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Abstract

We derive renormalised finite functional flow equations for quantum field theories in real
and imaginary time that incorporate scale transformations of the renormalisation condi-
tions, hence implementing a flowing renormalisation. The flows are manifestly finite in
general non-perturbative truncation schemes also for regularisation schemes that do not
implement an infrared suppression of the loops in the flow. Specifically, this formulation
includes finite functional flows for the effective action with a spectral Callan-Symanzik
cutoff, and therefore gives access to Lorentz invariant spectral flows. The functional
setup is fully non-perturbative and allows for the spectral treatment of general theories.
In particular, this includes theories that do not admit a perturbative renormalisation
such as asymptotically safe theories. Finally, the application of the Lorentz invariant
spectral functional renormalisation group is briefly discussed for theories ranging from
real scalar and Yukawa theories to gauge theories and quantum gravity.
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1 Introduction

Many interesting non-perturbative phenomena in physics are inherently timelike, ranging from
scattering processes, the formation and spectrum of bound states to the time evolution of quan-
tum systems close and far from equilibrium. The qualitative and, even more, quantitative
description requires non-perturbative numerical approaches to real-time quantum field theo-
ries. In the past years, the functional renormalisation group (fRG) approach, [1] and [2, 3],
has proven to be a very valuable framework in this context. For a recent general fRG review
see [4], for real-time applications of this approach in a broad variety of research fields, see,
e.g., [5–27].

In the present work we set up a finite renormalised fRG approach. The renormalisation
is transported along with the flow and hence is called flowing renormalisation. One of its
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advantages is its manifest finiteness, also for regulators or regularisation schemes that do not
directly implement a UV decay in the loops of the flow equation. This allows for its application
to general non-perturbative truncation schemes.

In particular, we use this novel fRG setup to derive a spectral fRG approach in real time, the
spectral fRG. Our approach is based on the spectral representation of correlation functions, and
is manifestly finite as well as Lorentz (or Galilei/Schrödinger) invariant and gauge consistent.
It builds on the novel functional spectral approach setup [28,29] which has already been used
in [24].

Here, we specifically concentrate on its derivation from finite fRG flows with spatial mo-
mentum regulators in the limit where these regulators turn into masslike Callan-Symanzik
(CS) regulators. Importantly, this allows for a derivation of the spectral fRG for the effective
action in a well-defined spectral way, while full Lorentz invariance is smoothly achieved in the
CS limit. In particular, no regularisation of non-perturbative diagrams is implied, but all dia-
grams discussed are manifestly finite. The valuable benefit of gauge consistency is guaranteed
as in the CS limit no momentum cutoff is involved. Finally, its real-time nature allows for an
on-shell renormalisation scheme which also facilitates computations. In summary, the present
work lays the methodological ground for spectral fRG studies of real-time quantum field theo-
ries including QCD and quantum gravity, which is illustrated within example theories ranging
from real scalar and Yukawa theories to gauge theories and quantum gravity.

In section 2 we discuss standard fRG flows and the preservation of Lorentz invariance,
causality and finiteness within given regularisation schemes. In section 3 we derive the finite
fRG flow with flowing renormalisation including finite Callan-Symanzik equations. In section 4
the novel setup is used to derive the Lorentz invariant spectral fRG. Finally, in section 5 we
show how to use the spectral fRG in various theories. Its practical application in the lowest
order of the derivative expansion including flowing renormalisation is discussed in appendix A.
We close with a short discussion in section 6.

2 Functional renormalisation group

In this section we introduce the fRG equation for the scale-dependent (one particle irreducible)
effective action. In section 2.1, we briefly review the standard fRG approach with the inclusion
of general renormalisation group transformations into the functional flow. In section 2.2 we
discuss the breaking or preservation of space-time symmetries as well as finiteness of the flows
for given classes of regulators.

This flow is then used to derive the manifestly finite CS equation (39), on which the spectral
fRG is built. In section 3.2, we construct flows with spatial momentum regulators that also
feature an ultraviolet cutoff scale. There are then used to define the well-defined Callan-
Symanzik limit of these flows.

2.1 fRG flow for the effective action

We consider the fRG equation for the one-particle irreducible (1PI) effective action of a generic
quantum field theory with a (super) field Φ = (Φ1, ...Φn) comprising all fields. For exam-
ple, in an O(N) theory we have Φ = (φ1, ...,φN ). In QCD, the super field is given by, e.g.,
Φ = (Aµ, c, c̄, q, q̄) with gluons Aµ, ghosts c, c̄, and quarks q, q̄. In gravity, we have, e.g.,
Φ= (hµν, cµ, c̄µ) with the graviton hµν and ghosts cµ, c̄µ.

The fRG equation for the scale-dependent effective action Γk[Φ] is an exact equation, which
expresses the dependence of the (1PI) effective action on an infrared cutoff k. It has a simple,
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closed one-loop form [1],

∂tΓk[Φ] =
1
2

Tr Gk[Φ]∂tRk , t = log
�

k
kref

�

, (1)

with the (negative) RG time t, where the logarithm of k is measured relative to some reference
scale kref. The regulator Rk is a matrix in field space, typically diagonal for bosonic fields and
symplectic for fermions, with entries RΦi

k . The regulator is the key ingredient in the suppression
of infrared physics via the cutoff k and is discussed in the following. The reference scale is
usually either chosen to be the initial cutoff scale kinit in the ultraviolet or a physics scale in
the theory such as the mass gap or ΛQCD in QCD. The relation of this RG equation to the
flow equation of the Wilson effective action, the Polchinski equation [30], has been detailed
in [2,3,31].

The flow equation (1) depends on the full regulator-dependent propagator:

Gk[Φ] =
1

Γ
(2)
k [Φ] + Rk

, with Γ
(n)
k [Φ] =

δnΓk[Φ]
δΦ · · ·δΦ

. (2)

The functional flow equation (1) entails the scale dependence of the full effective action, while
that of the 1PI correlation functions Γ (n)k is obtained by applying the nth field derivative to (1).

In general, the functional flow of the correlation function Γ (n)k is dependent on Γ (n+2)
k . The

dependence on higher order correlation functions usually has to be truncated in applications.

2.2 Infrared regularisation and symmetries

In the following we discuss some properties of the functional flow equation (1) with respect
to the choice of regulator. The discussion holds for a generic quantum field theory. We con-
centrate on the simple example of a real scalar field Φ= φ with the classical action

Sφ[φ] =

∫

dd x

�

1
2
φ
�

−∂ 2 +m2
φ

�

φ +
λφ

4!
φ4

�

. (3)

The regulator is introduced into the theory as an infrared modification of the classical disper-
sion,

Sφ[φ]→ Sφ[φ] +
1
2

∫

p
φ(p)Rφk (p)φ(−p) , (4)

with
∫

p =
∫

dd p/(2π)d . The addition of the regulator term (4) alters the dispersion relation,

p2 +m2
φ → p2 +m2

φ + Rφk (p) . (5)

The derivative of the resulting k-dependent generating functional of the theory with respect
to k leads to the flow (1), derived in [1].

The regulator can be parametrised with

Rφk (p) = Zφ k2 rφ(x) , x =
p2

k2
, or x =

p⃗ 2

k2
, (6)

where Zφ is the cutoff dependent wave function renormalisation of the field at hand. The
shape function r(x) depends on either full or spatial momenta squared, p2 or p⃗ 2, measured
in the cutoff scale k2. It implements both, the vanishing momentum limit associated with an
infrared (IR) mass as well as the ultraviolet (UV) decay,

lim
x→0

r(x) = 1 , lim
x→∞

xd/2r(x)→ 0 , (7)
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see e.g. [32] for a respective discussion. The first property implements IR regularisation
through an, in general momentum-dependent, mass term that effectively suppresses quantum
fluctuations of field modes with momenta p2 ≲ k2. The second property leads to a suppression
of modes with p2 ≳ k2 in the momentum-loop integrals, rendering the flow (1) and all its field
derivatives, which yield the flow of (1PI) correlation functions, UV finite. A specific example
for a smooth shape function is

rφexp(x) = e−x . (8)

In addition to the conditions in (7), which guarantee the finiteness of fRG flows, we might
want to impose additional, physically motivated conditions onto the regulators. For relativistic
theories it is desirable that the regulators do not spoil Lorentz/Poincaré invariance. Further-
more, for studies of real-time properties, i.e. in Minkowski space, causality should also not
be violated. The latter is directly related to the existence of a spectral representation for the
propagator of φ.

To maintain Lorentz invariance, the regulator should be a function of the four-momentum
squared, Rφk (p

2). However, as discussed, e.g., in [7], such regulators might spoil causality
through unphysical poles in the complex frequency plane. Typically, such regulators either do
not admit a spectral representation or generate fictitious mass poles that only disappear in the
vanishing cutoff limit, for a discussion of the latter see [7,10,14]. As an example, consider a
classical Euclidean propagator

Gφ,k(p) =
1

p2 +m2
φ
+ Rφk (p)

, (9)

with a regulator shape function, c.f. (6),

rφrat =
nmax
∑

n=nmin

cn

�

k2

k2 + p2

�n

. (10)

Already for such a simple propagator, the existence of a spectral representations of the reg-
ularised propagator is highly dependent on the coefficients cn, and in general not the case,
see [7, 33] for more details. For general propagators, regulators of the type (10) typically
generate at least nmax poles in the propagator, whose positions in the complex plane usually
spoil the spectral representation. Another choice would be a variation of the exponential reg-
ulator (8), see [10, 14] for more details. Regulators of this type lead to series of poles in the
propagator as well as an essential singularity at infinity.

A further common choice are regulators that only depend on the spatial momenta, Rφk (p⃗
2).

Clearly, these regulators do not lead to additional poles in the complex frequency plane, but
merely modify the dispersion of the fields. Thus, they admit a spectral representations at the
cost of violating Lorentz invariance. If the system is in a medium, explicit Lorentz symmetry
breaking might seem innocuous, as it is broken anyway. While this has been confirmed in
specific examples [14,34], it is a priori unclear in general. Especially when considering limiting
cases of a phase diagram such as T → 0, the question becomes much more intricate than the
comparisons in the aforementioned works. Hence, effectively we either violate (or at least
complicate) causality, or we violate Lorentz invariance. All known examples of regulators rely
on the regularisation conditions in (7). However, by relaxing at least one of these conditions,
there is a natural choice for a regulator which preserves both causality and Lorentz invariance,

Rφk,CS = Zφ k2 , rCS(x) = 1 , (11)

which we refer to as the CS regulator. It implements IR regularisation through an explicit mass
∆m2

φ
= Zφ k2. In this case the flow equation (1) has been derived in [35]. To our knowledge,
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Figure 1: Sketch of the competing requirements for regulators: finiteness of the flow,
Lorentz invariance and causality of regulators. Examples for regulators with two of
the properties are given. A fully systematic construction of regulators with all three
properties in the flow is lacking to date.

it is indeed the first occurrence of such a closed (and one loop) exact functional equation for
the effective action. The functional CS flow has been picked up and discussed later in [36–41]
as a special choice of the general flow equation (1) .

The insertion of the CS regulator in (1) leads us to the (inhomogeneous) functional CS
equation. However, it violates the second condition (7). The CS regulator only lowers the
UV degree of divergence by two, for example, quadratically divergent diagrams such as the
tadpole diagram in the two point function of the φ4 theory in d = 4 leads to logarithmically
divergent tadpole diagrams in the CS equation. In short, at each k in the flow, all loop momenta
contribute. To render the flow finite, an additional UV regularisation is required in general.

The different properties of the regularisation are summarised in fig. 1. Restricting the
discussion to vacuum for simplicity, the three different property of interest are

1. Lorentz invariance: The regulator is a function of p2 and respects Lorentz symmetry.

2. Causality: The regularised propagator admits a spectral representation, c.f. (42). Ex-
pressed in Euclidean momenta, the right half-plane for analytically continued momenta
is holomorphic.

3. Finiteness: All diagrams arising from (1) and its functional derivatives are finite.

In the overlap regions of fig. 1 we provide examples for regulators with the respective two
properties.

No example is given in the overlap regime in the middle with all three properties: at
present, no regulator keeping all three properties in fig. 1 simultaneously is known: indeed,
the structure of the full propagator,

Gk(p) =
1

Γ
(2)
k (p) + Rk(p)

, (12)

which is the inverse of the regulator and the (yet to be determined) two point function Γ (2)k
entails that a systematic construction of such a regulator for all cutoff scales k necessarily
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requires the use of the complex structure of Γ (2)k in the regulator. This leaves us with a com-
bination of requirements: the existence of the spectral representation of the propagator (12)
with the regulator limits (7) for an unknown two-point function Γ (2)k . This combination is
rather obstructive, and if a systematic construction is possible at all, it evidently requires using
constraints on the complex structure of the two point function at hand.

As an illustration, let us assume we have a Lorentz invariant regulator with the properties
(7). We observe that the regulator needs to be a decaying function as p→∞, by assumption,
while Γ (2)(p) needs to be a growing function for p→∞, being the inverse of the propagator.
This implies finite Lorentz invariant flow equations (properties 1 & 3). Now we show that then
causality (property 2) is at stake:

A simple consideration of the Cauchy–Riemann equations suggest different signs of their
imaginary parts in the top-right quadrant of p ∈ C. However, the regulator needs to have a
positive real part, at least for small Euclidean momenta, to provide the IR regularisation. In
a partially simplified picture, this leads to lines in the complex plane where the real part of
the regulator is zero. Similarly, the real part of the two-point function has lines with vanish-
ing real part, related to the dispersion relation. The different limiting cases detailed above
make it almost impossible to avoid zeros in the top right quadrant of the complex momentum
plane, and consequently lead to a violation of causality in the regularised propagator. Partly,
this reasoning can also be found in [25]. The argument presented here is a very pictorial,
simplified version. While it is easy to construct explicit counterexamples, so far even in tailor
made applications, such as spectral functions of a simple scalar theory, no regulator has been
provided that escapes this problem, leave aside a generic systematic construction scheme. A
full discussion of this issues is postponed to future work.

This leaves us with the situation that we may consider regulators in the three overlap
regions, put differently, regulators, that lack one of the properties 1-3. In this context we
emphasise a peculiarity of the overlap regime without finiteness including the CS regulator:
the structural similarity of the Wetterich equation (1) with regulators obeying (7) and the flow
with the CS regulator (11) is misleading. While the former equation implements a Wilson-type
momentum-shell integration in a fixed underlying quantum field theory, the CS flow consti-
tutes a flow in the space of theories. To be specific, the need for additional UV regularisation
at different cutoff scales k implies that we have different theories which necessarily require a
different renormalisation. Hence, the flow must be re-renormalised; only specifying the initial
effective action Γkinit

does not lead to a finite renormalised solution of the flow equation. This
renormalisation is typically done with an RG transformation, leading to finite renormalised
loops as well as the β-function and anomalous dimension terms in (26). As we will show in
the next section, this can be achieved instead by the introduction of explicit counter terms
to the flow, supplemented with renormalisation conditions which are fixed at a, in general
k-dependent, renormalisation scale µ.

3 Functional flows with flowing renormalisation

In this section we discuss the finiteness of infrared flows and the finiteness of the ultraviolet
limit of the effective action. Both properties are related to the UV renormalisation that is
implicitly or explicitly implemented in the flow equation. This leads us to the concept of
flowing renormalisation.

In section 3.1 we discuss infrared RGs with general rescalings during the RG flows and
introduce the concept of RG-consistency. This setup allows us to define flows that have a finite
UV limit, hence elevating the standard bare diverging UV effective action to a renormalised
finite UV action. In section 3.2 we then derive a key result of the present work, the general
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flow equation (38) with a flowing Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ)-type UV
renormalisation. This renormalised fRG flow is not based on full RG rescalings which imply
a multiplicative renormalisation that typically cannot be used in non-perturbative truncation
schemes. This is achieved by augmenting the infrared RG steps with explicit ultraviolet ones
that are also formulated in terms of a standard functional RG. In section 3.3 we discuss the
properties of the manifestly finite CS equation (39) obtained from (38) for the CS regulator
including the implementation of general renormalisation conditions, which is the basis for the
spectral fRG discussed in section 4. In section 3.4 we summarise the results and findings of
this Section and emphasise some important aspects.

