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Abstract

In this work, multipartite entanglement is classified by polynomials. I show that the
operator size is closely related to the entanglement structure. Given a generic quantum
state, I define a series of subspaces generated by operators of different sizes acting on
it. The information about the entanglement is encoded into these subspaces. With the
dimension of these subspaces as coefficients, I define a polynomial which I call the en-
tanglement polynomial. The entanglement polynomial induces a homomorphism from
quantum states to polynomials. It implies that we can characterize and find the building
blocks of entanglement by polynomial factorization. Two states share the same entangle-
ment polynomial if they are equivalent under the stochastic local operations and classical
communication. To calculate the entanglement polynomial practically, I construct a se-
ries of states, called renormalized states, whose ranks are related to the coefficients of
the entanglement polynomial.
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1 Introduction

Operator size is a measure of local degrees of freedom on which an operator has a nontrivial
action [1, 2]. It is also a characteristic of operator scrambling [3, 4]. In AdS/CFT, it was
conjectured that the size of a boundary operator is related to the bulk radial momentum [5–7].
However, there is an ambiguity that operators of different sizes can map a given state to another
same state, which can be understood in terms of stabilizer formalism [8, 9]. A similar issue
occurs in AdS/CFT due to its quantum error correction property [10]. To fix such an ambiguity,
I generalize the operator size to be state-dependent, such that operators have the same size
if they have the same action on a given state [11]. For a given state |ψ〉, the state-dependent
operator size of an operator O can be defined as the expectation value of a state-dependent
operator n|ψ〉 called size operator,

S|ψ〉(O)≡
〈ψ|O†n|ψ〉O|ψ〉
〈ψ|O†O|ψ〉

. (1)

A similar definition of state-dependent operator size is proposed in [12].
In this paper, I will not discuss the entanglement dynamics mentioned above but focus on

the classification of entanglement structures. Entanglement classification is a long-standing
open problem in quantum information theory. Various methods were proposed [13–20], but
our understanding of multipartite entanglement is still limited. I show that the entanglement
structure of |ψ〉 is encoded into eigenspaces of n|ψ〉. As we will see, the dimensions of these
eigenspaces are characteristics of entanglement. They form the coefficients of a polynomial
which can classify multipartite entanglement. So I call it the entanglement polynomial.

I prove that the entanglement polynomial is a SLOCC invariant and thus is a characteristic
of the entanglement [13]. Here the SLOCC stands for stochastic local operations and classical
communication. As a map from quantum states to polynomials, the entanglement polynomial
preserves the product structure, which means the entanglement polynomial of the tensor prod-
uct of two states is the product of the entanglement polynomials of these two states. In other
words, entanglement polynomial induces a homomorphism. More precisely, we will see that
it is a monoid homomorphism. Since product states are mapped to reducible polynomials, we
can find and characterize the building blocks of entanglement by polynomial factorization.

We can construct an isomorphism by taking the quotient over the kernel of homomor-
phism. Applying this fact to the entanglement polynomial, we obtain an isomorphism from
equivalence classes of states to polynomials. Since entanglement polynomial is a SLOCC in-
variant, states of the same equivalence class share a similar entanglement structure. Thus, the
entanglement polynomial induces a classification of entanglement. It can be shown that the
number of these classes is finite if the Hilbert space is finite-dimensional.

This paper is organized as follows. In Section 2, we introduce some relevant concepts and
define the entanglement polynomial. In Section 3, we show that the entanglement polyno-
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mial induces a homomorphism from quantum states to polynomials. By taking the quotient
over the kernel of this homomorphism, we obtain an isomorphism from entanglement classes
to polynomials. In Section 4, we show that there exists a class of operators preserving the
entanglement polynomial of any state. Two examples of such operators are local invertible
operators and permutation operators. We call these operators the symmetries of the entangle-
ment polynomial. In Section 5, we construct a series of states called renormalized states. We
show that the ranks of these states are related to the coefficients of entanglement polynomials.
We can use this relation to calculate the entanglement polynomial practically. In Section 6,
we summarize the results of this paper. In Appendix A, we prove that entanglement polyno-
mial preserves the product structure. In Appendix B, we illustrate how the factorization of the
entanglement polynomials is related to the size additivity. In Appendix C, a theorem about
the symmetry of the entanglement polynomial is proven. In Appendix D, the relation between
renormalized states and coefficients of the entanglement polynomial is proven.

2 Entanglement polynomial

We first review several relevant notions and then define the entanglement polynomial. For
simplicity, we consider quidts.

