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Abstract

We perform a Bayesian search in the latest Pulsar Timing Array (PTA) datasets for a
stochastic gravitational wave (GW) background sourced by curvature perturbations at
scales 105 Mpc−1

≲ k ≲ 108 Mpc−1. These re-enter the Hubble horizon at temperatures
around and below the QCD crossover phase transition in the early Universe. We include a
stochastic background of astrophysical origin in our search and properly account for con-
straints on the curvature power spectrum from the overproduction of primordial black
holes (PBHs). We find that the International PTA Data Release 2 significantly favors
the astrophysical model for its reported common-spectrum process, over the curvature-
induced background. On the other hand, the two interpretations fit the NANOgrav 12.5
years dataset equally well. We then set new upper limits on the amplitude of the curva-
ture power spectrum at small scales. These are independent from, and competitive with,
indirect astrophysical bounds from the abundance of PBH dark matter. Upcoming PTA
data releases will provide the strongest probe of the curvature power spectrum around
the QCD epoch.
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1 Introduction

The detection of the stochastic background of Gravitational Waves (GWs) is one of the primary
targets of current [1–4] and future (e.g. [5–7]) GW observatories. Any sufficiently violent
process occurring in the Universe, no matter how early in the cosmological history, would
contribute to such a background, which then holds the promise of offering a new probe of
fundamental physics before the epoch of recombination and possibly at very high energy scales.

Recently, all currently active Pulsar Timing Array (PTA) observatories (NANOgrav [2],
Parkes PTA [3], European PTA [4], and their joint effort International PTA [8]) have claimed
strong evidence for a common-spectrum process in their datasets, at frequencies (1−10) nHz.
Upcoming and near-future data releases from the same PTAs are expected to have enough
sensitivity to draw conclusions on the nature of such a process [9], in particular whether it ex-
hibits the characteristic tensorial (“Hellings-Downs”) correlations [10] of a GW background. A
signal at these frequencies is expected from mergers of supermassive black hole binaries (SMB-
HBs), although its amplitude and spectral properties are currently not uniquely predicted by
astrophysical models (see e.g. [11,12]). If evidence for quadrupolar correlation is found (not
necessarily related to the current excess), it will be crucial to understand if the GW signal con-
tains any significant contribution of cosmological origin. Detailed studies of GW spectra from
cosmological phenomena, as well as searches for such signals, are then required to properly
interpret PTA data (see [13–18] for recent work).

In this paper, we join such an effort by performing a Bayesian search for GWs radiated
by scalar (curvature) perturbations in the early Universe, focusing on the NANOgrav 12.5
years [19] (NG12) and International PTA Data Release 2 [20] (IPTA DR2) datasets (other
recent datasets have been shown to give similar information, see [8]). Such a background
of GWs is distinct from the tensor modes generated by de Sitter fluctuations during inflation
together with scalar perturbations. In the perturbative expansion of the metric according to
General Relativity (GR), scalar and tensor modes do not mix at first order, but second-order
tensor perturbations are sourced by first order scalar modes [21–26] (see also [27–29] for
recent proof of gauge independence). Therefore, scalar induced GWs are a general conse-
quence of GR and of the very existence of structures in the Universe. However, only large
enough scalar perturbations lead to an observable GW background. In practice, observations
of the Cosmic Microwave Background (CMB) as well as of the power spectrum of Large Scale

2

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.060


SciPost Phys. Core 6, 060 (2023)

Structure (LSS) constrain the amplitude of the curvature power spectrum to be Pζ ∼ 10−9 and
almost scale-invariant for k ≲ Mpc−1, which then implies that only a very small amount of
GWs is produced at those large scales. On the other hand, the properties of the power spectrum
at smaller scales are unknown to a large extent. For instance, deviations from approximate
scale invariance may in principle occur and the spectrum might be significantly enhanced
compared to CMB scales. This possibility is in fact often invoked as a mechanism to form
Primordial Black Holes (PBHs) [30,31] from the collapse of such large density perturbations.
The frequency range of PTAs correspond to scales k ∼ (106 − 108) Mpc−1, which entered the
Hubble horizon around and below the epoch of the QCD crossover in the hot Universe. There-
fore, large deviations from scale invariance at such scales can be indirectly probed by PTAs,
via the induced GW signal [32,33] (see also [34–36]). Additionally, as mentioned above, the
same large perturbations that source GWs may also lead to a significant fraction of PBHs, with
masses ∼ (0.001− 1000)M⊙, encompassing the binary BH mass range currently observed at
the LIGO/Virgo/KAGRA interferometers. Therefore, PTAs can potentially play an interesting
role in detecting signatures of PBH dark matter (in fact, currently the strongest constraints on
the power spectrum at PTA scales are indirectly derived from bounds on the fraction of dark
matter (DM) in PBHs of a given mass, see e.g. [37–39], see also [40] for recent progress on
setting constraints from the formation of dark matter minihalos).

While some studies have recently appeared with similar focus (see [35, 41] for searches
in the NG11 and NG12 datasets respectively, and [13,42–45] for interpretations of the NG12
excess, see also [46] for a search in the LIGO/Virgo/KAGRA O3 data [1], which probe much
smaller scales than PTAs), our work presents important novelties. First, we perform a Bayesian
search in the IPTA DR2 dataset (in addition to NG12, where differently from [41] we use only
the first five frequency bins following the NG12 collaboration [2]). The IPTA DR2 dataset
prefers a larger amplitude of the stochastic GW background compared to NG12, as well as
a different spectral slope (although the two datasets are in less than 3σ tension assuming a
power-law model [8]), therefore our search provides new insight into the interpretation of
the common-spectrum process in terms of scalar induced GWs. Second, we include the ex-
pected stochastic GW background of astrophysical origin in our searches. Third, we pay close
attention to constraints on the amplitude of the power spectrum from the overproduction of
PBHs, which we re-assess highlighting the corresponding theoretical uncertainties and clari-
fying existing claims in the literature. Overall, these novelties allow us to properly assess the
likelihood of the scalar induced GW interpretation over the astrophysical model. As a result,
we also derive upper limits on the amplitude of the power spectrum at small scales, in the
presence of a SMBHBs-like common-spectrum signal. These constraints are independent from
indirect astrophysical bounds on PBHs. Throughout this work, we make use of a log-normal
parametrization for the scalar power spectrum at the scales probed by PTAs, which allows us
to investigate both spectra with a broad or a narrow peak in the PTA frequency range.

This paper is structured as follows: in Sec. 2 we review the GW spectrum from scalar
perturbations; in Sec. 3 we present constraints on the power spectrum from the overproduction
of PBHs; Sec. 4 is devoted to the results of our searches, which we relate to previous work and
claims in Sec. 5. Finally, we conclude in Sec. 6. This paper also contains three Appendices,
where we review details of: A the scalar induced GW spectrum; B the computation of the
PBH abundance to derive constraints on the power spectrum; C our numerical strategy in the
search.
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2 Gravitational waves from scalar perturbations

The spectrum of GWs generated at second order by scalar perturbations depends in general on
the amplitude and shape of the curvature power spectrum. In the inflationary paradigm, the
latter is set by the inflaton dynamics (thus by the shape of the inflaton potential) roughly when
≃ log10[k/(0.05 Mpc−1)] e-folds have passed since the generation of CMB anisotropies. Here
k is the wavenumber of a given curvature mode today, related to the characteristic frequency
f of the induced GWs by

f =
k

2π
≃ 1.6 · 10−9 Hz

�

k
106 Mpc−1

�

. (1)

For PTA searches we are interested in scales k ∼ (105−108)Mpc−1 which exited the inflationary
Hubble sphere≃ 15−20 efolds after the CMB pivot scale. Beside constraints from µ-distortions
for k ≲ 5·105 Mpc−1 [47,48], we do not have any direct probe of the curvature power spectrum
at those scales.

The detailed feature of the inflaton potential and dynamics in a given model will then set
the amplitude and shape of the resulting curvature power spectrum and GW signal, which
are thus necessarily model-dependent. In fact, a significant amount of GWs can be produced
only when the amplitude at small scales is much larger than at CMB scales. For this to be
possible, the inflaton dynamics should exhibit some strong deviations from scale invariance,
which may then lead to an enhancement in the curvature power spectrum. To the aim of
remaining agnostic about the specifics of the inflationary model, in this work we shall make
use of a simple log-normal parametrization that captures the possibility of a peak in the power
spectrum at small scales:

Pζ(k) =
Aζ
p

2π∆
exp

�

−
log2(k/k⋆)

2∆2

�

, (2)

where k⋆ is the peak scale and ∼ ∆ the width. Following conventions, the normalization of
the spectrum is such that Aζ represents the amplitude of the integrated power spectrum (over
k), rather than the peak amplitude Aζ/(

p
2π∆). For ∆ ∼ 1, the peak is broad and for large

∆ it is essentially flat over a large range of wavenumbers. On the other hand, for ∆≪ 1 the
peak is narrow, and it reduces to a Dirac delta function Pζ(k) = Aζδ [log(k/k⋆)] as ∆ → 0.
While our analysis assumes a power spectrum of the form (2), we expect our results to apply
qualitatively to other peaked and broad spectra as well.