3.1 RG-consistency and UV scaling

For standard infrared regulators with shape functions r(x) that obey (7), the flow equation
is manifestly finite as loop momenta are effectively restricted to p2 ≲ k2. Then, choosing a
specific r(x) amounts to specifying a UV regularisation scheme for fRG flows. The effective
action Γk of a general theory is then obtained by integrating (1) from some initial cutoff scale
kinit to k ≤ kinit,

Γk[Φ] = Γkinit
[Φ] +

∫ k

kinit

dk′

k′
∂tΓk′[Φ] . (13)

The renormalisation conditions are implicitly fixed through the initial effective action Γkinit
.

The theory at a given cutoff scale k should not depend on the initial cutoff scale kinit, which is
called RG-consistency, see [32,42,43],

kinit
dΓk

dkinit
= 0 . (14)

Since the initial effective action implicitly fixes the renormalisation conditions, RG-consistency
entails renormalisation group invariance, and specifically the independence of the theory on
these conditions. Inserting (13) into (14), we arrive at

∂tinit
Γkinit
[Φ] =

1
2

Tr Gk[Φ]∂tRk

�

�

�

�

kinit

. (15)

Equation (15) entails that the kinit-dependence of the effective action at the initial (large)
cutoff scale is given by the flow equation. Hence, the running of the UV relevant parameters
can be read off from the IR flow equation for asymptotically large cutoff scales, where the flow
of a given coupling is proportional to

lim
k→∞

∂tλi∝ kdλi . (16)

The right hand side includes the full k-scaling: the combination of the scaling of the loop inte-
grals and the vertices. Then, UV relevant and marginal couplings λi have scaling dimensions
dλi
≥ 0, while UV irrelevant couplings have scaling dimensions dλi

< 0. Consequently, for
asymptotically large infrared cutoff scales, the effective action approaches the bare UV effec-
tive action: Only the UV relevant operators survive and diverge with k → ∞ according to
their scaling dimension with kdλi for dλi

> 0 and logarithmically with t for dλi
= 0.

As a first step towards the desired finite flow equations, also for regulators such as the CS
one, we discuss how the UV scaling (16) can be absorbed within a general RG rescaling. Then,
the UV limit of the effective action is the finite renormalised UV action and not the diverging
bare action. For more details we refer the reader to [32] and in particular [44].
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The underlying RG invariance of the theory at k = 0 implies that the full effective action
Γ = Γk=0 obeys the homogeneous renormalisation group equation

µ
dΓ [Φ]

dµ
=

�

µ∂µ + β
(µ)
λi
∂λi
+

∫

x
γ
(µ)
Φ j
Φ j

δ

δΦ j

�

Γ [Φ] = 0 , (17)

where
∫

x =
∫

dd x refers to the integral over spacetime. For a detailed discussion see Chapter

IV in [32]. The β-functions β (µ) and anomalous dimensions γ(µ)Φ j
of the theory at hand are

defined as

γ
(µ)
Φ Φ= µ

dΦ
dµ

, β
(µ)
λ
= µ

dλ
dµ

. (18)

The coupling vector λ = (λ1, ...,λm) contains all relevant parameters of the theory, including
the mass parameters. Note that equation (17) entails the invariance of the underlying quantum
field theory under self-similarity transformations of the theory.

It has been shown in Chapter VIII B of [32], that the RG invariance of the theory is main-
tained in the scale-dependent theory in the presence of the regulator term for regulators of
the form of (6). Such regulators are called RG-adapted as they satisfy the RG equation

�

µ∂µ + 2γ(µ)Φ
�

RΦk = 0 , (19)

and scale as an inverse two-point function, see (8.14) in [32]. The respective full RG equation
reads

�

µ∂µ + β
(µ)
λi
∂λi
+

∫

γ
(µ)
Φ j
Φ j

δ

δΦ j

�

Γk[Φ] = 0 , (20)

and has the same form as the RG equation at k = 0, (17). From this, we obtain the general
flow equation that comprises the change of a cutoff scale, here k, as well as an accompa-
nying general RG transformation. We remark that general reparametrisations (self-similarity
transformations) can also involve non-linear field transformations, Φi → φi[Φ], which might
facilitate the discussion of the renormalisation in specific cases. This has been considered in
Chapter VII A and B of [32] and in [45] for the Wilsonian effective action. More recently, these
general field redefinitions have been used for setting up essential fRG flows in [46,47].

Using (1), an additional total k-derivative of (20) yields the flow equation with
reparametrisation at each flow step, see (4.25) in Chapter IV of [32],

�

s∂s + β
(s)
λi
∂λi
+

∫

x
γ
(s)
Φ j
Φ j

δ

δΦ j

�

Γk[Φ] =
1
2

Tr Gk[Φ]
�

∂s + 2γ(s)Φ
�

RΦk , (21)

where we consider k(s) and µ(s) with

s∂s = µ∂µ + ∂t . (22)

The β-functions β (s) and anomalous dimensions γ(s) then encode the full s-scaling of a com-
bined cutoff (k-) and RG (µ-) flow, including a reparametrisation of the theory,

γ
(s)
Φ Φ= s

dΦ
ds

, β
(s)
λ
= s

dλ
ds

. (23)

Hence, the loop term on the right hand side of (21) is proportional to the full s-scaling of
the cutoff term, consisting of the infrared cutoff scaling with k, the renormalisation group
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scaling with µ and a potential scaling of an UV cutoff scale Λ. This s-scaling reduces to (18)
for s∂sµ = µ and s∂sk = 0, and to the standard fRG anomalous dimension and β-functions
for s∂sk = k and s∂sµ = 0. Finally, the linear combination (22) of k and µ scalings leads to
γ
(s)
Φ = γ

(µ)
Φ + γΦ with

γΦ ≡ γ
(k)
Φ = −

1
2
∂t log ZΦ . (24)

For RG-adapted regulators with (19) the renormalisation group scaling drops out of the right
hand side. For example, for the linear combination of the two scalings with k and µ we arrive
at

�

∂s + 2γ(s)Φ
�

RΦk =
�

∂t + 2γΦ
�

RΦk +
�

µ∂µ + 2γ(µ)Φ
�

RΦk

=
�

∂t + 2γΦ
�

RΦk . (25)

With (25) the flow (21) reduces to
�

s∂s + β
(s)
λi
∂λi
+

∫

x
γ
(s)
Φ j
Φ j

δ

δΦ j

�

Γk[Φ] =
1
2

Tr Gk[Φ] (∂t + 2γΦ)R
Φ
k . (26)

The occurrence of γΦ in (26) stems from the linear field-reparametrisation
Φ → Z1/2

Φ Φ. For non-linear reparametrisations, the anomalous dimensions are field-

dependent, γ(s)Φ Φ → γ(s)[Φ]Φ, and the anomalous dimension in the flow term on the right-
hand side of (26) has to be substituted by

γ
(s)
Φ RΦk →

δ(γ(s)[Φ]Φ)
δΦ

RΦk , γ(s)[Φ]Φ= s
dΦ
ds

, (27)

with matrix valued anomalous dimensions (in field space). The respective derivations can be
found in Chapter VIII A of [32]. The general flow is given by (8.8) in this Chapter. For field-
independent γ(s), (27) boils down to the standard expressions. In any case, due to reparametri-
sation invariance, such reparametrisations are optional and might be used to simplify certain
computations, e.g., in the context of critical physics, where anomalous dimensions are of cen-
tral interest.

Equation (26) including the field-dependent generalisation (27) is the general fRG setup
for the effective action. For regulators with the second property (UV decay), general
reparametrisations encoded in the anomalous dimensions and β-functions may facilitate the
computations or implement functional optimisation schemes. In particular, we can absorb the
UV scaling (16) of the UV-relevant couplings with dλi

into the anomalous dimensions and β-
functions, leading to a finite renormalised UV effective action. This is simply a convenience for
infrared flows with finite flow equations, but is a necessity in the absence of ultraviolet finite
loops, as is the case for the CS regulator, (11). Then, the rescalings implement the required
UV renormalisation via multiplicative renormalisation. While this is a formally correct proce-
dure, the implementation of multiplicative renormalisation within non-perturbative truncation
schemes is intricate. This intricacy is present for all diagrammatic methods such as DSEs or
2PI methods, a detailed discussion is provided in [48].

As the central result of this paper, we will show in the next section that the additional
µ-flow can be absorbed into a well-defined flow of a non-perturbative counter term action
for the k-flow in a manifestly finite way. The flow of the counter term action serves a two-
fold purpose: Firstly, it allows to change consistently the renormalisation conditions with the
k-flow for general IR flows. We call this flowing renormalisation. Secondly, it also leads to
manifestly finite flows for the CS regulator with a flowing counter term action for general non-
perturbative truncation schemes. The number of parameters in these counter term matches
that of relevant parameters in the theory.
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3.2 Functional RG with flowing renormalisation

We now use the general flow equation with an infrared regulator and an ultraviolet one for
deriving a flow equations which also incorporates an explicit UV renormalisation in a mani-
festly finite approach in terms of a generalised BPHZ scheme with the subtraction of a flowing
counter term action. In contradistinction to multiplicative schemes this leads to finite loop
diagrams by subtraction. Such a construction has the benefit of a simple and robust numerical
implementation.

This general setup also allows us to monitor and change the renormalisation conditions
within the infrared flow. This generalises the standard fRG setup, in which the (UV) renor-
malisation and the respective renormalisation conditions are implicit in the choice of the finite
initial action, see the discussion around (13).

The access to the UV behaviour of the theory is obtained by introducing a regulator Rk,Λ(p),
where an UV cutoff Λ = Λ(k) enters as a free parameter/function. The regulator RΦk,Λ is
chosen such that it effectively restricts loop momenta to p2 ≲ Λ(k)2 in the loops of the flow
equation, see the examples (30c) and (30d) below. We may also use the regulator for a full
UV regularisation of the theory and not only the flow equation, see e.g. (30e) below.

Changing the UV scale Λ= Λ(k) alongside with the infrared flow allows us to introduce a
flowing (UV) renormalisation in the latter. For these regulators the flow (1) can be written as

�

∂t

�

�

Λ
+Dk ∂tΛ

�

Γk,Λ =
1
2

Tr GΦk,Λ

�

∂t

�

�

Λ
RΦk,Λ +Dk ∂tΛRΦk,Λ

�

, (28)

where tΛ = log(Λ/kref), with a reference scale kref. The factor Dk is a relative measure of RG
steps in the k− and the Λ-direction,

Dk = ∂t logΛ(k) . (29)

The flow (28) is a finite functional flow which allows us to successively integrate out momen-
tum shells. For ∂tΛRφk,Λ = 0 we arrive at the standard (infrared) flow in (1). This naive limit
can only be taken for infrared momentum cutoffs that decay sufficiently fast in the ultraviolet.
Most importantly, we can identify the terms∝Dk in (28) as UV-cutoff flows that can be used
for a flowing renormalisation scheme.

This derivation holds true for general infrared regulators. In the following we use as an
important example regulators Rφk,Λ, that converge towards the CS regulator with the shape
function (11) for Λ→∞. In this case the flowing renormalisation can now be used to derive
the finite fRG flow (28) for the CS regulator. For this derivation it is convenient to consider
regulators Rφk,Λ with

Rφk,Λ(p) = Zφ k2 r(xΛ) , xΛ =
p⃗ 2

Λ2
, (30a)

where we have considered a spatial momentum regulator in order to retain causality in a
simple manner, as discussed in the previous section. Again, we emphasise that this choice
is only taken for the sake of the spectral flows discussed later, it is not a necessary one. For
Λ→∞ we require

lim
Λ→∞

Rφk,Λ = Zφ k2 , (30b)

which leaves us with the CS flow as limit of well-defined UV-finite flows. Explicit examples for
shape functions are given by

rexp(xΛ) = e−xΛ . (30c)
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This regulator leads to an exponential damping of the UV modes in the loop via the regulator
in the numerator of the flow. Another regulator of this type is given by

rCS(xΛ) = θ (1− xΛ) . (30d)

Again the loop is rendered finite via the regulator in the numerator of the loop. We emphasise
that, (30c) does not imply a UV regularisation of standard diagrams, e.g. in perturbation
theory or a system of Dyson-Schwinger equations, but only an UV-regularisation of the loops
in the flow equations.

We may augment the IR regulator with a UV regulator, leading to UV and IR finite loops
with

rsharp(xΛ) =
1

θ (1− xΛ)
. (30e)

This regulator leads to momentum loops, e.g. in perturbation theory or a system of Dyson-
Schwinger equations, that do not receive any contribution from spatial loop momenta p⃗ 2 > Λ2.
Naturally, this property also holds true for the respective flow equations. All the regulators in
(30) and the limit Λ→∞ satisfies the constraint (30b).

To understand the CS limit, we have to explicitly determine the part of the flow that comes
from changing the UV cutoff Λ. For Λ→∞ the second part of the flow,

1
2

Tr Gφk,ΛDk ∂tΛRφk,Λ , (31)

takes a simple form: First of all, up to sharply peaked contributions for large momenta, see
the examples in (30), the tΛ-derivative of the regulator vanishes in the CS limit (30b) with

lim
Λ→∞

∂tΛRφk,Λ = 0 . (32)

Note that (32) simply entails removing the Λ-part of the flow in the limit Λ→∞, so it holds
true beyond the CS example. Thus, in this limit the contribution of the Λ-flow, (31), to the
full flow, (28), vanishes unless this zero is compensated by a divergence in the Λ-flow.

On the more technical level we define diagrams with UV irrelevant power counting in the
flow equation: these are the diagrams Diag(n)i

�

∂tΛRφk,Λ

�

in the flow of n-point functions Γ (n)k

which remains finite if the substitution ∂tΛRφ → 1 is done. Here, the superscript (n) indicates

a diagram of the flow of Γ (n)k , while the subscript i labels the different diagrams in this flow.
We write

lim
Λ→∞

�

�Diag(n)i

�

∂tΛRφk,Λ→ Λ
2
��

�<∞ . (33)

Diagrams with (33) either contain a sufficiently large number of propagators or sufficiently
rapidly decaying vertices to render the integration over loop momenta finite. In the CS limit,
the contribution of UV-irrelevant diagrams to the flow vanishes like Λ−n with some n> 0.

In turn, the power counting marginal and relevant parts of the Λ-flow (31) will survive
in this limit and indeed diverge with powers and logarithms of Λ. Importantly, these terms
are also local if the vertices are: they only depend on powers of momenta. A more general
analysis of non-perturbative UV renormalisation including also Dyson-Schwinger equations
(DSEs) is deferred to [48]. Note also that the Λ-flow has the same UV power counting as
standard diagrams, as the regulator behaves like an inverse propagator for Λ→∞. This can
be seen from the example regulators (30), whose tΛ-derivative yields

∂tΛ rexp(xΛ) = 2xΛe−xΛ ,

∂tΛ rCS(xΛ) = 2xΛδ(1− xΛ) .
(34)
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Hence, the Λ-flows for n-point functions diverge with the same power of Λ as standard loop
diagrams, e.g., in perturbation theory. The above analysis leads us to an intricacy of the UV
power counting that is elucidated in appendix A at the example of the φ4-theory in d = 4. In
short, the standard UV power counting only holds true if the truncation at hand respects the
UV power counting of the theory. A prominent important counter example is the derivative
expansion in a φ4-theory. Already its lowest order (0th order derivative expansion or local
potential approximation (LPA)) includes a full effective potential Veff(φ2), and hence all order
(point-like) interactions λn/(n!)φ2n with n ∈ N. Due to its momentum-independence these
couplings persist unchanged at arbitrarily large momentum p→∞. Accordingly, they seem-
ingly introduce infinitely many fundamental couplings λn, which would render the theory
UV-sick. Note that this intricacy also is present for other functional approaches, the Dyson-
Schwinger equation for the effective potential in LPA has been discussed in [49], Appendix F,
for more details see also [48]. In appendix A it is shown, how the present procedure leads to a
well-defined finite result, and the number of relevant parameters matches that in perturbation
theory in the UV. A detailed discussion goes beyond the scope of the present paper and is pre-
sented in [48], including also non-trivial aspects of momentum dependences of vertices: for
non-perturbative approximations with full momentum-dependent vertices the counter terms
have a non-trivial but uniquely fixed momentum-dependence. This is similar to the unique
non-polynomial field dependence in LPA discussed in appendix A, but in contradistinction to
the latter it is no truncation artefact.

