

Figure 1: Hub-sparse networks. In panel a) we show an example of a hub-sparse
network with twenty nodes. There is a small number of hubs (red) that are connected
to most of the network, while the regular nodes (blue) only connect to a few other
nodes. In general, a hub-sparse network contains polylog N hub nodes with degree
Ω(N − polylog N), the remaining nodes having degree polylog N – Definition 2.2 In
panel b) we plot the corresponding adjacency matrix, A. In our algorithm, we split A
into G, A−, Ah, and Ar (cf. section 2). G is the matrix of all possible links between
hubs and regular nodes (equation (9)). A− is the matrix of links between hubs and
regular nodes that are not present in the network (equation (10)) and Ah and Ar are
the matrices of connections between hubs and regular nodes, respectively. Overall,
we can write A= G − A− + Ah + Ar .

with i ∈ [N] and r(l, i) being the position of the l-th non-zero entry in i-row of A. If there are
less than l non-zero entries in the i-th row, we assume that r(l, i) contains a flag indicating so.
We also assume that we can quickly find the hubs. We express this via an oracle OH acting as

OH |l〉= |h(l)〉 , (7)

where h(l) is the l-th hub in the network.2

We also assume access to the controlled versions of the oracles OA, OL, and OH and their
inverses.

2.3 Main results

Our main result is an extension of previous results on efficient Hamiltonian simulation from
sparse to hub-sparse networks.

Theorem 2.1. Let A∈ {0,1}N×N be the adjacency matrix of a hub-sparse network. Let t,ε > 0.
Then, there is a quantum algorithm that prepares exp(−iAt) with precision ε and error probability
O(ε) with

O (t polylog(t/ε, N)) (8)

calls to the controlled and inverse versions of the oracles OA, OL , and OH , and primitive two-qubit
gates.

2Such a unitary exists because h(l) is one-to-one. We could have postulated a different oracle O′H acting as
O′H |l〉 |z〉 = |l〉 |z ⊕ h(l)〉. O′H can be straightforwardly simulated by OH . Choosing OH or O′H for the input model
does not change the main conclusions of the paper.

5

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

We now provide a high-level overview of our proof. Some of the underlying concepts (block-
encodings, fast-forwarding, linear combination of unitaries, time-dependent Hamiltonian
simulation) are introduced in the Preliminaries section. The full demonstration of Theorem 2.1
is detailed in Sections 4–6.

Hamiltonian simulation is an eigenvalue transformation problem. By the Quantum Singu-
lar Value Transformation Theory [24], if we can efficiently block-encode H/α, then we can
implement exp(−i tH) up to constant error in O(tα) time. A fundamental limitation of this
technique is that we can never block-encode H/α with α < ∥H∥. The spectral norm of the
adjacency matrix of a hub-sparse network scales as ∥A∥ ∼

p
N . That is, the cost associated with

the block-encoding is exponential in n = log(N), and there is no hope of obtaining an efficient
simulation algorithm this way.

We overcome this challenge by splitting the graph into simpler parts. Let G be the matrix
of every possible link between the set of hubs and the set of regular nodes for a given graph,

Gi j :=

¨

1 , if (i is hub) XOR (j is hub) ,

0 , otherwise .
(9)

Then, the matrix of observed links between hubs and regular nodes in the graph is Ah-r := G⊙A,
where ⊙ is the Hadamard (or element-wise) product. Similarly, we can define A− as the matrix
of links between hubs and regular nodes that are not in Ah-r , i.e., not observed in the graph,

A− := G − Ah-r . (10)

Finally, we can define Ah and Ar as the matrices of hub-hub and regular-regular connections,
respectively, and write

A− Ah-r = Ah + Ar . (11)

In summary, by decomposing A into these various matrices, the problem that we want to solve
is

i∂τ |ψ(τ)〉=
�

G − A− + Ah + Ar

�

|ψ(τ)〉 , ∀τ ∈ [0, t] . (12)

We refer to Figure 1b for a visualization of this splitting.
The three matrices A−, Ah, Ar are sparse, and their spectral norms are in polylog(N). How-

ever, the norm of G is O(
p

N), and so it cannot be efficiently block-encoded. Fortunately, G has
enough structure that it can be fast-forwarded, i.e., the complexity of its simulation scales better
than ∥Gt∥. To do so, we show that G has only two eigenvectors, say |Ψ±〉, with eigenvalues
different from zero, λ±. Therefore,

e−iGt = (e−iλ+ − 1) |Ψ+〉〈Ψ+|+ (e−iλ− − 1) |Ψ−〉〈Ψ−|+ I . (13)

We show that the states |Ψ±〉 can be prepared efficiently, allowing the simulation of exp(−iGt)
in polylog(N) time.

Following Low and Wiebe’s interaction picture simulation method [25], we rotate the
system to the “interaction basis”. In the rotating frame, the time evolution equation (12) reads

i∂τ
�

�ψ̃(τ)
�

=
�

− Ã−(t) + Ãh(t) + Ãr(t)
� �

�ψ̃(τ)
�

, (14)

where
�

�ψ̃(τ)
�

= eiGτ |ψ(τ)〉 , (15)

Ãi(τ) = eiGτAie
−iGτ , i = −, h, r . (16)

That is, we need to solve a time-dependent Schrödinger equation. The advantage is that now
the spectral norm of the time-dependent Hamiltonian, −Ã−(t) + Ãh(t) + Ãr(t), is polylog(N).
Then, we can apply Low and Wiebe’s algorithm for time-dependent Hamiltonian simulation,

6

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

which is based on truncated Dyson series [25]. The only requirement left to fulfill is to block-
encode the time-dependent Hamiltonian. We show how to do this for each of the three terms
separately, and then combine them with the Linear Combination of Unitaries technique [21].
Having solved (14), we can invert equation (15) to rotate back to the original basis, effectively
retrieving |ψ(t)〉, and thus efficiently solving the quantum simulation of A.

3 Preliminaries

To facilitate the reading of our work, in this section we present a summary of well-known
concepts and techniques in the literature of quantum algorithms that are essential to under-
standing our constructions. The proofs of the related theorems can be found in the original
papers.

3.1 Block-encodings

Block-encodings are arguably the most natural way to handle non-unitary operations with
quantum circuits [24,26]. Given an n-qubit matrix A, we consider a (n+m)-qubit unitary UA
such that

UA =
1
α

�

A ·
· ·

�

, (17)

with the · denoting arbitrary matrices. That is, UA acts as A (up to a normalization factor α)
controlled on the m-qubit ancillary system reading 0,

UA |0m〉 |ψ〉= |0m〉
�

A
α
|ψ〉
�

+ |⊥〉
�

�ψ′
�

, (18)

where 〈0m|⊥〉= 0. More formally,

Definition 3.1. Let A be a n-qubit matrix and α,ε > 0. A (m + n)-qubit unitary UA is a
(α, m,ε)-block-encoding of A if

∥A−α(〈0m| ⊗ In)UA(|0m〉 ⊗ In)∥ ≤ ε . (19)

We write (α, m)-block-encoding as a shortcut for (α, m, 0)-block-encoding.

3.2 Linear combination of unitaries

In various situations, it is useful to prepare linear combinations of a set of unitaries {Ui}K−1
i=0 ,

T =
K−1
∑

i=0

yiUi . (20)

We define two types of operators for this problem:

1. “Select oracle”, U , such that

U :=
K−1
∑

i=0

|i〉〈i| ⊗ Ui . (21)

This operator implements Ui controlled on the k ancilla qubits reading |i〉.

7

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

2. “Prepare oracle”, V , such that

V
�

�0k
�

:=
1
p

∥y∥1

K−1
∑

i=0

p

yi |i〉 . (22)

If the coefficients yi are not just positive real numbers, then we also need an operator V ′

such that

V ′†
�

�0k
�

:=
1
p

∥y∥1

K−1
∑

i=0

p

yi
∗ |i〉 . (23)

Note that if the coefficients are real and positive, then V ′ = V † suffices.