As for any cosmological source, the stochastic GW background radiated by scalar perturba-
tions is typically expressed in terms of its relic abundance Ωgw( f )≡ dρ0

gw/d log( f )/(3H2
0 M2

p ),
where f is the frequency of the GWs, the superscript 0 means that the energy density
in GWs should be evaluated at present times, H0 is the Hubble expansion rate today and
Mp ≡ (8πGN )−1/2 is the reduced Planck mass. The calculation of Ωgw( f ) for the case of in-
terest corresponds to computing the four-point function of scalar modes [27–29,50,51]. The
result can be expressed in the following compact form, (throughout this work, we assume a
radiation dominated Universe at the time of re-entry of the perturbations of interest and until
matter-radiation equality)

Ωgwh2 ≃ 1.9 · 10−9
� Aζ

0.01

�2� g∗(T⋆)
17.25

��

g∗s(T⋆)
17.25

�− 4
3
�

Ω0
r h2

2.6× 10−5

�

S
�

f
f⋆

,∆
�

, (3)

where g∗(T⋆) is the number of relativistic degrees of freedom in the early Universe at the
temperature T⋆ when the mode k⋆ re-enters the horizon, defined by k⋆ = aH⋆, see Fig. 2 (the
reference value in the equation above corresponds to re-entry slightly below the QCD crossover
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Figure 1: Spectral shape of the GW signal induced by scalar perturbations with log-
normal power spectrum. The thick curves are obtained by numerical evaluation, see
App. A, for different values of ∆. The analytical approximations are shown as black
dashed curves and coincide with the ones of [49] in the whole range of f / f⋆ for
∆= 0.5,1. For the narrow peak case ∆= 0.05, the approximation of [49] is shown
as the solid gray line and the deviation from the exact numerical value is clearly
visible in the IR. Finally the ∼ f 3 trend is shown in the IR by the orange arrow.

T⋆ ≲ 100 MeV), and Ω0
r h2 is the relic abundance of radiation today. The function S( f / f⋆) en-

codes the spectral shape of the signal and can in general only be evaluated numerically (see
App. A). We show it in Fig. 1 for representative values of∆. Its general features are nonetheless
easy to understand: first, it is peaked close to the frequency f⋆ corresponding to the wavenum-
ber k⋆. Second, it increases as f 3 for f ≪ f⋆, as dictated by causality. Third, it exponentially
decays for f ≫ f⋆, following the decrease of the curvature power spectrum.1 The precise lo-
cation of the peak and the behavior around it depends on the width of the power spectrum
∆ [49]. For ∆ ≳ 1, there is a log-normal peak at f = f⋆, with a width ∆/

p
2. On the other

hand, for ∆ ≲ 0.2, a two-peak structure appears [52]: a sharper peak at f / f⋆ = (2/
p

3)e−∆
2

and a broader one at f / f⋆ = 1/e, separated by a dip at f / f⋆ = (
p

2/3)e−∆
2
. The presence

of the sharp peak is due to resonant amplification of tensor modes, see [52]. Notice that as
∆→ 0, the amplitude of the IR tail of the GW signal, arising from scalar perturbations with
anti-aligned wave vectors generating an IR GW, is independent of ∆. We note that in this
case, there is an intermediate region with slope f 2 for f⋆ > f ≳ 2∆e−∆

2
. As ∆ decreases, the

causality tail can then be effectively shifted beyond the sensitivity band of PTAs.
An important limitation arises however when searching for narrow peaks in PTA datasets.

The frequency resolution of these measurements is given by ∆ f ≃ 1/Tobs, where Tobs is
the longest observation timespan of a pulsar in the dataset. For NG12 (IPTA DR2), this is
Tobs = 12.5 (29) years. Therefore, NG12 (IPTA DR2) cannot currently resolve peaks which
are narrower than ∆ f ≃ 2.5(1) nHz. A possible approach to deal with such GW spectra is

1For a peaked power-law curvature spectrum instead, the GW signal also decreases as a power law. To cover
the possibility of a milder decrease at high frequencies in the PTA band using the log-normal spectrum, one can
choose ∆> 1 in (2).
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Figure 2: The temperature in the early Universe corresponding to horizon re-entry
of the k⋆-mode. The slight deviation from a straight line around k⋆ ≳ 106 Mpc−1 is
due to the rapid change of relativistic degrees of freedom during the QCD crossover.
On the upper horizontal axis the characteristic frequency of the scalar induced GW
signal is shown. On the right vertical axis, the horizon mass at the temperature T⋆ is
shown.

to smoothen the peak region, for instance by averaging over the typical bin separation. This
procedure however depends on the value of∆ and is computationally intensive. Alternatively,
one can simply restrict the analysis to the IR tail of the signal (defined roughly by the frequen-
cies smaller than the dip location). In this work, we choose this latter strategy to investigate
spectra with ∆ < 0.5. From the point of view of setting constraints, this is clearly a conser-
vative choice. We will comment further on the validity of our conclusions for narrow peaked
spectra below.

Finally, let us discuss a technical point. The numerical calculation of (A.1) turns out to be
rather slow, therefore significantly increasing the computational time required to explore the
parameter space in our search. However, good approximations to the full numerical results
have been obtained in [49]. We have further improved on these for the narrow peak case (see
App. A for the explicit expressions). In our searches, we use these functions, plotted in Fig. 1
as dashed curves (notice the difference with the solid gray curve from [49] for ∆= 0.05).

3 Cosmology

PTAs are currently sensitive to GW signals with Ωgwh2 ≳ 10−10 in the frequency band
f ∼ 10−9 − 10−8 Hz. According to (3), (1) and Fig. 1, this corresponds to scalar spectra
peaked at k⋆ ∼ (105−108)Mpc−1 (for k⋆ ∼ 106−107 Mpc−1, the peak of the signal lies in the
sensitivity band), with amplitudes Aζ ≳ 0.01. Upon horizon re-entry, such large perturbations
may then undergo gravitational collapse and form primordial black holes (PBHs). These make
up a fraction fPBH ≡ ΩPBH/ΩDM of the DM today. Larger amplitudes lead to larger values of
fPBH, therefore a limiting value of Aζ exists above which PBHs overclose the Universe (for the
power spectrum (2), this value is a function of k⋆ and ∆). In searching for scalar induced
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GWs, it is thus important to impose an upper bound on Aζ such as to avoid exploring regions
of parameter space that are in contradiction with cosmological observations. The aim of this
section is thus to present such a constraint (see [46] for analogous constraints on scales rele-
vant for LIGO searches) as well as to clarify some aspects of the existing literature related to
bounds on fPBH from PTAs. A short review and further details are provided in App. B.

The fraction of dark matter in PBHs today can be expressed as [53–56]

fPBH =
1
ΩDM

∫

d log M

∫

d log kβk(M)
ργ(Tk)

ρ0
c

s0

s(Tk)
, (4)

in terms of βk, that is the fraction of the radiation energy density that collapses to PBHs of
mass M at horizon re-entry, and ρ0

c = 3H2
0 M2

p . Above s(Tk) and s0 are the entropy density
at the temperature Tk defined by k = aH(Tk) and today, respectively. In the Press-Schechter
formalism for spherical collapse [55] (see also [54]) and assuming Gaussianly distributed
perturbations [57] (we comment on the effects of non-Gaussianities for our analysis below)
one has

βk(M) =

∫ ∞

δc

dδl
M(δl)
MH(k)

exp
�

− δ2
l

2σ(k)2

�

p
2πσ(k)

δD

�

ln
M

M(δl)

�

. (5)

Here δl is defined by δl ∼ −kζ
′
(k), where ζ is the curvature perturbation and δc ∼ O(1/3)

is the critical threshold for gravitational collapse of a density perturbation during radiation
domination.2 At the linear level, δl coincides with the total matter density contrast, i.e.
δl = δm ≡ δρm/ρ (we use instead the full non-linear relation, appropriate for large perturba-
tions considered in this work [58–60]; its impact on PBH production is reviewed in App. B).
The function M(δl) describes the actual mass of PBHs resulting from the collapse of the per-
turbation δl , M(δl) = κMH(k)(δm − δc)γ, with γ ≈ 0.36 [61, 62] for a radiation dominated
Universe and κ∼ 1− 10 [58], and it is generically close to the horizon mass at re-entry

MH(k)≡ 4π
M2

p

H
≃ 20 M⊙

�

k
106 Mpc−1

�−2 � g4
∗,s(Tk)g−3

∗ (Tk)

17.25

�−1/6

, (6)

where we have normalized the k-scale to a typical value of interest for PTA searches, and
consequently also normalized the number of relativistic species to its SM value around the
corresponding horizon re-entry temperature Tk ≲ 100 MeV (see also Fig. 2). The variance σ
of δl is computed as

σ2(k) =

∫ ∞

0

dk′

k′
W 2

�

k′, k
�

Pδ
�

k′
�

=
4
9
Φ2

∫ ∞

0

dk′

k′

�

k′

k

�4

T2
�

k′, k
�

W 2
�

k′, k
�

Pζ
�

k′
�

, (7)

where T2 is the linear transfer function, W (k′, k) is a so-called window function used to
smoothen the matter perturbations δm [55] (see also [63]) and Φ is a function that depends
on the equation of state of the Universe (see App. B).

