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Abstract

We demonstrate the applicability and advantages of Discontinuous Galerkin (DG)
schemes in the context of the Functional Renormalization Group (fRG). We investigate
the O(N)-model in the large N limit. It is shown that the flow equation for the effective
potential can be cast into a conservative form. We discuss results for the Riemann prob-
lem, as well as initial conditions leading to a first and second order phase transition. In
particular, we unravel the mechanism underlying first order phase transitions, based on
the formation of a shock in the derivative of the effective potential.
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1 Introduction

The coherent description of strongly correlated quantum systems is one of the great challenges
of modern theoretical physics. While great progress has been achieved in the last decades, the-
ories like the Hubbard model or QCD still provide many challenges to overcome, due to their
strongly correlated nature. Different methods usually have different strengths and comple-
ment each other. Functional Methods are excellent at uncovering physical mechanisms and
relevant degrees of freedom. In particular, the Functional Renormalization Group (fRG), in-
troduced in [1–3], provides a very powerful tool to investigate the phase structure in strongly
correlated theories, ranging from condensed matter systems to quantum gravity. Truncations
of the underlying functional partial differential equation within this framework usually result
in system of convection-diffusion equations. Despite their successful investigation in a tremen-
dous amount of theories, their numerical treatment with non-analytic solutions has so far not
been studied in detail. In turns out that this situation is relevant in the vicinity of a first or-
der phase transition, which demands the usage of suitable numerical tools. The leading order
equations within such truncations governing the Renormalization Group (RG) evolution can
be cast into a conservative form, which is very similar, in some aspects, to the equations stud-
ied in hydrodynamics and in general, mathematical physics. This already suggests the use of
suitable numerical techniques, incorporating e.g. the directed flow of information.

Equations of this type generally lead to the formation of a discontinuity in the solution.
Therefore, the applied numerical scheme has to be able to handle non-analyticities appropri-
ately. A standard and robust choice is the Finite Volume (FV) scheme, where the equations
are solved in a collection of small volumes. Schemes of this type are capable of treating dis-
continuities in a stable manner. However, they are lacking in accuracy, since it is challenging
to adopt higher order formulations while preserving numerical stability. On the other hand,
Pseudo-Spectral methods are designed to have an arbitrarily high order accuracy, since the so-
lution is obtained in a functional space spanned by a suitable basis. However, non-analyticities
in the solution usually lead to spurious oscillations, which may ruin the stability of the scheme.
Discontinuous Galerkin (DG), introduced in [4–8], schemes utilize the strengths of both meth-
ods. The domain is decomposed in small volumes; therefore, discontinuities are well treated,
and the solution is approximated locally within an appropriate basis to achieve high accuracy.
The demand for high accuracy in fRG calculations, combined with the convection dominated
nature of the equations, makes DG schemes a natural choice.

Here, we present the application of Discontinuous Galerkin methods to the O(N)-model
for N ≫ 1, within the fRG framework. The paper is organized as follows: To close the gap
between the fRG as well as the DG community, and languages therein, we introduce both
fields in Section 1.1 and Section 1.2, respectively. In Section 2 the O(N)-model in the large
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Figure 1: Graphical representation of the Wetterich equation (1). The line represents
the full, regularized propagator Gk, while the crossed circle denotes the regulator
derivative insertion ∂tRk, with respect to the RG-time t = − ln

� k
Λ

�

.

N limit and the applications of DG methods to the flow equation of the effective potential are
discussed. Numerical results are presented in Section 3, starting with the associated Riemann
problem in Section 3.1. Initial conditions quartic in the field, leading to a second order phase
transition, are presented and compared to results from the method of characteristics in Sec-
tion 3.2. Increasing the order of the potential in the initial conditions allows for a first order
phase transition, which is discussed in Section 3.3. Finally, we close with conclusions and
future perspectives in Section 4.

1.1 The functional renormalization group

Here we give a very brief introduction to the fRG, which should be sufficient to outline the
underlying basic ideas, more complete introductions/reviews can be found in e.g. [9–11].

The fRG implements the idea of Wilsonian renormalization, while providing a suitable
regularization of the underlying Quantum Field Theory (QFT). This results in an exact equation
(1) for the effective average action Γk[Φ], where Φ is a vector collecting all quantum fields of
the theory under investigation. The effective average action Γk[Φ] is the generator of One-
Particle Irreducible (1PI) correlation functions, where all fluctuations up to momentum scale
p2 ∼ k2 have been taken into account. In the fRG momentum shells are integrated out around
the momentum scale k and is described by [1],

∂kΓk[Φ] =
1
2

Tr

�

 

1

Γ
(2)
k [Φ] + Rk

!

i j

(∂kRk)i j

�

, (1)

where the trace integrates over momenta and internal spaces, such as color space for a gauge
theory. Rk is the regulator that acts as like a mass and therefore regularizes the effective

propagator Gk =
�

Γ
(2)
k [Φ] + Rk

�−1

i j
. The indices describe the different field and have to be

summed over. Finally, the scale derivative of the regulator ∂kRk acts as a UV-cutoff and renders
the theory UV finite.

In this manner, (1) interpolates between the classical action Γk[Φ]→ S[Φ] for k→∞ and
the full quantum effective action Γk[Φ]→ Γ [Φ] for k→ 0, which is the generating functional
for all correlation functions of the quantum theory and therefore its solution. It is convenient
to work with a dimensionless RG-time

t = −ln
�

k
Λ

�

, (2)

which also captures the natural scaling of dimensionless couplings. In (2) we have included
an additional minus sign compared to most fRG related works, to have a positive RG-time
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evolution. The reference scale Λ is also usually used to as initial scale for (1), where one
assumes that the classical theory describes the underlying theory sufficiently well, for more
details on this and the related issue of RG consistency, see e.g. [12]. Equation (1), and related
flow equations, are often depicted graphically, the representation of (1) is shown in Figure 1.

Finding suitable truncations, i.e. an ansatz for the effective average action Γk[Φ], is not
an easy task and usually one has to follow physical intuition, taking correlations functions of
the relevant degrees of freedom into account. This corresponds to an expansion of correla-
tion functions in field space, as well as momentum space. Truncations that keep dominantly
the field dependence, while taking the momentum dependence only to a low order into ac-
count, are usually referred to as derivative expansion, see e.g. [9, 13–32]. On the other hand,
truncations that dominantly resolve the momentum dependence of correlation functions, but
quite often also resolve field dependencies, are usually referred to as vertex expansion, see
e.g. [33–47]. In practice, often a mixed approach must be used to achieve quantitative results,
while the qualitative features of the system under investigation can often be captured by rather
simple truncations.

