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Abstract

In 2D semiconductors and insulators, the Chern number of the valence band Bloch state
is an important quantity that has been linked to various material properties, such as the
topological order. We elaborate that the opacity of 2D materials to circularly polarized
light over a wide range of frequencies, measured in units of the fine structure constant,
can be used to extract a spectral function that frequency-integrates to the Chern number,
offering a simple optical experiment to measure it. This method is subsequently gener-
alized to finite temperature and locally on every lattice site by a linear response theory,
which helps to extract the Chern marker that maps the Chern number to lattice sites.
The long range response in our theory corresponds to a Chern correlator that acts like
the internal fluctuation of the Chern marker, and is found to be enhanced in the topo-
logically nontrivial phase. Finally, from the Fourier transform of the valence band Berry
curvature, a nonlocal Chern marker is further introduced, whose decay length diverges
at topological phase transitions and therefore serves as a faithful indicator of the tran-
sitions, and moreover can be interpreted as a Wannier state correlation function. The
concepts discussed in this work explore multi-faceted aspects of topology and should
help address the impact of system inhomogeneities.
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1 Introduction

Two-dimensional (2D) time-reversal (TR) breaking systems has been an important subject in
the research of topological materials, and also one of the earliest systems discovered to have
nontrivial topological properties [1]. The topological invariant in these systems is described
by the Chern number, which is usually detected experimentally via measuring the quantized
Hall conductance [2] that in practice is attributed to the formation of edge states. The bulk
band structure, on the other hand, shows the same gapped energy spectrum in both the topo-
logically trivial and nontrivial phases, and therefore bulk measurements not involving edge
states are often not considered feasible to identify the Chern number. However, the theoreti-
cal proposal of the Chern marker and other real space constructions changed this paradigmatic
viewpoint [3–13]. Through expressing the Chern number in terms of the projectors into the
filled and empty bands, the Chern marker is introduced as a local quantity that is well-defined
everywhere in the bulk, and recovers the Chern number in the clean, thermodynamic limit. In
fact, it has been shown that such a real space formalism of topological invariant is also pos-
sible in other dimensions and symmetry classes [14–20]. It was further recognized recently
that the Chern number and Chern marker are related to the circular dichroism of the 2D ma-
terial [21–25], and so is the Berry curvature that integrates to the Chern number [26, 27],
pointing to the possibility of directly detecting the topological order by means of bulk optical
measurements.

In this paper, we introduce a number of new theoretical concepts related to Chern numbers
and markers and show that relatively simple optical experimental protocols at finite temper-
ature can be devised to directly access bulk state topology and topological criticality. We first
introduce the Chern number spectral function defined as the optical conductivity of the 2D
material under circularly polarized light divided by frequency [28]. The Chern number is then
given by the frequency integration of this spectral function. We then show that this can be
readily detected from the opacity (measured in units of the fine structure constant) of the 2D
material to circularly polarized light, as previously done in graphene [29,30]. This experimen-
tal protocol is then generalized to individual lattice sites, leading to the conclusion that the
spectral function of the Chern marker can be extracted from the absorption power under circu-
larly polarized light on each site. Additionally, we show that its rich internal spatial structure
is represented by a Chern correlator, which is nothing but the nonlocal current-current corre-
lator. The magnitude of the correlator is found to increase as the system enters topologically
nontrivial phases, suggesting that the inherent fluctuations associated with the Chern number
become more dramatic in the nontrivial phases. Finally, to characterize the quantum critical-
ity near topological phase transitions (TPTs), we introduce the nonlocal Chern marker. This is
defined from the off-diagonal elements of the Chern operator, in contrast to the usual Chern
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marker defined from the diagonal element of the same operator. We see that this nonlocal
Chern marker is equivalent to a previously proposed correlation function that measures the
overlap between Wannier functions localized at different home cells [31–33], and becomes
long-ranged as the system approaches TPTs, owing to the diverging Berry curvature in mo-
mentum space.

2 Linear response theory of local Chern marker

2.1 Local Chern marker in terms of Wannier states

As our work primarily explores the link between Chern markers and putative experimen-
tal measurables, we first review the original derivation of the Chern marker by Bianco and
Resta [7], with an emphasis on the relation to Wannier states in the homogeneous case. We
use the following notations for the bands and Bloch states: indices n and m denote the va-
lence and conduction bands respectively, while ℓ denotes both bands. We denote |ℓk〉 as the
periodic part of the Bloch state, and |ψℓk〉 as the full state that is related to the former by
〈r|ψℓk〉 = eik·r〈r|ℓk〉. In the homogeneous and thermodynamic limit, the Bloch state of each
band |ℓk〉 defines a Wannier state |Rℓ〉 by

|ℓk〉=
∑

R

e−ik·(r̂−R)|Rℓ〉 , |Rℓ〉=
∑

k

eik·(r̂−R)|ℓk〉 , (1)

where r̂ is the position operator, R is a Bravais lattice vector, and the normalization fac-
tors are ignored for simplicity. The Wannier function at position r = (x , y) is given by
〈r|Rℓ〉=Wℓ(r−R), which localizes around the home cell R in real space.