The Hilbert space of N qudits is given by

H =
N
⊗

i=1

Hi , Hi
∼= Cd . (2)

Hi is the Hilbert space of the i-th qudit. Suppose that B is a subset of these qudits and |B| is
the number of qudits of it. We denote the linear space of operators acting on B nontrivially as

AB =

�

OB ⊗ IB̄ |OB ∈ End(HB) , HB =
⊗

i∈B

Hi

�

. (3)

B̄ denotes the complement of B. IB̄ is the identity acting on HB̄. Then we define a linear space
of operators as

V k ≡
∑

|B|=k

AB . (4)

The summation here means that V k is spanned by the elements in AB ’s. We set V 0 ≡ Span{I}.
Operators in V k are called k-local operators. We can see that a k-local operator can always be
written as a linear combination of the tensor products of k local operators. Given a state |ψ〉,
we can construct the subspace

Wk ≡ Span{O|ψ〉
�

�O ∈ V k} . (5)

Wk can be decomposed as follows

Wk =∆Wk ⊕Wk−1 , ∆Wk ⊥Wk−1 , 0≤ k ≤ N|ψ〉 . (6)

N|ψ〉 is the minimal value of k such that Wk+1 =Wk. We set W−1 as the empty set. The meaning
of∆Wk is that we only need k-local operators acting on |ψ〉 to generate∆Wk which cannot be
generated by (k − 1)-local operators. Each state in ∆Wk can be perfectly distinguished from
states that can be generated by (k − 1)-local operators acting on |ψ〉. Then we can say that
there are k local d.o.f. that are changed when |ψ〉 evolves to a state in ∆Wk. For this reason,
we call ∆Wk the k-local subspace. In [11], the eigenspaces of the size operator in Eq. (1) are
defined as the k-local subspaces. For more details, see Appendix B.
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Then we define the entanglement polynomial as

f (|ψ〉)≡
N|ψ〉
∑

k=0

|∆Wk|xk . (7)

|∆Wk| is the dimension of∆Wk. x is a symbol. This polynomial encodes the information about
the number of states that can be generated by k-local operators, which is a property closely
related to the entanglement structure.

3 Isomorphism

A monoid is a set that is closed under an associative binary operation and has an identity
element. As mentioned in the introduction, the entanglement polynomial induces a monoid
homomorphism from states to polynomials.

To illustrate it, we consider an infinite number of qudits in this section. Denote the set of
quantum states of all of the subsystems of these qudits as S. We can show that S is a monoid
with the tensor product as the associative binary operation. To check it, we first note that the
tensor product between two quantum states is a binary operation and it is associative. Since
two non-overlapping subsystems still form a subsystem, S is closed under the tensor product.
To specify the identity, we note that the empty set ; is also a subsystem of qudits, and the union
of ; and an arbitrary subsystem B is still B. So the quantum state of ; is the identity w.r.t. the
tensor product. We denote it as |;〉. Note that the Hilbert space dimension of n qudits is dn.
Since ; is the set of zero qudits, its Hilbert space is one-dimensional. So |;〉 is unique. Then
we have

|ψ〉 ⊗ |;〉= |;〉 ⊗ |ψ〉= |ψ〉 , |ψ〉 , |;〉 ∈ S . (8)

Putting these facts together, we can see that S is indeed a monoid.
The entanglement polynomial maps S to a set of polynomials denoted by f (S). f (S) is

also a monoid. To see this, we note that no nontrivial operator acts on the Hilbert space of
zero qudits, so we have

f (|;〉) = 1 . (9)

Thus f (|;〉) is the identity w.r.t. the polynomial multiplication “ · ”. Obviously, “ · ” is an
associative binary operation. In Appendix A, I prove that

f (|ψ〉 ⊗ |φ〉) = f (|ψ〉) · f (|φ〉) , (10)

for arbitrary two states. Thus, f (S) is closed under “ · ”. Collecting these facts, we can see
that f (S) is also a monoid. Eq. (10) also implies that f preserves the product structure, so we
have the following theorem.

Theorem 1 The entanglement polynomial induces a monoid homomorphism from the state
monoid S to the polynomial monoid f (S).