In practice, the partial different equation part of the resulting equations for a given ansatz
are usually non-linear convection-diffusion equations. During the most part of the flow, these
equations are also convection dominated, since (1) is already designed to be dominated by
a single scale, set by the RG-time t, in all quantities. We will come back to this point in
Section 3.2.2. Additionally, in our application to the O(N)-model in the large N limit, this
becomes exact, i.e. it the resulting flow equation is a convection equation, c.f. (6). Moreover,
it can be cast into a conservative form, therefore we will restrict the introduction to DG methods
in some parts to conservation laws to keep it simple. Having the equation in a conservative
form is particularly convenient, since it allows us to understand how a jump discontinuity in
the solution forms and propagates.

1.2 Discontinuous Galerkin methods

We review some basic facts about DG schemes following [48], for simplicity we restrict our-
selves to one spatial dimension. For an introduction to foundations of numerical methods for
PDEs, that DG schemes build upon, e.g. Finite Element and Finite Volume Methods, the reader
is referred to [49–51].

The problem is considered over a domain Ω, with boundary ∂Ω, approximated by a com-
putational domain Ωh, composed by K non-overlapping elements Dk

Ω≃ Ωh =
K
⋃

k=1

Dk . (3)

The approximate solution is then represented by

u(t, x)≃ uh(t, x) =
K
⊕

k=1

uk
h(t, x) . (4)

The local solution is approximated in each element by a polynomial of degree N

uk
h(t, x) =

N+1
∑

n=1

ûk
n(t)ψn(x) =

N+1
∑

i=1

uk
h(t, xk

i )l
k
i (x) , (5)

where the first version is the modal expansion, expressing the solution in terms of a local
polynomial basis ψn(x). The second approximation in (5) is referred to as nodal expansion,
which introduces N + 1 grid points xk

i and lk
i (x) is the associated Lagrange polynomial. For
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calculations, we use the usual Legendre basis in the modal expansions and the Legendre-Gauss-
Lobatto quadrature points as grid points in the nodal expansion. A few more details are given
in Appendix A.

The main task at hand is to solve the conservation law, which turns out to be the relevant
form of the equation in our application, posed as an initial value problem

∂tu+ ∂x f (u) = 0 , (6)

where we assume the flux f to be convex, and it may also depend on the time t. We now
require that the residual is orthogonal to the basis function locally in each element

∫

Dk

�

∂tu
k
h + ∂x f k

h (u
k
h)
�

ψn dx = 0 , (7)

i.e. the space of test functions for which we require the orthogonality of the residual of the
equation is chosen to be the same as the function space of the solution approximation. Choos-
ing the test function space and the function space of the solution equal is referred to Galerkin
method, hence the name Discontinuous Galerkin methods. Additionally, due to the discon-
nected nature of the approach, (7) has still more degrees of freedom than equations. To
resolve this, we integrate (7) by parts and obtain the locally defined weak formulation

∫

Dk

�

�

∂tu
k
h

�

ψn − f k
h (u

k
h)∂xψn

�

dx = −
∫

∂ Dk

f ∗ · n̂ ψn dx , (8)

where we have already replaced the flux on the right-hand side with an approximation thereof,
the numerical flux f ∗, discussed below. In the one dimensional case the element boundary ∂ Dk

consists of two points and the outward pointing normal vector is n̂= ±1. Integrating (8) once
more by parts we obtain the strong formulation

∫

Dk

�

∂tu
k
h + ∂x f k

h (u
k
h)
�

ψn dx =

∫

∂ Dk

n̂ ·
�

f k
h (u

k
h)− f ∗

�

ψn dx , (9)

which we also use throughout this work for all numerical calculations. It is important to stress
that the solution is only defined element wise. The value of the flux at the boundary is not
necessarily equal to the value of the flux on a boundary node, but depends on the solution
of all elements sharing that particular intersection, i.e. two in one dimension. Therefore, the
numerical fluxes are define on each intersection and depend non-trivially on the value of the
approximate solution on all adjacent elements. Specifying the numerical flux closes the set of
equations. For the case of a scalar conservation law one can rely on the results for the choice
of numerical fluxes obtained in Finite Volume Methods, where the subject has been studied
extensively, see e.g. [48,50]. The main requirements are consistency, i.e. f ∗(u, u) = f (u), and
monotonicity. We will refrain here from a more detailed discussion on numerical fluxes and
rather state that we work with the Local Lax-Friedrichs flux [52] given by

f ∗(u−h , u+h ) = {{ fh(uh)}}+
C
2
[[uh]] , (10)

where an index− denotes the interior information of the element while an index+ denotes the
exterior information of the element. The brackets denote the average and jump, respectively

{{u}}=
1
2

�

u− + u+
�

,

[[u]] = n̂−u− + n̂+u+ .
(11)
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The constant C in (10) is chosen as the maximal wave speed in a local manner as

C ≥max
u±
|∂u f (u)| , (12)

which is related to the fastest propagating mode. To be more precise, the numerical flux also
ensures the convergence to the correct result in situations where discontinuities are present,
i.e. it ensures the convergence to the correct solution. This solution can be interpreted as
being fixed by an entropy condition or as the inviscid limit of the equation with an infinitesimal
viscosity term.

Additionally, boundary conditions have to be specified for all inflow boundaries, given by
n̂ · (∂u f )< 0.

Finally, we would like to note that (9) can be written as

Mk∂tu
k
h +Sk f k

h =
�

lk(x)( f k
h − f ∗)

�xk
r

xk
l

, (13)

resulting in a fully discretized scheme, where we have introduced the two matrices

Mk
i j =

∫

Dk

lk
i (x)l

k
j (x)dx ,

Sk
i j =

∫

Dk

lk
i (x)∂x lk

j (x)dx . (14)

In the usual manner, the discretized operators (14) are calculated for a reference element and
the appropriate mappings to the actual elements invoked.