We can now make the following two remarks. First, the relic PBH abundance depends
exponentially on the value of the critical threshold δc , via the dependence on M(δl). This
means that the relic abundance can be reliably computed only as long as the critical thresh-
old can be accurately determined. The latter computation depends importantly on the shape
of the power spectrum and can be performed analytically and numerically [64–67]. Sec-
ond, there is an exponential dependence on the variance, whose computation relies on the

2The expression for βk(M) above differs from that obtained using peak theory (PT) rather than the Press-
Schechter formalism, see e.g. [58]). We comment on the effects of using PT for the constraints presented in this
work in App. B. We thank G. Franciolini, I. Musco, A. Urbano and P. Pani for pointing this out to us.
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precise shape of the smoothing function W , for which there is currently no unique prescrip-
tion [42, 56, 58, 63, 68]. Common choices in the literature include a real top-hat function
W =

�

3 sin(k/k′)− k/k′ cos(k/k′)
�

/(k/k′)3 (this is just a step function in real space) and a
(modified) Gaussian function W = exp(−(k/k′)2/4). Importantly, the actual value of the crit-
ical threshold also depends on this choice [64–67].

Overall, these two sources of delicate sensitivity currently prevent a reliable estimate of the
relic PBH fraction. Indeed, for a given choice of curvature power spectrum parameters, the re-
sulting PBH fraction may vary by more than five orders of magnitude depending on the choice
of window function, even when the critical threshold is computed consistently (otherwise
the change is typically much bigger). Therefore, we conclude that any attempt to derive con-
straints on (or evidence for given values of) fPBH from PTA datasets, which indirectly probe the
curvature power spectrum, is currently plagued by very large uncertainties [42,56,58,63,68].

On the other hand, the exponential sensitivity of fPBH on the parameters of the power
spectrum, in our case Aζ in particular, also implies that the condition fPBH ≤ 1 imposes an
upper bound on Aζ with only O(1) uncertainties. We have derived such a bound for the two
choices of window function discussed above, by solving the condition fPBH = 1 for fixed peak
width∆ and for a set of values of k⋆. Our result is shown by the dotted lines in Fig. 6 (see also
Fig. 3) and imposes Aζ ≲ 0.01−0.04 (see below for specific choice of priors for our searches).
The difference between the two curves corresponding to a different choice of window function
can be considered as the theoretical uncertainty on the constraint (other common choices of
window function give similar curves in between those reported in Fig. 6). It properly accounts
for the non-linear relation between δm and δl , and is based on a consistent choice of window
function to compute the threshold as well as the variance. Additionally, we have included the
effects of the change in the equation of state of the radiation background due to the occurence
of the QCD crossover at the scales k⋆ ∼ (106 − 107) Mpc−1 (according to the recent analyses
of [69, 70], we also included the results of [71] on the dependence of the prefactor between
δl and ζ′(k)), which lowers the critical threshold for collapse, thereby giving the visible dip in
the fPBH = 1 curves.3 The interested reader can find a detailed derivation in App. B. We notice
that for fixed power spectrum parameters using a modified Gaussian window function always
leads to a larger value of fPBH than a top-hat function (a standard Gaussian gives a result in
between these two, close to the modified Gaussian case).

Let us now briefly comment on non-gaussianities of the curvature perturbations. These are
expected for such large perturbations as considered in this work and generically have the effect
of lowering the critical threshold for collapse. A precise assessment of these effects is however
still under investigation (see e.g. [74–78] for recent progress), therefore we assume Gaussianly
distributed perturbations in the computation leading to the results shown in Figs. 6. We expect
that their inclusion would shift the curves of fPBH = 1 to smaller values of Aζ, thereby making
the overproduction constraint stronger. In this respect, our curve remains conservative. We
notice that neglecting the non-linear relation between δm and δl has the same effect of raising
the value of fPBH corresponding to a given choice of power spectrum parameters. This is
relevant for comparison of our results with previous literature (see Sec. 5). More details about
the impact of different thresholds can be found in App. B.

3The impact of the QCD crossover on the scalar induced GW spectrum [72] (see also [73]) is small enough that
we expect it not to significantly affect our search, given the current resolution of PTAs. Therefore, in our analysis
of GWs we use a radiation background with a constant equation of state.
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Figure 3: One- and two-dimensional posterior distributions for the parameters of
the stochastic gravitational wave background sourced by curvature perturbations,
assuming no other source of GWs is present. A conservative upper prior on Aζ from
overproduction of PBHs has been applied log10 Aζ ≤ −1.22, see text for details. The
dark (light) shaded regions show 68% and 95% C.L. regions respectively. In the
left panel, the region above the dot-dashed (dotted) black curve is constrained by
PBH overproduction (astrophysical observations), for ∆ = 1. The region above the
dashed red curve is constrained by LIGO/Virgo for ∆ = 1, see [79] and App. B. All
the constraints in the plot are obtained using a top-hat window function. They would
be stronger (weaker) for smaller (larger) ∆.

4 Datasets and results

We now move to the presentation of our searches in PTA datasets for a stochastic GW back-
ground sourced by scalar perturbations. We make use of the publicly available NG12 and
IPTA DR2 datasets. PTA searches are performed in terms of the timing-residual cross-power
spectral density Sab( f )≡ Γabh2

c ( f )/(12π2) f −3, where hc( f )≃ 1.26·10−18(Hz/ f )
p

h2ΩGW( f )
(see e.g. [80]) is the characteristic strain spectrum and Γab is the Overlap Reduction Function
(ORF) containing correlation coefficients between pulsars a and b in a given PTA.

We performed Bayesian analyses using the codes enterprise [81] and
enterprise_extensions [82], in which we implemented the scalar induced GW signal (3)
(with the approximations for the spectral shapes reported in App. A and restricting the search
to the IR tail of the signal for ∆ ≤ 0.5) and PTMCMC [83] to obtain MonteCarlo samples. We
properly account for the temperature dependence of the number of relativistic degrees of free-
dom g∗ in the plasma (assuming SM degrees of freedom only), by implementing the results
of [84]. This is relevant for the values of k⋆ under consideration, since they encompass the
QCD crossover where g⋆ is most rapidly varying.

We derive posterior distributions and upper limits using GetDist [85]. We include white,
red and dispersion measures noise parameters following the choices of the NG12 [2] and IP-
TADR2 [8] searches for a common-spectrum process. Furthermore, we limit the stochastic GW
search to the lowest 5 and 13 frequency bins of the NG12 and IPTADR2 datasets respectively
to avoid pulsar-intrinsic excess noise at high frequencies, as in [2, 8]. More details about the
numerical strategy, as well as full list of prior choices for our runs, are reported in App. C.

We start by performing detection analyses. That is, we look for the region of parameter
space where a scalar induced GW background can provide a good model of PTA data. We
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Figure 4: Relic GW spectra obtained for maximal likelihood values of parameters,
as obtained from our searches. The solid curves show the scalar induced GW spec-
trum, according to our “Scalar induced GW only” search and are obtained setting
Aζ ≃ 0.04 (0.04), k⋆ ≃ 5.5 (2.2) · 106 Mpc−1,∆ ≃ 0.9 (2.1) for IPTA DR2 (NG12).
The dashed curves show the background from SMBHBs, according to our search for
an astrophysical background only, and are obtained setting ASMBHBs ≃ 3 (2)·10−15 for
IPTA DR2 (NG12). The free spectrum posteriors obtained by converting the results
of [2] (NG12) and [8] (IPTA DR2) are also shown (violin shapes, lower limits due to
prior choices).

consider the two PTA datasets separately and first neglect the possible presence of an astro-
physical GW background from SMBHBs and employ the full Hellings-Downs (HD) ORF. We
restrict this analysis to broad spectra and return later to narrow spectra. We choose logarith-
mic priors log10∆ ∈ [log10(0.5), log10 3], log10 Aζ ∈ [−3,−1.22], log10 k⋆/Mpc−1 ∈ [4,9]. The
upper limit on the curvature power spectrum amplitude is dictated by the fPBH ≤ 1 constraint
for ∆ = 3 and k⋆ = 105 Mpc−1 (for top-hat window function), that is the least constraining
choice given the priors on∆ (constraints are stronger for smaller widths, see Fig. 6). One- and
two-dimensional posterior distributions are reported in Fig. 3. Let us first focus on the right
panel, where the posterior for the peak width is shown. We note that NG12 accommodates any
value of ∆, although it shows mild preference for broader peaks. This is expected, since for
large∆ the GW spectrum is essentially flat in the NG12 range and the results of [2] are repro-
duced. On the other hand, IPTA DR2 more strongly prefers∆≲ 1, as well as k⋆ ≳ 3·106 Mpc−1.
For such values of k⋆, the constraint from PBH overproduction is significantly stronger than
the upper prior imposed in our search. We show the curve fPBH = 1 for ∆ = 1 in the right
panel of Fig. 3. While the strength of the constraint depends on the peak width ∆, which the
posteriors in the right panel of Fig. 3 have been marginalized over, one should notice that most
of the ∆ posterior for IPTA DR2 sits precisely in the ∆≤ 1 region, where the constraint would
be even stronger than what is shown in the figure. This analysis thus serves the purpose of
showing that the scalar induced only GWs interpretation of the IPTA DR2 common-spectrum
process is strongly affected by cosmological constraints. Indirect constraints from astrophysi-
cal bounds on fPBH are also shown (see App. B) by the dotted black curve, as well as constraints
from LIGO/Virgo, obtained by translating the bounds of [79] on fPBH. The resulting maximum
likelihood GW spectra are shown in Fig. 4 as solid curves, together with the free spectrum pos-
teriors obtained by appropriately converting the results of [2,8]. The corresponding integrated
amplitude Aζ is actually very similar for both NG12 and IPTA DR2, although the smaller peak
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Figure 5: 1- and 2-d Posterior distributions for the stochastic gravitational wave back-
ground sourced by curvature perturbations and by SMBHBs. A conservative upper
prior on Aζ from overproduction of PBHs has been applied. The dark (light) shaded
regions show 68% and 95% C.L. regions respectively. Left: ∆ = 1, with upper prior
log10 Aζ ≤ −1.44. Right: ∆= 0.05, with upper prior log10 Aζ ≤ −1.57.

width preferred by the latter causes a larger peak amplitude than for NG12. For IPTA DR2
(NG12), the excess is mostly fitted by the region at frequencies slightly smaller (larger) than
the peak location.