We can construct an isomorphism by taking quotient over the kernel of the homomorphism.
To take the quotient, we define an equivalence relation “∼” over S such that |ψ〉 ∼ |φ〉 if
f (|ψ〉) = f (|φ〉). Obviously, we have

|ψ〉 ∼ |ψ〉 , (11a)

|ψ〉 ∼ |φ〉 ⇒ |φ〉 ∼ |ψ〉 , (11b)

|ψ〉 ∼ |φ〉, |φ〉 ∼ |χ〉 ⇒ |ψ〉 ∼ |χ〉 . (11c)
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So “∼” is indeed an equivalence relation. In fact, it is a congruence relation, which means that

|ψ1〉 ∼ |φ1〉, |ψ2〉 ∼ |φ2〉 ⇒ |ψ1〉 ⊗ |ψ2〉 ∼ |φ1〉 ⊗ |φ2〉 (12)

is further satisfied. The equivalence class of |ψ〉 under “∼” is denoted by [|ψ〉]. Since “∼” is
a congruence relation, the “tensor product” between [|ψ〉] and [|φ〉] can be uniquely defined
by

[|ψ〉]⊗ [|φ〉]≡ [|ψ〉 ⊗ |φ〉] . (13)

Now we can define the quotient monoid S/ker f by

S/ker f ≡ {[|ψ〉]
�

� |ψ〉 ∈ S} , (14)

with the tensor product defined in Eq. (13) as the associative binary operation. According to
the first isomorphism theorem, the polynomial monoid f (S) is isomorphic to S/ker f ,

f (S)∼= S/ker f . (15)

To specify the isomorphism map, we define the entanglement polynomial of an equivalence
class by

f ([|ψ〉])≡ f (|ψ〉) . (16)

Since equivalent states have the same entanglement polynomial, this definition is unique. Then
we have

Theorem 2 The entanglement polynomial induces an isomorphism from the quotient monoid
S/ker f to the polynomial monoid f (S).

According to Eq. (10), product states are mapped to reducible polynomials in f (S), so we can
find basic building blocks of entanglement by polynomial factorization. For this reason, we
call elements in S/ker f the entanglement classes.

4 Symmetry

Besides calculating by definition, symmetries of entanglement polynomials can determine
whether two states are in the same entanglement class. By symmetry, I mean an operator
g satisfying

f (g|ψ〉) = f (|ψ〉) . (17)

Unlike the case of groups, the kernel of a monoid homomorphism cannot be determined by
the preimage of the identity. So the symmetry generally depends on the specific state |ψ〉.
However, we can still find some state-independent symmetries. Define the adjoint action of
an invertible operator g by

adgO ≡ g−1Og . (18)

The adjoint action on an operator space M is defined by

adg M ≡ {adgO
�

�O ∈ M} . (19)

Then we have the following theorem (for the proof, see Appendix C).
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Theorem 3 If adg induces an automorphism on the space of 1-local operators V , then g keeps
entanglement polynomials invariant, i.e.

adg V = V ⇒ f (g|ψ〉) = f (|ψ〉) , ∀ |ψ〉 . (20)

As an explicit example, we show that if two states are equivalent under stochastic local
operations and classical communication (SLOCC), they are in the same entanglement class.
In [13], it was proven that |ψ〉 and |φ〉 are equivalent under SLOCC if and only if there exists
an invertible local operator L such that

|ψ〉= L|φ〉 . (21)

Given a set of N qudits, an invertible local operator L is an operator of the following form

L =
N
⊗

i=1

Li , Li ∈ Aut(Hi) . (22)

Li is an invertible operator acting on the i-th qudit. By definition, operators in V k can be
expressed as

O =
∑

|B|=k

cB IB̄ ⊗
⊗

i∈B

Oi . (23)

B labels subsets of N qudits. |B| is the number of qudits in B. Oi ∈ End(Hi), cB ∈ C. Then we
have

adLO ≡ L−1OL =
∑

|B|=k

cB IB̄ ⊗
⊗

i∈B

L−1
i Oi Li . (24)

Note that L−1
i Oi Li ∈ End(Hi) and L is invertible, so adL induces an automorphism on V k for

all k. Thus, Theorem 3 implies the following theorem.

Theorem 4 If two states are equivalent under SLOCC, then their entanglement polynomials are
equal.

Another example of the symmetry is the permutation. A permutation can be generated by
a series of swap operators X i satisfying

X i|a〉i|b〉i+1 = |b〉i|a〉i+1 , (25)

for all |a〉i , |b〉i ∈ Hi and |a〉i+1, |b〉i+1 ∈ Hi+1. Then the action of adX i
on O is to swap Oi

and Oi+1, such that X−1
i OX i ∈ V k. Since X i is invertible, adX i

induces an automorphism.
So swap operators are symmetries of entanglement polynomials. Since each permutation in
the permutation group SymN is the product of a series of X i ’s, it also keeps the entanglement
polynomials invariant. So two states in the same SLOCC class or SymN class must belong to
the same entanglement class.

According to Eq. (5), the coefficients of an entanglement polynomial is an integer partition
of the Hilbert space dimension, which means it can always classify states into a finite number
of entanglement classes if the Hilbert space is finite-dimensional.