2 O(N)-model

We consider the O(N)model in d-dimensional Euclidean spacetime. The field can be described
by a collection of N scalar fields φa(x) with a = 1, · · · , N . The action for N scalar field is

S =

∫

dd x
§

1
2
(∂µφa)

2 + V (ρ)
ª

, (15)

where V (ρ) is the interacting potential. The O(N) symmetry acts on the fields as an orthogonal
transformationφa→ Oabφb. Consequently, the O(N)-invariant terms are those constructed by
the modulus of the fields φaφa. Given this symmetry, the potential is restricted to depend only
on O(N)-invariant terms, namely the combination ρ = 1

2φaφ
a. This quite simple model can

nevertheless describe an immense variety of physical system at different energy scale, from
the Higgs sector of the standard model to the phase transition in ferromagnets. The O(N)
model is the prototype used to investigate phase transition in different type of systems. For
N = 4 and d = 4 the model describes the scalar sector of the standard model (at zero Yukawa
couplings). It also captures the essential features of the chiral phase transition in QCD in the
limit of two flavors. Moving to lower energy scales, N = 3 corresponds to the Heisenberg
model that describes the phase transition of a ferromagnet. In condensed matter, i.e. d ≤ 3,
there are many other applications of the O(N) model, as for example N = 2 can describe the
helium superfluid phase transition or N = 1 is the liquid-vapour transition. The motivation for
the wide range of applicability of such a simple model comes from the universal behavior of
physical systems close to a phase transition; under these circumstances the microscopic details
of a system are not important, only a few characteristics like the underlying symmetry govern
the physics close to the phase transition.

For this reason, the O(N) model is the perfect prototype to understand relevant mecha-
nisms that govern a phase transition.
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2.1 Flow equations

To derive flow equations, we need to truncate the effective action, i.e. we need to choose
an ansatz. Here we work in a derivative expansion, i.e. we expand the action in terms of
gradients of the field. The zeroth order of the expansion is usually referred to as Local potential
approximation (LPA). For our intended purpose, i.e. N ≫ 1, this approximation becomes
exact [53]. Within LPA the ansatz for the effective action is given by

Γk[φ] =

∫

x

§

1
2
(∂µφa)

2 + V (t,ρ)
ª

, (16)

where V (t,ρ) is the effective potential, which depends only on the RG-time as well as the O(N)
invariant ρ = 1

2φaφ
a. Having specified the ansatz for the effective action, we can derive a PDE

for the effective potential by evaluating the right-hand side of (1). This requires the knowledge
of the regularized propagator, or equivalently the two-point function

Γ
(2)
ab (t,ρ, p) =

�

p2 + V ′(t,ρ)
�

δab + 2ρV ′′(t,ρ)δaNδbN , (17)

where we introduced the shorthand notation V ′(t,ρ) = ∂ρV (t,ρ) and specified the field di-
rection where it can acquire a non-vanishing expectation value. Plugging (17) into (1), using
a regulator that’s diagonal in field space, and carrying out the trace up to the momentum
integral one obtains

∂t V (t,ρ) =
1
2

∫

q

��

N − 1
q2 + V ′(t,ρ) + Rk(q)

+
1

q2 + V ′(t,ρ) + 2ρV ′′(t,ρ) + Rk(q)

�

∂tRk(q)
�

.

(18)
As regulator we chose the usual Litim regulator

Rk(p) = (k
2 − p2)Θ(k2 − p2) , (19)

which provides the optimal [54] choice in LPA. Additionally, we rescale ρ and V (t,ρ) with
factors of 1/N − 1,

ρ→ (N − 1)ρ , (20)

V (t,ρ)→ (N − 1)V (t,ρ) ,

which allows for easy access to the large N limit. Putting (18), (19) and (20) together, the
integration becomes trivial and we arrive at the flow equation for the effective potential

∂t V (t,ρ) = −Ad(Λe−t)d+2
�

1
(Λe−t)2 + V ′(t,ρ)

+
1

N − 1
1

(Λe−t)2 + V ′(t,ρ) + 2ρV ′′(t,ρ)

�

,

(21)
with Ad = Ωd(2π)−d/d and Ωd = 2πd/2Γ ( d

2 )
−1 is the volume of a d − 1 dimensional sphere.

Please note that Γ denotes only in this context the usual Gamma function. Due to the rescaling
(20) it is very easy to go to the limit N ≫ 1, i.e. we drop the last term in (21)

∂t V (t,ρ) = −Ad
(Λe−t)d+2

(Λe−t)2 + V ′(t,ρ)
. (22)

Before doing calculations we still have to fix the dimension d as well as the initial UV-scale
Λ in (22). For the dimension we chose d = 3, enabling us to investigate phase transitions
of first and second order. The choice of the UV-cutoff is completely arbitrary, and therefore
we chose Λ = 1 a.u.. Where a.u. denotes arbitrary unit, and consequently all dimensionful
quantities are rescaled by appropriate powers of Λ to make them dimensionless in a practical
manner, but not from an RG perspective. To keep the notation concise, the rescaled quantities
are not denoted in a different manner but are understood dimensionless for the remainder of
this work. This theory has been studied extensively within the fRG, see e.g. [55–57].
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2.2 Numerical treatment

The flow equation (22) is non-linear, since the derivative of the potential with respect to the
field expectation value appears on the right-hand side in a non-linear manner. However, for
numerical purposes, and to apply DG schemes, it is preferable to formulate the problem in
conservative form. As V (t,ρ) is related to the zero-point energy of the underlying QFT, its
equation should not depend on itself, as it is already the case in (1), and consequently also in
(22). As a direct consequence, the first derivative of the potential is a conserved quantity, in
the sense of (6). Therefore, we introduce the derivative of the potential as a new variable

u(t,ρ) = ∂ρV (t,ρ) , (23)

as well as the flux

f (t, u) = Ad
(Λe−t)d+2

(Λe−t)2 + u
. (24)

Because all derivatives of a solution of a PDE must also satisfy the PDE, we can take a derivative
of (22) to obtain an equation for the derivative of the potential u, which is easily expressed in
terms of the flux (24)

∂tu+ ∂ρ f (t, u) = 0 . (25)

Therefore, we are left with the task of solving a scalar conservation law with a flux that depends
explicitly on the RG-time, allowing us to make immediate use of the spatial discretization pre-
sented in Section 1.2. As boundary condition we need to specify the flux at large field values,
the inflow boundary. However, in this case it is naturally suppressed for physical initial con-
ditions, c.f. (24). Therefore, we have fixed the flux at the boundary to a flux with the initial
derivative of the potential. Additionally, we have verified explicitly that we obtain numerically
equivalent results by setting the flux to zero at the boundary. Both cases are therefore suf-
ficiently close to the true boundary conditions, i.e. fixing the flux to the initial conditions at
infinite field values. It is noteworthy that the flux (24) is convex for all RG-times. Additionally,
we would like to note that the weak formulation has already been used in the context of the
fRG in [58].