For a general model that contains N− valence bands, the periodic part of the fully antisym-
metric valence band state at momentum k is given by

|nval(k)〉=
1
p

N−!
εn1n2...nN− |nk

1〉|n
k
2〉...|n

k
N−
〉 , (2)

where εn1n2...nN− is the fully antisymmetric Levi-Civita symbol. The Berry curvature of this
valence band state in Eq. (2) on the x y-plane of a 2D system is given by [34]

Ωx y(k)≡ i〈∂x nval|∂y nval〉 − i〈∂y nval|∂x nval〉=
∑

n

�

i〈∂x nk|∂y nk〉 − i〈∂y nk|∂x nk〉
�

, (3)

where ∂µ ≡ ∂ /∂ kµ. Note that the Berry curvature is additive in the curvatures of each individ-
ual valence band. We rewrite the corresponding Chern number C defined from the momentum
integration of Ωx y(k) as [7]

C =
∫

d2k
(2π)2

Ωx y(k) =
∑

n,m

∫

d2k
(2π)2

i〈∂x nk|mk〉〈mk|∂y nk〉 − (x↔ y) . (4)

In the following, we extensively use the identity linking the non-Abelian Berry connection to
the charge polarization of the eigenstates and Wannier states [7,31,32,35–37]

i〈mk|∂x nk〉= 〈ψmk| x̂ |ψnk〉/ħh=
1
ħh

∑

R

eik·R〈0m| x̂ |Rn〉=
1
ħh

∑

R

e−ik·R〈Rm| x̂ |0n〉 , ∀ m ̸= n ,

(5)

3

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.059


SciPost Phys. Core 6, 059 (2023)

where x̂ is the x-component of the position operator r̂ in real space. Using Eq. (5), C can be
expressed in terms of the Wannier states [7]:

C =
∑

nm

∫

d2k
(2π)2

i

ħh2 〈ψnk| x̂ |ψmk〉〈ψmk| ŷ|ψnk〉 − (x↔ y)

=
1
a2

∑

nm

∫

d2k
(2πħh/a)2

∫

d2k′

(2πħh/a)2
i〈ψnk| x̂ |ψmk′〉〈ψmk′ | ŷ|ψnk〉 − (x↔ y)

=
1
a2

∑

nm

∑

R

i〈0n| x̂ |Rm〉〈Rm| ŷ|0n〉 − (x↔ y)

=
1
a2

∑

nm

∑

R

i

∫

dr

∫

dr′xrW
∗
n (r)Wm(r−R)yr′W

∗
m(r
′ −R)Wn(r

′)− (x↔ y) , (6)

where the second line is valid because the matrix elements for k ̸= k′ vanish. In terms of the
projection operators to the valence and conduction band states

P̂ =
∑

n

∫

d2k
(2πħh/a)2

|ψnk〉〈ψnk| , Q̂ =
∑

m

∫

d2k′

(2πħh/a)2
|ψmk′〉〈ψmk′ | , (7)

the Chern number can be recast as

C = i
Na2

Tr
�

P̂ x̂Q̂ ŷ − P̂ ŷQ̂ x̂
�

=
i

Na2
Tr
�

P̂ x̂Q̂ ŷ P̂ − P̂ ŷQ̂ x̂ P̂
�

, (8)

where Tr denotes the trace over all the degrees of freedom on the lattice, and it is known that
in practice an additional projector P̂ has to be added to get the correct Chern marker locally
on each site [7], as introduced below. In fact, this extra projector can also be derived from
a universal topological marker constructed from spectrally flattened Dirac Hamiltonians [20].
The operator Ĉ ≡ i[P̂ x̂Q̂ ŷ P̂ − P̂ ŷQ̂ x̂ P̂] will be referred to as the Chern operator.

The Chern marker is introduced by considering a 2D tight-binding Hamiltonian
H =
∑

rr′σσ′ trr′σσ′ c
†
rσcr′σ′ with eigenstates satisfying H|El〉 = El |El〉. In terms of |El〉, the

projectors in Eq. (7) take the form

P̂ =
∑

n

|En〉〈En| , Q̂ =
∑

m

|Em〉〈Em| . (9)

The local Chern marker is defined by [7]

C(r) = 1
a2

∑

σ

〈r,σ|Ĉ|r,σ〉 ≡
i

a2
〈r|
�

P̂ x̂Q̂ ŷ P̂ − P̂ ŷQ̂ x̂ P̂
�

|r〉 . (10)

In the following sections, we will present a formalism that generalizes both the Chern number
C and the Chern marker C(r) to finite temperature, introduce their spectral functions, and sug-
gest a simple optical measurement to detect them in contrast to traditional Hall conductance
measurements.