5 Renormalized state

To calculate the entanglement polynomial efficiently, we construct a series of states whose
ranks are related to entanglement polynomials. Given a state ρ, we define the renormalized
states as

ρk ≡

∑

|B|=k ρB̄
∑

|B|=k tr(ρB̄)
. (26)
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Table 1: Entanglement polynomials of genuinely entangled states up to three qubits.

|ψ〉 |0〉 |Bell〉 |W〉 |GHZ〉
f (|ψ〉) 1+ x 1+ 3x 1+ 6x + x2 1+ 7x

Table 2: Entanglement polynomials of product states up to three qubits.

|ψ〉 |00〉 |000〉 |0〉|Bell〉
f (|ψ〉) (1+ x)2 (1+ x)3 (1+ x)(1+ 3x)

ρB̄ ∈AB̄ is the reduced density matrix satisfying

tr
�

OB̄ρ
�

= tr
�

OB̄ρB̄

�

, ∀ OB̄ ∈AB̄ . (27)

To illustrate the physical meaning of ρk, suppose the system is in a state ρ, and we try
to measure the operator O in a noisy laboratory. The effect of the noise is to disturb our
observation such that we cannot access some parts of the system. The noise is stochastic, so
the position of the lost part B is random. At each observation, the expectation value of O is

〈O〉noise = tr
�

OρB̄

�

. (28)

If we perform many experiments, the average of the expectation value is1

〈O〉noise =

∑

B tr(OρB̄)
∑

B tr(ρB̄)
. (29)

If the size of the lost part is always equal to k, then we have

〈O〉noise = tr(Oρk) . (30)

So the renormalized states are effective states under the random noise of a given size.
Then we can show that, given a pure state ρ = |ψ〉〈ψ|,

|Wk|= Rank(ρk) . (31)

See Appendix D for the proof. As an example, we apply Eq. (31) to qubits. According to
Theorem 4, we only need to perform calculations for representatives of SLOCC classes and
permutation classes. Up to three qubits, they are |0〉,

|Bell〉=
1
p

2
(|00〉+ |11〉) , (32a)

|W〉=
1
p

3
(|100〉+ |010〉+ |001〉) , (32b)

|GHZ〉=
1
p

2
(|000〉+ |111〉) , (32c)

and tensor products of them, i.e. |00〉, |000〉, |0〉|Bell〉. The results are listed in Table 1 and
Table 2. We can see that the entanglement polynomial clearly distinguishes the states of
different entanglement structures.

1Here we suppose the probability distribution of the lost parts is flat. We can consider general distribution, see
Appendix D.
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6 Conclusion

We have defined the entanglement polynomial which induces a monoid isomorphism from
entanglement classes to polynomials. The tensor product among states is mapped to the poly-
nomial product, which implies that we can find the basic building blocks of entanglement by
polynomial factorization. If an operator induces automorphisms on all the subspaces of k-local
operators, then it keeps the entanglement polynomial invariant. As a consequence, the entan-
glement polynomial is proven to be a SLOCC invariant. We then construct the renormalized
states and show that, by calculating their ranks, we can calculate the entanglement polynomial
practically.
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A Proof of f (|ψ〉 ⊗ |φ〉) = f (|ψ〉) · f (|φ〉)

For later convenience, we define the action of an operator space M on a Hilbert space H by

MH ≡ Span
�

O|ψ〉
�

�O ∈ M , |ψ〉 ∈H
	

. (A.1)

Denote the space spanned by |ψ〉 as H|ψ〉 . We can rewrite the subspace defined by Eq. (5) as

W |ψ〉k = V kH|ψ〉 . (A.2)

Notice that we add a superscript to Wk to indicate its dependence on |ψ〉. V kH can be obtained
by V acting on H k times, which is

V kH = (V )kH ≡ V V . . . V
︸ ︷︷ ︸

k

H . (A.3)

V is the space of 1-local operators. We can also define the multiplication between two operator
spaces V1 and V2

V1V2 ≡ Span{O1O2

�

�O1 ∈ V1, O2 ∈ V2} , (A.4)

such that we have
V k = (V )k ≡ V V . . . V

︸ ︷︷ ︸

k

. (A.5)

So we can rewrite (V )k as V k for simplicity. The symbol “∆” in Eq. (6) can be defined as an
operator ∆k acting the the Hilbert space with the index k, i.e.