We thus continue our detection analyses by including the expected stochastic gravitational
wave background of astrophysical origin, from SMBHBs. Under the assumption of circu-
lar orbits and energy loss dominated by gravitational radiation, the characteristic strain of
such GW background is expected to obey a simple power law: hc( f ) = ASMBHBs( f /yr−1)−2/3,
see e.g. [11]. From now on, in order to reduce computational time, we consider only auto-
correlation terms rather than the full Hellings-Downs (HD) ORF, following the NG12 [2] and
IPTA DR2 [8] searches for common-spectrum processes. Since there is currently no evidence
in favor nor against HD correlations in the datasets we consider, their inclusion does not sig-
nificantly affect our results, especially when comparing GW models.

The total stochastic GW background is thus characterized by four parameters in total:
Aζ, k⋆ (or alternatively f⋆) and ∆ for the scalar induced spectrum, and ASMBHBs for the astro-
physical background. Since the constraints from PBH overproduction vary significantly with
the peak width ∆, we choose to perform two analyses keeping the latter parameter fixed to
two representative values ∆= 1,0.05 for the broad and narrow peak regime respectively. We
fix the upper prior boundary for Aζ to the value of the constraint for top-hat window function
at k⋆ = 105 Mpc−1, i.e. log10 Aζ ≤ −1.44(−1.57) for ∆ = 1(0.05). As above, this choice cor-
responds to the weakest (most conservative) bound for the range of scales of interest (in other
words, most scales in our search would actually be more constrained than what we are impos-
ing). We impose logarithmic priors on the remaining parameters: 4 ≤ log10 k⋆/Mpc−1 ≤ 9,
−18≤ log10 ASMBHBs ≤ −13.

The resulting posterior distributions are shown in Fig. 5. Let us focus on the NG12 dataset
first (green-shaded regions). In the 2d distribution of the parameters Aζ and ASMBHBs, we
observe two distinct regions for both ∆ = 1 and ∆ = 0.05, both allowed at 95%. The first re-
gion is centered around ASMBHBs ≃ 10−15 and covers all values of Aζ up to the prior boundary.
In this region the common-spectrum excess in the NG12 dataset is well-modeled by the GW
background from SMBHBs only (indeed our 1d posterior for ASMBHBs is very similar to that
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Figure 6: 95% C.L. upper limits on the amplitude of the curvature power spec-
trum (2), obtained by assuming the presence of an astrophysical GW background
with log10 ASMBHBs fixed according to the posteriors of [2, 8]. Left: ∆ = 1. Right:
∆ = 0.05. The blue (green) shaded regions are constrained by IPTA DR2 (NG12),
assuming the upper 95% C.L. posterior value log10 ASMBHBs = −14.4(−14.57).
The dashed curves are obtained assuming the lower 95% C.L. posterior value
log10 ASMBHBs = −14.7(−14.86) for IPTA DR2 (NG12) instead. Constraints from PBH
overproduction are shown as black (gray) dot-dashed curves for a top-hat (Gaussian)
window function, and have been obtained using δc = 0.46(0.59),κ = 4 for the Top-
Hat, and δc = 0.21(0.27),κ = 10 for the modified Gaussian, for ∆ = 1(0.05), see
also App. B. Constraints from astrophysical observations are shown as black (gray)
dotted curves for a top-hat (Gaussian) window function. The two gray-shaded re-
gions are constrained by CMB observations: the upper region because GWs con-
tribute to the effective number of neutrino species (∆Neff ≤ 0.28 at 95% C.L. from
Planck18+BAO [86]); the left corner region in the left panel because curvature per-
turbations cause µ-distortions (constrained by COBE/FIRAS [47,48], (see also [87]
for a recent reassessment), see also App. B (the same constraints is shifted to smaller
values of k⋆ in the right panel, out of the plot range). The frequency of GWs corre-
sponding to k⋆ is shown in the first upper x-axis. The horizon mass at re-entry of the
mode k⋆ is shown in the second upper x-axis.

of [2], only slightly broader due to the additional source of GWs in our search). The second
region is instead centered around Aζ ≃ 0.02 (0.015) for ∆ = 1 (0.05) and spans all values of
ASMBHBs up to ASMBHBs ≲ 10−14. Here the excess is well-modeled by the scalar induced GWs
only. Clearly, in the intersection of these two regions the excess is well-modeled by the com-
bination of the two signals. Let us also examine the 2d distribution of the parameters k⋆ and
ASMBHBs: the same pattern appears, with the scalar induced region now being centered around
k⋆ ≳ 106 Mpc−1(≲ 107 Mpc−1) for ∆ = 1 (0.05). According to (6), such peak wavenumbers
correspond to horizon masses 0.1 M⊙ ≲ MH ≲ 20 M⊙ (the corresponding average PBH mass
is larger by O(1) factors, depending on the width of the spectrum, see App. B).

Let us now turn to the IPTA DR2 dataset (blue-shaded regions). As expected from the
previous analysis, we notice a crucial difference with respect to the NG12 dataset: the region
with ASMBHBs≪ 10−15 is not allowed (at 2σ at least) in the broad peak case∆= 1. The reason
for this is easy to understand: the amplitude of the common-spectrum process inferred in IPTA
DR2 is larger than in NG12, therefore the amplitude of the scalar induced GW background
should also be larger to provide a good modeling of the data. However, the upper prior from
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PBH overproduction significantly limits this possibility. We have checked that this conclusion is
independent of the value of∆ in the broad peak region,∆≥ 0.5, as long as the corresponding
prior on Aζ is used. A similar trend exists also in the narrow peak case ∆= 0.05, although in
this case the scalar induced regions are disfavored only at 1σ.

In order to better assess whether there is any preference for one GW background over
the other, we consider two models: one where the stochastic background is purely primordial
and induced by scalar perturbations and another one where it is purely astrophysical.4 We
compare these models using the Bayes factors log10 Bi, j of model j with respect to model i. For
NG12, we find: log10 Bζ,SMBHBs ≃ 0.05(0.3) for ∆ = 1(0.05). Therefore, we find no substantial
evidence for one model against the other one in the NG12 dataset, as expected from the green
shaded regions in Fig. 5. On the other hand, for IPTA DR2 we find log10 Bζ,SMBHBs ≃ 2.2 for
∆= 1, which implies decisive evidence for the SMBHBs model over the scalar induced model
in the IPTA DR2 dataset. The evidence is weaker, though still substantial, for ∆ = 0.05:
log10 Bζ,SMBHBs ≃ 0.9. The maximum likelihood GW spectrum from SMBHBs obtained by this
search is shown in Fig. 4 by the dashed curves.

Overall, our search reveals that the scalar induced GW interpretation is disfavored by IPTA
DR2 data compared to the SMBHBs model, whereas NG12 data are fitted equally well by the
two models. This conclusion is reached with a rather conservative prior choice and is thus
robust; a more aggressive choice based on the fPBH ≤ 1 constraint applicable in the region
k⋆ ≳ 106 Mpc−1 is expected to constrain the scalar induced GW model in both datasets further
(in fact the constraint at k⋆ = 106 Mpc−1 reads log10 Aζ ≤ 0.03(0.02) for ∆ = 1(0.05), which
very significantly constrains the IPTA DR2 region in the right panel of Fig. 5).

These results motivate a different type of analysis, aimed at setting upper limits to the
amplitude Aζ of curvature perturbations as a function of the peak scale k⋆. To this end, we
proceed as follows: we fix the amplitude ASMBHBs of the astrophysical background to the value
inferred by the SMBHBs analysis only of the NG12 and IPTA DR2 collaborations; we consider
a set of values of k⋆ and obtain 95% C.L. upper limits on Aζ for each peak location k⋆ in this
set, keeping the width ∆ fixed as above. Given that the collaborations report 2σ intervals:
log10 ASMBHBs ∈ [−14.86,−14.57] for NG12 [2] and log10 ASMBHBs ∈ [−14.7,−14.4] for IPTA
DR2 [8], we perform two analyses per dataset, for each value of ∆ and k⋆, setting ASMBHBs to
the interval boundaries of the corresponding PTA dataset (as given by the collaborations, notice
also that these results are in good agreement with astrophyical expectations, see e.g. [8,12]).
In this type of analysis, we do not impose an upper prior on Aζ from PBH overproduction,
as we are interested in independent constraints (see App. C for details on prior choices). An
alternative strategy to set (weaker) upper limits consists in constraining the amplitude Aζ,
without including any other GW signal in the analysis. In this case, the constraint would
roughly follow the upper boundary of the 2σ region in Fig. 3, since any value of Aζ above it
leads to too strong GW signals. The stronger constraints derived in this paper are motivated
by a theoretical and observational preference for a SMBHB contribution in the data once the
contraints from PBH production are taken into account, which as we have shown importantly
limit the possibility of scalar-induced GWs to model the common process in PTA data.