2.2 Opacity measurement of finite temperature Chern number

The connection between the zero temperature Chern number and circular dichroism has been
discussed in multiple works [21–25]. Here, we discuss a finite temperature generalization of
these ideas, using a formalism similar to the derivation of Faraday effects in solids [38]. Via
the finite temperature Chern number spectral function that represents a distribution of Chern
number in energy, we show that the Chern number can be simply measured from the opacity
of the 2D material to circularly polarized light. We define the current operators ĵc1 = ĵx + i ĵy
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and ĵc2 = ĵx− i ĵy at momentum k where ĵµ(k) = e∂µH(k)with e the electron charge and H(k)
the unperturbed single-particle Hamiltonian. These currents are relevant to the two circularly
polarized oscillating electric fields Ec1(t) = (x̂+ iŷ)E0e−iωt and Ec2(t) = (x̂− iŷ)E0e−iωt . Due
to minimal coupling δH = −j ·A and E = −∂ A/∂ t, the two polarizations induce the cor-
responding perturbations: δH c1(k) = ĵc1iE0e−iωt/ω and δH c2(k) = ĵc2iE0e−iωt/ω. Within
linear response theory, the polarization induced currents satisfy 〈 ĵc2〉 = σc2,c1(k,ω)E0e−iωt

and 〈 ĵc1〉= σc1,c2(k,ω)E0e−iωt , where the optical conductivity σ is

σc1,c2(k,ω) =
∑

ℓ<ℓ′

π

a2ħhω
〈ℓ| ĵc1|ℓ′〉〈ℓ′| ĵc2|ℓ〉

�

f (ϵk
ℓ )− f (ϵk

ℓ′)
�

δ

�

ω+
ϵk
ℓ

ħh
−
ϵk
ℓ′

ħh

�

. (11)

Note, σc2,c1(k,ω) is given by the same expression with ĵc1 ↔ ĵc2. Here |ℓ〉 ≡ |ℓk〉 is the
periodic part of the Block state, and the index ℓ enumerates both the valence and conduction
band states, since at finite temperature both of them contribute to the Chern number, and
f (ϵk

ℓ
) is the Fermi distribution of the eigenenergy ϵk

ℓ
. Note that the δ-function in Eq. (11)

with ω > 0 ensures ϵk
ℓ
< ϵk

ℓ′
, such that it only accounts for the optical absorption process, as

denoted by the notation
∑

ℓ<ℓ′ . To proceed, we introduce the Berry curvature spectral function
at momentum k by

Ωd
x y(k,ω) =
∑

ℓ<ℓ′

�

i〈∂xℓ|ℓ′〉〈ℓ′|∂yℓ〉 − (x↔ y)
� �

f (ϵk
ℓ )− f (ϵk

ℓ′)
�

δ

�

ω+
ϵk
ℓ

ħh
−
ϵk
ℓ′

ħh

�

, (12)

which has been derived from a linear response theory [27]. When integrated over frequency,
this function recovers the Berry curvature in Eq. (3) in the zero temperature limit where ℓ→ n
and ℓ→ m. Using Eq. (11) and 〈ℓ| ĵµ|ℓ′〉= e

�

ϵk
ℓ
− ϵk

ℓ′

�

〈∂µℓ|ℓ′〉, we find the following relation

σc2,c1(k,ω)−σc1,c2(k,ω) = 2
πe2

a2
ħhωΩd

x y(k,ω) . (13)

Further integration over momentum [28]

σc2,c1(ω)−σc1,c2(ω) =

∫

d2k
(2πħh/a)2
�

σc2,c1(k,ω)−σc1,c2(k,ω)
�

=
2πe2

ħh
ω

∫

d2k
(2π)2

Ωd
x y(k,ω)≡

2πe2

ħh
ωCd(ω) , (14)

defines what we call the Chern number spectral function Cd(ω). Physically, Cd(ω) can be
interpreted as a “density of states” of the Chern number Cd indicating which eigenstates con-
tribute the most to the Chern number, as we shall see in the following sections using concrete
examples. In our notation, the superscript d stands for “dressed” to indicate that it is a finite
temperature generalization of the Chern number.

To relate the spectral function in Eq. (14) to experimental observables, we write the real
part of the circularly polarized oscillating fields and the currents they induce as

Ec1(ω, t) = E0(x̂+ iŷ) cosωt ,

jc2(ω, t) = σc2,c1(ω)E
c1∗(ω, t) = σc2,c1(ω)E0(x̂− iŷ) cosωt ,

Ec2(ω, t) = E0(x̂− iŷ) cosωt ,

jc1(ω, t) = σc1,c2(ω)E
c2∗(ω, t) = σc1,c2(ω)E0(x̂+ iŷ) cosωt ,

(15)

where E0 is the strength of the field. The absorption power at each circular polarization is
then given by

W c1
a (ω) = 〈j

c2(ω, t) · Ec1(ω, t)〉t = σc2,c1(ω)E
2
0 ,

W c2
a (ω) = 〈j

c1(ω, t) · Ec2(ω, t)〉t = σc1,c2(ω)E
2
0 ,

(16)
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where the time average gives 〈cos2ωt〉t = 1/2. On the other hand, the incident power of the
light per unit cell area of each polarization is Wi = c ϵ0E2

0 |x̂± iŷ|2/2= c ϵ0E2
0 , so the difference

in opacity for the two polarizations is Oc1(ω)−Oc2(ω) =
�

W c1
a (ω)−W c2

a (ω)
�

/Wi , which can
be used to extract the Chern number spectral function and subsequently the Chern number
by