Wk =∆kWk ⊕Wk−1 , ∆kWk ⊥Wk−1 . (A.6)

Suppose a system is divided into two parts, B and B̄. Denote the space of 1-local operators
acting on B and B̄ as VB and VB̄ respectively. Then we have

V = VB∪B̄ = VB + VB̄ . (A.7)
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Take the k-th power
V k = (VB + VB̄)

k =
∑

l+m=k

(VB̄)
m(VB)

l . (A.8)

Given a state |ψ〉 ⊗ |φ〉 with |ψ〉 ∈HB and |φ〉 ∈HB̄. Using Eq. (A.8), we have

V k(H|ψ〉 ⊗H|φ〉) =
∑

l+m=k

(VB̄)
m(VB)

l
�

H|ψ〉 ⊗H|φ〉
�

=
∑

l+m=k

V m
B̄

V l
B

�

H|ψ〉 ⊗H|φ〉
�

=
∑

l+m=k

V m
B̄

l
⊕

p=0

∆p

�

V p
B

�

H|ψ〉 ⊗H|φ〉
��

=
∑

l+m=k

V m
B̄

l
⊕

p=0

∆p(V
p

B H
|ψ〉)⊗H|φ〉

=
∑

l+m=k

l
⊕

p=0

∆p

�

V p
B H
|ψ〉�⊗ V m

B̄
H|φ〉

=
∑

l+m=k

l
⊕

p=0

m
⊕

q=0

∆p

�

V p
B H
|ψ〉�⊗∆q

�

V q
B̄
H|φ〉

�

=
⊕

l+m=k

l
⊕

p=0

m
⊕

q=0

∆p

�

V p
B H
|ψ〉�⊗∆q

�

V q
B̄
H|φ〉

�

=
⊕

l+m=k

l
⊕

p=0

m
⊕

q=0

∆pW |ψ〉p ⊗∆qW |φ〉q .

(A.9)

In the first equality, we used Eq. (A.8). In the second equality, we rewrite (VB̄)
m and (VB)l

as V m
B̄

and V l
B respectively for simplicity. In the third equality, We used Eq. (A.6) to expand

V l
B (H

|ψ〉 ⊗H|φ〉) in terms of ∆p(V
p

B (H
|ψ〉 ⊗H|φ〉))’s. In the forth equality, we used the fact

that the action of V p
B on H|ψ〉 is trivial. In the fifth equality, we used the fact that the action

of V m
B̄

on H|φ〉 is trivial. In the sixth equality, we expand V m
B̄
H|φ〉 in terms of ∆q(V

q
B̄
H|φ〉)’s.

The seventh equality holds, because ∆p(V
p

B H
|ψ〉)⊗∆q(V

q
B̄
H|φ〉) with different values of p and

q are orthogonal to each other. In the eighth line, we used Eq. (A.2).
Let ∆k act on the left side and the last line of Eq. (A.9), we get

∆kW |ψ〉|φ〉k =
⊕

l+m=k

∆lW
|ψ〉
l ⊗∆mW |φ〉m . (A.10)

Then compute the dimension

|∆kW |ψ〉|φ〉k |=
∑

l+m=k

|∆lW
|ψ〉
l ⊗∆mW |φ〉m |

=
∑

l+m=k

|∆lW
|ψ〉
l ||∆mW |φ〉m | .

(A.11)
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Remind that these are coefficients of entanglement polynomials

f (|ψ〉) f (|φ〉) =

 N|ψ〉
∑

l=0

|∆lW
|ψ〉
l |x

l

! N|φ〉
∑

m=0

|∆mW |φ〉m |x
m

!

=
N|ψ〉+N|φ〉
∑

k

xk
∑

l+m=k

|∆lW
|ψ〉
l ||∆mW |φ〉m |

=
N|ψ〉+N|φ〉
∑

k

|∆kW |ψ〉|φ〉k ||xk

=
N|ψ〉⊗|φ〉
∑

k

|∆kW |ψ〉|φ〉k |xk

= f (|ψ〉 ⊗ |φ〉) .

(A.12)

In the third equality, Eq. (A.11) is used. In the forth equality, we used N|ψ〉⊗|φ〉 = N|ψ〉 + N|φ〉.
Thus Eq. (10) is proven. Note that if Eq. (10) is assumed, then we can derive Eq. (A.11)
by comparing the coefficients of the second line and that of the forth line of Eq. (A.12). So
Eq. (A.11) is equivalent to Eq. (10).

B Size additivity and polynomial factorization

Eq. (10) can be interpreted as a stronger form of the additivity of the state-dependent operator
size. To illustrate it, we first briefly review several related notions.