Theorem 3.1 (Linear combination of unitaries [21,27, 28]). Let y = (y1, y2, . . . , yK) and let
{Ui}Ki=0 be n-qubit unitaries. Then,

W = (V ′ ⊗ In) · U · (V ⊗ In) (24)

is a (∥y∥1, ⌈log K⌉)-block encoding of T .

In particular, if Ui are (αi , m)-block-encoding of matrices Ai , we can prepare a block encoding
of
∑k

j=0 y jA j using the same method by replacing yi by yiαi in equation (20).

Corollary 3.1.1. Let y= (y1, y2, . . . , yk) and α= (α1,α2, . . . ,αk). Let T =
∑k

j=0 y jA j, and let
U j be (a j , m,ε)-block-encodings of A j for each j. Then, there is a (∥y⊙α∥1, m+ ⌈log K⌉,∥y∥1ε)-
block-encoding of T requiring 1 call of the select oracle and one call to each prepare oracle.

3.3 Fast-forwarding

Suppose that we have access to a unitary UH that acts as an (α, m)-block-encoding of an
hermitian matrix H. The Hamiltonian simulation of H can be viewed as a tranformation
of the eigenvalues of H from λ to exp(−iλt), and this mapping can be approximated up to
desired precision by a polynomial . With a technique known as qubitization, we can manipulate
the eigenvalues to effectively reach any polynomial transformation on H. This idea leads to
Hamiltonian simulation algorithms that call UH Õ(α|t|) times [22,24].

An inherent limitation of this approach is that the simulation time of H always scales as ∼ α,
which is lower bounded by the spectral norm of H. While qubitization algorithms are provenly
optimal for sparse Hamiltonians, they may be inneficient for other classes of Hamiltonians. For
example, consider the Hamiltonian H = cI , where I is the identity matrix and c is an arbitrary
constant. There is a trivial circuit that simulates H with a single gate, despite the spectral norm
of H being c. Whenever there is an algorithm that prepares exp(−iH t) faster than ∥Ht∥, we
say that H is fast-forwardable [29].

3.4 Hamiltonian simulation in the interaction picture

Suppose we want to solve an Hamiltonian simulation problem with H = H1 + H2 ∈ CN×N ,
where ∥H1∥= Ω(poly N) and ∥H2∥=O(polylog N). Clearly, ∥H∥ ∼ poly N , and so we cannot
efficiently simulate H with qubitization. But suppose that H1 is fast-forwardable. Then, we can
efficiently perform the transformations

|ψ(τ)〉 →
�

�ψ̃(τ)
�

= eiH1τ |ψ(τ)〉 (25)

and H2→H̃2(τ) = eiH1τH2e−iH1τ . (26)

8

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

The Schrödinger equation in the rotated frame reads

i∂τ
�

�ψ̃(τ)
�

= H̃2(τ)
�

�ψ̃(τ)
�

. (27)

That is, now we need to solve a time-dependent Hamiltonian simulation problem, but with
the key advantage that now the spectral norm of the (time-dependent) Hamiltonian is in
O(polylog N).

This problem was solved by Low and Wiebe [25]. The idea starts by expanding the time
evolution operator, call it U(t), into a Dyson series,

U(t) =I − i

∫ t

0

dt1H̃2(t1)−
∫ t

0

dt2

∫ t2

0

dt1H̃2(t2)H̃2(t1) (28)

+ i

∫ t

0

dt3

∫ t3

0

dt2

∫ t2

0

dt1H̃2(t3)H̃2(t2)H̃2(t1) + . . .

Then, we truncate the series to the first K terms and approximate each term by discretizing the
time domain into D steps,

Ck :=
1
Dk

D−1
∑

dk=0

dk
∑

dk−1=0

. . .
d2
∑

d1=0

H̃2

�

dk

D
t
�

H̃2

�

dk−1

D
t
�

. . . H̃2

�

d1

D
t
�

(29)

U(t)≈
K
∑

k=0

(−i t)kCk . (30)

Low and Wiebe [25] characterize how K and D need to scale for a precise approximation.
Moreover, developing on the ideas of Berry et al [21], they show how to construct the terms Ck
with linear combinations of operators of the form

D−1
∑

d=0

|d〉〈d| ⊗ H̃2

�

d
D
τ

�

. (31)

Their main result is summarized in the Theorem below.

Theorem 3.2 (Hamiltonian simulation in the interaction picture [25]). Let H1, H2 ∈ CN×N , and
α1 and α2 be known constants such that ∥H1∥ ≤ α1 and ∥H2∥ ≤ α2. Let ε, t > 0. Let Oτ be an
�

1, m,O
�

ε
α2 t

��

-block-encoding of exp(−iH1τ) and let Uτ,D be an
�

α2, m,O
�

ε
α2 t

log log(α2 t/ε)
log(α2 t/ε)

��

-
block-encoding of

D−1
∑

d=0

|d〉〈d| ⊗ eiH1
d
DτH2e−iH1

d
Dτ . (32)

Then, choosing τ=O(α−1
2) and D =O
� t
ε(α1 +α2)
�

, we can implement exp(−i(H1 +H2)t) up
to error ε with error probability at most O(ε) with

1. O (α2 t) calls to Oτ,

2. O
�

α2 t log(α2 t/ε)
log log(α2 t/ε)

�

calls to Uτ,M ,

3. O
�

α2 t
�

m+ log
� t
ε(α1 +α2)
��

log(α2 t/ε)
�

primitive two-qubit gates.

9

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

3.5 Amplitude amplification

Amplitude amplification is a widely used technique in quantum algorithms that general-
izes Grover’s search [30]. Say we have a quantum algorithm U that prepares a state
a |ψG〉+

p
1− a2 |ψB〉, and assume that we can quickly distinguish |ψG〉 from |ψB〉. We would

like to prepare |ψG〉. We could measure the outcome of U in the {|ψG〉 , |ψB〉} basis until we see
|ψG〉. This classical sampling strategy would require calling U an expected number of O(a−2)
times. Fortunately, quantum computing allows for a more efficient algorithm.

Theorem 3.3 (Fixed-point amplitude amplification [24,31]). Let |ψ0〉 be an n-qubit state, U be
a unitary and Π an orthogonal projector acting on n qubits such that

ΠU |ψ0〉= a |ψG〉 , (33)

for some |ψG〉. Then, for any ε ∈]0, 1] and δ ∈]0, a[, there is a (n+ 1)-qubit unitary Ũ such that

∥Ũ |ψ0〉 − |ψG〉 ∥ ≤ ε , (34)

that consists of O(δ−1 log(1/ε)) U, U†, CΠNOT, C|ψ0〉〈ψ0|NOT3 and two-qubit gates.

Corollary 3.3.1. Let UA be an (α, m)-block-encoding of some unitary matrix A. Then, for any
ε ∈]0, 1] and δ > α, we can a build a (1, m+ 1,ε)-block-encoding of A with O(δ log(1/ε)) calls
to U and U† and two-qubit gates.

4 Oracle conversions

In our input model, we assumed access to oracles OA, OL, and OH . Below we show how we
can build some operators that convey information about the graph that will be useful to our
constructions using just O(log(N)) calls to the input oracles. That is, we could have assumed
them to be part of the input model without affecting the final conclusions up to polylog(N)
factors.

Lemma 4.1. There is an operator, call it OK , that acts as

OK |i, z〉=

¨

|i, z〉 , if i is regular node ,

|i, z ⊕ 1〉 , if i is hub ,
(35)

with i ∈ [N] and z ∈ {0,1}, and can be implemented with O(log N) calls to OL .