Cd(ω) =
1

8πω

�

Oc1(ω)−Oc2(ω)
πα

�

, Cd =

∫ ∞

0

dωCd(ω) , (17)

where α = e2/4πc ϵ0ħh is the fine structure constant [29]. In other words, the Chern number
spectral function can be simply extracted from the opacity difference between the two circu-
lar polarizations, similar to measurements in graphene [29,30]. Moreover, because the finite
temperature Chern number Cd is the frequency integrated spectral function, Eq. (17) implies
that the opacity difference under circularly polarized light divided by frequency and then in-
tegrated over frequency must be a quantized integer at zero temperature, thereby realizing a
topology induced frequency sum rule for noninteracting 2D materials [28]. This simple exper-
imental protocol is easily accessible, thereby permitting a direct verification of the concepts
proposed in our work.

We remark that the proper definition of Chern number at finite temperature has been
contentious. Previous works based on linear response theory of DC Hall conductance suggest
to define the finite temperature Chern number as the momentum-integration of the product of
the Fermi distribution and the filled band Berry curvature σDC

x y =
∫ d2k
(2π)2
∑

nΩ
n
x y f (ϵk

n), which
is what is measured in transport experiments [39, 40]. In contrast, our formalism based on
optical Hall conductivity in Eq. (11) leads to an expression that contains the difference between
the Fermi distributions of the filled bands and those of the empty bands, and a matrix element
involving both filled and empty bands stemming from the optical absorption process. Thus our
finite temperature formalism differs from that of the DC Hall conductance, and is specifically
formulated to describe the opacity measurement of the Chern number at finite temperature.

2.3 Linear response theory of finite temperature Chern marker

The finite temperature Chern number can further be written into real space using the formalism
in Sec. 2.1, yielding

Cd =
a2

ħh2

∫

d2k
(2πħh/a)2
∑

ℓ<ℓ′

�

i〈∂xℓ|ℓ′〉〈ℓ′|∂yℓ〉 − (x↔ y)
� �

f (ϵk
ℓ )− f (ϵk

ℓ′)
�

=
1
a2

∫

d2k
(2πħh/a)2
∑

ℓ<ℓ′

�

i〈ψk
ℓ | x̂ |ψ

k
ℓ′〉〈ψ

k
ℓ′ | ŷ|ψ

k
ℓ〉 − (x↔ y)
� �

f (ϵk
ℓ )− f (ϵk

ℓ′)
�

=
1
a2

∫

d2k
(2πħh/a)2

∫

d2k′

(2πħh/a)2
∑

ℓ<ℓ′

�

i〈ψk
ℓ | x̂ |ψ

k′
ℓ′ 〉〈ψ

k′
ℓ′ | ŷ|ψ

k
ℓ〉 − (x↔ y)
��

f (ϵk
ℓ )− f (ϵk′

ℓ′ )
�

=
1

Na2

∑

ℓ<ℓ′

[i〈Eℓ| x̂ |Eℓ′〉〈Eℓ′ | ŷ|Eℓ〉 − (x↔ y)] [ f (Eℓ)− f (Eℓ′)]

=
1

Na2

∑

ℓ<ℓ′

Tr [i x̂Sℓ′ ŷSℓ − (x↔ y)] [ f (Eℓ)− f (Eℓ′)] , (18)

where |Eℓ〉 is a lattice eigenstate obtained from diagonalizing the lattice Hamiltonian
H|Eℓ〉 = Eℓ|Eℓ〉, and we denote its projector by Sℓ = |Eℓ〉〈Eℓ|. Here |ψk

ℓ
〉 is the full Bloch

state satisfying 〈r|ψk
ℓ
〉= eik·r〈r|ℓ〉, and in deriving Eq. (18) we have used
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∫

d2k
(2πħh/a)2

|ψk
ℓ〉〈ψ

k
ℓ |=
∑

ℓ

Sℓ ,

∫

d2k
(2πħh/a)2

|ψk
ℓ〉〈ψ

k
ℓ | f (ϵ

k
ℓ ) =
∑

ℓ

Sℓ f (Eℓ) .
(19)

At zero temperature, the Fermi distribution becomes a step function hence the indices ℓ→ n
and ℓ′→ m are limited to the valence and conduction bands, respectively, so the Chern number
in Eq. (18) recovers the zero temperature results in Eqs. (6) and (8).