B.1 State-dependent operator size

Given a state |ψ〉, we can costruct a series of subspaces∆Wk defined by Eq. (6). As mentioned
in Section 2, states in∆Wk cannot be generated by k−1-local operators acting on |ψ〉 but can
be generated by k-local operators. For this reason, if an operator O transforms |ψ〉 into a state
in∆Wk, then we are tempted to say that there are k qudits are changed by O on average. This
is not a rigorous statement at this stage, but it is an appropriate interpretation of∆Wk. In fact,
this interpretation is my original motivation to design the definition of the state-dependent
operator size [11].

Denote the projector onto Wk as Pk. According to Eq. (6), the projector onto ∆Wk is given
by

∆Pk = Pk − Pk−1 . (B.1)

Suppose |ψ〉 is transformed into |φ〉. According to the above interpretation, if |φ〉 ∈∆Wk for
some k, we say that k qudits are changed on average. In other words, there should be a size
operator such that ∆Wk is its eigenspace with eigenvalue equal to k, i.e.

n|ψ〉 =
N
∑

k=0

k∆Pk . (B.2)

This is the size operator mentioned in Eq. (1). The subscript of n|ψ〉 indicates the dependence
on |ψ〉.2 N is the number of all qudits. For a general state |φ〉, the expectation value of the

2The range of k starting from 0 in Eq. (B.2) is chosen for later convenience. One may notice that the subscript
of N|ψ〉 is omitted in Eq. (B.2). This does not contradict with Eq. (6). According to Eq. (B.1), ∆Pk = 0 for k > N|ψ〉.
This subscript will also be omitted in the following formulas for the same reason.
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number of changed qudits is
S(|φ〉, |ψ〉) = 〈φ|n|ψ〉|φ〉 . (B.3)

We can call it the size of |φ〉 relative to |ψ〉. Note that if we replace |φ〉 by
O|ψ〉/〈ψ|O†O|ψ〉1/2, then the state-dependent operator size mentioned in Eq. (1) is recov-
ered.

B.2 Size additivity

Since the relative size defined in Eq. (B.3) is interpreted as the average number of changed
qudits, if there are two independent systems B1 and B2, then the relative size should satisfy
the additivity

S (|φ1〉|φ2〉, |ψ1〉|ψ2〉) = S(|φ1〉, |ψ1〉) +S(|φ2〉, |ψ2〉) . (B.4)

|φi〉, |ψi〉 ∈HBi
with i = 1, 2. |φ1〉 and |φ2〉 are arbitrary, so Eq. (B.4) is equivalent to

n|ψ1〉|ψ2〉 = n|ψ1〉 + n|ψ2〉 . (B.5)

Before proving it, let me illustrate a stronger condition that should hold. Using Eq. (B.2) and
Eq. (B.3), the relative size can be expressed as

S(|φi〉, |ψi〉) =
N
∑

k=0

k〈φi|∆P |ψi〉
k |φi〉 . (B.6)

The superscript of ∆P |ψi〉
k indicates its dependence on |ψi〉. 〈φi|∆P |ψi〉

k |φi〉 can be interpreted
as the probability that k qudits are changed on average. We denote it as Pri(k) for later con-
venience,

Pri(k)≡ 〈φi|∆P |ψi〉
k |φi〉 . (B.7)

We further denote the probability that k1 qudits of B1 and k2 qudits of B2 changed on average
as Pr(k1, k2). Since we assume B1 and B2 are independent, we have

Pr(k1, k2) = Pr1(k1)Pr2(k2) . (B.8)

Then the probability, Pr(k1 + k2 = k), that the total number of changed qudits of B1 and B2 is
equal to k should be given by

Pr(k1 + k2 = k) =
∑

k1+k2=k

Pr(k1, k2) =
∑

k1+k2=k

Pr1(k1)Pr2(k2) . (B.9)

Using Eq. (B.7), we get

〈φ1|〈φ2|∆P |ψ1〉|ψ2〉
k |φ1〉|φ2〉=

∑

k1+k2=k

〈φ1|∆P |ψ1〉
k1
|φ1〉〈φ2|∆P |ψ2〉

k2
|φ2〉 . (B.10)

Since |φ1〉 and |φ2〉 are arbitrary, we get

∆P |ψ1〉|ψ2〉
k =

∑

k1+k2=k

∆P |ψ1〉
k1
∆P |ψ2〉

k2
. (B.11)

I should emphasize that, until now, we have not proven or derived Eq. (B.4) or Eq. (B.11).
Instead, we are discussing what properties should hold for a proper definition of relative size.
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To prove them, note that ∆Pk is the projector onto ∆Wk, so Eq. (B.11) is equivalent to
Eq. (A.10) which is proven in Section A. Eq. (B.4) can be derived from Eq. (B.11). To see it,
note that