Proof. According to our input model, if l is larger than the degree of a node i, then r(l, i)
contains a flag indicating so. So, we can run a binary search, beginning at N , to find the largest
l such that r(l, i) is not a flag state. This corresponds to the degree of i. If i is larger than N −h,
then i is a hub (cf. Definition 2.2). This strategy only requires O(log N) calls to OL .

If we asked OD to be part of the input model, we could relax the condition that r(l, i)
contains a flag if there are less than l non-zero entries in the i-th row. Instead, provided with
OD, for such l ’s the function r(l, i) could be take any value without affecting the algorithm.

Lemma 4.2. Let i be a hub. There is an operator, call it OZ , that acts as

OZ |i, l〉= |i, q(l, i)〉 , (36)

with i, l ∈ [N], where q(l, i) is the position of the l-th zero entry in the i-th row of A, and can be
implemented with O(log N) calls to OL .

3For a projector Π, we mean CΠNOT := Π⊗ X + (I −Π)⊗ I .

10

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

Table 1: For convenience of the reader, we gather here the operators defined so far.
r(l, i) denotes the position of the l-th non-zero entry in the i-th row of A, q(l, i) the
position of the l-th non-zero entry in the i-th row of A when i is a hub, and h(l) the
l-th hub in the network. OA, OL, and OH are part of the input model (section 2.2),
while OK and OZ can be constructed from the input model with a log(N) overhead
(Lemmas 4.1 and 4.2).

Operator Description Expression Calls to input model
OA Accesses adjacency matrix OA |i, j, z〉=

�

�i, j, z ⊕ Ai j

�

1
OL Accesses adjacency list OL |i, l〉= |i, r(l, i)〉 1
OH Locates hubs OH |l〉= |h(l)〉 1
OK Indicates type of nodes OA |i, j, z〉=

�

�i, j, z ⊕ Ai j

�

O(log(N))
OZ Locates missing links for hubs OZ |i, l〉= |i, q(l, i)〉 O(log(N))

Proof. Let ki be the degree of node i. A fully connected hub i would have r(l, i) = l for all
l ∈ [N], while a hub with missing connections has a total of N − ki indices missing, leading to
discontinuities in the r(l, i) function. The key observation is that we just need to locate these
polylog N discontinuities to build the q(l, i) function. We can do this by running a binary search
on the array [r(1, i), r(2, i), . . . , r(ki , i)], whose entries can be quickly accessed via queries to
OL . We know that the positions r(l, i) + 1, r(l, i) + 2, . . . , r(l, i) + x − 1 are zeros in the i-th row
of A if r(l + 1, i)− r(l, i) = x > 1.

Each binary search requires O(log N) calls to OL. For a hub-sparse network, there are
polylog N hubs, each with polylog N zero entries. As such, we can reconstruct the function
q(l, i) with polylog N calls to OL . Having classical access to q(l, i), the unitary OZ can be built
with a polylog N overhead.

Our simulation algorithm will make use of operators OA, OL , OH , OK , and OZ . We summarize
their properties in Table 1.

5 Fast-forwarding hubs

As we have discussed in the Main Results section, our strategy is to move the system to the
interaction picture. For that, we need to efficiently implement the operation exp(−iGt), with
G being defined as in equation (9). Here we show that this is indeed possible. Note that since
∥G∥= Θ̃(

p
N), this proves that G is fast-forwardable.

The key is to analyze the spectral decomposition of G. The corresponding graph contains
M hubs, each connected to all the N − M regular nodes (but with no connections between
hubs). Considering this simple structure, we can prove the following.

Lemma 5.1. Let G be defined as in equation (9). Say that there are M hubs and N −M regular
nodes. Then, there are only two eigenvectors with eigenvalues different from zero. These are

|Ψ±〉=
1
p

2

∑

j hub

| j〉
p

M
±

1
p

2

∑

j regular node

| j〉
p

N −M
, (37)

and have eigenvalues
λ± =
Æ

M(N −M) . (38)

11

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

Proof. That |Ψ±〉 are eigenvectors with eigenvalues λ± can be proved by direct inspection. To
see that all the other eigenvalues are zero, we show in Appendix A that the characteristic
polynomial of G is (up to a sign)

λN−2
�

λ2 −M(N −M)
�

. (39)

Therefore, besides λ± the only acceptable solutions are λ= 0.

Consequently, we can write

e−iGt = (e−iλ+ t − 1) |Ψ+〉〈Ψ+|+ (e−iλ− t − 1) |Ψ−〉〈Ψ−|+ I . (40)

So, we can simulate G by preparing |Ψ±〉 and applying the corresponding phase (−λ± t). First,
we show that the states can be prepared efficiently.

Lemma 5.2. Let |Ψ±〉 be defined as in Lemma 5.1, and let P± be operators acting as

P± |0n〉= |Ψ±〉 . (41)

Then, we can prepare (polylog N , 2)-block-encodings of P± with O(1) calls to the controlled versions
of OK and OH and O(polylog N) primitive two-qubit gates.

Proof. The states |Ψ±〉 are combinations of a uniform superposition over the hub nodes and a
uniform superposition over the regular nodes. To prepare a uniform superposition over the
regular nodes, we do

|0〉 |0n〉
H⊗n

−−→|0〉
N−1
∑

j=0

| j〉
p

N
(42)

OK−→|0〉
∑

j regular node

| j〉
p

N
+ |1〉
∑

j hub

| j〉
p

N
(43)

=

√

√N −M
N
|0〉
∑

j regular node

| j〉
p

N −M
+ |⊥〉 , (44)

where 〈0|⊥〉= 0. That is, OK H⊗n is a
�q

N
N−M , log M
�

-block-encoding of a preparation of the
uniform superposition of regular nodes. A uniform superposition of hubs can be prepared as

|0n〉
H⊗ log M

−−−−→
M−1
∑

j=0

| j〉
p

M
(45)

OH−→
M−1
∑

j=0

|h(j)〉
p

M
. (46)

Then, P± can be expressed as

1
p

2

√

√ N
N −M

OK H⊗n ±
1
p

2
OH H⊗ log M . (47)

From Theorem 3.1, we can do this with the Linear Combination of Unitaries technique and we

get a
�

1p
2
+ 1p

2

q

N
N−M , 2
�

-block-encoding of P±.

Now it becomes straightforward how to simulate exp(−iGt).

12

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

Lemma 5.3. Let G be defined as in equation (9). Then, we can prepare a (1, 8,ε)-block-encoding
of exp(−iGt) with O(polylog(N) log(1/ε)) calls to the controlled and inverse versions of OK and
OH and primitive two-qubit gates.

Proof. Consider the following circuit. The “a”, “−”, and “+” are labels of the ancilla registers.
U± are (polylog N , 2)-block-encoding of P±, as per Lemma 5.2, and the corresponding ancilla
qubits are ±.

|0〉a RZ(−2λ+ t) X
�

�02
�

−

U†
− U−

�

�02
�

+
U†
+ U+

In Appendix A we show by direct inspection that this circuit acts as a (β , 5)-bock-encoding of

e−iλ+ t |Ψ+〉〈Ψ+|+ e−iλ− t |Ψ−〉〈Ψ−| , (48)

for

β =
1
2

�

1+

√

√ N
N −M

�2

. (49)

For the same reason, the circuit

|0〉a X
�

�02
�

−

U†
− U−

�

�02
�

+
U†
+ U+

is a (β , 5)-bock-encoding of
|Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−| . (50)

Finally, the empty circuit is a (1,5)-bock-encoding of the identity, I .
Let us denote these three circuits as U1, U2, and UI . By equation (40), we want to implement

βU1 − βU2 + UI , (51)

which we can do with Linear Combination of Unitaries. From Lemma 3.1, we get a (2β + 1, 7)-
block-encoding of exp(−iGt) with O(1) calls to the controlled and inverse versions of OK and
OH plus O(polylog(N)) two-qubit gates.