The time dependence is treated with the method of lines, i.e. we use the usual machinery
of ordinary differential equations (ODE). Preferably one uses a suitable explicit scheme in this
context as numerical stability can be ensured, when the size of the time steps respects the
associated Courant-Friedrichs-Lewy (CFL) condition, see e.g. [48]. The condition states that
stability is ensured as long as the physical light cone of the system is contained in the numerical
one, see e.g. [51]. Therefore, it is related to the propagation of information and is bounded
by the physics of the system, e.g. in relativity it should always be less than the speed of light.
However, the equation encountered here is quite peculiar from this point of view, since the
characteristic speed of information ∂u f is not bounded and time dependent. As we will show
in section Section 3.2.2 in the limit t →∞ the wave speed generally diverges exponentially
fast for a subdomain. Therefore, the time step required by the CFL condition also decreases ex-
ponentially fast and becomes infeasible in this region. This can be circumvented using implicit
methods, and we resorted to the family of Backward Differentiation Formula (BDF) methods,
where we used SUNDIALS [59] through its Mathematica interface [60]. Additionally, we have
compared our results for all qualitatively different solutions to a strong stability persevering
scheme Runge-Kutta scheme [61], with a time step chosen through the CFL condition.

The numerical schemes outlined here are generally applicable, in particular also to future
applications in relativistic hydrodynamics [51, 62–66]. Additionally, the high-performance
aspects of DG methods, see e.g. [67–69], are a promising perspective for complex fRG settings,
where the computational complexity grows fast.
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(a) Derivative of the effective potential u(t,ρ)
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Figure 2: RG-time evolution of u(t,ρ) for the Riemann problem (32). The dots
represent the analytic result of the position of the shock (28) and the boundaries
of the rarefaction wave (31). The numerical results were obtained with K = 1500
elements and a local accuracy of order N = 3. The results for the derivative of the
potential were post-processed with a minmod limiter.

3 Results

3.1 Riemann problem

The Riemann problem is a well-known problem, usually studied in fluid dynamics, and is
designed to understand how discontinuities arises and evolve. It consists of finding the solution
to the PDE at hand with piecewise constant initial condition

u(0,ρ) =

¨

uL , ρ ≤ ξ0 ,

uR , ρ > ξ0 ,
(26)

where we restrict ourselves to the case uL/R ≥ 0, due to the possibly divergent flux (24) other-
wise. For these initial conditions, the solution will either develop a shock or a rarefaction wave,
depending on whether the characteristic curves intersect or not, respectively. For our problem
at hand, i.e. equation (25) together with the flux (24), information is propagating from large
ρ to small ρ, therefore we will have a propagating shock when uL > uR, and consequently a
rarefaction wave when uL < uR.

3.1.1 Analytic investigation

For the case of a propagating shock the position ξ of it must satisfy the Rankine-Hugoniot
condition, see Appendix C for a derivation or e.g. [48],

dξ(t)
dt

=
[[ f ]]
[[u]]

, (27)

where the difference bracket is defined in (11). Since the flux (24) does not depend on field
space, the solution will trivially stay piecewise constant. From (27) it can immediately be seen
that the speed of shock is time dependent and exponentially suppressed for large times, since
it is the case for the flux (24), independent of the values of uL/R. The differential equation (27)
can be solved analytically, where we employ as initial condition ξ(t = 0) = ξ0. The solution
of (27) together with (24) in d dimensions is

ξ(t) = ξ0 + Ad
Λd

d (uR − uL)

�

F̃2 1

�

uR

Λ2

�

− F̃2 1

�

uL

Λ2

�

− e−d t F̃2 1

�

uR

Λ2
e2t
�

+ e−d t F̃2 1

�

uL

Λ2
e2t
�

�

,

(28)
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where F̃2 1 (z) = F2 1 (1,− d
2 , 1 − d

2 ,−z) and F2 1 is the Gaussian or ordinary hypergeometric
function. Specifying to d = 3, Λ= 1 and uR = 0 it is possible to simplify (28) considerably

ξ(t) = ξ0 +
1

6π2

�

e−t − 1+
p

uL

�

cot−1(
p

uL)− cot−1
�

etpuL

�

��

. (29)

We have chosen the specific value of uR = 0, because it will be the situation encountered later
in the case of a first order phase transition, c.f. Section 3.3. The form (29) gives us access to
the infinite RG-time limit

ξ∞ ≡ ξ(t →∞) = ξ0 +
p

uL cot−1
�p

uL

�

− 1

6π2
. (30)

Therefore, the shock freezes in at large RG-time, and it does so exponentially fast at late times.
Where the latter statement can be seen from the expansion of the cot−1 term in (29).

Having discussed the analytic case of a shock wave, we turn now to the case of a rarefaction
wave, i.e. uR > uL. From the perspective of the characteristic curves, the one at the left
boundary is moving faster than the one on the right boundary. Compared to the previous
case, here the characteristics aren’t overlapping, but rather there is a lack of characteristics.
Nevertheless, the problem admits a unique solution, but unfortunately due to the explicit time
dependence of the flux (24), the explicit solution cannot be constructed in the usual manner.
The speed of the boundary points ξB however is directly related to the associated characteristics
and therefore their explicit solution is easily constructed

ξB
L/R(t) = ξ

B
0 −

AdΛ
d

2

�

e−d t

uL/R + (Λe−t)2
−

1
uL/R +Λ2

−
d(Λe−t)d−2

Λd(d − 2)
F2 1

�

1,1−
d
2

,2−
d
2

,−
uL/R

(Λe−t)2

�

+
dΛ−2

d − 2
F2 1

�

1, 1−
d
2

, 2−
d
2

,−
uL/R

Λ2

�

�

. (31)

Similarly, as for the case of a propagating discontinuity (28), the propagation of the bound-
aries of the rarefaction wave is also exponentially suppressed and only propagates a finite
amount in field space. This can easily be inferred from (31) for d = 3. Since we did not
encounter any rarefaction waves during our investigation of first and second order phase tran-
sition, c.f. Section 3.3 and Section 3.2, we will refrain from an in-depth discussion at this
point.