S(|φ1〉|φ2〉, |ψ1〉|ψ2〉) =
|B1|+|B2|
∑

k=0

k〈φ1|〈φ2|∆P |ψ1〉|ψ2〉
k |φ1〉|φ2〉

=
|B1|+|B2|
∑

k=0

k
∑

k1+k2=k

〈φ1|∆P |ψ1〉
k1
|φ1〉〈φ2|∆P |ψ2〉

k2
|φ2〉

=
|B1|+|B2|
∑

k=0

∑

k1+k2=k

(k1 + k2)〈φ1|∆P |ψ1〉
k1
|φ1〉〈φ2|∆P |ψ2〉

k2
|φ2〉

=
|B1|
∑

k1=0

|B2|
∑

k2=0

(k1 + k2)〈φ1|∆P |ψ1〉
k1
|φ1〉〈φ2|∆P |ψ2〉

k2
|φ2〉

=
|B1|
∑

k1=0

|B2|
∑

k2=0

k1〈φ1|∆P |ψ1〉
k1
|φ1〉〈φ2|∆P |ψ2〉

k2
|φ2〉

+
|B2|
∑

k2=0

|B1|
∑

k1=0

k2〈φ1|∆P |ψ1〉
k1
|φ1〉〈φ2|∆P |ψ2〉

k2
|φ2〉

=
|B1|
∑

k1=0

k1〈φ1|∆P |ψ1〉
k1
|φ1〉

|B2|
∑

k2=0

〈φ2|∆P |ψ2〉
k2
|φ2〉

+
|B2|
∑

k2=0

k2〈φ2|∆P |ψ2〉
k2
|φ2〉

|B1|
∑

k1=0

〈φ1|∆P |ψ1〉
k1
|φ1〉

=
|B1|
∑

k1=0

k1〈φ1|∆P |ψ1〉
k1
|φ1〉+

|B2|
∑

k2=0

k2〈φ2|∆P |ψ2〉
k2
|φ2〉

= S(|φ1〉, |ψ1〉) +S(|φ2〉, |ψ2〉) .

(B.12)

In the second equality, we used Eq. (B.10). |Bi| is the number of qudits in Bi . So Eq. (B.11) is
a stronger condition than Eq. (B.4). For this reason, we call Eq. (B.11) the strong additivity.
Remind that Eq. (B.11) is equivalent to Eq. (A.10) and Eq. (A.10) implies Eq. (A.11) which
is equivalent to Eq. (10). Thus, the strong additivity implies Eq. (10) and the size additivity
Eq. (B.4).

Note that the entanglement polynomial is equal to the trace3

f (|ψ〉) = tr

� N
∑

k=0

xk∆P |ψ〉k

�

. (B.13)

We define an operator

F |ψ〉 ≡
N
∑

k=0

xk∆P |ψ〉k . (B.14)

Then Eq. (B.11) is equivalent to

F|ψ1〉|ψ2〉 = F|ψ1〉F|ψ2〉 . (B.15)

3The subscript of N|ψ〉 is omitted for the same reason mentioned in footnote 2.
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Eq. (10) can be derived by taking the trace. The size operator is related to F by

n|ψ〉 = ∂x F|ψ〉|x=1 . (B.16)

Using Eq. (B.15), we get

n|ψ1〉|ψ2〉 = ∂x(F|ψ1〉|ψ2〉)|x=1

= [(∂x F|ψ1〉)F|ψ2〉]|x=1 + [F|ψ1〉(∂x F|ψ2〉)]|x=1

= ∂x F|ψ1〉|x=1 + ∂x F|ψ2〉|x=1

= n|ψ1〉 + n|ψ2〉 .

(B.17)

In the third equality, we used the fact that F|ψ〉|x=1 is equal to the identity. This is a simpler
derivation of the size additivity.

C Proof of theorem 3

Note that

|V kHg|ψ〉|= |V k gH|ψ〉|
= |g g−1V k gH|ψ〉|
= |g−1V k gH|ψ〉|
= |V kH|ψ〉| .

(C.1)

In the first equality, we defined the operator action on the Hilbert space

gW ≡ Span
�

g|ψ〉
�

� |ψ〉 ∈W
	

. (C.2)

In the third equality, we used the fact that an invertible operator induces an automorphism on
the vector space. Eq. (6) implies

|∆Wk|= |V kH|ψ〉| − |V k−1H|ψ〉| . (C.3)

Note that
g−1V g = V⇔∀ k ∈ N , g−1V k g = V k . (C.4)

Collecting Eq. (7), Eq. (C.1) and Eq. (C.3), Theorem 3 is proven.