Finally, we can amplify the probability of measuring the right block with amplitude ampli-
fication. From Corollary 3.3.1, we can prepare a (1,8,ε)-block-encoding of exp(−iGt) with
O(β log(1/ε)) calls to the stated gates.

6 Hub-sparse networks in the interaction picture

We have seen that we can efficiently implement exp(−iGt). Therefore, we can quickly rotate
to the interaction picture – equation (14). We are left with the task of solving the Schrödinger
equation with the time-dependent Hamiltonian eiGt (−A− + Ah + Ar) e−iGt .

13

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

As we have discussed in the Preliminaries section, Low and Wiebe have solved this problem
by approximating the evolution operator with a truncated Dyson series [25]. According to
Theorem 3.2, all that is left for us to do is to ensure that there is an efficient block-encoding of

D−1
∑

d=0

|d〉〈d| ⊗
�

eiG d
DτAie

−iG d
Dτ
�

, for i = −, h, r . (52)

We show that this is indeed the case in two steps. First, for i = −, h, r we show that Ai is
efficiently block-encodable. Then, we show that we can build a block-encoding of the operator
(52) from a block-encoding of Ai .

Lemma 6.1. We can prepare (polylog N , n+4)-block-encodings of A−, Ah, and Ar with O(1) calls
to OA, OL , OH , OZ , OK , and O(polylog N) primitive two-qubit gates.

Proof. In Appendix B we explicitly describe polylog(N)-sized circuits that block-encode A−,
Ah, and Ar . The idea is to adapt a standard construction of block-encodings sparse matrices
([32, Chapter 6], for example) to our situation. For Ah and Ar we include a step that checks if
we are linking hubs to hubs and regular nodes to regular nodes, respectively. For A− we use the
operator OZ to switch the roles of the “0”s and “1”s in the usual technique for block-encoding
sparse matrices. For that case, we also add a routine that imposes that we are transitioning
from a hub to a regular node or vice-versa.

Lemma 6.2. Let Ui be a (αi , m)-block-encoding of Ai. Then, we can prepare a (αi , m+ 16,ε)-
block-encoding of the operator in equation (52) with

O(log(D)polylog(N) log(1/ε)) (53)

calls to Ui , to the controlled and inversed versions of OH and OK , and to primitive two-qubit gates.

Proof. We adapt a construction from [22, Theorem 7]. Let Gt be a
�

1,8, ε
2 log D

�

-block-encoding
of exp(−iGt) – from Theorem 5.3 we can prepare this with O(polylog(N) log(1/ε)) calls to
the controlled and inverse versions of OK and OH and to two-qubit gates (independently of t).
Now let CG be the unitary implemented by the following circuit.

. . . •
...

• . . .
• . . .

• . . .
�

�08
�

G τ
D 20 G τ

D 21 G τ
D 22

. . .
G τ

D 2log D−1
. . .

If the first log D qubits are in state |d〉 ≡
�

�dlog D−1 . . . d2d1d0

�

, then the last n qubits are trans-
formed by

G τ
D 20d0

G τ
D 21d1

G τ
D 22d2

G τ
D 2log D−1dlog D−1

. (54)

Since Gt differs from exp(−iGt) by at most ε/(2 log D), we can guarantee (by a telescopic
triangle inequality) that

G τ
D 20d0

G τ
D 21d1

G τ
D 22d2

G τ
D 2log D−1dlog D−1

− e−iG d
Dτ

≤
ε

2
(55)

⇔

08
�

�CG
�

�08
�

−
D−1
∑

d=0

|d〉〈d| ⊗ e−iG d
Dτ

≤
ε

2
. (56)

14

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

Now we want to get the product of the matrices encoded by CG†, Ui , and CG,

08
�

�CG†
�

�08
�

〈0m|Ui|0m〉

08
�

�CG
�

�08
�

−
D−1
∑

d=0

|d〉〈d| ⊗
eiG d

DτAie
−iG d

Dτ

αi

≤ ε . (57)

For that purpose, we just need to treat the ancilla qubits separately (as in [24, Lemma 53]),
ending up with an (αi , 8+m+ 8,ε)-block-encoding.

We finally have all the necessary ingredients to conclude the proof of Theorem 2.1.

Proof of Theorem 2.1. We apply Low and Wiebe’s [25] result on Hamiltonian simulation in
the interaction picture to our problem, making use of the results we have proved so far.
We wish to set H1 = G and H2 = −A− + Ah + Ar in Lemma 3.2. In this case, we have
that α1 = O(

p
N polylog N) (Lemma 5.1) and α2 = O(polylog N) (H2 is the sum of three

polylog(N)-sparse matrices).
From Lemma 5.3, we can prepare a

�

1, m,O
�

ε
α2 t

��

-block-encoding of exp(−iGτ) in time
O(log(α2 t/ε)polylog(N)). By Theorem 3.2, this operator is called O(α2 t) times, yielding a
total complexity of

O (α2 t × log(α2 t/ε)polylog N) =O (t log(t/ε) polylog(N)) . (58)

From Lemmas 6.1 and 6.2, we can prepare (polylog N , n + 20,ε′) block-encodings the
operators in equation (52) with O(log(D) log

�

1/ε′
�

polylog(N)) gates. We can then use Linear
Combination of Unitaries (Corollary 3.1.1) to prepare a (polylog N , n+ 22, 3ε′)-block-encoding
of

D−1
∑

d=0

|d〉〈d| ⊗
�

eiG d
Dτ(−A− + Ah + Ar)e

−iG d
Dτ
�

, (59)

with essentially the same resources. This is the Uτ,D operator from Theorem 3.2. We need to

call this operator O
�

α2 t log(α2 t/ε)
log log(α2 t/ε)

�

times. The total complexity from calls to Uτ,D is then

O
�

α2 t
log(α2 t/ε)

log log(α2 t/ε)
× log(D) log
�

1/ε′
�

polylog(N)
�

=O
�

t
log3(t/ε)

log log(t/ε)
polylog(N)

�

, (60)

where we have set ε′ =O
�

ε
α2 t

log log(α2 t/ε)
log(α2 t/ε)

�

and D =O
� t
ε(α1 +α2)
�

, as per Theorem 3.2.

7 Discussion

In this work, we have introduced hub-sparse networks (Definition 2.2). These are a generaliza-
tion of sparse networks, allowing for a polylogarithmic number of hubs. We have shown that
such networks are also efficiently simulatable (in the sense of Definition 2.1), thus extending
the previous literature of quantum algorithms. We believe that this constitutes an important
step in applying quantum computing to the study of complex networks.

A point worth discussing is the input model. We have assumed access to an oracle to
the adjacency matrix, OA, an oracle to the adjacency list, OL, and an oracle to the location
of the hubs, OH . The final result was expressed in terms of calls to these oracles, as well as
primitive two-qubit gates. A natural question is what would be the cost of actually building
each of these oracles. For “artificial” networks, such as physical Hamiltonians, we have an
analytical description of the graph. This means that we have closed expressions for Ai j , r(l, i),

15

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

and h(l) (cf. Section 2.2). We can build circuits that evaluate these functions with a size that
is independent of the size of the network. In contrast, networks based on real world data
need to be pre-processed into a suitable data structure. A common representation in network
science is the adjacency (or edge) list model, with the nodes ordered by degree [33]. If we
can quickly access the entries of the adjacency list of any given node, then we can also quickly
determine Ai j, r(l, i), and h(l). To get the oracles OA, OL, and OH we just require that this
access is coherent, that is, that we can access the adjacency list data in quantum superposition.
Such could be achieved with a quantum random access memory (qRAM), a device that would
load classical data in coherent superposition in time logarithmic in the number of memory
cells [34]. We should nevertheless point out that, even though there have been proposals of
physical architectures for implementing qRAM [35,36], there are still significant challenges to
overcome before such a device can be practically realized [37].