Results are reported in Fig. 6. As expected from Fig. 1, we observe stronger constraints for
narrow peak spectra. However, the constrained range of k⋆ is wider in the broad peak case;
this is partially caused by our restriction to the IR tail of the signal in the narrow peak case,
but would be the case even including the full spectrum, since it decreases exponentially at
frequencies only slightly larger than f⋆. For this reason, PTAs cannot provide any constraint

4For the primordial model, we impose an upper prior on Aζ as for the previous search. However, in this search
we are only interested in values of k⋆ for which the scalar induced GW background can fit the data in the absence
of an astrophysical background. Therefore, the relevant range of wavenumbers is narrower than in the previous
search, and starts at k⋆ ≳ 5 ·105 Mpc−1. We thus impose a tighter upper prior on Aζ, corresponding to the value of
the fPBH = 1 curve at k⋆ = 5 · 105 Mpc−1. A full recap of our choice of priors is presented in App. C.
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on narrow peaked spectra for wavenumbers close to and smaller than those corresponding to
the first bins of the datasets (notice the sharp cut of the constraint regions for ∆= 0.05).

For IPTA DR2, the strongest constraints in the broad peak case are obtained for wavenum-
bers corresponding to the peak sensitivity of the PTA, see [8]. NG12 provides the stronger
constraints at larger wavenumbers. This is expected, since the first bin of the NG12 dataset
sits at f ≃ 2.5 · 10−9 Hz, whereas IPTA’s first bin is at f ≃ 10−9 Hz. In the regions where the
constraints overlap, they are of comparable magnitude.

The difference between solid and dashed curves can be taken as an uncertainty on the
constraints, given that it corresponds to the uncertainty on the common-spectrum process
parameter ASMBHBs. We notice that the dashed constraint intersects the solid curve at small
frequencies for the IPTA DR2 dataset. This apparently contradictory feature may be caused
by the fact that by lowering the amplitude of the astrophysical background, a component of
the common-spectrum process may be explained by scalar induced GWs; however IPTA DR2
constrains the high-frequency tail (relevant for f⋆ ≪ 10−9 Hz) of the GW spectrum sourced
by scalar perturbations more strongly than the peak region (see [8] for power law posteriors).
In other words, while in most of the parameter space a larger value for ASMBHBs leaves less
room for a stochastic background from scalar perturbations, leading to stronger constraints,
the situation is inversed for small values of k⋆ where the spectral shape (3) provides a poor fit
to the data.

Constraints from PBH overproduction are also shown in Fig. 6, as dashed lines. We see
that our constraints are significantly stronger than the overproduction limits obtained with
the top-hat window function, whereas they are comparable to those obtained with a modified
Gaussian window function.

We also report other constraints on Aζ, derived from astrophysical bounds on fPBH (see
App. B for details), as dotted curves. These are obviously stronger than the overproduc-
tion constraints. In the broad peak case, at scales 5 · 105 Mpc−1 ≲ k⋆ ≲ 2 · 107 Mpc−1 our
strongest constraints can be stronger or slightly weaker than astrophysical bounds, again de-
pending on the choice of window function. In the narrow peak case, this range is shifted to
106 Mpc−1 ≲ k⋆ ≲ 5 · 107 Mpc−1. Constraints from the scalar induced GW contribution to the
effective number of neutrino species [86] (see also [80]) as well as from µ-distortions [47,48]
are also shown as shaded gray regions.

The horizon mass when at re-entry of the mode k⋆ is also shown in Fig. 6, see the upper-
most x-axis. As mentioned above, the average PBH mass is only slightly larger than the hori-
zon mass, therefore the scales constrained by PTAs correspond to PBHs with average masses
0.05 M⊙ ≲ MPBH ≲ 103 M⊙ for broad spectra and 0.01 M⊙ ≲ MPBH ≲ 20 M⊙ for narrow
spectra. However, we stress once again that no reliable constraint on fPBH can be currently
extracted by means of PTAs, given theoretical uncertainties related to the choice of window
function.

Finally, two comments are in order. First, as mentioned in Sec. 2, we have limited our
search to the low-frequency tail (starting roughly at the location of the dip in Fig. 1) of the GW
spectrum for ∆ < 0.5, due to the resolution of PTAs. We have checked for ∆ = 0.05 that the
results from the NG12 search using a smoothing strategy for the peak region are similar to those
presented here, although slightly larger values of k⋆s are then allowed.5 Our choice in this
work is overall expected to slightly underestimate the total GW signal, therefore the constraints
presented in Fig. 6 (right panel) are conservative. Second, we expect our constraints to remain
valid even if the common-spectrum process observed at PTAs is not due to GWs, given that our
analysis has been performed without including Hellings-Downs correlations.6

5In practice, we replaced the peak region by a plateau of amplitude set to the mean ofΩgwh2 over that range of f⋆.
6A common red spectrum with slope −2/3 provides a good fit to both IPTA DR2 and NG12 data independently

of its possible astrophysical origin.
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5 Relation to previous works

The search for scalar induced GWs in PTA datasets has received increased attention over the
past few years, with significant progress but also some apparently contradictory statements
arising. In this section we clarify the relation of our findings with recent previous literature.

First, we comment on constraints on the curvature power spectrum from previous PTA
datasets. Ref. [35] performs a search in the NANOgrav 11 years dataset. Differently from our
choice, this work assumes that the power spectrum is given by a delta function,∼ Ak⋆δ(k−k⋆),
corresponding to ∆→ 0 in (2). The resulting constraints on A are comparable to our results
for ∆ = 0.05 (we did not explore smaller peak widths, for which we expect slightly stronger
constraints than for ∆ = 0.05, since as ∆ → 0 the IR tail of the signal behaves as f 2 rather
than f 3 across a larger frequency range). On the other hand, Ref. [35] also claims very strong
constraints on fPBH which are reported in several other works (see e.g. [88]). As stressed
above, such constraints suffer from the exponential sensitivity to the choice of window function
and the use of the appropriate threshold. In particular, the very strong constraints presented
in [35] rely on their choice for the critical threshold, δc = 1, whereas explicit calculations
point to a smaller value, see App. B. We checked that using values of the threshold close to the
ones considered in our work and including the non-linear relation between δl and δm, which
was neglected in [35], very significantly weakens the constraints of from NG11 on fPBH (in
particular it renders them weaker than current astrophysical constraints, which is consistent
with our findings.)

Refs. [39,89] translate older PTA constraints (from 2015) on the stochastic GW background
to constraints on the amplitude of a power-law ∼ (k/k⋆)4 or Gaussian curvature power spec-
trum respectively, while [34] uses the same strategy for a log-normal spectrum. The results
of [34] can be directly compared to ours and they are of similar strength (after taking into
account the different normalization). This apparently surprising feature is likely caused by
the fact that limits on the stochastic GW background from older datasets are in tension with
the current detection of a common-process spectrum in the latest datasets, signaling that they
were likely too aggressive (see [2] for a discussion).

While our work is the first one to perform a bayesian search for scalar induced GWs in
the IPTA DR2 dataset and, additionally, to account for the astrophysical background from
SMBHBs, two papers have recently studied the implications of NG12 for scalar induced GWs.
Rather than a bayesian search in the dataset, [45] uses the five bins free spectrum posteriors
of [2] to find posteriors on the parameters of a broken power-law spectrum, similar to our log-
normal spectrum for ∆≳ 1. Their values for the amplitude of the power spectrum are similar
to ours (accounting for different normalizations) for NG12, as expected in the regime where
the data is fit by a scalar induced SGWB which can be approximately modeled by a (broken)
power law in the PTA range. On the other hand, their astrophysical constraints on Aζ differ,
most evidently because their bounds for a Gaussian window function are weaker than for a
top-hat. We suspect that this is due to the choice of threshold in the Gaussian case (it seems
that the threshold for a modified Gaussian is used, whereas a standard Gaussian is used as
window function). As discussed above, the results for Aζ are exponentially sensitive to this
threshold.

On the other hand, [41] performs a bayesian search in the NG12 dataset, using a log-
normal spectrum as we do. However, differently from our work, [41] includes all thirty fre-
quency bins in the search. As pointed out in [2], this is problematic and leads to very different
posteriors on common-spectrum process parameters compared to the five bins analysis adopted
in our work following the NG12 search for a stochastic background [2]. We moreover disagree
on the critical threshold used to recast the posteriors for the spectrum parameters to posteriors
for the PBH fraction (too high for a Gaussian window function), see App. B.
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Finally, three papers appeared shortly after the NG12 release, claiming that the NG12
common-spectrum excess could be explained by scalar induced GWs [42–44]. First, [43] as-
sumes a log-normal power spectrum with ∆ = 1 and finds that solar mass PBHs may explain
the NG12 excess, if the curvature power spectrum has amplitude Aζ ∼ 0.02−0.04. Our NG12
posteriors in Fig. 5 agree with this conclusion, and actually allow for an even wider range
of PBH masses. However, as argued above, the scenario is significantly disfavored compared
to the astrophysical explanation in the IPTA DR2 dataset. Additionally, the computation of
the PBH fraction may underestimate the PBH production, since a large threshold is used for
a modified Gaussian window function (see appendix B). On the other hand, the non-linear
relation between δm and δl is neglected.