3.1.2 Numerical investigation

Having discussed the solution of the Riemann problem at length from an analytic point of
view in Section 3.1.1, we now turn to its numerical investigation. Here it is convenient to
investigate both cases at the same time. To be more precise, we chose as initial conditions

u(0,ρ) =











0.1 , 0< ρ < 0.02 ,

0 , 0.02< ρ < 0.05 ,

0.1 , ρ > 0.05 .

(32)

The solution to the initial conditions (32) will evolve a shock in the solution from the jump at
ρ = 0.02 and a rarefaction wave for the jump at ρ = 0.05. Our results are shown in Figure 2.
The derivative of the potential u(t,ρ), which is resolved numerically, is shown in Figure 2a

10

https://scipost.org
https://scipost.org/SciPostPhysCore.6.4.071


SciPost Phys. Core 6, 071 (2023)

t = 0.00
t = 1.00
t = 1.75
t = 2.50
t = 4.00

Method of characteristics
Discontinuous Galerkin

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

Field value ρ

10
1
*
D
er
va
tiv
e
of
po
te
nt
ia
lu

(a) Derivative of the effective potential u(t,ρ)
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(b) Effective potential V (t,φ)

Figure 3: RG-time evolution for the second order problem (33) for λ2 = −0.1. The
full lines are a semi-analytic result obtained by the method of characteristics, while
the hexagon dots are the respective results obtained by a numerical simulation with
K = 30 elements and a local accuracy of order N = 5.

and the corresponding effective potential, obtained by integrating, in Figure 2b. We find the
expected agreement with the analytic results of Section 3.1.1. For the calculation we used
K = 1500 equally sized elements in the domain 0≤ ρ ≤ 0.08 with a local interpolation order
of N = 3 and evolved up to the RG-time t = 3. This upper RG-time is already relatively close
to the infinite RG-time limit, i.e. the position of the shock as well as the rarefaction wave are
effectively frozen in. During the RG-time evolution inevitably spurious Gibbs oscillations will
form. Here we simply chose to keep them at a minimal level by using a considerable amount
of degrees of freedom and post-process the results with a simple minmod limiter, see e.g. [48],
but remnants of the oscillations can still be seen in Figure 2a. Nevertheless, it should be noted
that the result still maintains it spectral accuracy, see e.g. [70], i.e. point wise convergence can
be recovered from the numerical result. This is done partially by integrating the result within
our polynomial basis, which removes all oscillations, c.f. Figure 2b, which is obtained from the
result without a limiter. However, for future application we will consider the use of a limiter
or utilize a shock capturing scheme, since the numerical approximation of the derivative of
the potential u(t,ρ) must become positive semidefinite in the large RG-time limit to avoid
potential problems due to an artificially divergent flux.

3.2 Second order phase transition

We now turn to the initial conditions usually considered in the context of the O(N)-model, i.e.
a quadratic potential in the classical action

VΛ(ρ) = λ2ρ +
λ4

2
ρ2 . (33)

This is the case usually studied in the literature, and it is well known that the classical action
(33) leads to a second order phase transition as a function of λ2 for a given positive λ4. As our
main interest is the investigation of a second order phase transition, we restrict ourselves here
to λ4 = 1 for the remainder of the section. Additionally, we could always rescale the fields
to have λ4 = 1 in this case, since (33) has only two free parameters. Utilizing the method of
characteristics, for details see Appendix B, it is easy to see that local minima are shifted during
the flow

ρmin(t) = ρmin(0)−Λ(d−2) Ad

d − 2

�

1− e(d−2)t
�

, (34)

which is independent of the initial conditions. Combining (34) with the initial potential (33),
the flow of the effective potential inherits a second order phase transition.
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Figure 4: Second order phase transition for the initial conditions (33). The result of
the numerical simulation is shown with green squares, the extrapolated result with
red triangles and the analytic result by a blue line. A detailed description can be
found in the main text.

The RG-time evolution of the effective potential for the case of a finite expectation value,
with initial value λ2 = −0.1, is shown in Figure 3b. To illustrate the behavior of the individual
nodes during the RG-time evolution, we have used only a moderate number of elements,
i.e. K = 30, and a local approximation order of N = 5. However, the elements are not
equally sized, but here we already utilize one of the strengths of the DG approach and half
of the elements are equally distributed in 0 ≤ ρ ≤ 0.15 and the other elements are equally
distributed in 0.15 ≤ ρ ≤ 1. This distribution of elements ensures that the outer boundary
is at sufficiently large field values and our boundary conditions are satisfied, as discussed
in Section 2.2, at very little cost. Please note that in Figure 3b the potential is shown as a
function of the expectation value of the field φ =

p

2ρ. Correspondingly, the derivative of the
potential for the same calculation is shown in Figure 3a. The maximal RG-time was chosen to
be t = 4, where all qualitative features have emerged, and only minor quantitative changes
occur towards the asymptotic limit t → ∞. The full effective potential has to be convex,
which translate to a positive definite derivative of the potential u≥ 0 in the infinite time limit.
This translates to a flat potential in between the minima, see Figure 3b. How this is realized
in the current equation under investigation has been discussed at length in the literature,
see e.g. [71–73]. Nevertheless, the numerical stability in the flat region of the potential is a
noteworthy advantage of the DG approach.

3.2.1 Phase structure

We are now in the position to investigate the phase structure of the theory with classical action
(33), where we set λ4 = 1, as previously discussed. For all calculations we used K = 120
elements and a local interpolation of order N = 5. As in the previous case, the elements are
not equally distributed. We used 5 equally spaced elements in the interval 0 ≤ ρ ≤ 0.001,
15 equally spaced elements in the interval 0.001 ≤ ρ ≤ 0.01, 50 equally spaced elements in
the interval 0.01 ≤ ρ ≤ 0.15 and 50 equally spaced elements in the interval 0.15 ≤ ρ ≤ 1.
This ensures a good resolution for small field values, and therefore the relevant region in field
space at the second order phase transition. The solution is computed up to the RG-time t = 4,
however, there is no restriction to continue the numerical simulation to larger RG-times. The
result of the simulations is shown in Figure 4 with green squares. The final RG-time was
also restricted to demonstrate the easy extrapolability of the result to its asymptotic solution
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Figure 5: Error of the solution with initial condition (33) (λ2 = −0.1) at RG-time
t = 4 computed in the interval 0 ≤ ρ ≤ 1 for different number K of equally sized
elements and local approximation order N . The symbols show the result of the nu-
merical simulations, while the lines show a χ2-fit with respect to (39) with the pa-
rameters given in Table 2.

at infinite RG-time. For a dimensionful coupling one expects asymptotically an exponential
decay

ρmin(t) = ρ
final
min
+ b e−c t , for t ≫ 0 . (35)

We found compatibility of our numerical results for the position of the minima with (35), which
is not very surprising as the analytic solution is given in this form (34). Nevertheless, the form
of (35) is a generic feature and valid for couplings with a non-trivial RG-time evolution in
this theory, this feature will become relevant in Section 3.3. We have extrapolated the global
minimum for each coupling with eleven equally spaced points in the RG-time interval 3≤ t ≤ 4
according to (35), the result is shown in Figure 4 with blue triangles.