A possible caveat to the feasiblity of our input model is that the lists of neighbours of the
hub nodes have lengths close to N . Therefore, storing them into memory would take O(N)
time per hub, even if we could later access their entries quickly. Fortunately, our algorithm does
necessarily require an oracle acting as OL at the hub nodes. Instead, for these nodes we just
need to identify the non-connections. Therefore, we could assume an input model that, besides
access to OA, OH , and OK , demands an oracle OL that acts as (6) when i is a regular node, an
oracle OZ that acts as (36) when i is a hub. This modifications would imply no change to our
algorithm, and have the advantage that all the underlying adjacency lists have polylog(N) size.

Despite our progress, our model remains an oversimplification of real world complex
networks. Our proof was critically dependent on the assumption that each node either had
polylog(N) connections or polylog(N) missing connections. Although the presence of hubs
is a recurrent organizational principle of complex networks, we would not expect to find a
hub-sparse structure in many real world networks. Instead, we expect a continuous transition
between the degree of the least connected nodes to the largest hubs in the network, and it
remains open the question of whether such networks can be efficiently simulated on a quantum
computer. Standard models for the degree distribution of complex networks include the scale-
free model or the log-normal model. Scale-free networks are networks where the degrees of
the most connected nodes tend to follow a power-law distribution [2, 38], and this model
has dominated the network science literature for almost 20 years. In a recent paper it was
proposed that a log-normal distribution might be a better fit for the degree distribution of most
real-world complex networks [36]. However, simple variations of the original scale-free model
are also a good fit [36]. Previous results have shown that it is not possible to simulate a general
N × N Hamiltonian in polylog N time [39], implying that efficient simulation algorithms must
exploit strong structural properties in the system. As such, a natural next step for complex
network simulation, and a considerably more challenging problem, would be to consider a
network simulation algorithm directly exploiting a power-law or log-normal degree distribution.
Developing an algorithm capable of efficiently simulating such a network, or proving that it
does not exist, is an open and important question to be addressed in future work.

Acknowledgments

We would like to thank Leonardo Novo and Yasser Omar for useful suggestions and discussions.

Funding information The authors thank Fundação para a Ciência e a Tecnologia (Portugal)
for its support through the project UIDB/EEA/50008/2020. JPM and DM acknowledge the
support of Fundação para a Ciência e a Tecnologia (FCT, Portugal) through scholarships
2019.144151.BD and 2020.04677.BD, respectively. BC acknowledges the support of FCT
through project CEECINST/00117/2018[0]/CP1495/CT0001.

16

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

A Spectral decomposition of the G matrix

Proof of Lemma 5.1. Let DN (λ) denote the characteristic polynomial of the matrix G, assuming
that there are N nodes and M hubs. Recall that, up to a sign, the determinant is invariant
under the exchange of columns/rows. Then, we can write

DN (λ) =

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

M
︷ ︸︸ ︷

−λ 0 0 . . . 0

N −M
︷ ︸︸ ︷

1 1 1 . . . 1
0 −λ 0 . . . 0 1 1 1 . . . 1
0 0 −λ . . . 0 1 1 1 . . . 1
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 . . . −λ 1 1 1 . . . 1

1 1 1 . . . 1 −λ 0 0 . . . 0
1 1 1 . . . 1 0 −λ 0 . . . 0
1 1 1 . . . 1 0 0 −λ . . . 0
...

...
...

. . .
...

...
...

...
. . . 0

1 1 1 . . . 1 0 0 0 . . . −λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�























M























N −M

(A.1)

Performing a Laplace expansion on the (M + 1)-th column, we find

DN (λ) = (−1)M M FN−1(λ)−λDN−1(λ) , (A.2)

where

FN−1(λ) =

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

M
︷ ︸︸ ︷

0 −λ 0 . . . 0

N − 1−M
︷ ︸︸ ︷

1 1 . . . 1
0 0 −λ . . . 0 1 1 . . . 1
...

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . −λ 1 1 . . . 1

1 1 1 . . . 1 0 0 . . . 0
1 1 1 . . . 1 −λ 0 . . . 0
1 1 1 . . . 1 0 −λ . . . 0
...

...
...

. . .
...

...
...

. . . 0
1 1 1 . . . 1 0 0 . . . −λ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�















M − 1























N −M

(A.3)

Expanding along the (M + 1)-th column of the matrix in (A.3), we conclude that

FN−1(λ) = −λFN−2(λ) (A.4)

= (−λ)N−1−M ×

�

�

�

�

�

�

�

�

�

�

�

M
︷ ︸︸ ︷

0 −λ 0 . . . 0
0 0 −λ . . . 0
...

...
...

. . .
...

0 0 0 . . . −λ
1 1 1 . . . 1

�

�

�

�

�

�

�

�

�

�

�























M (A.5)

= (−λ)N−1−M ×λM−1 , (A.6)

where we have applied equation (A.4) recursively N − 1−M times to reach line (A.5) and we
have expanded the determinant along the first column of the matrix of line (A.5) to get to line
(A.6).

17

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

Combining this into equation (A.2), we get

DN (λ) = (−1)N−1 M λN−2 −λDN−1(λ) (A.7)

= (−1)N−1 M(N −M)λN−2 + (−λ)N−M

�

�

�

�

�

�

�

�

�

�

�

M
︷ ︸︸ ︷

−λ 0 0 . . . 0
0 −λ 0 . . . 0
0 0 −λ . . . 0
...

...
...

. . .
...

0 0 0 . . . −λ

�

�

�

�

�

�

�

�

�

�

�























M (A.8)

= (−1)N−1 M(N −M)λN−2 + (−λ)N−M (−λ)M (A.9)

= (−1)NλN−2
�

−M(N −M) +λ2
�

, (A.10)

where we have applied equation (A.7) recursively N −M times to move to line (A.8).

Proof of Lemma 5.3 . Let U be the unitary describing the action of the entire circuit. We analyse

05
�

�U
�

�05
�

in the diagonal basis and show that it behaves as expected.

• 〈Ψ±|

05
�

�U
�

�05
�

|Ψ±〉.
Let α= polylog N be the block-encoding factor of U±. First, note that

U+
�

�02
�

+ |0
n〉=: α−1
�

�02
�

+ |Ψ+〉+
p

1−α−2 |⊥+〉 , (A.11)

from some |⊥+〉 such that

⊥+
�

�02
�

+ = 0 and 〈⊥+|⊥+〉= 1. Also,

U†
+ |⊥+〉=:
p

1−α−2
�

�02
�

+ |0
n〉 −α−1
�

�⊥′+
�

, (A.12)

for some
�

�⊥′+
�

such that

⊥′+
�

�02
�

+ = 0 and

⊥′+
�

�⊥′+
�

= 1. Then, writing θ = −λ+ t,

�

�02
�

+ |Ψ+〉 |0〉a
U†
+−→α
�
�

�02
�

+ |0
n〉 −
p

1−α−2U†
+ |⊥+〉
�

|0〉a (A.13)

=α−1
�

�02
�

+ |0
n〉 |0〉a +
p

1−α−2
�

�⊥′+
�

|0〉a (A.14)
CCX·RZ (2θ)−−−−−−−→ei2θα−1

�

�02
�

+ |0
n〉 |1〉a + e−i2θ
p

1−α−2
�

�⊥′+
�

|0〉a (A.15)
U+−→eiθα−1
�

α−1
�

�02
�

+ |Ψ+〉+
p

1−α−2 |⊥+〉
�

|1〉a (A.16)

+ e−iθ
p

1−α−2U+
�

�⊥′+
�

|0〉a (A.17)

=eiθα−1
�

α−1
�

�02
�

+ |Ψ+〉+
p

1−α−2 |⊥+〉
�

|1〉a (A.18)

+ e−iθ
p

1−α−2
�p

1−α−2
�

�02
�

+ |Ψ+〉 −α
−1 |⊥+〉
�

|0〉a . (A.19)

The second part of the circuit is not going to affect the + register. So, only the part of the
state with
�

�02
�

+ at this point will contribute to the block encoding, that is,
�

�02
�

+ |Ψ+〉
�

eiθα−2 |1〉a + e−iθ (1−α−2) |0〉a
�

. (A.20)

Now notice that

02
�

�

− 〈0
n|U†
−

�

�02
�

− |Ψ+〉= 0 , (A.21)

because 〈Ψ−|Ψ+〉 = 0. Therefore, the second CCX operator does not affect this part of
the state and the U− operator will just undo the effect of U†

−. We conclude that

〈0|a 〈0|− 〈0|+ 〈Ψ+|U |0〉+ |Ψ+〉 |0〉− |0〉a = eiθα−2 . (A.22)

The case for |Ψ−〉 is similar, but the a register reaches the RZ gate in state |0〉, and so we
get a −θ phase.