Finally, the prefactors of the UV-relevant terms in the t flow may be different from that in
the tΛ flow, as the respective scale derivatives of the regulator have a different momentum-
dependence if taken for a fixed shape function. This is remedied by using shape functions
with

rΛ = r(xΛ) +∆rΛ(xΛ) , (35)

and the correction ∆rΛ(xΛ) is taken such that the relative prefactors of all UV relevant terms
of the tΛ-flow equals the relative prefactors of the relevant terms in the t-flow.

In summary, this leads us to the definition of the counter term action,

∂tSct[φ] := −
1
2

Tr Gφk,ΛDk ∂tΛRφk,Λ , (36)

which removes all terms with positive powers Λn as well as logarithms logΛ/kref from (28)
and renders the infinite UV cutoff limit finite,

lim
Λ→∞

�

�∂tΓk,Λ[φ]
�

�<∞ . (37)

The counter term action (36) depends on a finite set of renormalisation parameters required
for the finite limit (37). The size of this set is equivalent to the number of UV relevant and
marginal directions. Moreover, in the limit Λ→∞ the counter term action takes a local form
for approximations with local vertices that reduce to the classical ones for large momenta.

Finally, we arrive at the novel flow equation with flowing renormalisation

∂tΓk[φ] =
1
2

Tr Gφ[φ]∂tR
φ − ∂tSct[φ] , (38)

with the flow of the counter term action (36) accounting for the flow of the renormalisation
conditions as well as the finiteness for infrared cutoffs such as the CS regulator. This general
equation constitutes a main result of our work. It can be augmented with general reparametri-
sations of the theory, leading to a generalisation of (21): we simply have to subtract ∂tSct[φ]
defined in (36) on the right hand side of (21). Note, that heuristically such a procedure is
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suggestive but in general a naive removal of divergent terms does not provide a consistent
renormalisation. In the present Section we have proven that (38) is correct. The derivation
also offers a systematic practical way to compute the counter term and we shall see in an ex-
plicit example that within commonly used truncation schemes this goes beyond using standard
counter terms, see in particular appendix A.

3.3 Finite CS flows and flowing renormalisation conditions

In the remainder of this work we use this flow for setting up spectral functional flows with the
finite CS flows derived from (38). For the CS flow the general equation reduces to

∂tΓk[φ] = Tr Gφ[φ] k
2 − ∂tSct[φ] , (39)

where a CS regulator in a manifestly UV finite setting, such as given with the shape function
(30e), is assumed and the finite limit Λ→∞ can be safely taken. As for the general equation
(38) the novelty of (39) is not its finiteness per se. Indeed, already the original functional
CS equation as derived in [35] can be shown to be finite order by order in perturbation the-
ory. However, (39) is manifestly finite in general perturbative and non-perturbative truncation
schemes with a manifestly finite effective action. Moreover, the present setup allows for a
direct computation of the flow of the counter term action, only dependent on a set of renor-
malisation parameters which are in one-to-one correspondence to the coefficients of the UV
marginal and relevant operators. Finally, the finite CS flow can be applied to perturbatively
and non-perturbatively renormalisable theories, and for a first application in quantum gravity
we refer to [24].

The general flow (38) and its finite CS limit (39) seemingly imply that we are left with
the task of computing the non-trivial scaling factor Dk as well as the Λ-trajectory (35) at each
RG-step. This would exact a heavy price for the finiteness (37). It is therefore noteworthy that
we do not have to compute ∂tSct[φ] from the flow, as it can completely fixed by the choice
of renormalisation conditions. The subtraction ∂tSct[φ] has to be simply chosen such that
the flow of these conditions vanish. This choice is practically implemented by subtracting the
t-flow of the correlation functions Γ (n)k (p

2 = µ2), that is the renormalisation condition from
the full t-flow. This renders the functional t-flow finite (if one also subtracts the zero point
function) and guarantees the RG conditions to hold.

We illustrate this within a simple example for the finite CS flow. Again we use a real
scalar field theory with the renormalised effective action Γk,Λ with a given UV cutoff Λ. The
renormalisation entails that the effective action Γk,Λ stays finite in the limit Λ→∞. Moreover,
it may satisfy the following on-shell renormalisation conditions at the flowing scale µ= µ(k),

lim
Λ→∞

Γ
(2)
k,Λ

�

φ̄
�

(p)
�

�

�

p2
0=−µ2

= − k2 ,

lim
Λ→∞

∂p2
0
Γ
(2)
k,Λ

�

φ̄
�

(p)
�

�

�

p2
0=−µ2

=1 ,

lim
Λ→∞

Γ
(4)
k,Λ

�

φ̄
�

(p)
�

�

�

p2
0=−µ2

=λφ , (40)

where p0 is the Euclidean frequency and p2 = p2
0 < 0 is evaluated at a timelike Minkowski

momentum with p⃗ = 0 and the Minkowski frequency ±
q

−p2
0. Here, φ̄ is a background field,

which is typically given by the solution of its (quantum) equation of motion (EoM), φ̄ = φEoM.
The first condition is an on-shell mass renormalisation: the effective action in the pres-

ence of an IR regulator is defined as a modified Legendre transform excluding the regula-
tor term. Hence, for the physical CS regulator we have to consider the full Euclidean two-
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point function with the CS mass term Zφk2, that is Γ (2)k (p
2) + Zφk2. Thus, (40) simply im-

plies Γ (2)k (−µ
2) + k2 = 0, so the renormalisation scale determines the k-dependent pole mass,

µ = mk. By setting µ = k, we can enforce this pole mass to be given by the mass introduced
by the CS regulator. Thus, for a given physical mass the RG flow from the initial UV scale kinit
is terminated at kfin = mphys = mkfin

. Put differently, with this RG condition we flow through
the space of scalar theories with the physical pole mass k2.

The second condition in (40) fixes the wave function renormalisation at µ, Zφ(−µ2) = 1
on-shell. We remark, that this leads to a spectral function ρφ,k that is not normalised to unity
if φ is a physical field (defining an asymptotic state), see section 4 .

The last condition in (40) fixes the quartic interaction vertex. We have not specified the
momentum configuration here, but natural choices are the symmetric point and specific mo-
mentum channels such as the s-channel.

Below, we shall consider more general on-shell as well as off-shell renormalisation condi-
tions adapted to specific theories or classes of theories. We emphasise that every RG-condition
serves our purpose, but on-shell RG conditions are in most cases a specifically convenient
physical choice, only accessible for real-time formulations.

We also remark that adjusting specific renormalisation conditions in the standard fRG set-
ting is a fine-tuning problem: One has to adjust the initial effective action at the initial cutoff
scale kinit such, that the effective action at kfin satisfies the renormalisation conditions. How-
ever, adjusting specific renormalisation conditions is not required in the fRG approach but
the same finite tuning task extends to adjusting the physics parameters at the initial scale.
Both tasks are solved or at least facilitated in the presence of flowing renormalisation, and
(40) exemplifies this general pattern. With (40) both the adjustment of the renormalisation
conditions and the adjustment of the physics parameters is done directly.

It is an additional benefit of the present formulation that the usual finite tuning of the
physical parameters at k = 0 from a set of initial conditions at a large initial cutoff scale kinit
can be avoided. From (40) we get

lim
Λ→∞

∂t

�

Γ
(2)
k,Λ

�

φ̄
�

(p)
�

�

�

p2
0=−µ2

�

= − 2 k2 ,

lim
Λ→∞

∂t

�

∂p2
0
Γ
(2)
k,Λ

�

φ̄
�

(p)
�

�

�

p2
0=−µ2

�

=0 ,

lim
Λ→∞

∂t

�

Γ
(4)
k,Λ

�

φ̄
�

(p)
�

�

�

p2
0=−µ2

�

=0 , (41)

which completely fixes ∂tSct in (39).
We emphasise that the implementation of the above full flowing renormalisation is not

required within the formulation. Indeed, in the example of the φ4 theory in d = 4 discussed
in detail in appendix A, the only divergence in the flow equation is related to the mass renor-
malisation: The CS flow lowers the standard UV degree of divergence by two and the field-
dependent part of the flow is logarithmically divergent. Thus, the flow of the counter term
action ∂tSct only needs to include one term to ensure finiteness. For the explicit LPA example
see (A.9) and (A.23) in appendix A. Additional counter terms for further fundamental cou-
plings can still be introduced to enforce the renormalisation conditions. For a scalar theory
in LPA, their general form is given by (A.4), and the explicit form of the counter term which
renormalises the mass and the coupling of φ4 theory is shown in (A.32).

We emphasise that using a “minimal” counter term with k-independent parameters, i.e.
one that only regularisers the divergent contributions, the present approach reduces to the
standard infrared flow: the renormalisation group conditions at k = 0 are implicitly set at
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k = kinit and the physics parameters and RG conditions flow into their final values, which have
to be fine-tuned for given physics and RG conditions.

3.4 Wrap-up

The derivation of the general fRG flow (38) with flowing renormalisation and its finite CS
limit (39) is a key result of the present work. Importantly, the counter-term action Sct is all
that is left from the Λ and µ-dependence of the general fRG flow in equation (26). Notably,
the conventional finite CS equation also involves the terms proportional to the β-function on
the LHS side of equation (26) (which follow from multiplicative renormalisation), which are
missing in equation (39). We emphasise that the latter BPHZ-type renormalisation allows for
the implementation of general non-perturbative truncation schemes which are difficult to im-
plement in a setting with multiplicative renormalisation. Put differently, the formal finiteness
of the standard CS equation is only of use in truncation schemes such as perturbation theory
and does not survive in general non-perturbative truncation schemes.

Equation (38) and (39) can be augmented with β-function terms. They are present if the
flow is amended with an additional standard RG transformation with µ(k). This is an option in
specific cases, as it may facilitate the computations or the convergence of systematic approx-
imation schemes. Still, it is an important result that such an additional RG transformation
is not required for finiteness and equation (39) is exact: while the β-function terms pose no
conceptual problem as they can be considered in a closed form by auxiliary flows, their compu-
tation constitutes in most cases a considerable additional technical challenge. For a detailed
discussion of such a setup in a different context, see [50]. There, it is shown how to derive
flows for the dependences of vertices or couplings on external parameters such as fundamental
couplings, temperature, and chemical potential.

We note that in asymptotically safe theories one may have to consider the non-trivial
asymptotically safe momentum scaling of vertices and propagators for the correct propaga-
tion of the RG conditions. For example, in asymptotically safe gravity the propagators have
an anomalous scaling via 1/ZΦ(p) with Φ = (hµν, cµ, c̄ν), which is cancelled by the respective

scaling Z1/2
Φ of each leg in the vertices, for more details see section 5.4. This leads to a canon-

ical momentum running from the propagators in the flow diagrams. What is left is the large
momentum scaling of the vertex couplings. For example, the graviton three-point function
runs with p2 g1/2

3 (p)∝ p instead the canonical running. This remedies the perturbative di-
vergences and leaves us with a setup with a finite number of divergences and hence counter
terms.

4 Spectral functional renormalisation group flows

One of our main motivations for using the CS regulator is that Lorentz invariance and the
existence of spectral representations are manifest in the flow, see the discussion in section 2.2.
We exploit in particular the latter property for defining spectral, Lorentz invariant fRG flows
in real time, based on the CS flow (39).

In section 4.1 and section 4.2 we give a brief overview on the spectral representation of
correlation functions in quantum field theories, including sum rules for single particle spec-
tral functions and their asymptotic behaviour that are direct consequences of the existence
of a spectral representation. In section 4.3 we show how finite flows are computed in prac-
tice, allowing for symmetry-preserving functional flows, including gauge-consistent flows. For
convenience, in this section we shall mostly use a scalar theory in our discussions.
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4.1 Spectral representation

The basic ingredient of spectral fRG flows are the spectral representations of the correlation
functions, and foremost the Källén-Lehmann (KL) spectral representation of the propagator,

Gk(p) =

∫ ∞

−∞

dλ
2π
λρk(λ, p⃗ )
λ2 + p2

0

, (42)

with ρk(−λ, p⃗ ) = −ρk(λ, p⃗ ) and

ρk(ω, p⃗ ) = 2 Im Gk(−iω+, p⃗ ) , (43)

where ω+ = ω+ i0+ is the retarded limit. We emphasise that the spectral function is always
defined with (43) but the relation (42) does not always hold. As discussed in section 2.1
we have to make sure that the spectral representation of correlation functions at k = 0 is
maintained also for k ̸= 0 by choosing an appropriate regulator.

For the two-point function of asymptotic states, the spectral function is positive semidefi-
nite and normalised to unity, if the states are normalised, see also the discussion in section 5.
In general this is not the case, since (43) and (42) are mere statements about the causal prop-
agation of the associated operator.

We exemplify these statements within a more detailed discussion of the single scalar field
φ in vacuum. Its two-point function Γ (2)(p2) can be parametrised as

Γ (2)(p2) = Zφ(p
2)
�

p2 +m2
φ

�

, Γ (2)
�

−m2
φ

�

= 0 , (44)

with the pole mass mφ . The respective spectral function ρφ admits the parametrisation

ρφ(λ, p⃗) = ρres(λ, p⃗) +ρcont(λ, p⃗) , (45)

where ρres comprises the resonance contributions to the spectral function,

ρres(λ, p⃗) =
π

λ

∑

i≥0,±
Zφ,i δ

�

λ±
r

p⃗ 2 +m2
φ,i

�

, (46)

where i labels the stable excitations with masses mφ,i > mφ, j for i > j with amplitudes Zφ,i .
This includes the ground state, i = 0, with the amplitude Zφ,0. The latter is simply the inverse
of the on-shell wave function,

Zφ,0 = 1/Zφ(−m2
φ) , (47)

as can be shown by comparing (44) and (45) on-shell at p2 = −m2
φ

. The contribution ρcont
contains the contributions of the scattering continuum,

ρcont(λ, p⃗) = θ
�

λ2 − 4
�

p⃗ 2 +m2
φ

��

fφ (λ, p⃗ ) , (48)

with fφ(−λ, p⃗ ) = − fφ(λ, p⃗ ). It is only non-vanishing beyond the on-shell scattering threshold
with the momentum 2mφ , since mφ is the mass gap of the theory.

The spectral flows with a spectral CS cutoff are derived as flows in a CS limit (30b) of
standard momentum shell cutoff flows as described in section 3.2. Naturally, the persistence
of the spectral representation (42) in the presence of the momentum shell regulators facilitates
the derivation significantly. Hence, the CS limit may be taken with general regulators whose
shape functions (7) are only dependent on spatial momenta squared, x = p⃗ 2/k2 or rather
xΛ = p⃗ 2/Λ2, see the two examples (30). It is easy to see that such regulators do not spoil the
existence of a spectral representation for positive definite shape functions.
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For illustration we again consider the classical regularised propagator (9). Its respective
scale dependent spectral function for general regulators rφ(xΛ) is given by

ρk(λ, p⃗ 2) =
π

λ

∑

±
δ
�

λ±
r

p⃗ 2 +m2
φ
+ k2 rφ (xΛ)

�

, (49)

which can be shown by inserting (49) in (42),

Gφ,k(p0, p⃗) =
1

p2
0 + p⃗2 +m2

φ
+ k2rφ(xΛ)

, (50)

for general shape functions rφ(xΛ). Hence, as argued before, we may use spatial momentum
regulators (6) with shape functions rφ(xΛ) and implement the CS limit (30b) in a spectral way.
Note that any class of regulator can be chosen for this limit, we either drop Lorentz invariance
or the spectral representation as discussed in section 2.2, see fig. 1. The combination is only
obtained in the CS limit, which in its finite form (39) has all three properties.

4.2 Sum rules

The KL spectral representation (42) links the infrared asymptote for λ→ 0 and its ultraviolet
asymptote for λ→∞ to the IR and UV behaviour of the Euclidean propagator. This also fixes
its normalisation. These properties are discussed and verified in detail in [24,29,33,51]. The
UV or IR asymptotic behaviour of the dimensionless Euclidean propagator can be parametrised
as

Ĝφ
�

p2→ UV/IR
�

=
Zφ
p̂2

p̂η

(log p̂2)γ
, (51)

with the dimensionless momentum squared p̂2 = p2/m2
gap and some reference scale mgap. In

the UV limit one has the parameters Zφ,UV, ηUV, γUV, and in the IR Zφ,IR, ηIR, γIR. As discussed
in section 4.1, the amplitude Zφ is the inverse of the wave function of the two-point function
(44).