It is very well known that all observables show a power law behavior in the vicinity of a
second order phase transition due to the divergent correlation length at the phase transition.
This can be parametrized as

〈φ〉=

¨

α
�

�λ2 −λcrit
2

�

�

ν
, λ2 ≤ λcrit

2 ,

0 , λ2 > λ
crit
2 ,

(36)

where α is some prefactor, ν is the critical exponent and λcrit
2 is the critical coupling. The

exact coefficients can be easily obtained analytically and are given in Table 1, as well as being
depicted by a blue line in Figure 4.

Additionally, we have extracted the parameters from our results, extrapolated to infinite
RG-time, using a χ2 minimization. The resulting parameters, including their 1σ confidence
interval, given in terms of the last two digits, are also shown in Table 1. Despite not aiming for
a quantitative resolution of the critical area around the phase transition, we obtain an accurate
estimate for all parameters. In particular, the error of the critical value of the coupling is only
1.5 · 10−7, but it should be noted that the critical properties, i.e. the critical exponent in this
case, can also be obtained from the fixed point equations, where higher accuracy is easier
achievable, see e.g. [27].

3.2.2 Propagation of information and approach to convexity

It is instructive to have a closer look at the spreading of waves, or to put it differently, the
propagation of information during the RG-time evolution. Propagating modes correspond to
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(a) Local wave speed | fu(t,ρ)|.
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(b) Local curvature κ(t,ρ) = 2ρ V ′′(t,ρ).

Figure 6: Properties relating to the approach towards convexity for the initial values
(33) with λ2 = −0.1. The vertical dashed lines represent the position of the global
minimum of the potential at the corresponding RG-time. The numerical simulation
was performed with K = 85 elements and a local accuracy of order N = 5.

eigenvalues of the Jacobian of the system of conservation laws, which reduces in our case to
|∂u f (u)|. The direction is always given to smaller field values, which naturally corresponds
to the evolution direction from an RG perspective. Therefore, this quantity tells us at least
qualitatively something about the locality of the RG-evolution in field space. From a technical
perspective, the wave speed is an important quantity in our choice of the numerical flux, as
it is directly related to the propagation of discontinuities. Additionally, it is relevant for the
maximally allowed time step in explicit schemes to guarantee stability, see e.g. [48].

Turning back to our example case at the beginning of the section, i.e. (33) with λ2 = −0.1
and λ4 = 1, where we have used a local approximation of order N = 5 with 60 elements in
the interval 0 ≤ ρ ≤ 0.15 and 25 elements in the interval 0.15 ≤ ρ ≤ 1. The locally resolved
wave speed for different RG-times is shown in Figure 6a on a logarithmic scale. To guide the
eye, the current minimum at each RG-time is indicated by a vertical dashed line. It is apparent
that with progressing RG-time the wave speed splits into two domains, depending on the field
value. For field values larger than the minimum, the wave speed is decreasing rapidly, i.e. it is
decreasing exponentially fast. On the other hand, for field values smaller than the minimum,
i.e. in the flat region of the potential, the wave speed is growing exponentially. A direct
consequence is that explicit time steppers work extremely well in the non-flat region, because
the time steps can be chosen increasingly larger as RG-time progresses, while in the flat region
the time steps would be exponentially smaller and implicit methods are preferred. This comes

Table 1: Exact and reconstructed parameters of the power law behaviour (36) in the
vicinity of the second order phase transition shown in Figure 4. The brackets indicate
the 1σ uncertainty of the χ2-fit and the exact result is also given with numerical
values for better comparability.

Parameter

Prefactor Critical exponent Critical coupling

α ν −λcrit
2

Exact result

p
2 1

2 (6π2)−1

1.4142 0.50000 0.01688686

χ2-fit 1.4161(16) 0.50023(25) 0.01688684(15)
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(b) Vicinity around the phase transition.

Figure 7: First order phase transition for the initial conditions (40). An extensive
description can be found in the main text. The numerical simulation was performed
with K = 200 elements and a local accuracy of order N = 5.

with implications for Taylor series methods, which are a popular choice in the fRG community,
see e.g. [21, 23, 25], i.e. it provides an a posteriori justification for its use away from the
flat region, due to the exponentially increasing locality of the solution. However, this should
not be used as an a priori justification of its use. Similarly, Finite Difference based methods,
see e.g. [9, 13, 14, 16–19, 26], will benefit from taking these considerations, especially the
direction of the wave propagation, into account. Additionally, we would like to note that this
analysis does not replace a proper stability analysis for these approaches, but simply provides
an intuitive understanding with non-binding consequences.

As outlined previously, the separation of the solution at infinite RG-time into two regimes is
closely linked to the flatness of the potential, i.e. its convexity. This also implies the vanishing
of higher order couplings in the flat region. Therefore, the curvature

κ(ρ) = 2ρ V ′′(ρ) = 2ρ u′(ρ) , (37)

provides a good measure for the flatness of the potential. The full curvature mass of the radial
mode in O(N)-models is given by

m2
curv
= u(ρ) +κ(ρ) , (38)

more details can be found in Section 2. Therefore, a vanishing curvature (37) implies a van-
ishing curvature mass (38) of the radial mode in the flat region. The result for the curvature,
in the same setting as the wave speed, is shown in Figure 6b. As for the wave speed, the
minima at the shown RG-times are indicated by vertical dashed lines to guide the eye. The
approach towards zero of the curvature in the flat region is clearly visible, similarly to the
jump discontinuity that necessarily forms at the minimum. However, this discontinuity forms,
just like the non-analytic point in the derivative of the potential itself, only in the asymptotic
limit. Additionally, these findings are promising for future calculations in the O(N)-model at
finite N, since the calculation of the curvature does not introduce new problems and is the only
new ingredient entering at finite N . Within this setting we also do not expect a loss of accu-
racy despite the increasingly non-analytic behavior of the derivative. This is a clear advantage
over pseudo-spectral methods, which are also designed to achieve high accuracy, put forward
in [27–29]. They perform extremely well, if the solution is sufficiently smooth, however this is
inherently not the case near phase transitions in the fRG. Additionally, it is worthwhile noting
that these properties make pseudo-spectral approximation a good choice for the approximation
of the momentum dependence of correlation function in Euclidean spacetime, see e.g. [74,75]
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3.2.3 Convergence