18

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

• 〈φ|

05
�

�U
�

�05
�

|φ0〉, for any eigenvectors φ,φ0 such that G |φ0〉= 0.
We start by noting that

〈0n|

02
�

�

+ U†
+

�

�02
�

|φ0〉=
�

α−1

02
�

�

+ 〈Ψ+|+
p

1−α−2 〈⊥+|
�
�

�02
�

|φ0〉= 0 . (A.23)

So, the controlled-controlled-X gate has no effect and the U+ operator just undoes the
action of U†

+. The same reasoning applies to the second part of the circuit. We conclude
that the a register ends up in state |1〉a with probability 1, and so 〈0|a U

�

�05
�

|φ0〉 = 0. In
particular, it follows that 〈φ|

05
�

�U
�

�05
�

|φ0〉= 0.

B Block-encoding the matrices A−, Ah, and Ar

Proof of Lemma 6.1. For each of these matrices, we write down a block-encoding circuit and
show that it acts as desired.

• Block-encoding circuit for Ah:

|0〉1 X

|0〉2

OK

•

OK

|0〉3

OA

•

OA|0n〉4 H⊗ log M OH
SWAP

OH H⊗ log M

| j〉5
where register “5” has n qubits and OK is acting on the registers “2” and “5”.

If U is the unitary implemented by this circuit, we want to show that

0n+3
�

�

1,2,3,4 〈i|5 U
�

�0n+3
�

1,2,3,4 | j〉5∝ Ah|i, j . (B.1)

First, observe that

|0〉1 |0〉2 |0〉3 |0n〉4 | j〉5
H⊗ log M

−−−−→|0〉1 |0〉2 |0〉3
M−1
∑

l=0

|l〉4p
M
| j〉5 (B.2)

OH−→|0〉1 |0〉2 |0〉3
M−1
∑

l=0

|h(l)〉4p
M
| j〉5 (B.3)

OA−→|0〉1 |0〉2
M−1
∑

l=0

�

�Ah(l), j
�

3

|h(l)〉4p
M
| j〉5 (B.4)

OK−→|0〉1 | j hub?〉2
M−1
∑

l=0

�

�Ah(l), j
�

3

|h(l)〉4p
M
| j〉5 (B.5)

Toffoli
−−−→

M−1
∑

l=0

�

�Ah|h(l), j
�

1 | j hub?〉2
�

�Ah(l), j
�

3

|h(l)〉4p
M
| j〉5 (B.6)

OK−→
M−1
∑

l=0

�

�Ah|h(l), j
�

1 |0〉2
�

�Ah(l), j
�

3

|h(l)〉4p
M
| j〉5 (B.7)

OA−→
M−1
∑

l=0

�

�Ah|h(l), j
�

1 |0〉2 |0〉3
|h(l)〉4p

M
| j〉5 . (B.8)

19

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

Since we are only interested in the final state when all ancilla qubits are the zero state,
we may consider the action of the final three gates on

�

�0n+3
�

1,2,3,4 |i〉5,

|0〉1 |0〉2 |0〉3 |0n〉4 |i〉5
X
−→|1〉1 |0〉2 |0〉3 |0n〉4 |i〉5 (B.9)

H⊗ log M

−−−−→|1〉1 |0〉2 |0〉3
M−1
∑

l ′=0

�

�l ′
�

4p
M
|i〉5 (B.10)

OH−→|1〉1 |0〉2 |0〉3
M−1
∑

l ′=0

�

�h(l ′)
�

4p
M
|i〉5 (B.11)

SWAP
−−−→|1〉1 |0〉2 |0〉3

M−1
∑

l ′=0

|i〉4

�

�h(l ′)
�

5p
M

. (B.12)

Then, the inner product yields (where U is the unitary implemented by this circuit)

0n+3
�

�

1,2,3,4 〈i|5 U
�

�0n+3
�

1,2,3,4 | j〉5 =
1
M

∑

l,l ′
Ah|h(l), jδi,h(l)δ j,h(l ′) (B.13)

=
1
M

Ah|i, j . (B.14)

We have used that, if Ah|i, j ≠ 0, there is a unique l such that h(l) = i and that, in that
case, there is also a unique l ′ such that h(l ′) = j. If Ah|i, j = 0, there are no such l and l ′,
and so (B.13) sums to zero.

• Block-encoding circuit for Ar :

|0〉1 X

|0〉2

OK OK

|0〉3

OK OK

|0〉4

OA

•

OA|0n〉5 H⊗ log s

OL SWAP OL
H⊗ log s

| j〉6

where register “6” has n qubits, the first and fourth OK are acting on registers “3” and
“6”, and the second and third OK are acting on registers 2 and 6.

Repeating a calculation similar to the previous case,

|0〉1 |0〉2 |0〉3 |0〉4 |0n〉5 | j〉6
H⊗ log s

−−−→|0〉1 |0〉2 |0〉3 |0〉4
s−1
∑

l=0

|l〉5p
s
| j〉6 (B.15)

OL−→|0〉1 |0〉2 |0〉3 |0〉4
s−1
∑

l=0

|r(l, j)〉5p
s
| j〉6 (B.16)

OA−→|0〉1 |0〉2 |0〉3
s−1
∑

l=0

�

�Ar(l, j), j
�

4

|r(l, i)〉5p
s
| j〉6 (B.17)

OK ·OK−−−→|0〉1
s−1
∑

l=0

|r(l, j) hub?〉2 | j hub?〉3

×
�

�Ar(l, j), j
�

4

|r(l, i)〉5p
s
| j〉6 (B.18)

20

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

“Toffoli”
−−−−→

s−1
∑

l=0

�

�Ar |r(l, j), j
�

1 |r(l, j) hub?〉2 | j hub?〉3

×
�

�Ar(l, j), j
�

4

|r(l, i)〉5p
s
| j〉6 (B.19)

OK ·OK−−−→
s−1
∑

l=0

�

�Ar |r(l, j), j
�

1 |0〉2 |0〉3
�

�Ar(l, j), j
�

4

|r(l, i)〉5p
s
| j〉6 (B.20)

OA−→
s−1
∑

l=0

�

�Ar |r(l, j), j
�

1 |0〉2 |0〉3 |0〉4
|r(l, i)〉5p

s
| j〉6 . (B.21)

The action of the remaining gates on state
�

�0n+4
�

1,2,3,4,5 |i〉6 is

|0〉1 |0〉2 |0〉3 |0〉4 |0n〉5 |i〉6
X
−→|1〉1 |0〉2 |0〉3 |0〉4 |0n〉5 |i〉6 (B.22)

H⊗ log s

−−−→|1〉1 |0〉2 |0〉3 |0〉4
s−1
∑

l ′=0

�

�l ′
�

5p
s
|i〉6 (B.23)

OH−→|1〉1 |0〉2 |0〉3 |0〉4
s−1
∑

l ′=0

�

�r(l ′, i)
�

5p
s
|i〉6 (B.24)

SWAP
−−−→|1〉1 |0〉2 |0〉3 |0〉4

s−1
∑

l ′=0

|i〉5

�

�r(l ′, i)
�

6p
s

. (B.25)

Then, the inner product gives

0n+4
�

�

1,2,3,4,5 〈i|6 U
�

�0n+4
�

1,2,3,4,5 | j〉6 =
1
s

∑

l,l ′
Ar |r(l, j), jδi,r(l, j)δ j,r(l ′,i) (B.26)

=
1
s

Ar |i, j . (B.27)

We have used that, if Ar |i, j ̸= 0, there is a unique l such that r(l, j) = i and that, in that
case, there is also a unique l ′ such that r(l ′, i) = j. If Ar |i, j = 0, there are no such l and
l ′, and so (B.26) sums to zero.