This general asymptotic form of the propagator includes a power behaviour arising from
the anomalous dimension η besides the canonical power −2, as well as a logarithmic depen-
dence, see e.g. [29, 33, 51] for details. For some non-local theories, the propagator shows an
exponential decay behaviour [51], which is not taken into account here. With (51) and the
spectral representation (42), the UV asymptote of the spectral function reads

lim
ω̂→∞

ρ̂(ω̂) =
Zφ,UV

ω̂2

2ω̂ηUV

(log ω̂2)γUV

�

sin
hπ

2
ηUV

i

− cos
hπ

2
ηUV

i πγUV

log ω̂2

�

, (52)

and the IR asymptote is given by

lim
ω̂→0

ρ̂(ω̂) =
Zφ,IR

ω̂2

2ω̂ηIR

(log ω̂2)γIR

�

(2−ηIR) +
2γIR

log ω̂2

�

. (53)

The UV limit already entails that only for ηUV = 0, γUV = 0 we have a normalisable spectral
function with

∫ ∞

0

dλλρφ(λ) = Zφ,UV , (54a)

which is in one-to-one correspondence with the commutation relations
[φ(t, x⃗),∂tφ(t, y⃗)] = Zφ,UVδ( x⃗ − y⃗). The standard normalisation is obtained for Zφ,UV = 1,
which entails canonical commutation relations.
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In turn, for ηUV < 0 or γUV > 0 the UV-tail of the spectral function is negative, and the
respective field does not describe an asymptotic state. Moreover, the spectral function is nor-
malised to zero,

∫ ∞

0

dλλρφ(λ) = 0 . (54b)

In QCD this is the well-known Oehme-Zimmermann super convergence property [52, 53] for
the gluon in covariant gauges, for an evaluation in the Landau gauge see [33]. In asymptoti-
cally safe gravity it holds true for the background graviton, for a reconstruction see [54].

For ηUV > 0 or γUV < 0 the UV tail of the spectral function is positive, but the spectral
function is not normalisable,

lim
Λ→∞

∫ Λ

0

dλλρφ(λ)→∞ , (54c)

in the absence of IR singularities. Equation (54c) holds true for the spectral function of the
fluctuation graviton in covariant gauges, see [54] for a reconstruction, and [24] for a direct
computation with the spectral fRG. Note that also in this case the field does not generate an
asymptotic state by applying it to the vacuum, φ|0〉. However, this is not to be expected in a
non-Abelian gauge theory or quantum gravity.

4.3 Spectral renormalisation, symmetries

It has been discussed in [28], how the momentum integrals of fully non-perturbative loop inte-
grals can be computed within dimensional regularisation. It has also been shown, how a fully
gauge-consistent functional renormalisation scheme can be set up by also applying spectral
dimensional regularisation. One also can use a Bogoliubov-Parasiuk-Hepp-Zimmermann–type
(BPHZ) subtraction scheme, spectral BPHZ-regularisation. For details we refer the reader to
this work, here we only briefly recapitulate the important properties of spectral renormalisa-
tion.

The spectral renormalisation scheme in [28] has been set up for general functional ap-
proaches, and has been exemplified within the Dyson-Schwinger equation (DSE) for the scalar
theory. The respective loop equations contain up to two-loop diagrams with non-perturbative
propagators and vertex functions. In the present case of the spectral fRG we only have to
consider the renormalisation of one-loop diagrams which facilitates the task. One of the lines
carries the cutoff insertion, and the momentum routing is typically chosen such that it only
depends on the loop momentum q. In terms of the frequency dependence, the line with the
cutoff insertion simply leads to two classical propagators with the spectral masses λ2

1 and λ2
2,

both carrying the loop frequency q0. The CS or spatial regulator does not depend on the loop
frequency, but only on x = q⃗ 2/k2. To facilitate numerical computations in d > 1, it is ad-
vantageous to use a spectral representation of the full regulator line or more precisely the
propagator squared,

Gφ(q)∂tR
φ(x)Gφ(q) =

∂tRφ(x)

q2

∫ ∞

−∞

dλ
2π
λρG2(λ)
λ2 + q2

. (55)

In (55) we have used, that Lorentz invariance allows us to reduce ρi(λ, q⃗) to ρi(λ) = ρi(λ, 0)
within spectral representations such as (42) and (55),

∫ ∞

−∞

dλ
2π
λρi(λ, q⃗)
λ2 + q2

0

=

∫ ∞

−∞

dλ
2π
λρ(λ, 0)
λ2 + q2

. (56)
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Note that the regulator derivative in (55) is simply multiplying the spectral representation
of G2. This is a consequence of the regulator not carrying the loop frequency. The spectral
density ρG2 in (55) is defined as

ρG2(ω) = 2 Im
�

ω2
+G (ω+)

2
�

. (57)

We may either use (55) or the product of the two spectral functions for the propagators on
the right hand side of (55). In both cases, general flow digrams Diag(p) of the flow of ver-
tex functions and inverse propagators with the external momenta p = (p1, ..., pn) have the
representation

Diag(p) =

∫

ddq
(2π)d

Vert(l,p)
Nmax
∏

i=1

∫ ∞

−∞

dλi

2π
λiρi(λi , l⃗i)
λ2

i + (li)
2
0

, (58)

where l= (q, q+ p1, ...., ) is the vector of all momenta entering the propagators and vertices of
the loop diagram at hand, and Nmax is the number of spectral functions. The factor Vert(l,p)
stands for the momentum dependences of vertex and regulator factors and possible projections
and is a rational function in the momenta l and p.

For example, for constant vertex functions and using (55), Vert(l,p) ∝ 1
q2

0
, and NMax is

simply the number of internal lines including the regulator line. Then, the ρi are the spectral
functions of the fieldsφi propagating in the respective line and ρ1 = ρG2 . In turn, if only using
the spectral representation of the propagators, the vertex factor Vert(l,p) has no frequency
and momentum dependence, but NMax→ NMax + 1: it is the number of internal lines and the
regulator line counts twice.

With (56), the momentum integral in (58) has the standard form of a one loop perturbative
integral, and can be computed with dimensional regularisation with d → d − 2ε and ε→ 0.
We are led to

Diag(p) =
Nmax
∏

i=1

∫ ∞

−∞

dλi

2π
λiρi(λi , 0) Fdiag(λ,p;ε) , (59)

with

Fdiag(λ,p;ε) =

∫

ddq
(2π)d

Vert(l,p)
Nmax
∏

i=1

1

λ2
i + (li)

2
. (60)

Equation (59) has the same form as the general spectral integrals considered in [28] and hence
is treated the same way. Here we briefly recapitulate the main results obtained there and refer
the reader to [28] for more details.

To begin with, for power-counting divergent perturbative momentum integrals, Fdiag con-
tains 1/ε-terms in even dimensions d = 2n with n ∈ N. It is tempting to apply the minimal
subtraction idea of only subtracting these divergent pieces. This would amount to simply drop-
ping the 1/ε-terms in Fdiag. However, as thoroughly discussed in [28], the remaining spectral
integrations have the same ultraviolet degree of divergence and may not be finite. Note that
these divergences are sub-divergences and are absent at one loop perturbation theory where
the spectral functions are Dirac δ-functions. This leaves us with two choices:

(i) Spectral dimensional renormalisation: if we want to maintain all symmetry-features of
dimensional regularisation, we also have to perform the UV part of the spectral integra-
tions analytically. This can be done using splits

ρ(λ, q⃗ ) = ρIR(λ, q⃗ ) +ρUV,an(λ, q⃗ ) , (61)
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where the ‘IR’ part decays sufficiently fast for large spectral values, and ρUV,an carries the
UV-tail of the spectral function and its form is chosen such that it facilitates the analytic
computation of the UV-part of the spectral integrations. Finally, we are left with 1/ε
terms from both the momentum and spectral integrals, which can be subtracted by an
appropriate choice of ∂tScl in (39).

(ii) Spectral BPHZ-renormalisation: We implement the RG-conditions at an RG-scale µ in
terms of subtractions at the level of the integrand in (60). This amounts to subtracting
a Taylor expansion in p of Fdiag. For the sake of simplicity we restrict ourselves to a
case with one external momentum and a quadratic divergence, e.g. the flow of the two-
point function Γ (2)(p) in a scalar theory in d = 4 dimensions. Then, p = p and the
BPHZ-subtraction reads schematically,

Diagren(p) =
Nmax
∏

i=1

∫ ∞

−∞

dλi

2π
λiρi(λi , 0)

�

Fdiag(λ, p;ε)

− Fdiag(λ,µ;ε)− (p2 −µ2)
∂ Fdiag(λ, p;ε)

∂ p2

�

�

�

�

p2=µ2

�

. (62)

In (62) we can take the limit ε→ 0 before performing the spectral integrations which
are manifestly finite. The showcase (62) straightforwardly extends to the flow of gen-
eral correlation functions with the standard BPHZ-procedure. Evidently, the subtraction
terms constitute a specific choice of ∂tScl in (39).

This closes our brief recapitulation of the conceptual results in [28], and the discussion of
their application to the spectral CS-flows: The spectral dimensional or BPHZ-renormalisation
is implemented by a respective choice of the flow of the counter term action ∂tScl in (39).
This leads us to manifestly finite spectral flows within a systematic flowing renormalisation
scheme.

Evidently, the spectral BPHZ-renormalisation is technically less challenging, and is the
renormalisation method of choice in most cases. However, we emphasise that the ε → 0-
limit and the integration do not commute, and hence the spectral BPHZ-renormalisation and
the spectral dimensional renormalisation may not agree in terms of symmetries. This may be
specifically important for gauge theories. Either way this allows us to define finite spectral
flows.

5 Spectral renormalisation at work

In this section we discuss the choice and implementation of renormalisation group conditions
and their flows, adapted to the theory class or physics situation at hand. We start with the sim-
ple example of a φ4 theory in d ≤ 4 dimensions in section 5.1. This and the following example
of a Yukawa model in section 5.2 allow us to discuss the generic setting of flowing spectral
RG-conditions. Asymptotically free non-abelian gauge theories are discussed in section 5.3,
specifically concentrating on infrared and ultraviolet asymptotes of the spectral function. Fi-
nally we discuss asymptotically safe quantum gravity in section 5.4, again concentrating on
the ultraviolet and infrared asymptotes, as well as the consequences of a non-trivial ultraviolet
momentum scaling for renormalisation.
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5.1 Spectral renormalisation in scalar theories

Here, we discuss spectral renormalisation in the φ4-theory in d = 3, 4 dimensions. The classi-
cal action is defined in (3), and we recall it here for the sake of convenience,

Sφ[φ] =

∫

x

�

1
2
φ
�

−∂ 2 +m2
φ

�

φ +
λφ

4!
φ4

�

. (63)

A typical spectral function can be parametrised as

ρ(λ, p⃗) = Zφ δ
�

λ2 − p⃗ 2 −m2
φ

�

+ ρ̃(λ, p⃗ ) . (64)

Employing the split of (45), the delta pole term in (64) at the one particle pole mass m2
φ

is
identified with the resonance contribution, while ρ̃ corresponds to the continuum part. In
the case of multi-particle bound states, the resonance contribution in (45) will contain further
delta pole contributions in addition to the one-particle pole in (64). Such bound states are
for example observed in d = 3 dimensions close to the phase transition from the ordered into
the disordered phase [55–57]. For the sake of simplicity, we restrict ourselves to the case of a
single particle pole here.

The spectral function is antisymmetric, i.e. ρ(−λ, p⃗ ) = −ρ(λ, p⃗ ), which also holds for
both terms separately in (64). The part ρ̃ in (64) encodes the scattering spectrum of the
theory. In the presence of a non-zero background it has support for λ2 > 4 (p⃗ 2 +m2

φ
). ρ̃ also

carries higher scattering thresholds. The general sum rule (54a) imposes the constraint

Zφ +

∫ ∞

−∞

dλ
π
ρ̃(λ, p⃗) = ZUV , (65)

where ZUV = limp→∞ 1/Z(p). Generally, the propagator can be parametrised as

Gφ(p) =
1

Z(p)
1

p2 +m2
φ

, (66)

that is the inverse of (44). As also discussed there, the pole amplitude or residue Zφ in (64) is
related to the wave function Z(p) in (66) with Zφ = 1/Z(p2 = −m2

φ
). Equation (64) elucidates

the relation of the parameters in the spectral function to the fundamental parameters of the
theory. In general dimensions d ≤ 4 both Zφ (in d = 4) and mφ (in d ≥ 2) are subject to
renormalisation. The resonances mi with their respective residues Zi as well as the scattering
continuum ρ̃ carry the dynamics, and are comprised in the momentum dependence of Z(p2).

We start our analysis of the spectral renormalisation with theφ4 theory in d = 3, where the
theory is super-renormalisable and the only UV divergence is a logarithmic one in the mass.
Consequently, the Callan-Symanzik flow of the theory is manifestly finite already without the
counter terms.

Turning towards the flow of the inverse propagator, we discuss some of its aspects at the
example of the tadpole diagram. Evaluated at vanishing field expectation φ = 0, the tadpole
is the only diagram present, hence the full flow reads

∂tΓ
(2)
k (p) = k2

∫

d3q
(2π)3

Γ
(4)
k (p,−p, q,−q)Gφ(q)

2 . (67)

By means of Jordan’s lemma, we can choose to integrate over the Euclidean or Minkowski
domain. The external momentum is in general complex, p2 ∈ C. We use p2 ≥ 0 for the
Euclidean (or spacelike) and p2 ≤ 0 for the Minkowski (timelike) branch.

Assuming that the propagator decays with 1/q2 and the full four-point function stays finite
for large momenta, the loop momentum integral on the right hand side of (67) converges.
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Trivially, former assumptions hold true for the classical propagator and four-point function.
Therefore ∂tΓ

(2)(p) stays finite for p2 → ∞, and hence the flow sustains the assumed ul-
traviolet behaviour of the propagator. Finiteness for p2, q2 →∞ can also be shown for the
four-point function. Hence the argument holds true for the full theory, and no regularisation
is required in the scalar φ4-theory in d = 3.

In three dimensions the counter term flow ∂tSct is not required for having a finite flow,
it is only needed for satisfying specific RG conditions. Without the counter term flow, the
RG conditions change with the flow-induced changes of Zφ and mφ . This is the common
approach in functional flows where the RG conditions are implicitly specified by the choice of
the effective action at the initial cutoff scale kinit, and freely evolve with the flow.

Let us now focus on the flow of the pole mass mφ . With (36) and Dk ∝ Λ(k) the corre-
sponding flow of the counter term action reads

∂tSct =
1
2

∫

x
∆ṁ2

kφ
2 . (68)

Specifying the RG conditions for all k and hence their flows, fixes ∆ṁ2
k in (68). Here, we

discuss this at the example of the on-shell RG-conditions in (40) and their flows (41). The
mass renormalisation condition entails that at each flow step, the pole mass is given by

m2
φ = k2 , (69)

and its flow is given by

ṁφ = −2k2 . (70)

Including the counter term action (68), the full flow of the two point function schematically
reads

∂tΓ
(2)
k = Flow(2) −∆ṁ2

k , (71)

where Flow(2) represents the contributions from the diagrams. We emphasise again that the
flow in (71) is manifestly finite. In d = 3 this trivially holds true since Flow(2) is finite by
itself. In d = 4 this is not the case. There, ∆ṁ2

k acts as a genuine counter term cancelling the
logarithmic UV divergence of the mass flow.

Equation (70) fixes the mass counter term flow,

∆ṁ2
k = −2k2 − Flow(2)

�

�

p2=−k2 . (72)

Evidently, the flow of the RG-condition does not invoke any fine-tuning problem, since (72)
can be evaluated at each flow step. The initial condition for (71) is simply given by

lim
k→∞

Γ
(2)
k = p2 . (73)

This implies limk→∞ Zφ → 1, as the scattering continuum for the scalar theory with an in-
finitely heavy scalar vanishes.