However, from the discussion after Eq. (8), an extra projector analogous to P must be
added to Eq. (18) in order to obtain the right Chern marker. The issue is then how should one
consistently add a projector given that the thermal broadening at finite temperature renders
the filled and empty states projectors P and Q in Eq. (7) rather ambiguous. For this purpose,
we propose to first evaluate the matrix

X =
∑

ℓ<ℓ′

Sℓ x̂Sℓ′
Æ

fℓℓ′ , (20)

and the analogous Y given by replacing x̂ → ŷ , where fℓℓ′ ≡ f (Eℓ)− f (Eℓ′). Having calculated
these matrices, we define the finite temperature Chern marker by

Cd(r) =
i

a2
〈r|
�

X Y † − Y X †
�

|r〉 , (21)

i.e., it is the diagonal element of the operator i[X Y † − Y X †] that serves as the finite temper-
ature generalization of the Chern operator defined after Eq. (8). The legitimacy of Eq. (21)
relies on the fact that it encapsulates proper thermal broadening and spatially sums to the
Chern number Cd =

∑

r C
d(r)/N in Eq. (18) since

∑

r |r〉〈r| = I and SℓSℓ = Sℓδℓℓ. Essentially,
our proposal is based on the assertion that the P̂ x̂Q̂ factor in Eq. (8) is generalized to the X
operator in Eq. (20) at finite temperature in order to be consistent with our linear response
theory of optical conductivity, i.e., the spatial sum of the Chern marker is proportional to the
global Hall conductance.

Extending Eq. 20 to the frequency-dependent matrix

X (ω) =
∑

ℓ<ℓ′

Sℓ x̂Sℓ′
Æ

fℓℓ′δ(ω+ Eℓ/ħh− Eℓ′/ħh) (22)

(and the analogous Y (ω)), a generalized Chern marker spectral function can now be extracted:

Cd(r,ω) = Re
�

i
a2
〈r|
�

X (ω)Y †(ω)− Y (ω)X †(ω)
�

|r〉
�

. (23)

It is straightforward to see that Cd(ω) =
∑

r C
d(r,ω)/N ( cf. Eq. (14)). Based on Sec. 2.2

we immediately conclude that the Chern marker spectral function represents the local opacity
difference at the unit cell at r:

Cd(r,ω) =
1

8πω

�

Oc1(r,ω)−Oc2(r,ω)
πα

�

, Cd(r) =

∫ ∞

0

dωCd(r,ω) . (24)

The local opacity sums to the global one Oc1(ω) =
∑

r O
c1(r,ω). As a result, Cd(r,ω) in

principle can be detected by performing the opacity measurement described after Eq. (17)
locally at r. However, at zero temperature, one should keep in mind that Cd(r,ω) is nonzero
only at frequencies larger than the band gap of the material ω > ∆. Typical semiconducting
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Figure 1: (a) The Chern number spectral function Cd(ω) for the Chern insulator in a
continuum, which is finite only at frequency larger than the bulk gap M , and more-
over scales like 1/ω2 such that it integrates to a finite value. The overall magnitude
reduces with temperature. (b) The frequency-integrated Chern number Cd at zero
and nonzero temperatures as a function of the mass term M .

band gaps ∆∼ eV likely necessitate circularly polarized light in the visible light range. As the
wave lengths far exceed the lattice constant in this range, it will hinder the detection of local
opacity in the nanometer scale. Nevertheless, we anticipate that Cd(r,ω) may be detected by
thermal probes such as scanning thermal microscopy [41–44] that can detect the heating at
the atomic scale caused by the circularly polarized light. The detected local absorption power
W c1

a (r,ω)−W c2
a (r,ω) then leads to Eq. (24) as a heating rate of the unit cell at r.

3 Lattice model of Chern insulator

We now illustrate the power of the concepts described in the previous sections by exploring
the concrete example of a prototypical 2D Chern insulator. The momentum space Hamiltonian
in the basis
�

cks, ckp

�T
is given by [45,46]

H(k) = 2t sin kxσ
x + 2t sin kyσ

y +
�

M + 4t ′ − 2t ′ cos kx − 2t ′ cos ky

�

σz . (25)

The internal degrees of freedom σ = {s, p} are the orbitals. A straightforward Fourier trans-
form leads to the two band lattice Hamiltonian [47]

H =
∑

i

t
�

−ic†
isci+ap + ic†

i+ascip − c†
isci+bp + c†

i+bscip + h.c.
	

+
∑

iδ

t ′
¦

−c†
isci+δs + c†

ipci+δp + h.c.
©

+
∑

i

�

M + 4t ′
�

¦

c†
iscis − c†

ipcip

©

, (26)

where δ = {a, b} represents the lattice constants in the two planar directions. Throughout
the paper, we set t = t ′ = 1.0 and tune the mass term M to examine different topological
phases, and the behavior of this model at finite temperature T . The model hosts topological
phase transitions (TPT) at three critical points Mc = {−8,−4,0}, reflecting gap closures at
different high symmetry points (HSPs) in momentum space [48]. Since they all exhibit the
same critical behavior [31–33], we will focus on the Mc = 0 critical point where the bulk gap
closes at k= (0, 0).

Analytical results for this model can be obtained by linearizing the Hamiltonian near the
HSP k0 = (0,0), yielding Em,n = ±

p
M2 + v2k2 and a zero temperature Berry curvature
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Figure 2: The Chern number spectral function Cd(ω) for the lattice model of Chern
insulator as a function of M = {−1,−0.2, 0.2,0.4} across the critical point Mc = 0,
plotted for both low (orange) and high (blue) temperatures, where the δ-function
in Eq. (27) is simulated by a Lorentzian with width η = 0.1. In the topologically
nontrivial phase M = {−1,−0.2}, the spectral function is negative due to the negative
Chern number Cd ≈ −1, and the spectral weight gradually shifts to low frequency as
M → Mc . In the topologically trivial phase M = {0.2, 0.4} and at low temperature,
the positive and negative regions together yield Cd ≈ 0 (up to numerical precision).