Second, [42] finds that SMBHs with M⊙ > 103 M⊙ may also explain the NG12 excess.
These masses correspond to k⋆ ≲ 105 Mpc−1 (see Fig. 2), which is disfavored at more than 2σ
for a log-normal power spectrum by our analysis, using the NG12 dataset, and more signifi-
cantly by IPTA DR2. However, [42] assumes a broken power-law curvature power spectrum,
which induces a linearly decreasing GW spectrum at f > f⋆. In this case, one can simply use
the power law results of [2,8]. Using a value of the critical threshold which is well-motivated
for the broken power-law spectrum of [42] (δc ≃ 0.4 − 0.5), we find that the supermassive
PBHs interpretation (M > 103 M⊙) of [42] is at best marginally allowed by cosmological con-
straints as an interpretation of the NG12 excess. It is however strongly disfavored by IPTA DR2
(and similarly by EPTA and PPTA), see the power-law posteriors in [8].

Third, [44] (see also [90]) considers a flat curvature power spectrum that extends from
kl ≃ 105 Mpc−1 to ks ≃ 1015 Mpc−1, in such a way as to induce a broad PBH mass distribution
peaked at masses for which PBHs can make all of the DM,≃ (10−16−10−11)M⊙. Results on this
scenario can then be obtained by simply using the posteriors for power-law common-spectrum
process presented in [2] and [8]. We notice in this respect that a flat spectrum is actually in
≃ 2σ tension with the IPTA DR2 posteriors. More importantly, the amplitude inferred from
IPTA DR2 is larger than from NG12. We then find that the IPTA DR2 lower bound on the ampli-
tude of the power spectrum (even at 3σ) is not compatible with the overproduction constraint
fPBH ≤ 1, for any value of the cutoff scale ks in the PBH DM window. While modifying the
proposal of [44] to a slightly red-tilted (rather than flat) curvature power spectrum is sufficient
to make it viable with cosmological constraints, it does not alter the conclusions that such an
almost flat slope is disfavored (at ≳ 2σ) by IPTA DR2 (and similarly by EPTA).

Finally, [91] considers the relation between NG12 and scalar induced GWs produced during
a non-standard cosmological epoch dominated by a non-adiabatic fluid. Our results do not
apply to this scenario, since the emission and propagation of GWs is affected by the background
expansion of the Universe.

6 Conclusions

We presented searches for a scalar induced stochastic GW background in two of the most recent
PTA datasets, focusing on the possibility of an an enhanced (with respect to CMB scales) cur-
vature power spectrum at small scales k ∼ (105−108)Mpc−1. This is an especially interesting
possibility, since it may also lead to the formation of PBHs with masses ∼ (0.001− 1000) M⊙.

Since current data show strong evidence for a common-spectrum process, we have first
focused on assessing the extent to which the excess can be modeled by scalar induced GWs,
as proposed by several recent works after the NG12 release. To this aim, we have included
three important novelties with respect to previous work. First, we have performed a search
on the IPTA DR2 data set, in addition to a search on the NG12 data set. The former is known
to favor a larger amplitude for the process than NG12, as well as a slightly positive (rather
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than negative) slope for the spectrum. Second, we have taken into account constraints on
the amplitude of the curvature power spectrum from the overproduction of PBHs, as priors
in our searches. We have assessed them using a consistent choice of window function in the
calculation of the variance and critical threshold for gravitational collapse and including the
effects of the non-linear relation between matter and curvature perturbations. Thirdly, we have
included the unavoidable stochastic GW background of astrophysical origin, from SMBHBs.

Our first main conclusions are: 1) the overproduction of PBHs associated with the large
curvature perturbations significantly constrains the scalar induced interpretation of the IPTA
DR2 common-spectrum process; 2) the astrophysical origin is favored over the scalar induced
primordial origin by the IPTA DR2 dataset. This conclusion is stronger for broad power spectra,
but remains valid for narrow spectra as well. On the other hand, we found that the NG12
dataset does not prefer any model over the other one. This difference in the results reflects
the mild disagreement between the datasets (≳ 2σ) reported by IPTA DR2 for a power-law
common-spectrum process [8] (we notice that EPTA and PPTA latest releases agree well with
IPTA DR2 on the slope of the spectrum). We have discussed the impact on previous proposals
to interpret the common-spectrum process in PTA datasets in terms of scalar induced GWs,
such as [42–44]. We reached our conclusions by using conservative (i.e. arguably weaker
than their realistic value) prior choices on the amplitude of the power spectrum from PBH
overproduction.

Motivated by our findings, we set constraints on the amplitude of the curvature power
spectrum at scales k ∼ 105 − 108 Mpc−1. These are the most up-to-date constraints from
PTAs, and are importantly independent from indirect astrophysical bounds on PBHs of masses
(0.05− 1000) M⊙ (dotted lines in Fig. 6), which suffer from theoretical uncertainties on the
calculation of the PBH relic abundance. Our constraints are nonetheless already competitive
with those bounds (a precise comparison depends on the choice of window function to obtain
the astrophysical bounds). They are also significantly stronger (roughly by a factor of six) than
similar constraints from LIGO/Virgo/KAGRA at much smaller scales (k ≳ 1015 Mpc−1) [46].

Our work also clarifies some inconsistencies in previously derived constraints on PBHs
from PTAs, which we find to be largely due to the exponential sensitivity of the PBH relic
abundance on the choice of the window function and on the threshold for PBH formation.
Regarding the former, we estimate the uncertainty by providing results for different choices of
the window function, for the latter we carefully ensure a consistent choice of window function
and threshold value across our analysis.

In the next years, upcoming PTA results from NG, PPTA and EPTA will shed light on the
origin of the common-process spectrum in current datasets. If evidence of Hellings-Downs
correlation arises, it will be crucial and exciting to understand the origin of the signal, which
can be sourced by several well-motivated phenomena in the early Universe, in addition to the
astrophysical background from SMBHBs. Our work shows that one such mechanism can be
effectively probed and constrained by PTAs (independently of whether the currently detected
process is indeed due to GWs), and highlights the importance of complementary constraints
from cosmology. It also provides an important step for future PTA data releases, that are
expected to provide the strongest constraints on the curvature power spectrum at the epoch
of the QCD crossover.
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A Gravitational wave spectrum

The aim of this appendix is to provide the expressions for the scalar induced GW signal which
we used in our work. In the radiation domination era, the GW spectrum averaged over many
oscillation periods Ωgw,r(k)7 is given as a function of the curvature power spectrum by [28,49,
51],

Ωgw,r(k) = 3

∫ ∞

0

d v

∫ 1+v

|1−v|
d u

T (u, v)
u2v2

Pζ(uk)Pζ(vk) , (A.1)

with the transfer function T given by,

T (u, v) =
1
4
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−
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�2

+π2Θ
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u+ v −
p

3
�

�

.

(A.2)

After matter-radiation equality, the GW energy density decays as radiation such that the current
value of the spectrum is

Ωgwh2( f )≃ 10−5
�

g∗(T⋆)
17.25

��

g∗s(T⋆)
17.25

�− 4
3
�

Ωr,0h2

4× 10−5

�

Ωgw,r( f ) . (A.3)

For a general shape of the curvature spectrum this can only be evaluated numerically.
Nevertheless, the following two approximations of (A.1) were derived for the narrow (∆≪ 0)
and broad (∆≫ 0) peak regimes of the log-normal curvature spectrum defined in (2) in [49]:
Narrow peak

Ωgw,r( f / f⋆,∆)

A2
ζ

≈

3α2e∆
2

�

erf

�

1
∆

arcsinh
αe∆

2

2

�

− erf

�

1
∆

arcosh
αe∆

2

2

��

�

1−
1
4
α2e2∆2

�2�

1−
3
2
α2e2∆2

�2

×
��

1
2

�

1−
3
2
α2e2∆2

�2

log

�

�

�

�

1−
4

3α2e2∆2

�

�

�

�

− 1

�2

+
π2

4

�

1−
3
2
α2e2∆2

�2

Θ
�

2−
p

3αe∆
2
�

�

.

(A.4)

Broad peak

7The index , r follows the notation of Ref. [49] and highlights that the quantity Ωgw,r(k) is the time independent
spectrum.
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(A.5)

where α= f / f⋆ and K = αexp
�

3∆2/2
�

.
As discussed in the main text, for the narrow peak case, this approximation deviates from the
full numerical expression in the IR region by a constant factor (see Fig. 1). For this reason we
modified the narrow peak approximation of [49] by correcting (A.4) as

Ωgw,r( f / f⋆,∆)→ Ωgw,r( f / f⋆,∆)×
1
4

¦

2+
�

1+ tanh
��

−3∆e−∆
2
+ k⋆

�

/(2∆)
��©

. (A.6)

This correction corresponds to smoothly turning on the missing constant factor using a tanh
function located at the transition scale between the f 2 and f 3 behavior of the gravitational
wave spectrum.