In the present case, Zφ does not carry the renormalisation of the wave function, but rather
the normalisation of the spectral function. In d = 3 dimensions the full propagator has the UV
limit

Gφ(p
2)

p2→∞
−→

1
p2

, (74)
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and hence the spectral function satisfies (54a) with ZUV = 1. This implies that Zφ ̸= 1, as
both conditions together would entail, that no scattering continuum is present. This already
suggests that the second RG condition in (40) should not be implemented for physical fields.

In d = 4 dimensions the φ4-theory requires the renormalisation of Zφ , mφ ,λφ . Still, the
CS flow only shows a (logarithmic) divergence for the tadpole term, and the flows for Zφ and
λφ are manifestly finite. The flow of the renormalisation of the mass is still given by (72),
which holds true in general dimensions.

We may or may not accompany this condition with the RG-conditions for Zφ and λφ in
(40). This is optional, as the CS flow is already finite after using (72). If we do not enforce the
RG-conditions, they will dynamically change during the flow. As already discussed above, this
is the standard procedure in momentum cutoff flows, where the renormalisation conditions at
k = 0 are only implicitly encoded in the initial conditions at k→∞.

5.2 Spectral renormalisation in Yukawa theories

Yukawa theories describe many exciting physics phenomena, most notably fermionic systems
with bosonic bound states or resonances ranging from non-relativistic ultracold systems with
fermionic atoms and molecules/pairs, over superconducting systems with Cooper pairs to rela-
tivistic quark–meson-diquark systems in QCD. Moreover, the Higgs sector constitutes a pivotal
part of the Standard Model of Particle Physics.

In the present conceptual work, we consider a simple relativistic theory with one fermion
flavour ψ and a scalar boson φ in d = 4 dimensions with the classical action Syuk[φ],

Syuk[Φ] =Sφ[φ] +

∫

x

§

ψ̄
�

γµ∂µ +mψ
�

ψ+ hφ ψ̄φψ
ª

, (75)

and the superfield

Φ= (ψ, ψ̄,φ) . (76)

hφ is the Yukawa coupling and Sφ[φ] is the same as in the previous example, Equation (63).
Its CS flow is also discussed in LPA in appendix A. We concentrate on structural aspects of
mixed boson-fermion flows, and the present results readily extend to general systems of this
type, naturally including purely fermionic ones.

Before we discuss general aspects of CS flows of the Yukawa theory, we would like to
comment on the role of a finite chemical potential µψ for the fermions,

∫

x
ψ̄γµ∂µψ→

∫

x
ψ̄
�

γ0(∂0 +µψ) + γi∂i

�

ψ . (77)

In momentum space the chemical potential simply shifts the fermionic frequency p0 by −iµψ.
This shift entails that correlation functions in the above theory only depend on p̃ = (p̃0, p⃗ )
with p̃0 = p0 − iµψ for µψ < mψ. For a proof in the present fRG setup, see [50, 58] and,
for further discussions, we refer to Ref. [59]. This property is the Silver-Blaze property [60],
originally derived as the µψ-independence of observables below the mass threshold. In any
case, if not stated otherwise, we shall focus on the limit µψ → 0 in our discussion from here
on.

In d ≤ 4 dimensions, the Yukawa theory with the classical action (75) is renormalisable. In
four dimensions it has the relevant parameters mψ, mφ , hφ ,λφ and the wave function renor-
malisations Zφ , Zψ of the fields. In d = 3 dimensions, only the masses mφ , mψ and the wave
function renormalisation Zψ of the fermion require renormalisation, while the scalar mass is
the only renormalised parameter left in d = 2 dimensions.
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We also remark that in the pure Yukawa theory, that is in the absence of any scalar self-
interaction term in Sφ , we can eliminate the fermionic mass at the expense of a linear (source)
term in the scalar field which couples only to its constant mode

∫

x φ. This is typically done in
QCD, where the scalar (mesonic) fields are dynamical low energy degrees of freedom in the
first place, see, e.g., [4,61]. Applying the shift

φ→ φ −
mψ
hφ

, (78a)

to the classical action (75), we arrive at

1
2

∫

x
φ
�

−∂ 2 +m2
φ

�

φ +

∫

x
ψ̄
�

mψ + hφφ
�

ψ→
1
2

∫

x
φ
�

−∂ 2 +m2
φ

�

φ + hφ

∫

x
ψ̄φψ− cφ

∫

x
φ ,

(78b)

with the constant source

cφ =
m2
φ

mψ

hφ
. (78c)

Note that we have dropped field-independent terms in (78b). After this transformation, we
are left with an action without fermionic mass parameter, which is also not regenerated by
quantum fluctuations. The fermionic mass parameter is inessential as defined in [46,47]. The
explicit chiral symmetry breaking due to the fermionic mass term in (75) can be implemented
as a linear “tilt” of the effective action which can be added after fluctuations have been inte-
grated out. Note that this “tilt” cφ does not require renormalisation [62]. In practice, we can
therefore set this parameter to zero and consider only a theory which is invariant under chiral
symmetry transformations ψ→ exp(iγ5)ψ and ψ̄→ ψ̄exp(iγ5) (and correspondingly for the
scalar field). We emphasise that the number of relevant parameters has not been changed by
this transformation, as mψ ∼ cφ .

5.2.1 Spectral fermionic regulators

The spectral fRG is based on the spectral representation of the propagators, which is presented
in (64) for the scalar field, and the spectral CS cutoff is implemented with (69). It respects
all symmetries of the scalar theory and naturally we would like to augment the scalar spectral
regulator with a spectral regularisation of the fermion that preserves all symmetries of the
theory. This includes internal symmetries such as the chiral symmetry as present in (75) for
mψ = 0. A class of regulators which respects chiral symmetry is given by

Rψd = Zψiε R̄ψd , with R̄ψd = k rψd (x) , (79)

with ε being

ε(p) =
p/
p

, or ε(p⃗ ) =
γ⃗ · p⃗
p

p⃗ 2
. (80)

In either case, we have ε2 = 1. While ψ̄ε(p)R̄ψdψ is a Lorentz-invariant object, it may not ad-

mit a spectral representation. In turn, the operator ψ̄ε(p⃗ )R̄ψdψ is not invariant under Lorentz
transformations, but is more likely to sustain the spectral representation. In (79), we have sep-
arated the Dirac tensor structure and the RG running Zψiε of the regulator from the (scalar)

regularisation part R̄ψd .
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A class of fully Lorentz-invariant regulators that does not violate the spectral representa-
tion, but violates chiral symmetry, is given by regulators with the scalar tensor structure,

Rψs = ZψR̄ψs , with R̄ψs = k rψs (x) , (81)

with the same factorisation of (scalar) tensor structure and RG running from the regularisation
part R̄ψs .

In the following we consider a combination of the Lorentz-invariant sum of regulators
Rψ = Rψd +Rψs with ε(p). The general case with spatial regulators with ε= ε(p⃗) and/or shape
functions r(p⃗ 2/k2) require different dressings for tensor structure parallel and transverse to
the p0 direction, similar to thermal or density splits. This case is deferred to appendix B.

In the Lorentz-invariant case the full fermionic two-point function is parametrised as

Γ
(2)
ψψ̄
= Zψ(p)

�

ip/+Mψ(p)
�

, (82)

with the wave function Zψ(p) and the mass function Mψ(p). In contradistinction to the scalar
theory discussed before the fermionic theory allows for a unique projection onto the mass
function with Mψ(p) = 1/Zψ(p)trd Γ

(2)
ψψ̄

, where trd is the Dirac trace. Then, for asymptotic

states the pole condition is given by

M2
ψ

�

p2 = −m2
ψ,pole

�

= m2
ψ,pole . (83)

The chiral properties of these different regulator classes are best discussed with the full
fermionic propagator Gψ as given by (2) and (82), related to a sum of chiral and scalar
regulators. This leads

Gψ(p) = −ip/G(d)
ψ
(p) +Mψ G(s)

ψ
(p) , (84)

with the convenient normalisation Mψ = Mψ(0) and the regularised Dirac (d) and scalar (s)
parts of the propagator. The Dirac dressing is given by

G(d)
ψ
(p) =

�

1+ Aψ(p)
1
p

R̄ψd (p)
�

G(u)
ψ

, (85)

where the 1/p part in the numerator stems from the chiral infrared regularisation and

Aψ(p) =
Zψ

Zψ(p)
. (86)

The scalar dressing reads

G(s)
ψ
(p) =

1
Mψ

�

Mψ(p) + Aψ(p) R̄s(p)
�

G(u)
ψ

. (87)

Both are proportional to the universal part

G(u)
ψ
(p) =

1
Zψ(p)

1
�

p+ Aψ R̄ψd
�2
+
�

Mψ(p) + Aψ R̄ψs
�2 , (88)

with all the properties of a scalar propagator. We emphasise that G(u)
ψ
(p) admits a spectral

representation with suitably chosen regulators.

26

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.061


SciPost Phys. Core 6, 061 (2023)

5.2.2 Chiral CS regulators

We proceed with a detailed discussion of the possible choices, starting with the chiral CS cutoff.
In terms of the shape functions this is given by

�

rψd (x), rψs (x)
�

= (1,0) . (89)

This leads us to (84) with

G(d)
ψ
(p) =

�

1+ Aψ(p)
k
p

�

G(u)
ψ

,

G(s)
ψ
(p) =Mψ(p)G

(u)
ψ

, (90)

with the universal part (88) being reduced to

G(u)
ψ
(p) =

1
Zψ(p)

1
�

p+ Aψ(p) k
�2
+Mψ(p)2

. (91)

Let us now investigate the complex structure of the universal part of the classical propagator
in the presence of the chiral CS cutoff. In the classical limit, (91) is simply given by

G(u)
ψ,cl(p) =

1

(p+ k)2 +M2
cl

, (92)

where p =
p

p2 =
q

p2
0 + p⃗ 2 and Mcl is the (classical) fermionic mass. The pole positions are

easily extracted and read as follows for p⃗ = 0:

p0 = −k± i Mcl . (93)

Thus, chiral CS regulators lead to complex conjugate poles that invalidate the spectral repre-
sentation. As shown in [63], such poles are likely to propagate through the systems of coupled
functional equations leading to the lack of a spectral representation for all fields as well as trig-
gering further cuts and poles. We also remark that the occurrence of

p

p2 leads to further cuts
in the presence of a chemical potential, where we have

p

p2 →
p

p̃2. The latter expression
leads to a cut in the complex plane starting at p̃ = 0 which invalidates the Silver-Blaze property.

This leads us to the important conclusion that neither the chiral CS cutoff nor momentum-
dependent chiral regulators are well-suited for spectral considerations and non-vanishing
chemical potential, precisely due to their chiral nature.

5.2.3 CS regulator

The other natural choice is the standard CS cutoff,

(rψd (x), rψs (x)) = (0,1) . (94)

This leads us to (84) with

G(d)
ψ
(p) =G(u)

ψ
,

G(s)
ψ
(p) =

Mψ(p)

Mψ

�

1+
Aψ(p)

Mψ(p)
k

�

G(u)
ψ

, (95)

with the universal part (88) being reduced to

G(u)
ψ
(p) =

1
Zψ(p)

1
p2 + (Mψ(p) + Aψ(p)k)2

. (96)
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The standard CS regulator simply shifts the fermionic mass function Mψ(p) by Aψ(p)k. As in
the case of the chiral CS regulator, we analyse the complex structure at the example of the
classical propagator. Then, the universal part (96) reduces to

G(u)
ψ
(p) =

1
p2 + (Mcl + k)2

, (97)

with the pole positions

p0 = ±i(Mcl + k) , (98)

at Minkowski frequencies. As in the scalar case, the regulator simply shifts the pole position
by k and the flow is one of a theory of massive fermions. The chiral limit is approached for
k→ 0 in a controlled way.

For the standard CS cutoff defined in (94), the spectral representation of the full propagator
is given by

Gψ(p) = − i p/

∫ ∞

−∞

dλ
2π

λρ
(d)
ψ,k(λ, p⃗2)

λ2 + p2
0

+Mψ

∫ ∞

−∞

dλ
2π

λρ
(s)
ψ,k(λ, p⃗2)

λ2 + p2
0

. (99)

Here, ρ(d/s)
ψ

are the spectral functions associated with the scalar parts of G(d/s)
ψ

. We shall
parametrise the spectral functions as follows:

ρ(d/s)(λ, p⃗) = Zψδ
�

λ2 − p⃗ 2 −m2
ψ,pole

�

+ ρ̃(d/s)(λ, p⃗ ) , (100)

with ρ̃(d/s)(−λ, p⃗ ) = −ρ̃(d/s)(λ, p⃗ ). The pole mass mψ,pole increases with k which leads to the
regularisation of the theory.

Similarly to the cutoff propagator of the scalar theory, there is a spectral representation
for that of the fermionic cutoff propagator with the standard CS cutoff. Before we present this
spectral representation, however, we note that the fermionic cutoff propagator reads

Gψ(q)∂tR
ψ
s (q)Gψ(q) = Gψ(q)Zψ k

�

(1− 2γψ) r
ψ
s (x) + ∂t r

ψ
s (x)

�

Gψ(q) . (101)

This reduces to
�

Gψ∂tR
ψ
s Gψ

�

(q) = Gψ(q)
�

Zψk(1− 2γψ)
�

Gψ(q) , (102)

for the standard CS cutoff with rψs (x) = 1. As already indicated above, the cutoff propagator
has a spectral representation:

�

Gψ(q)∂tR
ψ
s (q)Gψ

�

(q) =− iq/

∫ ∞

−∞

dλ
2π

λρ
(d)
ψ,reg(λ, q⃗ )

q2
0 (λ2 + q2

0)
+Mq

∫ ∞

−∞

dλ
2π

λρ
(s)
ψ,reg(λ, q⃗ )

q2
0 (λ2 + q2

0)
. (103)

With the spectral representations for the fermionic propagators and the fermionic cutoff propa-
gator, the flow diagrams for mixed scalar-fermionic theories have the momentum and spectral
structure displayed in (58) with its renormalised form (62).

5.2.4 Shift symmetry for the scalar field

Mixed fermion-boson theories such as the standard Yukawa theory with the action (75) allow
for some remarkable and powerful reparametrisations. The common one is given by (78),
which removes the explicit fermion mass term from the theory in favour of a linear term in
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the φ field. However, this structure is more generic. Here we elucidate this property with the
scalar Yukawa theory. The vector Yukawa theory is discussed in section 5.2.5.

In (78) the shift of the scalar field was used to remove the fermionic mass term at the
expense of an explicit linear breaking term in the scalar field. Evidently, this shift can also
be used to remove the standard fermionic CS regulator which is nothing but a mass term.
Moreover, we can formulate this shift in momentum space with

φ(p)→ φ(p)−
1

hφ

�

mψ + hφRψs (p)
�

. (104)

After the shift with (104) only the coefficient cφ of the linear scalar term depends on Rψ with
the general form

cφ(p) =
m2
φ

hφ

�

mψ + hφRψs (p)
�

. (105)

Equation (105) entails, that a massive Yukawa theory in the presence of a scalar momen-
tum regulator for the fermions is identical to a chiral Yukawa theory without a cutoff for the
fermions, but a momentum-dependent linear breaking term. Importantly, the flow equation
does not include a fermion loop as we have the identity

δ

δRψs

�

Γk[Φ] +

∫

cφφ
�

= 0 . (106)

Put differently, the Yukawa theory includes all fermion dispersions in the scalar effective poten-
tial, or rather a given momentum dependent scalar field background. Via a Legendre transform
this entails a space-time dependent source coupled to the scalar field.

Interestingly, we may still proceed with the fermionic regulator despite the identity (106):
the EoM for the scalar field in the shifted version reads

δΓk[Φ]
δφ

�

�

�

�

φ=φEoM(p)
= cφ(p) , (107)

where φEoM(p) has a non-trivial momentum-dependence for Rψs (p) ̸= 0. The computation of
the respective part of the effective action requires the computation of momentum-dependent
correlation functions which is a very challenging task. Instead, the fermion part of the flow
implements an expansion about the momentum-dependent solution φEoM(p) in the shifted
formulation. The solution φEoM is then built in as a background iteratively momentum shell
by momentum shell.