Due to the semi-analytic nature of the solution using the method of characteristics, c.f. Ap-
pendix B, we can benchmark the accuracy of our results obtained with the DG method. As with
previous studies, we use the initial conditions (33) together with λ2 = −0.1 and resolve the
derivative of the effective potential over the interval 0≤ ρ ≤ 1. The results are then compared
at the RG-time t = 4. Hereby, we assume the result obtained via the method of characteristics
to be the exact solution. Please note that this makes such a comparison for the situation with
shocks considerably more complicated, which is why we refrain from considering it here. As
explained in Section 2.2, we use an implicit solver for the time evolution. To avoid artificial
enhancement of errors due to uncertainties thereof, we set the adaptive accuracy requirements
close to machine precision. The results for the broken L2-norm between the two solutions for
different orders of the local approximation order as a function of the number of elements,
which are all equal in size, are shown in Figure 5. For our highest order of approximation
N = 5 the results are only included for K ≤ 500 elements, because the difference between the
two results is at the level of the machine precision for more elements and a comparison is no
longer insightful. The results are compatible with the expected power law like behavior for
the convergence when increasing the number of elements K and an exponential convergence
when increasing the local approximation order N . To be more precise, we observe a behavior
that can be parametrized as

log10 ||uh − uexact||Ω,h =(a1 + a2 N)− (b1 + b2 N) log10(K) . (39)

In (39) we have temporarily restored the index h again to denote the approximate solution.
A χ2-fit to (39) is also shown in Figure 5 as solid lines, the parameters obtained are given in
Table 2. In (39) the norm on the left-hand side denotes the broken L2-norm, i.e. the exact
solution is projected to the same polynomial space as the numerical solution and the norm is
then calculated elementwise therein and summed up. This result demonstrates the impressive
convergence properties of the scheme.

3.3 First order phase transition

We now turn to the investigation of first order phase transitions, which have been investigated
within the fRG in e.g. [9,24,58,76–80]. Including a (φaφ

a)3 coupling into the classical action
enables us to access a first order phase transition, see e.g. [56], which translates to the initial
conditions

VΛ(ρ) = λ2ρ +
λ4

2
ρ2 +

λ6

3
ρ3 . (40)

Similarly, to the second order case, c.f. Section 3.2, we fix all but one parameter and investigate
the phase structure with respect to that parameter. To achieve a first order phase transition
λ2 and λ6 need to be positive, while λ4 needs to be negative. The initial values are chosen to

Table 2: Parameters obtained from a χ2-fit to (39) of the convergence behavior
shown in Figure 5.

Parameter

a1 a2 b1 b2

χ2-fit -6.0(10) 2.22(31) 1.36(40) 1.34(12)
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(a) Potential in the symmetric phase.

t = 0.00 t = 1.00 t = 2.00

t = 4.40 t = 4.70 t = 6.00

-0.4 -0.2 0.0 0.2 0.4

0.0

0.1

0.2

0.3

0.4

0.5

Field value ϕ

10
4
*
Po
te
nt
ia
lV

(b) Potential in the broken phase.
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(c) Derivative of the potential in the symmet-
ric phase.
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(d) Derivative of the potential in the broken
phase.

Figure 8: The effective potential V (t,ρ) and its derivative u(t,ρ) for two different
values of the coupling λ4 close to the first order phase transition shown in Figure 7.
The numerical simulation was performed with K = 200 elements and a local accuracy
of order N = 5. The results for the derivative of the potential were post-processed
with a WENO limiter.

produce similar scales in the result compared to the results obtained in Section 3.2. Therefore,
we keep λ4 variable and set λ2 = 0.0024, λ6 = 1 to fixed values. Throughout this section
we use K = 200 elements with a local approximation order of N = 5, with 150 elements
distributed equally in 0≤ ρ ≤ 0.15 and 50 elements distributed equally in 0.15≤ ρ ≤ 1. The
solution is obtained up to the RG-time t = 6, which was sufficiently large for all numerical
simulations, i.e. the asymptotic result at infinite RG-time was obtainable via extrapolation if
necessary.

A crucial difference between the initial conditions (33) and (40) concerns the monotonicity
of the derivative of the effective potential at the initial scale, i.e. u(0,ρ). While for the second
order phase transition u(0,ρ) was monotonically increasing as a function of ρ, in the case
considered now, i.e. (40), it is not. To be more precise, it possesses a minimum for certain
values of λ4 < 0 and therefore a jump discontinuity will form as RG-time progresses. The
underlying mechanism can easily be understood from the perspective of the characteristic
velocity ∂u f (t, u), more details can be found in Section 3.1 and Appendix C. However, it is not
clear whether the discontinuity forms in the physical relevant regimeρ ∈ [0,∞). Additionally,
the results from Section 3.1 let us suspect that the shock will freeze in towards asymptotic RG-
times. It turns out that this indeed happens and is the relevant mechanism behind the phase
transition.

3.3.1 Phase structure I

We investigate the phase structure for the initial conditions (40), with the specific setup dis-
cussed around the equation. The resulting phase structure is shown in Figure 7, where a wider
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range for the external parameter λ4 is shown in Figure 7a and the vicinity around the phase
transition is shown in Figure 7b. All quantities in the visualization of the phase structure are
extrapolated to t → ∞, the minima according to (35) and the final position of a possible
jump discontinuity, i.e. shocks, is described later in detail. The outer minimum is depicted
with green squares and the disappearance/jump to zero of it reflects the disappearance of the
minimum in the initial conditions. However, the global minimum, depicted with red triangles,
of the effective potential is either at ρ = 0 or agrees with the non-trivial, outer minimum at
ρ ≥ 0. A clear jump is visible where the potential switches between the symmetric and broken
phase and the position is shown with a vertical orange line.