• Block-encoding circuit for A−:

|0〉1
|0〉2

OK

•

OK

|0〉3

OK

• •

OK

|0〉4

OA OA|0n〉5 H⊗ log h

OZ SWAP OZ
H⊗ log h

| j〉6

where register “6” has n qubits, the first and fourth OK are acting on registers “3” and
“6”, and the second and third OK are acting on registers 2 and 6.

21

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

First,

|0〉1 |0〉2 |0〉3 |0〉4 |0n〉5 | j〉6
H⊗ log h

−−−→|0〉1 |0〉2 |0〉3 |0〉4
h−1
∑

l=0

|l〉5p
h
| j〉6 (B.28)

OZ−→|0〉1 |0〉2 |0〉3 |0〉4
h−1
∑

l=0

|q(l, j)〉5p
h
| j〉6 (B.29)

OA−→|0〉1 |0〉2 |0〉3
h−1
∑

l=0

�

�Aq(l, j), j
�

4

|q(l, i)〉5p
h
| j〉6 (B.30)

OK ·OK−−−→|0〉1
h−1
∑

l=0

|q(l, j) hub?〉2 | j hub?〉3

×
�

�Aq(l, j), j
�

4

|r(l, i)〉5p
h
| j〉6 (B.31)

CNOT
−−−→|0〉1

h−1
∑

l=0

|(j hub?) XOR (q(l, j) hub?)〉2 | j hub?〉3

×
�

�Aq(l, j), j
�

4

|q(l, i)〉5p
h
| j〉6 (B.32)

“Toffoli”
−−−−→

h−1
∑

l=0

�

�A−|q(l, j), j
�

1 |(j hub?) XOR (q(l, j) hub?)〉2

× | j hub?〉3
�

�Aq(l, j), j
�

4

|q(l, i)〉5p
h
| j〉6

(B.33)

CNOT
−−−→

h−1
∑

l=0

�

�A−|q(l, j), j
�

1 |r(l, j) hub?〉2 | j hub?〉3

×
�

�Aq(l, j), j
�

4

|q(l, i)〉5p
h
| j〉6 (B.34)

OK ·OK−−−→
h−1
∑

l=0

�

�A−|q(l, j), j
�

1 |0〉2 |0〉3
�

�Aq(l, j), j
�

4

|q(l, i)〉5p
h
| j〉6 (B.35)

OA−→
h−1
∑

l=0

�

�A−|q(l, j), j
�

1 |0〉2 |0〉3 |0〉4
|q(l, i)〉5p

h
| j〉6 . (B.36)

Second,

|0〉1 |0〉2 |0〉3 |0〉4 |0n〉5 |i〉6
X
−→|1〉1 |0〉2 |0〉3 |0〉4 |0n〉5 |i〉6 (B.37)

H⊗ log h

−−−→|1〉1 |0〉2 |0〉3 |0〉4
h−1
∑

l ′=0

�

�l ′
�

5p
h
|i〉6 (B.38)

OZ−→|1〉1 |0〉2 |0〉3 |0〉4
h−1
∑

l ′=0

�

�q(l ′, i)
�

5p
h
|i〉6 (B.39)

SWAP
−−−→|1〉1 |0〉2 |0〉3 |0〉4

h−1
∑

l ′=0

|i〉5

�

�q(l ′, i)
�

6p
h

. (B.40)

22

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058

SciPost Phys. Core 6, 058 (2023)

Finally, if U is the unitary implemented by this circuit,

0n+4
�

�

1,2,3,4,5 〈i|6 U
�

�0n+4
�

1,2,3,4,5 | j〉6 =
1
h

∑

l,l ′
A−|q(l, j), jδi,q(l, j)δ j,q(l ′,i) (B.41)

=
1
h

A−|i, j . (B.42)

We have used that, if A−|i, j ̸= 0, there is a unique l such that q(l, j) = i and that, in that
case, there is also a unique l ′ such that q(l ′, i) = j. If A−|i, j = 0, there are no such l and
l ′, and so (B.41) sums to zero.

References

[1] M. E. J. Newman, Networks: An introduction, Oxford University Press, Oxford, UK, ISBN
9780191594175 (2010), doi:10.1093/acprof:oso/9780199206650.001.0001.

[2] A.-L. Barabási and M. Pósfai, Network science, Cambridge University Press, Cambridge,
UK, ISBN 9781107076266 (2016).

[3] R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev.
Lett. 86, 3200 (2001), doi:10.1103/PhysRevLett.86.3200.

[4] M. U. G. Kraemer et al., The effect of human mobility and control measures on the COVID-19
epidemic in China, Science 368, 493 (2020), doi:10.1126/science.abb4218.

[5] H. Horn et al., NetSig: Network-based discovery from cancer genomes, Nat. Methods 15, 61
(2017), doi:10.1038/nmeth.4514.

[6] F. Cheng, I. A. Kovács and A.-L. Barabási, Network-based prediction of drug combinations,
Nat. Commun. 10, 1197 (2019), doi:10.1038/s41467-019-09186-x.

[7] C. Y. Kim, S. Baek, J. Cha, S. Yang, E. Kim, E. M. Marcotte, T. Hart and I. Lee, HumanNet
v3: An improved database of human gene networks for disease research, Nucleic Acids Res.
50, D632 (2021), doi:10.1093/nar/gkab1048.

[8] M. Kotlyar, C. Pastrello, N. Sheahan and I. Jurisica, Integrated interactions database: Tissue-
specific view of the human and model organism interactomes, Nucleic Acids Res. 44, D536
(2015), doi:10.1093/nar/gkv1115.

[9] F. A. C. Azevedo, L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. Ferretti, R. E. Leite, W.
J. Filho, R. Lent and S. Herculano-Houzel, Equal numbers of neuronal and nonneuronal
cells make the human brain an isometrically scaled-up primate brain, J. Comp. Neurol. 513,
532 (2009), doi:10.1002/cne.21974.

[10] M. de Kunder, The size of the world wide web (the internet), https://worldwidewebsize.com.

[11] E. Farhi and S. Gutmann, Quantum computation and decision trees, Phys. Rev. A 58, 915
(1998), doi:10.1103/PhysRevA.58.915.

[12] A. M. Childs, R. Cleve, E. Deotto, E. Farhi, S. Gutmann and D. A. Spielman, Exponential
algorithmic speedup by a quantum walk, in Proceedings of the thirty-fifth annual ACM
symposium on theory of computing, Association for Computing Machinery, New York, USA,
ISBN 1581136749 (2003), doi:10.1145/780542.780552.

23

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1126/science.abb4218
https://doi.org/10.1038/nmeth.4514
https://doi.org/10.1038/s41467-019-09186-x
https://doi.org/10.1093/nar/gkab1048
https://doi.org/10.1093/nar/gkv1115
https://doi.org/10.1002/cne.21974
https://worldwidewebsize.com
https://doi.org/10.1103/PhysRevA.58.915
https://doi.org/10.1145/780542.780552

SciPost Phys. Core 6, 058 (2023)

[13] E. Farhi, J. Goldstone and S. Gutmann, A quantum algorithm for the Hamiltonian nand
tree, Theory Comput. 4, 169 (2008), doi:10.4086/toc.2008.v004a008.