Then, the (approximate) satisfaction of (106) can be checked for all k and offers an ad-
ditional self-consistency check. Moreover, if we keep the fermion loop in the flow equation,
we still exploit the fact that the model is invariant under φ → −φ, as induced by the chiral
symmetry of the fermions. To be more specific, in the absence of any physical explicit symme-
try breaking, the effective action should obey Γk[φ, ψ̄,ψ] = Γk[−φ, ψ̄exp(iγ5), exp(iγ5)ψ].
Assuming for convenience that we have integrated out the fermion such that we are left with
a purely bosonic effective action ΓB,k[φ], the explicit symmetry breaking generated by the CS
regulator in the flow can be restored by decomposing the effective action in an even (e) and
odd (o) contribution in the field φ,

ΓB,k[Φ] = Γ
(e)
B,k[Φ] + Γ

(o)
B,k [Φ] , (108)

where

Γ
(e/o)
B,k [Φ] =

1
2

�

ΓB,k[Φ]± ΓB,k[−Φ]
�

. (109)
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In the limit k → 0 and in the absence of any physical explicit chiral symmetry breaking (as
associated with an explicit fermion mass term), the “physical effective action” is then given by
the even part of the effective action. Those terms which violate the chiral symmetry are fully
absorbed in the odd part. Note that the odd part is in general finite even in the limit k→ 0 as it
contains all symmetry-breaking terms generated by the CS regulator in the RG flow. Moreover,
the odd part is in general the dominant contribution for k → Λ. In any case, the “physical
effective action” in the IR limit is given by

Γ
phys
B,k=0[Φ] = Γ

(e)
B,k=0[Φ] + cphys

φ
φ . (110)

Here, cphys specifies the physical explicit symmetry breaking as, e.g., associated with an ex-
plicit fermion mass term. We close by noting that this decomposition can in principle also be
implemented directly into the flow equation which provides us with a flow equation for the
even part of the effective action which may be convenient in numerical studies.

A physically interesting example for such a Yukawa theory is the Quark-Meson (QM)
model, often used for the study of the phase structure of QCD. In the QM model, one mostly
uses quark regulators with a Dirac tensor structure. In [41] such a study is put forward in
the local potential approximation (LPA) with CS regulators with a spatial UV cutoff, (30d),
and four-dimensional momentum cutoff, (A.25). With these regulator choices the effective
action satisfies (106). However, for momentum-dependent regulators, (106) is obtained with
momentum-dependent shifts of the field. Hence, we expect that in LPA (106) can only be
accommodated for Λ→∞.

5.2.5 Shift symmetry in vector Yukawa models and generalised Silver-Blaze property

The findings above extend to theories with vector bosons, as this allows to absorb fermionic
regulators proportional to Dirac tensor structures. We briefly discuss this here on general
grounds. Of course, this is interesting for applications in nuclear physics at high densities as
well as for QCD close to a potential critical endpoint, where the density mode and the critical
σ-mode mix. For illustrational purposes, we focus on the Hubbard-Stratonovich transforma-
tion of a four-fermi interaction in the vector channel. The respective vector modes ωµ are
introduced similarly to the scalar–pseudo-scalar modes with

Syuk[Φ] =

∫

x

§

ψ̄
�

γµ∂µ +mψ
�

ψ+ hω ψ̄γµωµψ+
m2
ω

2
ω2
µ

ª

, (111)

and the superfield

Φ= (ψ, ψ̄,ωµ) . (112)

On the EoM of the vector field the second line in (111) corresponds to the following four-
fermion interaction,

S4fermi[ψ, ψ̄] =−
∫

x

h2
ω

2m2
ω

�

ψ̄γµψ
�2

, (113)

and hence the Yukakwa theory with the action (111) is identical with the purely fermionic
theory with a four-fermi interaction in the vector channel.

Evidently, a Dirac regulator (79) can be absorbed in an imaginary shift of the vector field
as follows

γµωµ(p)→ γµωµ(p)−
1

hω
Rψd (p) , εRψd (p) ∈ iR . (114)
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We then have

Syuk +

∫

p
ψ̄(−p)Rψd (p)ψ(p)→ Syuk −

∫

cω,µωµ , (115)

where we have dropped field-independent terms on the right-hand side and

cω,µ(p) =
m2
ω

hω

1
4

trγµRψd (p) . (116)

However, this transformation introduces a complex-valued fieldωµ and its integration contour
can only be shifted back to the real axis in the absence of singularities. This is a generalisa-
tion of the Silver-Blaze property. Indeed, it is well-known that the chemical potential can be
absorbed in ω0 (or the other way around) by considering µ̄ψ = µψ + hωω0. In any case, we
are eventually led to

δ

δRψd

�

Γk[Φ] +

∫

cω,µωµ

�

= 0 , (117)

for ωµ smaller than the onset (pole position). As in the scalar case, we may still proceed with
the fermionic regulator despite the identity (117). Then, the fermion part of the flow imple-
ments an expansion about the momentum-dependent solutionωµ,EoM(p) in the shifted formu-
lation. The solution ωµ,EoM(p) is then built in as a background iteratively in the momentum-
shell integrations.

5.3 Spectral renormalisation in gauge theories

The scope of the spectral Callan-Symanzik flow equations also extends to the particularly in-
teresting case of gauge theories. Especially the non-perturbative infrared regime of QCD has
been been studied intensively within the fRG approach [4, 64–72]. In this section we discuss
the application of the spectral renormalisation group to gauge theories at the example of Yang-
Mills theory, for respective works with the spectral DSE see [29,63]. The classical gauge-fixed
Yang-Mills action including the ghost term reads

SYM =

∫

x

�

1
4

F a
µνF a

µν − c̄a∂µDab
µ cb +

1
2ξ
(∂µAa

µ)
2
�

. (118)

Generally, setting up spectral flow equations for gauge theories works analogously as for
scalar theories, discussed in section 5.1. The flow equations are derived in the usual manner,
and spectral representations are used for the propagators of all fields, i.e. ghost and gluon
propagator.

5.3.1 Ghost propagator

Formally, the ghost propagator is expected to obey the KL-representation [73,74], if the corre-
sponding propagator is causal. A recent direct calculation of the ghost spectral function with
the spectral Dyson-Schwinger equation in [29] has confirmed this expectation. This compu-
tation has utilised a spectral representation for the gluon, which is discussed in section 5.3.2.
Moreover, recent reconstructions [75, 76] show no signs of a violation of this property. It is
found that the ghost spectral function exhibits a single particle peak at vanishing frequency
with residue 1/Zc , whose value may depend on the non-perturbative infrared closure of the
Landau gauge. Specifically, the scaling solution is obtained for the limit Zc → 0, see [29,33].
In this case, the particle pole in the origin is no longer present. Instead, in the origin there
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is the branch point of the non-integer power scaling law branch cut of the scaling solution.
Note that in this case, the ordinary KL representation can no longer be applied, since the cor-
responding spectral function would show an IR divergence. For the current discussion, we will
stick to the case of a massless particle pole in the IR.

Independent of the IR behaviour addition, a continuous scattering tail shows up in the
spectral function via the logarithmic branch cut. This leads us to the general form of the ghost
spectral function,

ρc(ω) =
π

Zc

δ(ω)
ω
+ ρ̃c(ω) , (119)

where ρ̃c denotes the continuous tail of the spectral function. It has been shown in [29] that
the ghost spectral function obeys an analogue of the Oehme-Zimmermann superconvergence
property of the gluon [52,53]. Expressed in terms of the spectral representation of the dress-
ing, it reads

∫

dλ
π
λρ̃c(λ) = −

1
Zc

. (120)

Equation (120) entails that the total spectral weight of the ghost vanishes. A generic discussion
can be found in [29,51].

Since the ghost spectral function (119) shows a (massless) particle pole, as for scalar the-
ories, on-shell renormalisation conditions like (40) can be applied. This fixes the pole position
of the scale-dependent ghost spectral function to p2 = −k2. In analogy to (119), the flowing
ghost spectral function reads

ρc,k(ω) =
π

Zc,k

δ(ω− k) +δ(ω+ k)
ω

+ ρ̃c,k(ω) , (121)

where ρ̃c,k(ω) has support for |ω| > 2k. In the limit of vanishing cutoff, pole position and
scattering onset move into the origin, and (119) is recovered.

5.3.2 Gluon propagator

The above discussion of the ghost spectral function and its existence was done under the as-
sumption of a spectral representation of the gluon. In contrast to the ghost spectral function,
there is an ongoing debate in the community whether or not this assumption is justified. In lo-
cal QFTs only the existence of a spectral representation for asymptotic states is guaranteed. It
has been argued that in Landau gauge this also applies to the gluon propagator [77–79]. While
high precision spectral reconstructions are not in contradiction to this assumption and do work
for the gluon propagator [33,80–82], extensions with complex conjugate poles are also com-
monly entertained in reconstructions, see e.g. [75,83–91]. A recent computation has shown,
that the situation is indeed exceedingly intricate: its resolution may only be possible by also
resolving the problem of a consistent non-perturbative gauge fixing [63]. The self-consistent
implementation of the latter for propagators and vertices is subject to a non-perturbative in-
frared realisation of the respective Slavnov-Taylor identities. For a detailed discussion of the
complex structure of Yang-Mills theory see [33,63]. Specifically in [63] is has been shown that
a solution of the Yang-Mills system with a spectral ghost and a non-spectral gluon would re-
quire non-trivial relations between the complex structures of vertices and propagators. In turn,
while less conclusive, in [63] we have also found numerical indications, that a self-consistent
solution system with spectral representations for both ghost and gluon propagators, if existent,
may also require self-consistent or rather STI-consistent solutions for non-trivial vertices.
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In the present work we add nothing new to the resolution of this intricate problem, but
simply consider the flow of the gluon spectral function under the assumption of its existence.
Likewise, we assume a spectral representation for the ghost, with a pole atω2 = k2, c.f. (121).
The branch point of the ghost loop contribution to the gluon propagator’s branch cut lies
at ω2 = (2k)2. Due to the massless nature of the ghost, the position of the branch point
in the gluon propagator thus necessarily is in the origin for vanishing cutoff scale, k = 0.
However, due to the lack of a gluon particle peak, a direct identification of a flowing mass
scale k as in the scalar theory section 5.1, is not possible for the gluon. Consequently, there
is no unique way to stop the flow at some kIR = mphys, where the physical limit of the theory
is recovered. Furthermore, the lack of unique gluon mass scale entails that we cannot use
on-shell renormalisation here. Eventually, we wish to recover the IR behaviour of the gluon
propagator known from other non-perturbative studies, e.g. via functional approaches [69,
92, 93]. In consequence, we can define the IR scale only implicitly, and kIR depends directly
on the initial conditions employed. This poses the question of how to consistently couple the
gluonic flow to that of the ghost. A consistent, coupled flow is required to simultaneously
reach the explicitly resp. implicitly defined IR scales k(ghost)

IR = 0 and k(gluon)
IR . This can be

implemented by flowing both equations with a common scale k down to 0, where the IR
limit of the ghost propagator is reached. We then proceed to further lower k solely in the
gluon propagator flow equation down to the point where we reach k(gluon)

IR defined by, e.g.
scaling as IR behaviour, c.f. [69, 93]. Note that this procedure needs to be supplemented
with an appropriate choice of initial conditions guaranteeing k(gluon)

IR ≤ 0. This clarifies that
the described procedure of flowing with two seemingly different scales simply amounts to an
implicit choice of initial conditions and does not lead to an inconsistency between the different
flow equations. In such a procedure, adjusting the initial conditions is similar to common fRG
calculations. We therefore expect a similar fine-tuning problem for the Yang-Mills system as
for example encountered in [69].

The proper choice of initial conditions comes in case of the gluon propagator with an-
other technical complication. It is well-known that in massive Yang-Mills theory, the gluon
propagator exhibits complex-conjugate poles. It has been demonstrated in [63] that these can
also violate the spectral representation of the ghost propagator, in turn inducing a cascade of
non-analyticities in both propagators. Since the Callan-Symanzik cutoff effectively constitutes
a mass term, the construction of an initial condition respecting the spectral representation
poses a crucial challenge. On the other hand, using modified spectral representations that
explicitly take into account complex singularities [63], one is able to track the evolution of the
complex poles through the flow. This allows to make a statement about their existence in the
full correlation function at kIR. It has been studied e.g. in [25] how regulator-induced poles
vanish in the k→ 0 limit in a quantum mechanical system.

5.4 Spectral renormalisation in asymptotically safe gravity

The present approach including the use of the spectral BPHZ-renormalisation has already been
applied in [24] to asymptotically safe gravity. The respective classical action is the Einstein
Hilbert (EH) action,

SEH[gµν] =
1

16πGN

∫

d4 x |det gµν|
1
2

�

R− 2Λ
�

, (122)

with Newton’s coupling GN, the curvature scalar R and the cosmological constant Λ. The
dynamical quantum field is the metric gµν. The EH action is then augmented with a gauge-
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fixing term given by

Sgf[ ḡ, h] =
1

2α

∫

d4 x
p

ḡ ḡµνFµFν , (123)

with the gauge-fixing condition Fµ

Fµ[ ḡ, h] = ∇̄νhµν −
1+ β

4
∇̄µhνν . (124)

The respective ghost action reads

Sgh[ ḡ,φ] =

∫

d4 x
p

ḡ c̄µMµνcν , (125)

with the Faddeev-Popov operator

Mµν = ∇̄ρ
�

gµν∇ρ + gρν∇µ
�

−
1+ β

2
ḡσρ∇̄µgνσ∇ρ . (126)

The gauge-fixing sector enforces the introduction of a background metric ḡµν as the full metric
would introduce unwanted interaction terms to the gauge fixing. For the discussion of spectral
flows we use the flat Minkowski metric as a background, ḡµν = ηµν. Amongst other reasons
this choice is taken as spectral representations in the presence of non-trivial backgrounds pose
additional conceptual intricacies. Furthermore, we use a linear split of the full metric,

gµν = ηµν +
p

16πGN hµν , (127)

and the fluctuation field hµν carries the full dynamics of quantum gravity. For more details on
this fluctuation approach to gravity see [94].

In [24], the spectral flow of the graviton propagator has been computed with the spectral
CS equation. First of all, this has provided a non-trivial existence proof of the graviton spectral
representation within the approximation discussed there. This is specifically remarkable, given
the ongoing discussion concerning the existence of a spectral representation for the gluon, see
section 5.3. Furthermore, in [24] explicit numerical results for the spectral function ρh have
been obtained: the spectral function is positive but not normalisable due to the large positive
UV anomalous dimension ηh ≈ 1, see the discussion in section 4.2.

Here, we show that the momentum structure of asymptotically safe propagators and ver-
tices allows for a renormalised spectral CS flows with a finite number of counter terms: to
begin with, the loops in quantum gravity have the same spectral representation displayed in
(58). As in four-fermi models in four space-time dimensions, the theory is perturbatively non-
renormalisable. Moreover, already classical vertices involve general powers of the graviton,
S(n)EH ̸= 0 for all n ∈N, and further ones are generated by loop corrections.

Since the seminal Euclidean fRG paper of Reuter [95] quite some further evidence has been
accumulated for quantum gravity being asymptotically safe [96, 97], for recent fRG-reviews
see e.g. [4, 94, 98]. This scenario is based on a non-trivial ultraviolet fixed point, the Reuter
fixed point. In the fRG setting it implies

lim
k→∞

GN,kk2 = g∗N , GN,k=0(p→∞)→
g∗N
p2

, (128)

where g∗N is the fixed point of the dimensionless Newton’s coupling, and GN,k = GN,k(p = 0).
Typically, for fixed point investigations the (unphysical) limit k →∞ with p ≪ k is used, as
this limit is technically less challenging and the k-scaling and fixed point ‘couplings’ reflect the
physical momentum scaling and fixed point coupling.