Ωx y = v2M/2
�

M2 + v2k2
�3/2

. The finite temperature Chern number spectral function in
Eq. (14) is given by

Cd(ω) =
M

2πħhω2

�

f
�

−
ħhω
2

�

− f
�

ħhω
2

��

ω≥2|M |/ħh
. (27)

At T = 0, Cd(ω) → C(ω) and is nonzero only if ω ≥ 2|M |/ħh, since it represents an exciton
absorption rate, as shown schematically in Fig. 1 (a). Moreover, the topological invariant
C =
∫∞

2|M |/ħh dωC(ω) = Sgn(M)/4π. Essentially, this is the f -sum rule for exciton absorption
rates in circular dichroism applied to topological insulators [28]. When T ̸= 0, since the Fermi
factor f
�

−ω2
�

− f
�

ω
2

�

≤ 1, Cd < Sgn(M)/4π is smaller than the quantized zero temperature
Chern number, as illustrated in Fig. 1 (a). We anticipate that these predicted features should
be readily verifiable by the opacity experiment proposed in Secs. 2.2.

The numerical results of the Chern number/marker Cd = Cd(r) for the homogeneous lat-
tice model of Chern insulator in Eq. (25) are shown in Fig. 1 (b). One sees that though
the abrupt changes of the Chern number at the critical points are smeared out at nonzero
temperature, clear vestiges of these TPTs are still present and should be observable in the ex-
perimentally accessible temperature range. To explain this smearing and examine the critical
behavior, in Fig. 2 we present the evolution of the Chern number/marker spectral function
Cd(ω) = Cd(r,ω) across the critical point Mc at both low and high temperatures. In the topo-
logically nontrivial phase M < 0, the spectral function is negative (consistent with C = −1)
and the magnitude is largest near the band gap ω≈ 2|M |, reflecting that excitations of states
in the vicinity of the band gap are the most detrimental to the topological properties of the
system. The role of temperature is to reduce the overall magnitude of the spectral function
and subsequently the frequency integration, consistent with the smearing presented in Fig. 1
(b). On the other hand, in the topologically trivial phase M > 0, the spectral weight has both
positive and negative components such that it integrates to a zero Chern number Cd ≈ 0 at
low temperature. Interestingly, the effect of temperature is to reduce the positive peak at low
frequency and make the overall frequency integration slightly negative, which explains the
smearing of the sharp jump of Cd at the critical point by temperature as shown in Fig. 1 (b).
Comparing the M = −0.2 and M = 0.2 panels in Fig. 2, we see that the spectral weight near
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the band gap flips sign as the system crosses the TPT at Mc = 0, in accordance with the flipping
of Berry curvature at the HSP k0 = (0, 0), a defining feature of TPTs [31–33,49]. Interestingly,
these features of Cd(ω) bear a striking similarity with the Haldane-type Floquet topological
insulator [22]. The latter has been realized in cold atoms that has an extremely narrow band
width ∼ 10−12eV, in which the zero temperature limit limT→0 Cd(ω) hs been measured. This
indicates that these features may be generic for Chern insulators realized in a variety of dif-
ferent energy scales.

Finally, combining the shape of Cd(ω) in Fig. 2 with the opacity measurement proposed
in Sec. 2.2 implies a remarkably simple way to infer the finite temperature Chern number
in 2D materials. Figure 2 suggests that if a 2D material always appears more transparent
under right circularly polarized light than the left (or vice versa) at any frequency, then the
material must be topologically nontrivial, as Cd(ω) is always of the same sign and hence it must
frequency-integrate to a finite Chern number. Depending on the frequency range of Cd(ω) in
real materials, this should be directly visible to the naked eye or through an infrared/UV lens,
offering a very simple way to perceive the topological order in the macroscopic scale. On the
other hand, if the transparency of the material under the two circular polarizations is strongly
frequency dependent, then a frequency integration of Cd(ω) is required to infer the Chern
number.

4 Topological quantum criticality

The Chern marker is known to display interesting critical behavior near TPTs, such as size-
dependent smoothening of its discontinuity [50], Kibble-Zurek scaling in disordered Chern
insulators [51], and Hofstadter-butterfly-like features in quasicrystals [52]. As with standard
symmetry breaking critical points, where correlation functions of the order parameter show
divergent correlation lengths, here, using linear response theory, we explore if there exist
certain nonlocal correlators that will display such singular behavior near TPTs. We identify
two quantities: a Chern correlator and a nonlocal Chern marker, which encode different physics
pertaining to the topological quantum criticality.