D Proof of Wk = Im(ρk)

In this section, we prove Eq. (31). We first prove two lemmas.

Lemma 1 Suppose that ρ,σ ∈ End (W ) are positive semi-definite operators and denote their
image by Im(ρ) and Im(σ) respectively. We have

Im(ρ +σ) = Im(ρ) + Im(σ) . (D.1)
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Proof 1 By definition, a positive semi-definite operator O satisfies

〈ψ|O|ψ〉= 0 ⇐⇒ |ψ〉 ∈ Ker(O) . (D.2)

Ker(O) is the kernel of O. Notice that

〈ψ|ρ +σ|ψ〉 ⇐⇒ 〈ψ|ρ|ψ〉= 0 , 〈ψ|σ|ψ〉= 0 . (D.3)

Thus their kernel satisfy
Ker(ρ +σ) = Ker(ρ)∩Ker(σ) . (D.4)

Since the kernel of a hermitian operator is the orthogonal complement of its image, Eq. (D.1) is
proven.

Remind that, given a state ρ, the reduced density matrix ρB̄ ∈AB̄ is defined by

tr(OρB̄) = tr(Oρ) , ∀ O ∈AB̄ . (D.5)

Lemma 2 Suppose U ∈AB is unitary and dU is the normalized Haar measure. Given a state ρ,
we have

∫

U∈AB

UρU†dU = ρB̄ . (D.6)

Proof 2 Given an arbitrary operator O ∈AB̄, we have

tr(O
∫

U∈AB

UρU†dU) =

∫

U∈AB

tr(OUρU†)dU

=

∫

U∈AB

tr(UOρU†)dU

=

∫

U∈AB

tr(U†UOρ)dU

= tr(Oρ)
∫

U∈AB

dU

= tr(Oρ) .

(D.7)

Since operators in AB and AB̄ commute, we have the second equality. In the last equality, we used
the normalization

∫

U∈AB

dU = 1 . (D.8)

Now we only need to prove
∫

U∈AB
UρU†dU ∈ AB̄. Suppose W is a unitary operator in AB.4

4This “W ” should not be confused with the symbol of the k-local subspace.
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Denote W U by UW , so U =W †UW . Then we have

W

∫

U∈AB

UρU†dU =

∫

U∈AB

UWρU†dU

=

∫

U∈AB

UWρ(W
†UW )

†d(W †UW )

=

∫

U∈AB

UWρU†
W W d(W †UW )

=

�

∫

U∈AB

UWρU†
W dUW

�

W

=

�

∫

U∈AB

UρU†dU

�

W .

(D.9)

Since any operator can be expressed as a linear combination of unitary operators, we have
�

O,

∫

U∈AB

UρU†dU

�

= 0 , ∀ O ∈AB . (D.10)

Since the Hilbert space is factorized, we conclude that
∫

U∈AB
UρU†dU is in AB̄.

Combine the above two lemmas, we can prove the following identity for a pure state ρ,

Wk = Im(ρk) . (D.11)

To prove it, we note that

Im(ρk) = Im

 

∑

|B|=k

ρB̄

!

=
∑

|B|=k

Im
�

ρB̄

�

=
∑

|B|=k

Im

�

∫

U∈AB

UρU†dU

�

=
∑

|B|=k

∑

U∈AB

Im
�

UρU†
�

=
∑

|B|=k

Span{U |ψ〉
�

�U ∈AB}

=
∑

|B|=k

ABH|ψ〉

= V kH|ψ〉

=Wk .

(D.12)

In the second, fourth, and fifth equality, we used Lemma 1. In the third equality, we used
Lemma 2. Since any operator can be expanded by unitary operators, we have the sixth equality.
The other equalities hold by definition. Eq. (D.11) implies Eq. (31) immediately.

There are different ways to define renormalized states. Remind that renormalized states
defined in Eq. (26) correspond to the uniform probability distribution. Now we consider gen-
eral distributions. Denote the probability distribution of lost part B as p(B). Then for a given
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state ρ, the average of the expectation value of O in the noisy laboratory is

〈O〉noise =
∑

B

p(B)tr(OρB̄) . (D.13)

Define the renormalized state
ρk ≡

∑

|B|=k

p(B)ρB̄ . (D.14)

If the measure of lost part is fixed to be k, then we have

〈O〉noise = tr(Oρk) . (D.15)

Using Lemma 1, note that

Im(ρk) =
∑

|B|=k

Im[p(B)ρB̄] =
∑

|B|=k

Im(ρB̄) , (D.16)

for positive definite p(B). Thus, the derivation of Eq. (D.12) applies to the case of any positive
definite distribution.
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