34

https://scipost.org
https://scipost.org/SciPostPhysCore.6.3.061


SciPost Phys. Core 6, 061 (2023)

For our discussion of the spectral setting it is important to note that the asymptotically
safe Newton’s coupling necessarily decays with 1/p2 for large momenta with the respective FP
equation,

lim
p2→∞

∂p2 GN,k=0(p)

p2
= 0 , (129)

which is reflected in limk→∞ ∂t gN = 0 with gN = k2GN,k. These considerations entail that a
convenient parametrisation of hµν-vertices is given by

Γ
(n)
hn (p1, ..., pn) =

n
∏

i=1

Z1/2
h (pi)Γ̄

(n)
hn (p1, ..., pn) , (130)

where the Z1/2
h factors take care of the RG-running of the legs and Γ̄ (n)hn shows the momentum

running of a (vertex) coupling. Accordingly, these vertex dressings decays with powers of p̄
at a symmetric point with p2

i = p̄2: in terms of vertex avatars of Newton’s coupling, GN,n, the

symmetric point dressing Γ̄ (n)hn (p̄) is proportional to Gn/2−1
N,n (p̄). In the asymptotically safe UV

regime all these couplings have to decay with 1/p̄2 and we are led to

lim
p̄→∞

Γ̄
(n)
hn (p̄)∝ lim

p̄→∞
p̄2 Gn/2−1

N,n (p̄)∝ p̄2
�

1
p̄2

�
n
2−1

. (131)

Inserting this scaling back in the loop equations shows the consistency of this scaling: the UV
momentum scaling of all diagrams is given by

lim
p̄→∞

∂t Γ̄
(n)
hn (p̄)∝ p̄2

�

1
p̄2

�
n
2

, (132)

which is exactly that of Γ̄ (n)/p̄2. In standard perturbation theory, the running would be
∂t Γ̄

(n) ∝ p̄2Γ̄ (n) related to the perturbative non-renormalisability of the theory. Here, one
additional 1/p̄2 scaling stems from the second propagator in the cutoff line Gk ∂tRk Gk and
reflects the reduction of the UV degree of divergence by two in the CS flow in comparison to
standard loop diagrams. The other 1/p̄2 scaling stems from the fixed-point scaling of Newton’s
coupling, which effectively shifts the theory to its critical dimension.

In summary we deduce that the only diagrams that require renormalisation via ∂tSct are
that of Γ̄ (2). In turn, the flows of Γ̄ (n>2) are finite but the renormalisation conditions in gravity
for µ→ 0 should lead to the Einstein-Hilbert action, which uniquely fixes the full ∂tSct in the
CS flow (39). In summary, a fully consistent spectral CS flow requires also the inclusion of
momentum-dependent vertex functions. However, the above analysis also entails that con-
stant vertex approximations can be entertained. In this case the finite subtractions ∂tS

(n)
ct are

elevated to the standard subtraction of counter terms with the constraint of leaving the IR limit
of the Einstein-Hilbert action intact. In any case it leaves us with a finite number of relevant
couplings given by those obtained with a spectral spatial momentum regulator.

6 Conclusions

We close this work with a brief summary of the main results, detailed discussions can be found
in the respective Sections.

In the present work we have derived a novel functional flow equation with flowing renor-
malisation, see (38) in section 3.2. Flowing renormalisation entails that the renormalisation
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condition can be adapted with the flowing scale. This can be used for fRG flows from the finite
renormalised UV effective action at large infrared cutoff scales to the full effective action at
k = 0. Importantly, it also allows for manifestly finite fRG flows with regulators that do not
implement a UV regularisation of the loop, such as the Callan-Symanzik regulator. The re-
spective CS flow, (39), is manifestly finite in general truncation schemes. The novel fRG flows
(38) and (39) constitute key results of the present work.

While finite (or homogeneous) CS equations are well-known, they are based on multiplica-
tive renormalisation, which is not amiable to general truncation schemes, and in particular do
not support most non-perturbative schemes. In turn, the present derivation is solely based on
the general fRG framework with finite flow equations with respect to an infrared regulator.
This embeds the Callan-Symanzik equation self-consistently in this Wilsonian framework. The
current derivation also provides the full formal justification of its use in asymptotic safety [24].

Notably, the current derivation does not require coupling redefinitions at each RG-step
proportional to ∂λφΓk. These terms can be added by augmenting the current flow with a full
homogeneous RG transformation, see [32] which reduces (39) to a more standard form of the
CS flow. The computation of such terms is feasible but constitutes a considerable additional
technical challenge, for respective considerations in a different context see [50].

We have then used the finite Lorentz invariant CS flows to set-up the Lorentz invariant
spectral fRG in section 4. We have then discussed the spectral fRG in scalar theories, Yukawa
theories, gauge theories and quantum gravity in section 5. In short, the spectral fRG is a simple
finite, ready to use, spectral form of the Callan-Symanzik equation, and we hope to report on
respective results in the above theories in the near future.
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A Renormalised CS flow of the effective potential

We consider the 0th order derivative expansion (LPA) of a φ4-theory in four dimensions with
the classical action

Sφ[φ] =

∫

x

�

1
2
φ
�

−∂ 2 +m2
φ

�

φ +
λφ

4!
φ4

�

, (A.1)

see also (3) and (63). The effective action in LPA is given by

Γk,Λ[φ] =

∫

x

�

1
2
(∂µφ)

2 + Vk,Λ(φ)

�

, (A.2)

and the flow equation for the effective potential reads

�

∂t +Dk∂tΛ

�

Vk,Λ(φ) =
1
2

∫

p

�

∂t

�

�

Λ
+Dk ∂tΛ

�

Rφk,Λ(p)

p2 + V (2)k,Λ(φ) + Rφk,Λ(p)
. (A.3)

In the following, we explicitly derive the counter term action in (A.3) and discuss the finiteness
of the CS flow as well as the flowing renormalisation. We remark that already from (A.3) we
deduce that the counter term action flow is a function of V (2)(φ): the Λ-part flow is peaked
at p2 ≈ Λ2 and hence in the limit Λ→∞ it necessarily depends on the dimensionless ratio
(V (2)k + k2)/Λ2. Together with the prefactor Dk and the requirement of Λ-independence and
finiteness of the flow we deduce

∂tSct(φ) =
Nmax
∑

i=1

ci

∫

x

�k2 + V (2)k (φ)

Λ2
mφ

�i

, (A.4)

where Nmax is the number of UV relevant coupling parameters in the effective potential, and
Λmφ is linked to the mass renormalisation of the theory. For example, we can take the physical
mass scale of the φ4-theory. The coefficients ci are adjusted such that they render the full
flow Λ-independent. For standard IR regulators with the properties (7) the ci are manifestly
Λ-independent as the IR flow is. In turn, for the CS regulator, the IR flow part in (A.3) depends
on the UV cutoff Λ and the subtraction with the counter term action flow (A.4) renders the
left hand side of (A.3) Λ-independent and finite. In the following we will derive ∂tSct with
different UV regularisations and compute (A.4) explicitly.

For a comparison to the standard UV renormalisation as implemented in perturbation the-
ory we also parametrise the effective potential in a Taylor series,

Vk(φ) =
∞
∑

n=1

λ2n,k

2n!
φ2n , (A.5)

where we have dropped the subscript Λ for the sake of readability. In four dimensions, the
potential only hosts a relevant coupling m2

φ,k = λ2,k and one marginal coupling, λφ,k = λ4,k.
A respective flow of the counter term action in perturbation theory is then given by

∂tSct[φ] =
1
2
∂tδm2

φ,kφ
2 +

1
4!
∂tδλφ,kφ

4 , (A.6)

with the two (flowing) renormalisation parameters ∂tδm2
φ,k and ∂tδλφ,k. In the following we

derive the non-perturbative analogue of (A.6) in LPA.
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A.1 CS flow with dimensional regularisation

First of all, we can use a bootstrap approach and assume that the CS limit, i.e. Rk,Λ→ k2, exists
if the UV-regularisation is chosen appropriately. We also remark that the degree of divergence
is lowered by two if considering ∂t V

(1)
k (φ). Using dimensional regularisation with d = 4− 2ε

in the loop integral in (A.3), we arrive at

∂t V
(1)
k (φ) = −µ

2ε

∫

dd p
(2π)d

k2V (3)k (φ)
�

p2 + k2 + V (2)k (φ)
�2 − ∂tS

(1)
ct (φ) , (A.7)

where we have used that with dimensional regularisation both the counter term flow and loop
integral in the flow equation are separately finite. Equation (A.7) is readily integrated, leading
to

∂t V
(1)
k (φ) = −

k2−2εµ2ε

(4π)(2−ε)
Γ (ε)V (3)k (φ)



1+
V (2)k (φ)

k2





−ε

− ∂tS
(1)
ct (φ) , (A.8)

which includes a divergent term due to Γ (ε) = 1/ε − γ + O(ε) with the Euler-Mascheroni
constant γ≈ 0.577. Thus, finiteness of (A.8) basically dictates a counter term flow,

∂tS
(1)
ct = −

k2

(4π)2

 

1
ε
− γ− log

Λ2
mφ

4πµ2

!

V (3)k (φ) . (A.9)

The flow of the counter term in (A.9) is proportional to the third derivative of the full effective
potential, V (3)(φ). This is dictated by the necessity of cancelling the 1/ε-term in the loop
integral, and simply is the required mass renormalisation of the four-dimensional φ4-theory
as in (A.6). The Λmφ carries the respective renormalisation condition. However, in LPA all

quantities are φ-dependent, and (A.9) reflects the field dependence of the mass V (2)(φ).
Inserting the counter term flow (A.9) in (A.8) leads us to the final renormalised CS flow,

∂t V
(1)
k (φ) =

k2

(4π)2
V (3)k (φ) log

k2 + V (2)k (φ)

Λ2
mφ

. (A.10)

In (A.10) the dependence on the renormalisation scale µ has been traded for one on the renor-
malisation condition that carries the value of the physical mass. We close this analysis with the
remark that for d < 4 the flows ∂t V

(1)
k (φ) are finite in dimensional regularisation. For d = 2

we have a convergent integral, while in odd dimensions dimensional regularisation provides
finite results in the first place, implying a renormalisation by construction. While then the
necessity of a counter term flow is absent, a flowing renormalisation requires it. This is dis-
cussed below and in the following Sections (see in particular appendices A.4 and A.5), where
momentum regulators are used.

Equation (A.9) is the counter term necessary to render the flow finite. However, as dis-
cussed above, we can also use the present setup to implement further flowing renormalisation
conditions also for couplings that do not require regularisation. Within the present example,
a general counter term can be written as

∂tS
(1)
ct = −

k2

(4π)2

�

1
ε
− γ− log

Λ2
mφ

4πµ2
−

Nmax
∑

i=2

ci

�k2 + V (2)k (φ)

Λ2
mφ

�i�

V (3)k (φ) . (A.11)
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The last terms ∼ ci follow from (A.4). As we will demonstrate now, these additional terms
renormalise higher order couplings, and the coefficients ci are uniquely fixed by the flowing
renormalisation conditions discussed in section 3.3.

For the sake of simplicity, we consider a φ4 theory in the symmetric phase, i.e. φ̄ = 0.
Similarly to (41), we impose the following renormalisation conditions at µ = 0,

∂t V
(2)
k (φ̄) = ∂t m

2
φ,k = 0 ,

∂t V
(4)
k (φ̄) = ∂tλφ,k = 0 . (A.12)

Note that in LPA the wave function renormalisation is always Z = 1, so renormalisation is
unnecessary. In contrast to the on-shell conditions in (41), these conditions at µ = 0 enforce
that the quadratic and quartic couplings, m2

φ,k and λφ,k, do not run. This can be achieved by

taking Nmax = 2 in (A.11). The flow of V (1)k is then

∂t V
(1)
k (φ) =

k2

(4π)2

 

log
k2 + V (2)k (φ)

Λ2
mφ

− cλφ
k2 + V (2)k (φ)

Λ2
mφ

!

V (3)k (φ) . (A.13)

By taking functional derivatives and setting φ = φ̄ in the end, we find for the quadratic
coupling

∂t m
2
φ,k =

k2

(4π)2

�

log
k2 +m2

φ,k

Λ2
mφ

− cλφ
k2 +m2

φ,k

Λ2
mφ

�

λφ,k , (A.14)

which corresponds to a tadpole diagram. For the quartic coupling we find

∂tλφ,k =
k2

(4π)2

��

log
k2 +m2

φ,k

Λ2
mφ

− cλφ
k2 +m2

φ,k

Λ2
mφ

�

λ6,k + 3

�

1

k2 +m2
φ,k

−
cλφ
Λ2

mφ

�

λ2
φ,k

�

,

(A.15)

which corresponds to a tadpole and a fish diagram. Through the renormalisation conditions
(A.12), the two parameters Λ2

mφ
and cλφ are uniquely fixed to be

Λ2
mφ
=

k2 +m2
φ

e
, cλφ =

1
e

, (A.16)

where we used m2
φ
= m2

φ,k, as it does not run. In general, in theories with fundamental higher-
order couplings λ2i>4,k, the respective renormalisation constants ci>2 are required. To be more
precise, each ci can be used to renormalise a different type of diagrammatic contribution to
the flow, namely the one containing i vertices.

A.2 Infrared CS regulator and a sharp ultraviolet cutoff

We proceed with an analysis of the counter term triggered by a sharp UV cutoff together with
a CS infrared cutoff with

Rk,Λ(p) = k2 1
θ (Λ2 − p2)

, (A.17)

see also (30e). As discussed there, such a choice also introduces a UV regularisation of the
theory, and not only one for the flow itself as the standard IR regulators. The scalar CS flows
in [38] have been computed with this choice, which leads to flows with a physical UV cutoff
as discussed there.
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Note that the highest order divergence in the flow is the one of the field-independent term.
In perturbation theory it is of the order Λd for a d-dimensional theory. For the CS flow this
divergence is reduced to Λd−2 as also discussed in appendix A.1. It is related to the unphysical
vacuum energy and we eliminate it by taking a φ-derivative of the flow which leads us to

�

∂t +Dk∂tΛ

�

V (1)k (φ) = −
1
2

V (3)k (φ)

∫

dd p
(2π)d

�

∂t

�

�

Λ
+Dk ∂tΛ

�

Rφk,Λ(p)
�

p2 + V (2)k (φ) + Rφk,Λ(p)
�2 , (A.18)

where we have dropped the subscript Λ in the effective potential. With the regulator (A.17)
the flow (A.18) turns into

∂t V
(1)
k (φ) =−

∫

p2≤Λ2

dd p
(2π)d

k2 V (3)k (φ)
�

p2 + k2 + V (2)k (φ)
�2 +Dk

Λ4

(4π)2
V (3)k (φ)

Λ2 + k2 + V (2)k (φ)
, (A.19)

where we have used that with the regulator (A.17) we have

Gk,Λ

�

∂tΛRk,Λ

�

Gk,Λ = − ∂tΛGk,Λ − Gk,Λ

�

∂tΛΓ
(2)
k

�

Gk,Λ

= − ∂tΛ

�

1

k2 + Γ (2)k

θ (Λ2 − p2)
�

− Gk,Λ

�

∂tΛΓ
(2)
k

�

Gk,Λ

= −
1

p2 + k2 + V (2)k (φ)
∂tΛθ (Λ

2 − p2)

=
2Λ2δ(p2 −Λ2)

Λ2 + k2 + V (2)k (φ)
. (A.20)

From the second to the third line in (A.20) we have used that we have a sharp UV cutoff. The
∂tΛΓ

(2)-terms ( in LPA ∂tΛV (2)-terms) from the first and second term in the third line cancel
each other, which leads us to the fourth line and the final result.

The first line in (A.19) is also integrated easily and we arrive at

∂t V
(1)
k (φ) =

k2

(4π)2
V (3)k (φ)



1+ log

 

k2 + V (2)k (φ)

Λ2

!

+
Λ2

k2
Dk

1

1+
k2+V (2)k (φ)

Λ2



 , (A.21)

where we have already assumed the limit Λ→∞ and dropped some subleading terms. The
first line in (A.21) matches that in (A.10) obtained from dimensional regularisation as re-
quired.

The necessity of cancelling the divergent term from the IR flow (in the CS limit) propor-
tional to V (3)k (φ) logΛ2 leads to

Dk = −
k2

Λ2
log
Λ2

mφ

Λ2
, (A.22)

where Λ2
mφ

carries the renormalisation condition of the mass. The choice (A.22) suffices to
render the flow of the potential finite. The flow of the counter term provided by (A.22) is
uniquely given by

∂tS
(1)
ct [φ] =





k2

(4π)2
log
Λ2

mφ

Λ2



 V (3)(φ) . (A.23)
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We find Dk > 0 for Λmφ < Λ, as well as Dk→ 0 for Λ→∞.
We emphasise that (A.23) only depends on one parameter, its field-dependence is uniquely

fixed. Equation (A.23) simply encodes the mass renormalisation of theφ4 theory, and the non-
polynomial field dependence solely originates in the approximation used. It agrees with the
counter term flow in dimensional regularisation, (A.9), and is the LPA version of the pertur-
bative counter term flow (A.6).