4.1 Chern correlator

Based on the linear response theory presented earlier, we define a Chern correlator spectral
function by splitting the second position operator x̂ =

∑

r′ x̂r′ in Eq. (23) into its component
on each site r′, yielding

C̃(r, r′,ω) = Re
�

i
a2
〈r|
�

X (ω)Y †
r′ (ω)− Y (ω)X †

r′(ω)
�

|r〉
�

,

X †
r′(ω) =
∑

ℓ<ℓ′

Sℓ′ x̂r′Sℓ
Æ

fℓℓ′δ(ω+ Eℓ/ħh− Eℓ′/ħh) ,
(28)

which spatially sums to the Chern marker spectra function Cd(r,ω) =
∑

r′ C̃(r, r′,ω) in
Eq. (23). This splitting of the second position operator is justified by the observation that in
Eqs. (11) and (18), the second position operator accounts for the global field. Consequently,
this Chern correlator spectral function C̃(r, r′,ω) represents the local current at site r caused
by applying a field of frequency ω at site r′, i.e. , the nonlocal current response. A frequency
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Figure 3: (a) The maximal and minimal values of the zero-temperature Chern corre-
lator C̃(r, r′) as a function of the tuning parameter M for a Chern insulator on a 14×14
lattice. The background color indicates the three topologically distinct phases. The
vertical dashed lines indicate the surface plots of C̃(r, r′ = r0) with r0 = (7,7), shown
in the right panels: (b) M = −3.5, (c) M = −2.5, (d) M = −0.5, (e) M = 0.5. The
surface plots have been interpolated on a 140× 140 grid as a visual aid.

integration C̃(r, r′) =
∫∞

0 dω C̃(r, r′,ω) further leads to a Chern correlator

C̃(r, r′) = Re
�

i
a2
〈r|
�

X Y †
r′ − Y X †

r′
�

|r〉
�

,

X †
r′(ω) =
∑

ℓ<ℓ′

Sℓ′ x̂r′Sℓ
Æ

fℓℓ′ .
(29)

This correlator sums to the Chern marker
∑

r′ C̃(r, r′) = Cd(r) and represents a measure of the
internal fluctuation of the Chern marker. Note that in a clean and infinite system, the local
Chern marker Cd(r) = Cd is homogenous even in the vicinity of a TPT. However, the Chern
correlator C̃(r, r′) depends on r− r′ as clearly evidenced by the numerical results for the Chern
insulator shown in Fig. 3.

Typically, the correlations are maximally deep in a topological phase and very weak in
topologically trivial phases, indicating a much larger internal fluctuation of the Chern marker
in the nontrivial phase. The Chern correlator consists mainly of two peaks of opposite sign
around r ∼ r′ consistent with the expectation that the nonlocal current-current correlator is
larger at short separations. A pronounced asymmetry between the heights of the two peaks is
seen in topologically non trivial phases whereas the peak heights are equal in the topologically
trivial phase, concomitant with the expectation that the spatial integral of this correlator should
yield the Chern number. These aspects are well encapsulated in Fig. 3(a) where we see the
evolution of the two peak heights as a function of M . Finally, the frequency dependence of the
Chern correlator spectral function C̃(r, r′,ω) is shown in Fig. 4, indicating a spatial pattern that
changes dramatically withω. Physically, this reflects the variation of the current at r stemming
from optical absorption due to the light applied at r′.
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Figure 4: Chern correlator spectral function C̃(r, r′ = r0,ω=ωi) at various values of
the frequency ωi for a Chern insulator at M = −1.0 and temperature kB T = 0.1 on
a 12× 12 lattice. The reference point is r0 = (6, 6). (a) ωi = 2.7, (b) ωi = 5.6, (c)
ωi = 5.9, (d) ωi = 6.9. In the numerics, the delta function was approximated by a
Lorentzian with width parameter η = 0.1. The surface plots have been interpolated
on a 120× 120 grid as a visual aid.

4.2 Wannier state correlation function as a nonlocal Chern marker

Lastly, we highlight the intricate link between Chern markers and a previously proposed Wan-
nier state correlation function [31–33]. Restricting ourselves to a homogeneous system at zero
temperature, the Wannier state correlation function derived from the Fourier transform of the
Berry curvature Ωx y is [36,37,53]

F̃(R) =

∫

d2k
(2π)2

Ωx y(k)e
ik·R = −i
∑

n

〈Rn|(Rx ŷ − R y x̂)|0n〉

= −i
∑

n

∫

d2r(Rx y − R y x)Wn(r−R)∗Wn(r) , (30)

provided R ̸= 0. The Lorentzian shape of the Berry curvature Ωx y(k) with width ξ−1 results
in a decaying F̃(R) with correlation length ξ. The spatial profile of F̃(R) for the lattice Chern
insulator of Eq. (26) is discussed in Fig. 3 of Ref. [31]. As the system approaches the TPTs,
ξ→∞. This is a generic feature of TPTs both in and out of equilibirum [54,55], from which
the critical exponent of ξ can be extracted [31–33].