[14] A. M. Childs and J. Goldstone, Spatial search by quantum walk, Phys. Rev. A 70, 022314
(2004), doi:10.1103/PhysRevA.70.022314.

[15] S. Apers, S. Chakraborty, L. Novo and J. Roland, Quadratic speedup for spatial
search by continuous-time quantum walk, Phys. Rev. Lett. 129, 160502 (2022),
doi:10.1103/PhysRevLett.129.160502.

[16] A. Callison, N. Chancellor, F. Mintert and V. Kendon, Finding spin glass ground states using
quantum walks, New J. Phys. 21, 123022 (2019), doi:10.1088/1367-2630/ab5ca2.

[17] S. Marsh and J. B. Wang, Combinatorial optimization via highly efficient quantum walks,
Phys. Rev. Res. 2, 023302 (2020), doi:10.1103/PhysRevResearch.2.023302.

[18] J. P. Moutinho, A. Melo, B. Coutinho, I. A. Kovács and Y. Omar, Quantum link prediction in
complex networks, Phys. Rev. A 107, 032605 (2023), doi:10.1103/PhysRevA.107.032605.

[19] J. P. Moutinho, D. Magano and B. Coutinho, On the complexity of quantum link prediction
in complex networks, (arXiv preprint) doi:10.48550/arXiv.2211.16331.

[20] D. Aharonov and A. Ta-Shma, Adiabatic quantum state generation and statistical zero
knowledge, in Proceedings of the thirty-fifth annual ACM symposium on theory of comput-
ing, Association for Computing Machinery, New York, USA, ISBN 1581136749 (2003),
doi:10.1145/780542.780546.

[21] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari and R. D. Somma, Simulating Hamil-
tonian dynamics with a truncated Taylor series, Phys. Rev. Lett. 114, 090502 (2015),
doi:10.1103/PhysRevLett.114.090502.

[22] G. H. Low and I. L. Chuang, Hamiltonian simulation by qubitization, Quantum 3, 163
(2019), doi:10.22331/q-2019-07-12-163.

[23] G. H. Low and I. L. Chuang, Optimal Hamiltonian simulation by quantum signal processing,
Phys. Rev. Lett. 118, 010501 (2017), doi:10.1103/PhysRevLett.118.010501.

[24] A. Gilyén, Y. Su, G. H. Low and N. Wiebe, Quantum singular value transformation and be-
yond: Exponential improvements for quantum matrix arithmetics, in Proceedings of the 51st
annual ACM SIGACT symposium on theory of computing, Association for Computing Ma-
chinery, New York, USA, ISBN 9781450367059 (2019), doi:10.1145/3313276.3316366.

[25] G. H. Low and N. Wiebe, Hamiltonian simulation in the interaction picture, (arXiv preprint)
doi:10.48550/arXiv.1805.00675.

[26] S. Chakraborty, A. Gilyén and S. Jeffery, The power of block-encoded matrix powers: Im-
proved regression techniques via faster Hamiltonian simulation, in 46th International Col-
loquium on Automata, Languages, and Programming (ICALP 2019), Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, ISBN 9783959771092 (2019),
doi:10.4230/LIPICS.ICALP.2019.33.

[27] D. W. Berry, A. M. Childs and R. Kothari, Hamiltonian simulation with nearly optimal
dependence on all parameters in IEEE 56th annual symposium on foundations of computer
science, IEEE, Berkeley, USA (2015), doi:10.1109/FOCS.2015.54.

24

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058
https://doi.org/10.4086/toc.2008.v004a008
https://doi.org/10.1103/PhysRevA.70.022314
https://doi.org/10.1103/PhysRevLett.129.160502
https://doi.org/10.1088/1367-2630/ab5ca2
https://doi.org/10.1103/PhysRevResearch.2.023302
https://doi.org/10.1103/PhysRevA.107.032605
https://doi.org/10.48550/arXiv.2211.16331
https://doi.org/10.1145/780542.780546
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.48550/arXiv.1805.00675
https://doi.org/10.4230/LIPICS.ICALP.2019.33
https://doi.org/10.1109/FOCS.2015.54

SciPost Phys. Core 6, 058 (2023)

[28] A. M. Childs, R. Kothari and R. D. Somma, Quantum algorithm for systems of linear
equations with exponentially improved dependence on precision, SIAM J. Comput. 46, 1920
(2017), doi:10.1137/16M1087072.

[29] S. Gu, R. D. Somma and B. Şahinoğlu, Fast-forwarding quantum evolution, Quantum 5,
577 (2021), doi:10.22331/q-2021-11-15-577.

[30] G. Brassard et al., Quantum computation and information, American Mathematical Society,
Providence, USA, ISBN 9780821821404 (2002), doi:10.1090/conm/305.

[31] T. J. Yoder, G. H. Low and I. L. Chuang, Fixed-point quantum search with an optimal number
of queries, Phys. Rev. Lett. 113, 210501 (2014), doi:10.1103/PhysRevLett.113.210501.

[32] L. Lin, Lecture notes on quantum algorithms for scientific computation, (arXiv preprint)
doi:10.48550/arXiv.2201.08309.

[33] J. Golbeck, Nodes, edges, and network measures, in Analyzing the social web, Elsevier,
Amsterdam, Netherlands, ISBN 9780124055315 (2013), doi:10.1016/B978-0-12-405531-
5.00002-X.

[34] V. Giovannetti, S. Lloyd and L. Maccone, Quantum random access memory, Phys. Rev. Lett.
100, 160501 (2008), doi:10.1103/PhysRevLett.100.160501.

[35] V. Giovannetti, S. Lloyd and L. Maccone, Architectures for a quantum random access
memory, Physical Review A 78, 052310 (2008), doi:10.1103/PhysRevA.78.052310.

[36] D. K. Park, F. Petruccione and J.-K. K. Rhee, Circuit-based quantum random access memory
for classical data, Sci. Rep. 9, 3949 (2019), doi:10.1038/s41598-019-40439-3.

[37] O. Di Matteo, V. Gheorghiu and M. Mosca, Fault-tolerant resource estimation
of quantum random-access memories, IEEE Trans. Quantum Eng. 1, 1 (2020),
doi:10.1109/TQE.2020.2965803.

[38] A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286, 509
(1999), doi:10.1126/science.286.5439.509.

[39] A. M. Childs and R. Kothari, Limitations on the simulation of non-sparse Hamiltonians,
Quantum Inf. Comput. 10, 669 (2010), doi:10.26421/QIC10.7-8.

25

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.058
https://doi.org/10.1137/16M1087072
https://doi.org/10.22331/q-2021-11-15-577
https://doi.org/10.1090/conm/305
https://doi.org/10.1103/PhysRevLett.113.210501
https://doi.org/10.48550/arXiv.2201.08309
https://doi.org/10.1016/B978-0-12-405531-5.00002-X
https://doi.org/10.1016/B978-0-12-405531-5.00002-X
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.1103/PhysRevA.78.052310
https://doi.org/10.1038/s41598-019-40439-3
https://doi.org/10.1109/TQE.2020.2965803
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.26421/QIC10.7-8

	Introduction
	Summary
	Hub-sparse networks
	Input model
	Main results

	Preliminaries
	Block-encodings
	Linear combination of unitaries
	Fast-forwarding
	Hamiltonian simulation in the interaction picture
	Amplitude amplification

	Oracle conversions
	Fast-forwarding hubs
	Hub-sparse networks in the interaction picture
	Discussion
	Spectral decomposition of the G matrix
	Block-encoding the matrices A-, Ah, and Ar
	References