With (A.22), the flow (A.21) reads in the limit Λ→∞

∂t V
(1)
k (φ) =

k2

(4π)2
V (3)k (φ)



1+ log

 

k2 + V (2)k (φ)

Λ2
mφ

!



 , (A.24)

which is our final renormalised result for the Callan-Symanzik flow of the effective poten-
tial. Naturally, it agrees with the renormalised flow obtained with dimensional regularisation
(A.10), as all dependence on the UV regularisation is removed with the renormalisation.

As already discussed before, (A.24) depends on one parameter, Λmφ , that allow us to ad-

just the flowing renormalisation conditions for the mass m2
φ,k, or, alternatively for the coupling

λφ,k. However, the φ4-theory in four dimension has one relevant, m2
φ

, and two marginal, λφ
and Zφ , parameters. In the current approximation Zφ = 1 and does not require renormal-
isation. Hence we are left with two parameters, m2

φ
,λφ , whose flow or lack thereof at the

renormalisation point p = µ can be adjusted by Λmφ and a further parameter cλφ . This param-
eter is not present, if we only consider the regulator (A.17). The second (and third) parameter
can only be introduced by also changing the regulator itself and not only the scale, see also
the discussion in section 3.2.

A.3 Sharp ultraviolet regularisation of the CS regulator

The change of the regulator shape function can be introduced by simply considering a com-
bination of two different regulators and varying their linear combination during the flow. For
that purpose we first discuss another natural choice for a regulator that also introduces a UV
cutoff in the flow. We consider a CS mass term that vanishes for large momenta,

Rk,Λ(p) = k2θ
�

Λ2 − p2
�

, (A.25)

see also (30d). This leaves the CS part of the flow in (A.19) unchanged, but the UV flow
changes. As discussed below (30d), this only regularised the flow itself but does not provide
a UV cutoff for the theory. We use

Gk,Λ∂tΛRk,ΛGk,Λ = − ∂tΛ

�

�

V (2)k





θ (Λ2 − p2)

p2 + k2 + V (2)k (φ)
+
θ (p2 −Λ2)

p2 + V (2)k (φ)





=2Λ2δ(p2 −Λ2)





1

Λ2 + k2 + V (2)k (φ)
−

1

Λ2 + V (2)k (φ)





=−
2k2

Λ2

δ(p2 −Λ2)
�

1+
k2+V (2)k (φ)

Λ2

��

1+
V (2)k (φ)
Λ2

� . (A.26)

Note that (A.26) is suppressed with 1/Λ2 in comparison to (A.20). This originates in the fact
that the regulator (A.25) only is an infrared regulator and the Λ-flow encodes the change of
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the UV cutoff in the flow, whose UV divergence is lowered by two in comparison to diagrams
e.g. in DSEs. In turn, (A.17) leads to a UV regularisation of the theory and the Λ-flow encodes
the change of the UV cutoff in the theory. This difference explains both, the relative 1/Λ2

factor and the relative minus sign.
Using (A.26) in the flow equation (A.18) we are led to

∂t V
(1)
k (φ) =

k2

(4π)2
V (3)k (φ)



1+ log

 

k2 + V (2)k (φ)

Λ2

!

− Dk
1

�

1+
k2+V (2)k (φ)

Λ2

��

1+
V (2)k (φ)
Λ2

�






.

(A.27)

Taking the limit Λ→∞ in (A.27) with the choice

Dk = log
Λ2

mφ

Λ2
, (A.28)

we are led to the same flow of the counter term (A.23) as in appendix A.2. In summary, in both
cases as well as in dimensional regularisation the flow of the counter term is fixed uniquely,
and we are led to the same renormalised flow, (A.10) or (A.24).

A.4 CS flow with flowing renormalisation

In both these cases we arrive at finite flows, but cannot use the full power of flowing renor-
malisation. To that end we combine the two examples in one regulator. We define

Rk,Λ = k2

�

θ
�

Λ2 − p2
�

+

�

1

θ
�

Λ2
UV − p2

� − 1

��

. (A.29)

The regulator in (A.29) is a combination of the CS-type infrared regulator (A.25) with a UV
cutoff Λ of the IR flow, and a UV regularisation of the theory as used in (A.17) with the UV
cutoff ΛUV of the theory. Both are assumed to be k-dependent with Λ⃗(k) = (Λ(k),ΛUV(k)).
In the CS-part the regulator mass k2 is removed at p2 = Λ2 < Λ2

UV
, which renders the flow

finite. Moreover, the full theory is finite as quantum fluctuations are fully suppressed for
p2 ≥ Λ2

UV
. The k and Λ⃗ flows are a combination of the flows discussed above in appendix A.2

and appendix A.3.
The t, tΛ-flows that originates from the CS-type part in (A.29) is given by (A.27). There

is no t-flow related to the UV-regulator, and its tΛ-flow is the tΛ-flow of (A.21) with Λ→ ΛUV.
The scaling factors D⃗k = (D

(CS)
k ,D(UV)

k ) can be chosen independently and we have

∂t V
(1)
k (φ) =

k2

(4π)2
V (3)k (φ)

×






1+ log

 

V (2)k (φ) + k2

Λ2

!

−
D(CS)

k
�

1+
k2+V (2)k (φ)

Λ2

��

1+
V (2)k (φ)
Λ2

� +
D(UV)

k

1+
V (2)k (φ)
Λ2

UV






,

(A.30)

with D(UV)
k = (Λ2

UV
/k2)D(UV)

k . Now we expand (A.30) in (inverse) powers of Λ2 and Λ2
UV

,
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leading to

∂t V
(1)
k (φ) =

k2

(4π)2
V (3)k (φ)



1+ log

 

V (2)k (φ) + k2

Λ2

!

−D(CS)
k

 

1−
k2

Λ2
− 2

V (2)k (φ)

Λ2

!

+D(UV)
k

 

1−
V (2)k (φ)

Λ2
UV

!



 . (A.31)

Equation (A.31) fixes the functional form of the flow of the counter term action uniquely: it
is given by the sum of the D⃗(CS)

k -terms in (A.31). Hence we are led to

∂tS
(1)
ct [φ] =

k2

(4π)2
V (3)k (φ)



 log
Λ2

mφ

Λ2
+ cλφ

V (2)k (φ)

Λ2
mφ



 , (A.32)

where Λmφ and cλφ are the two renormalisation parameters. Note that the both, the prefactor

V (3)(φ) and the term V (2)(φ) are fixed by the general structure of the flow itself and not by the
specific regulators used here. There are higher order terms (V (2)(φ)Λ2)n, whose prefactors
depend on the chosen regulator. They are also present here and they only survive the Λ⃗→∞
limit for sufficiently divergent D⃗(CS)

k . However, such choices simply entail the inclusion of
higher order relevant couplings such as λn,k.

In a φ4 approximation they reduce to the standard ∂tδλφ and ∂tδm2
φ

parameters in a

perturbative subtraction scheme with the counter term action flow ∂tS
(1)
ct [φ] derived from

(A.6). In the present local potential approximation this necessarily generalises to derivatives
of the full effective potential.

The renormalisation parameters are combinations of the Dk ’s with

�

1−
k2

Λ2

�

D(CS)
k −D(UV)

k = log
Λ2

mφ

Λ2
,

Λ2
mφ

Λ2
UV

D(UV)
k − 2

Λ2
mφ

Λ2
D(CS)

k = cλφ , (A.33)

with the solutions

D(CS)
k =−

Λ2

Λ2
mφ

cλφ −
Λ2

mφ

Λ2
UV

log Λ2

Λ2
mφ

2− Λ2−k2

Λ2
UV

,

D(UV)
k =−

Λ2

Λ2
mφ

cλφ
�

1− k2

Λ2

�

+ 2
Λ2

mφ

Λ2 log Λ2

Λ2
mφ

2− Λ2−k2

Λ2
UV

. (A.34)

We emphasise that it is not the explicit solution (A.34) that matters, but solely its existence:
the latter entails that the relations (A.33) can be used for the definition of the counter term
flow (A.32). Using the later in the flow (A.31) leads us to

∂t V
(1)
k (φ) =

k2

(4π)2
V (3)k (φ)



1+ log

 

k2 + V (2)k (φ)

Λ2
mφ

!

− cλφ
V (2)k (φ)

Λ2
mφ



 , (A.35)
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our final result for the finite CS flow in the Local Potential Approximation with full flowing
renormalisation with the renormalisation constants cλφ (coupling) and Λmφ (mass). The lat-
ter constant enters via a logarithmically divergent counter term in the flow, which reflects the
fact that divergences in the CS flow are lowered by two: quadratic divergence in standard
diagrams (e.g. in a DSE) leads to logarithmic divergence in the flow. Similarly, the logarith-
mic divergence of the coupling is reduced to a finite subtraction. Finally, for cλφ ≡ 0 the full
flow (A.35) reduces to (A.24), and the renormalisation condition for the coupling is left free.
Note that this is the standard approach to renormalisation in the flow equation: the renor-
malisation is implicit in the finite initial effective action which also implicitly determines the
renormalisation conditions.

As already discussed above, the explicit solution of the D⃗k has dropped out and has to drop
out of the explicit solution as it concerns details of the UV regularisation that are removed in
the renormalisation. However, in order to understand the respective UV flow, it is instructive
to consider the asymptotic limits of Λ,ΛUV, for which the solution simplifies. In general we
have

k2,Λ2
mφ
< Λ2 ≤ Λ2

UV
, (A.36)

as k is the infrared cutoff scale and Λmφ is a renormalisation scale. In turn, ΛUV is the UV cutoff
scale and hence the maximal scale in the theory, while Λ limits the UV range of the infrared
regulator. It should be larger than the IR scales, but it has been assumed to be smaller than
ΛUV in the derivation.

While it is only the existence of the explicit solution (A.34) that matters, it is still instructive
to evaluate its properties. To that end we discuss them within asymptotic choice of the UV
cutoffs. A natural choice is Λ→ ΛUV and consequently Λ→∞. This procedure implements
the CS limit for all Λ, the IR mass k2 is present for all momentum scales in the theory with
p2 ≤ ΛUV. In this limit (A.34) reduces to

D(CS)
k =− cλφ

Λ2

Λ2
mφ

+ log
Λ2

Λ2
mφ

,

D(UV)
k =− cλφ

Λ2

Λ2
mφ

+ 2 log
Λ2

Λ2
mφ

. (A.37)

The scalings of the two terms with cλφ and Λmφ (inversely) reflect the UV relevance of the
respective couplings: the renormalisation constant cλφ is linked to marginal coupling λφ,k.
As the infrared flow lowers the UV degree of divergence by two, this is reinstated by the

multiplication with Λ2. Note also, that D(UV)
k = k2/Λ2D(UV)

k and hence has a finite limit. This
originates in the fact, that the respective Λ-flow is a UV flow and its UV degree of divergence
is not lowered.

We note in passing, that a theory with fundamental λn couplings would require Dk ’s, that
diverge with Λn−2. While such flows can be defined, there UV consistency is at stake. We
emphasise that this has but nothing to do with the CS setting, but rather with the potential
non-renormalisability of these theories. Already in the φ4 case discussed here we only derived
consistent flows. Studying the UV closure of the theory for k→∞ in the present truncation
enforces the triviality of the φ4 theory. We rush to add that this is not a triviality proof as it is
obtained in a truncation.

A.5 Flowing renormalisation at work

We close this discussion with a simple example of the flowing renormalisation, or rather a non-
flowing one. For the sake of simplicity we restrict ourselves to theories in the symmetric phase
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with φEoM = 0. Furthermore we chose the renormalisation point µ = 0. Then the flow of the
mass m2

φ,k = V (2)(0) and the coupling λφ,k = V (4)(0) is given by

ṁ2
φ,k =

k2

(4π)2
λφ,k

�

1− cλφ
m2
φ,k

Λ2
mφ

+ log

�

k2 +m2
φ,k

Λ2
mφ

��

,

λ̇φ,k =
1

(4π)2







λ6,kk2

�

1− cλφ
m2
φ,k

Λ2
mφ

+ log

�

k2 +m2
φ,k

Λ2
mφ

��

+ 3λ2
φ,k





1

1+
m2
φ,k

k2

− cλφ
k2

Λ2
mφ











,

where λ6,k = V (6)(0) with (A.5). We have also used that V (2n+1)(0) = 0 for all n ∈ N as
the effective action is invariant under φ → −φ. In terms of diagrams the first term in the
flows ṁ2

φ,k and λ̇φ,k is the contribution of the respective tadpole diagram being proportional
to λn+2,k for the flow of λn,k. At φ = 0 this is the only diagram that contributes to the flow of
the mass and for ṁ2

φ,k = 0 we have to choose

Λ2
ref =

�

m2
φ,k + k2

�

exp

¨

1− cλφ
m2
φ,k

Λ2
ref

«

, (A.38)

which also eliminates the tadpole contributions in the flow of all λn,k. In turn, the flow of
the coupling also contains the fish diagram proportional to λ2

φ,k. In perturbation theory this
diagram is logarithmically divergent while it is finite for the CS flow. The (re)-normalisation of
this diagram is linked to cλφ and λ̇φ,k = 0 is achieved by setting the expression in parenthesis
in the flow of λφ,k to zero. This leads us to

cλφ =
Λ2

mφ

k2

1

1+
m2
φ,k

k2

, (A.39)

and inserting (A.39) in (A.38) leads to

cλφ = exp







1

1+
m2
φ

k2







,

Λ2
ref =

�

m2
φ + k2

�

exp







1

1+
m2
φ

k2







, (A.40)

where we also used that mφ,k = mφ for all k. The two renormalisation constants have the
limits

cλφ (k→ 0) = 1 , Λ2
ref(k→ 0) = m2

φ . (A.41)

Interestingly, the two renormalisation parameters know nothing about the couplings of the
theory owing to the peculiarity that the mass renormalisation only involved that tadpole. While
this property is approximation-independent, the factorisation of the couplings from the loop
only holds in approximations with momentum-independent couplings.
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B Decomposition of the fermion propagator for spatial regulators

Spatial regulators break Lorentz symmetry by construction. In this case, the fermionic two-
point function may be parametrised as

Γ
(2)
ψψ̄
= Zψ(p)

�

iγ0p0 +Mψ(p)
�

+ Z⊥ψ(p) iγ⃗ · p⃗ , (B.1)

where we have used the notation Zψ(p) ≡ Z∥
ψ
(p) for the longitudinal dressing and Z⊥

ψ
(p)

for the transverse one, respectively. Our choice guarantees that Mψ(p) is related to the pole
mass. Through (2) this again leads to a fermionic propagator which can be cast into the form
of (84). With the regulators defined in (79) for ε = ε(p⃗) and (81), the Dirac, scalar and
universal part of the propagator read

G(d)
ψ
(p) =

1
p/

�

γ0p0 + γ⃗ · p⃗

�

Aψ(p) +
A0
ψ
(p)

p

p⃗ 2
R̄ψd

��

G(u)
ψ

, (B.2)

G(s)
ψ
(p) =

1
Mψ

�

Mψ(p) + A0
ψ(p) R̄

ψ
s

�

G(u)
ψ

, (B.3)

and

G(u)
ψ
(p) =

1
Zψ(p)

1

p2
0 +

�

p

p⃗ 2Aψ(p) + A0
ψ
(p) R̄ψd

�2
+
�

Mψ(p) + A0
ψ
(p) R̄ψs

�2 . (B.4)

Here, we have made use of the following definitions,

Aψ(p) =
Z⊥
ψ
(p)

Zψ(p)
, A0

ψ(p) =
Zψ

Zψ(p)
. (B.5)

Note that A0
ψ
(p) depends on the choice for the momentum-independent prefactor of the reg-

ulators. In this appendix, we have used Zψ ≡ Zψ(0) for all tensor structures.
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