B Derivation of constraints

Here we review the basics of PBH formation from the collapse of curvature perturbations, and
provide details on our determination of the PBH overproduction constraint.

B.1 Primordial black hole formation

Let’s consider a spherically symmetric density contrast δ(r) = δρ/ρb initially at superhorizon
scales characterized by a physical radius Rm.8 We define its volume averaged perturbation δm
via a smoothing function as

δm =

∫ ∞

0

dR 4πR2 δρ

ρb
(R, tH) W (R; Rm) , (B.1)

where tH is the horizon crossing time and W (R, Rm) is the window function used to smooth
over the perturbation scale. If at horizon crossing the volume averaged perturbation δm ex-
ceeds the threshold δc (defined below), gravity forces overcome pressure forces and the per-
turbation collapses into a black hole [58,63,66]. Its mass is then found to be [61,62,92]

M(δm) = κMH(rm) (δm −δc)
γ , (B.2)

where MH(rm) is the horizon mass at a scale k = 1/rm and γ and κ are constant parameters
(see main text for explicit expressions).

8In the rest of the calculation, the physical radial coordinate will be written with capital R and the comoving
one with small r.
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In order to collapse, the amplitude of the density contrast must be relatively large, making it
necessary to express δm in terms of the curvature perturbation ζ beyond linear order [58–60].
A non linear expression of δm is obtained by using the non-linear relation between the density
contrast δρ/ρb and the curvature perturbation ζ (see Refs. [66,93,94])

δρ

ρb
(r, t) = −

4
3
Φ(t)

�

1
aH

�2

e−5ζ(r)/2∇2eζ(r)/2 , (B.3)

where Φ(t) depends on the equation of states of the Universe (see Ref. [71]) and is given by
Φ= 2/3 in a radiation fluid.
For a top-hat window function and using the last expression, it is easy to see that at linear
order, the volume averaged density δm is related to the curvature perturbation by

δm = −2Φrmζ
′(rm)≡ δl , (B.4)

where we defined δl as the smooth density contrast at linear order. With the full non-linear
relation, we get

δm =
�

δl −
1

4Φ
δ2

l

�

. (B.5)

With this it is then possible to rewrite the black hole mass as a function of the linear density
contrast,

M(δl) = κMH(rm)
�

δl −
1

4Φ
δ2

l −δc

�γ

. (B.6)

Let’s finally note that the constants (κ,δc) will be modified in this last expression if a modified
Gaussian window function W ∼ exp(−(Rm/R)2/4) is initially used in Eq. (B.1). Detailed calcu-
lations [63,95] for a wide range of curvature power spectra showed that the critical threshold
δc and κ are modified as follows:

(δc)
TH ≈ 2.17× (δc)

G ,

(κ)TH ≈
4

2.742 × 2.17γ
(κ)G ,

(B.7)

where “TH” stays for Top-Hat and “G” for modified Gaussian.

B.2 PBH distribution from Press Schechter formalism

The Press Schechter formalism [55] is usually used to calculate the PBH population produced
by a given curvature power spectrum Pζ. It is typically assumed that the probability distribution
for the linear density perturbation δl at a scale k is Gaussian and given by

Pk(δl) =
1

q

2πσ2
k

exp

�

−
δ2

l

2σ2
k

�

. (B.8)

The variance σ2
k at this scale is determined by the window function (which should coincide

with the choice in (B.1)) and the curvature power spectrum [42,56,58,63]

σ2
k = 〈δ

2
l 〉

=

∫ ∞

0

dk′

k′
W 2(k′; k)Pδ(k

′)

=
4
9
Φ2

∫ ∞

0

dk′

k′
(k′/k)4T2(k′, k)W 2(k′; k)Pζ(k

′) ,

(B.9)
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Figure 7: Normalized mass function ψ̃(M) =ψ(M)/ΩPBH for a log-normal curvature
power spectrum peaked at k⋆ = 106 Mpc−1 (MH ≈ 20M⊙) and an amplitude Aζ
chosen to return fPBH = 1 (note however that the amplitude has negligible impact on
the normalized mass function). As observed in Ref. [56], the mean mass increases as
the width of the spectrum decreases (the turquoise and olive lines are respectively for
∆= 0.05 and∆= 1). For consistent choices of thresholds, the choice of the window
function has little impact on the mass distribution (the solid and dashed lines are
respectively for the top-hat (TH) and Gaussian (G) window functions).

where Pδ is the density contrast power spectrum, Pζ the curvature power spectrum and T (k′, k)
the transfer function taking into account the damping of the modes at sub-horizon scales.
The fraction of the total energy density βk(M) collapsing into black holes of mass M when the
scale k−1 crosses the horizon is given by [42,55,56,96]

βk(M) =

∫ ∞

δc

dδl
M(δl)
MH(k)

Pk(δl)δD

�

ln
M

M(δl)

�

, (B.10)

where M(δl) is given by Eq. (B.6), δD is the Dirac delta function,

δl(M) = 2Φ
�

1−
q

1− 1
Φ

�

δc + q1/γ
�

�

and q = M/(κMH(k)).
The present day PBH mass distribution is then given by (see e.g. [42])

ψ(M) =

∫

d log(k)βk(M)
ργ(Tk)

ρ0
c

s0

s(Tk)
. (B.11)

The function ψ(M) is normalized such that
∫

dlogMψ(M) = ΩPBH. An example of mass
distribution is shown in Fig. 7 for a log-normal power spectrum peaked at k⋆ = 106 Mpc−1

(corresponding to MH⋆ ≈ 20M⊙) and amplitudes Aζ chosen such that the PBH production ac-
counts for the whole dark matter abundance. Notice that the mean mass is slightly larger than
the horizon mass at k⋆. This is the case because the variance σk is peaked at slightly smaller
scales than k⋆ [43, 56]. For instance, with k⋆ = 106 Mpc−1 the mean mass for ∆ = 1(0.05)
is M ≈ 60(100)M⊙. Those number are in agreement with the horizon mass ratio given in
Ref. [56] for such widths.
As mentioned in the main text, the calculated abundance depends strongly on the choice of the
window function as well as on the choice of the threshold value δc [42, 56, 63, 68]. Detailed
studies of the dependence of δc on the curvature power spectrum shape have been conducted
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Figure 8: Left: Variation of the threshold δc as a function of the curvature power
spectrum width ∆ for a top-hat window function (see Ref. [64]). Right: Impact on
the threshold from QCD effect as a function of the horizon mass MH (see Ref. [70]).

in [64–67] and found δc = δc(∆) with δc ≈ 0.6 − 0.4 for ∆ ≈ 0 − 1 (see Fig. 8) for the
log-normal power spectrum considered in our work. Note however that those values have
been derived for a top-hat window function. Their values for a Gaussian window function
can be found by means of (B.1). Finally, around the QCD phase transition, the equation of
state deviates slightly from w = 1/3. This drop provides an enhancement of PBH formation
manifested by a reduction of the threshold at those scales [69, 70] (see right panel of Fig. 8
for the variation of the threshold as a function of the horizon mass).

B.3 Constraints on the curvature power spectrum

In the range of masses considered in this paper the most important constraints on fPBH come
from microlensing [97–101], PBH merger rates as deduced by LIGO-VIRGO collaboration
(see [79]9 and from PBH accretion signatures in CMB (assuming spherical accretion [102,
103]). All the constraints we employ are reviewed in Ref. [104]. These are however often
derived using a monochromatic mass function. We used instead the method developed in
Ref. [105] to deal with extended mass functions. Namely, if the observational constraints are
represented by the function fPBH(M) for monochromatic PBH mass M , the translation into an
extended mass spectrum is given by

∫

d log M
ψ(M ; Aζ, k⋆,∆)

ΩDM fPBH(M)
≤ 1 , (B.12)

where ψ(M ; Aζ, k⋆,∆) is the mass function calculated using the formalism of the previous
section for the curvature power spectrum Pζ(k; Aζ, k⋆,∆) defined in Eq. (2). In the main
text, we fix the spectrum width (two different values are taken ∆ = 1 and ∆ = 0.05), and
upper limits on Aζ as function of k⋆ are obtained by solving numerically the equation above.
Similarly, the absolute limit fPBH = 1 is translated into constraints on Aζ(k⋆) by simply setting
fPBH(M) = 1 in Eq. (B.12). Results are obtained setting κ = 4 and γ = 0.36 for the top-hat
window function (see Eq. (B.1) for the corresponding value if a modified Gaussian window
function is used instead), as motivated by simulations [58]. Larger values of κ lead to stronger

9We used the constraint obtained assuming that all BHs observed by LIGO/Virgo are astrophysical. Allowing
for a primordial fraction has a minor effect on our constraint.
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Figure 9: Left: Effect on the limit fPBH = 1 considering the Press-Schecter formalism
(PS) with the non-linear (NL) and linear (L) relation for the density. Results using
Peak Theory (PT) and with a lower threshold (δc = 0.2) are also shown. Right:
Similar but changing this time only the parameter κ . Both are calculated for a
lognormal power spectrum with width ∆= 1 and top-hat window function.

constraints (significantly smaller values do not seem to be supported by numerical studies). In
Fig.9, we show how changing κ or γ has little impact on the fPBH = 1 constraint. As stressed
in the main text, the constraints depend on the choice of the threshold as well as on the non-
linear corrections. Fig. 9 shows how the limit for fPBH = 1 is altered by a change of critical
threshold or neglecting the non-linearities. Finally, an uncertainty remains on the formalism
used to calculate the PBH abundance. While in this work the Press-Schechter formalism has
been used, it is known that using Peak Theory [106] instead increases the PBH production,
thereby leading to stronger constraints [56]. We show how using Peak Theory modifies our
fPBH = 1 limit in Fig.9.