Using the formalism in Sec. 2.1, we also note that

F̃(R) =
∑

n

∫

d2k
(2π)2

i〈∂x nk|∂y nk〉eik·R − (x↔ y)

=
∑

n

∑

m

∫

d2k
(2π)2

∫

d2k′

(2π)2
i〈ψnk| x̂ |ψmk′〉〈ψmk′ | ŷ|ψnk〉eik·R − (x↔ y) . (31)

Since R is a Bravais lattice vector and nk(r) = nk(r+R) is cell periodic,

〈r|ψnk〉eik·R = eik·(r+R)nk(r+R) =ψnk(r+R) = 〈r+R|ψnk〉 . (32)

In parallel, using the projector operator formalism, we can define a nonlocal Chern marker
C(r+R, r) from the off-diagonal element of the Chern operator

C(r+R, r)≡ Re
�

i
a2
〈r+R|
�

P̂ x̂Q̂ ŷ P̂ − P̂ ŷQ̂ x̂ P̂
�

|r〉
�

. (33)

Note that the case R = 0 reduces to the standard Chern marker C(r). Using Eq. (32), one
sees that for homogeneous systems in the thermodynamic limit, the nonlocal Chern marker is
precisely the F̃(R)

lim
N→∞

C(r+R, r) = F̃(R) . (34)
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Figure 5: The nonlocal Chern marker C(r+R, r) of the lattice Chern insulator of size
28 × 28 sites, where we choose r to be at the center of the lattice and plot it as a
function of R for four values of M . One sees that the spatial profiles closer to the
critical point M = ±0.5 are more long-ranged than those far away from the critical
point M = ±2. Note that we plot −C(r+R, r) for the topologically nontrivial phase
since the Chern marker C(r)≈ −1 gives an overall negative amplitude.

This remarkable correspondence offers a highly practical method to evaluate the Wannier state
correlation function F̃(R) in lattice models. The spatial profile of C(r+R, r) for the lattice
Chern insulator in Eq. (26) for parameters close and far away from the critical point Mc = 0 is
shown in Fig. 5. As expected, C(r+ 0, r) = C(r)≈ 0 or−1 in the two distinct topological phases
and C(r+R, r) decreases with R. Due to the diverging correlation length ξ, C(r+R, r) becomes
more long-ranged as the system approaches the critical point Mc = 0 from either side of the
transition, thereby serving as a faithful measure to the critical behavior near TPTs. We remark
that the critical exponent of the correlation length ξ ∼ |M |−ν has been calculated previously
from the divergence of Berry curvature, yielding ν= 1 for linear Dirac models [31–33,54–56].
Similar critical exponents can also be extracted from the scaling of the Chern marker itself [50]
These features remain true for all the three critical points Mc = {0,−4,−8} in the lattice
model of Chern insulators, so we only present the data near the critical point Mc = 0 for
simplicity. Though C(r+R, r) does not have a straightforward interpretation within linear
response theory, it can nevertheless be extracted from Fourier transforms of the Berry curvature
measured in momentum space. Importantly, as the decay length ξ is entirely determined by
the Lorentzian shape of the Berry curvature at HSPs [31,33], it suffices to probe a very small
region near the HSPs to extract the decay of the Wannier correlation. Such measurements
should be feasible with pump-probe experiments in 2D materials [27,57].

5 Conclusions

In summary, we unveil a number of new aspects related to the measurement of the Chern num-
ber and the identification of TPTs in 2D TR breaking materials as summarized schematically in
Fig. 6. We first identify a Chern number spectral function Cd(ω) that can be extracted from the
opacity of 2D materials against circularly polarized light. As the Chern number Cd is simply
given by the frequency integration of this spectral function, our results provide a very simple
experimental protocol to access bulk topology that is expected to be widely applicable to 2D
materials. Generalizing the above measurement protocol to finite temperatures, we show that
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Figure 6: Summary of the linear response theory, measurement protocols, and Wan-
nier function interpretation of various quantities introduced in the present work. The
blue text gives the terminology, the orange text the corresponding physical quantity
in the optical Hall response, and the black arrows the relation between them. The
abbreviations are cur.-cur. corr. = current-current correlator, spec. = spectral, and
fn. = function.

temperature adversely affects the low frequency part of Cd(ω) thereby smearing the sharp
jumps of the Chern number at zero temperature TPTs. We then propose a finite temperature
Chern marker spectral function Cd(r,ω) which frequency-integrates to the finite temperature
Chern marker. This spectral function can be measured by atomic scale thermal probes as the
local heating rate caused by circularly polarized light.

To quantify critical behavior near TPTs in 2D TR breaking materials, we introduced the
Chern correlator C̃(r, r′) and its associated spectral function C̃(r, r′,ω). These are intimately
linked to nonlocal current-current correlations in the optical Hall response. These quantities
manifest different behaviors in topologically trivial and non-trivial phases. We also showed
that the nonlocal Chern marker becomes increasingly long-ranged as TPTs are approached.
Finally, we remark that the notions introduced in the present work have been recently gener-
alized to TR symmetric 2D systems like the Bernevig-Hughes-Zhang model [58]described by
spin Chern numbers and markers [59]. We anticipate that these new aspects may be widely
applied to investigate the influence of real space inhomogeneities on both bulk topology and
the critical behavior near TPTs.
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