Limits on the curvature power spectrum amplitude from scalar induced GWs can also be
derived from CMB measurements. Gravitational waves behave as additional relativistic de-
grees of freedom beyond neutrinos, and are thus constrained by current bounds on the ef-
fective number of neutrino species ∆Neff ≡ Neff − 3.046, where Neff ≡ ρgw/ρν in our case,
and ρν is the energy density of one neutrino species (for the CMB, quantities are evaluate at
the epoch of recombination) [86]. In particular, the combination of Planck2018 + BAO gives
∆Neff < 0.28 [86], which translates into constraints on the total amount of gravitational waves

∫

d log( f )h2Ωgw( f ; Aζ, k⋆,∆)< 5.6× 10−6∆Neff , (B.13)

whereΩgw( f ; Aζ, k⋆,∆) is the gravitational wave spectrum produced from the curvature power
spectrum defined in (2).
Finally, CMB measurements also set strong constraints on the amplitude of the curvature power
spectrum at scales k ≲ 105 Mpc−1, since large perturbations cause µ-distortions in the photon
spectrum [107]. The commonly used parameter µ can be expressed in terms of the curvature
power spectrum as

µ≈
∫ ∞

1Mpc−1

dk
k

Pζ(k)Wµ(k) , (B.14)

with the window function

Wµ(k)≈ 2.27

�

exp
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−
(k/1360)2
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−
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32
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. (B.15)
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Observations from COBE/FIRAS [47,48] set the upper limitµ < 9×10−5. Using our log-normal
power spectrum with fixed k⋆ and width ∆, we can then set constraints on the amplitude Aζ.

C Numerical strategy

The aim of this Appendix is to provide details on our Bayesian search. We use the datasets
released in [108] for NG12 and in [109] for IPTADR2 (Version B, we use par files with TDB
units) and followed closely the strategy of the NG and IPTA collaborations for noise parameters,
(we reproduced the results of [2,8] with excellent agreement).

Specifically, for both datasets we consider three types of white noise parameters per back-
end/receiver (per pulsar): EFAC (Ek), EQUAD (Qk[s]) and ECORR (Jk[s]), the latter only
for pulsars in the NG12 dataset and for NG 9 years pulsars in the IPTADR2 dataset. We also
included two power-law red noise parameters per pulsar in both datasets: the amplitude at
the reference frequency of yr−1, Ared, and the spectral index γred. For the IPTA DR2 dataset,
we additionally included power-law dispersion measures (DM) errors (see e.g. [8]) (in the
single pulsar analysis of PSR J1713+0747 we also included a DM exponential dip parameter
following [8]).

We fixed white noise parameters according to their maximum likelihood a posteriori values
from single pulsar analyses (without GW parameters). For the NG12 dataset (45 pulsars with
more than 3 years of observation time), the white noise dictionary is provided in [108]. For
IPTADR2, we used the dictionary built in [18] by performing single pulsar analyses for each
pulsar with more than 3 years of observation time (for a total of 53 pulsars). The Jet Propulsion
Laboratory solar-system ephemeris DE438 and the TT reference timescale BIPM18 have been
used.

We perform two types of analyses in our work: First, as in [2, 8], we perform detection
analyses aimed at determining the region of parameter space for which scalar induced GWs
can model the common-spectrum process in the datasets. Second, we also perform an upper-
limit analysis to constrain the amplitude of the curvature power spectrum. The choice of
priors for both noise (except for single pulsar white-noise parameters) and GW parameters
is slightly different for the two strategies, as described in [108] (in upper-limit analyses a
“Linear-Exponent” prior of the form p(x)∝ 10x is used, rather than a uniform prior on the
logarithm of e.g. the GW amplitude from SMBHBs). All prior choices are reported in Table 1
and Table 2 for our detection and upper-limit analyses respectively. The specific prior choices
for Aζ are due to constraints from PBH overproduction and are motivated in Sec. 4 of the main
text.

As in [2,8], for most of our runs we use only auto-correlation terms in the Overlap Reduc-
tion Function (ORF) in our search, rather than the full Hellings-Downs (HD) ORF, to reduce
the computational time. On the other hand, we include the full HD ORF in our search for scalar
induced GWs only, see posteriors in Fig. 3 (the computation of the Bayes factor is instead based
on the analysis without HD correlations).

We obtain 5 · 106 samples for our detection analyses and discard 25% of each chain as
burn-in (for the HD analysis, we collect roughly 106 samples). For the upper-limit analyses,
we collect 106 samples and discard 10% of each chain. We consider the following set of val-
ues of k⋆ for constraints from IPTA DR2: k⋆ = (105, 6 · 105, 106, 5 · 106, 107, 5 · 107) Mpc−1

for ∆ = 1 and k⋆ = (6.8 · 105, 9.5 · 105, 1.4 · 106, 3 · 106, 5 · 106, 107, 5 · 107, 108) Mpc−1

for ∆ = 0.05. Similarly, for NG12 we take the same set as for IPTA DR2 for ∆ = 1, and
k⋆ = (1.6 · 106, 2.2 · 106, 3.2 · 106, 4 · 106, 5 · 106, 5 · 106, 107, 5 · 107, 108) Mpc−1 for ∆= 0.05.
The continuous curves shown in Fig. 6 are then obtained as smooth interpolations.
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Table 1: List of noise and astrophysical GW background parameters used in our de-
tection analyses, together with their prior ranges.

Detection analysis

Parameter Description Prior Comments

White Noise

Ek EFAC per backend/receiver system Uniform [0,10] single-pulsar only
Qk[s] EQUAD per backend/receiver system log-Uniform [−8.5,−5] single-pulsar only
Jk[s] ECORR per backend/receiver system log-Uniform [−8.5,−5] single-pulsar only (NG12, NG9)

Red Noise

Ared Red noise power-law amplitude log-Uniform [−20,−11] one parameter per pulsar
γred Red noise power-law spectral index Uniform [0, 7] one parameter per pulsar

DM Variations Gaussian Process Noise

ADM DM noise power-law amplitude log-Uniform [−20,−11] one parameter per pulsar (IPTADR2)
γDM DM noise power-law spectral index Uniform [0, 7] one parameter per pulsar (IPTADR2)

scalar induced GW Background, w/ SMBHBs

Aζ,∆= 1 Power spectrum amplitude log-Uniform [−3,−1.44] one parameter for PTA
Aζ,∆= 0.05 Power spectrum amplitude log-Uniform [−3,−1.57] one parameter for PTA
k⋆[Mpc−1] Peak scale of the power spectrum log-Uniform [4,9] one parameter for PTA

scalar induced GW Background, w/o SMBHBs

Aζ,∆= 1 Power spectrum amplitude log-Uniform [−3,−1.52] one parameter for PTA
Aζ,∆= 0.05 Power spectrum amplitude log-Uniform [−3,−1.65] one parameter for PTA
k⋆[Mpc−1] Peak scale of the power spectrum log-Uniform [4,9] one parameter for PTA

scalar induced GW Background, w/o SMBHBs, w/ HD correlations

Aζ Power spectrum amplitude log-Uniform [−3,−1.22] one parameter for PTA
k⋆[Mpc−1] Peak scale of the power spectrum log-Uniform [4,9] one parameter for PTA
∆ Width of the power spectrum log-Uniform [log10(0.5), log10 3] one parameter for PTA

Supermassive Black Hole Binaries (SMBHBs)

AGWB Strain amplitude log-Uniform [−18,−13] one parameter for PTA

Table 2: List of noise and astrophysical GW background parameters used in our upper
limit analyses, together with their prior ranges.

Upper limit analysis

Parameter Description Prior Comments

White Noise

Ek EFAC per backend/receiver system Uniform [0,10] single-pulsar only
Qk[s] EQUAD per backend/receiver system log-Uniform [−8.5,−5] single-pulsar only
Jk[s] ECORR per backend/receiver system log-Uniform [−8.5,−5] single-pulsar only (NG12, NG9)

Red Noise

Ared Red noise power-law amplitude Linear-Exponent [−20,−11] one parameter per pulsar
γred Red noise power-law spectral index Uniform [0, 7] one parameter per pulsar

DM Variations Gaussian Process Noise

ADM DM noise power-law amplitude Linear-Exponent [−20,−11] one parameter per pulsar (IPTADR2)
γDM DM noise power-law spectral index Uniform [0, 7] one parameter per pulsar (IPTADR2)

scalar induced GW Background

Aζ Power spectrum amplitude Linear-Exponent [−3,0.] one parameter for PTA
k⋆[Mpc−1] Peak scale of the power spectrum Fixed, see text one parameter for PTA

Supermassive Black Hole Binaries (SMBHBs)

ASMBHBs, NG12 Strain amplitude Fixed to −14.57 (−14.86) one parameter for PTA
ASMBHBs, IPTA DR2 Strain amplitude Fixed to −14.4 (−14.7) one parameter for PTA
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