Before continuing the discussion of the phase structure and, in particular, the discussion
of Figure 7b, it is instructive to look at the potential and its derivative at the two values of the
coupling λ4 which are closest to the phase transition, i.e. once in the broken phase and once
in the symmetric phase, shown in Figure 8. Hereby we note that the results shown for the
RG-time t = 6 are already sufficiently close to the infinite RG-time limit and for all discussions
that follow we can treat them effectively as such. Focusing on the derivative of the effective
potential u(t,ρ), in both cases the appearance of a jump discontinuity is clearly visible. For a
better depiction we have processed the result using a WENO limiter, following [81], removing
the Gibbs oscillations around the shock. This is the origin of the flat looking pieces in the
solution at the positions of shocks. However, the potential is obtained, as in Section 3.1, from
the original data of the result. The two evolutions of the derivative of the potential, depicted
in Figure 8c and Figure 8d, show a qualitative difference. In Figure 8c the position of the shock
freezes and consequently the global minimum of the effective potential stays at ρ = 0 for all
RG-times, see Figure 8a. This is in contradiction to the case depicted in Figure 8d, here the
position of the shock moves to unphysical values and effectively flattens out the potential for
all field values smaller than the outer minimum, making it the global minimum, depicted in
Figure 8b.

3.3.2 Mechanism for a first order phase transition

The analysis above uncovers a potential mechanism for first order phase transitions: In the
vicinity of the phase transition a cusp forms in the effective potential, or equivalently a shock in
the derivative of the potential, during the RG-time evolution between two minima. The shock
now propagates towards smaller field values and if the inner minimum was the preferred one
before, the phase transition happens if the shock hits the inner minimum. The final position
of the shock ξ(t → ∞) as a function of some external parameter, e.g. a coupling in the
classical potential, temperature or chemical potential, can now be used to describe the phase
transition equivalently. The propagation speed of the shock is dominantly driven by the values
of the derivative of the potential at larger field values, c.f. (27). However, at roughly the same
RG-time when the shock forms, the potential also starts to flatten, starting from the outer
minimum, i.e. the potential approaches convexity. This process is triggered locally from the
existence of a zero crossing in the derivative of the potential, and therefore independent of
the global structure of the potential. Consequently, the propagation of the shock is dominantly
driven by auxiliary, massless modes of the flat region and becomes at least partially insensitive
to the details of the theory. This mechanism suggests a power law like behavior of the final
position of the shock in the vicinity of the phase transition, which we will confirm for our
current setting.

In our present case of the theory in the large N limit, the formation of shock is guaranteed
due to conservative form equation (25), combined with the non-monotonicity of the initial
state. Therefore, the inner minimum is at ρ = 0 and the condition for the phase transition
turn into ξ(t →∞) = 0.

18

https://scipost.org
https://scipost.org/SciPostPhysCore.6.4.071


SciPost Phys. Core 6, 071 (2023)

Broken phase
Symmetric phase
Shock position fit

3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.0

0.5

1.0

1.5

2.0

2.5

RG-time t

10
2
*
Sh
oc
k
po
si
tio
n
ξ

Fit range

Asymptotic value

No shock

Figure 9: Positions of the shocks for the examples shown in Figure 8 together with
the fit of the asymptotic behavior for the case shown Figure 8c.

Obviously, one should be cautious whether this mechanism generalizes to first order phase
transitions in generic theories. We will comment on this at the end of this section, after finish-
ing the discussion of the phase structure in our current setting. However, before continuing
we would like to note that the propagation of a discontinuity in the vicinity of a first order
phase transition has also been seen in [58], where the method of characteristics was used to
resolve the phase structure of an NJL type model.

3.3.3 Phase structure II

Having identified the relevant mechanism for the phase transition shown in Figure 7, we can
turn back to its description, including the final position of the shock, which are displayed with
purple pentagons. It is now obvious that we get a good description of the phase structure in
terms of the final position of the shock. To obtain the position of the discontinuity at infinite
RG-time we follow the logic presented in Section 3.2, i.e. at large RG-times we expect an
exponential decay

ξ(t) = ξfinal + aξe−bξ t , for t ≫ 0 . (41)

This expectation is also supported by the asymptotic behavior extracted analytically from the
Riemann problem, c.f. Section 3.1.1. To apply (41) we have extracted the position of the
shock at 11 equally spaced points between the RG-times t = 5 and t = 6 using an appropriate
concentration kernel, c.f. Appendix C, and then extracted the relevant information using a
χ2-fit. The trajectories of the shocks from the evolutions shown in Figure 8 are depicted in
Figure 9, which justifies the use of (41). Additionally, it should be noted that the trajectory
with a finite final position of the shock shown in Figure 9 is the most extreme cases present,
i.e. the exponential decay started at earlier RG-times for other values of the coupling with
ξfinal > 0.

Following the discussion presented in Section 3.3.2, we expect a power law like behavior
for the final position of the shock as a function of the coupling

ξfinal =

¨

β
�

�λ4 −λcrit
4

�

�

ζ
, λ4 ≥ λcrit

4 ,

0 , λ4 < λ
crit
4 .

(42)

Indeed, we find a very good agreement between the final positions of the shock and (42),
the coefficients obtained from a χ2-fit are collected in Table 3. As for the second order phase
transition, we obtain a very accurate estimate for the critical coupling, also shown with an
orange circle in Figure 7. The critical exponent comes out at ζ = 0.683 ± 0.013 and it will
be very interesting to investigate whether this value can be obtained from an associated fixed
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point potential, which necessarily is either a partial fixed point or discontinuous, for a full
study of the fixed points within this theory looking for continuous solutions see [82,83]. Non-
analytic fixed point potentials have been found very recently [84] and it will be very interesting
to explore the relation of our results to the ones presented therein, since the results share some
qualitative features.

3.3.4 Generalization of the mechanism to other theories

It seems rather plausible that the mechanism outlined in Section 3.3.2 persists in general, at
least to some extent. The first obvious generalization is to go beyond large N and look at the
flow equation (21) for finite N . Staying close to the conservative formulation employed so far,
c.f. (25), we can express the flux for finite N by inclusion of a diffusion term

f (t, u,κ) = fConv(t, u) + fDiff(t, u,κ) , (43)

where the diffusion term depends additionally on the curvature defined in (37). DG schemes
for diffusion terms are a well studied subject, see e.g. [85–87]. The first term on the right-
hand side in (43) is the flux used in the large N limit (24) and the additional term contains
the contribution of the radial mode

fDiff(t, u,κ) = −
Ad

N − 1
(Λe−t)d+2

(Λe−t)2 + u+κ
. (44)

From a practical perspective (44) is a diffusion term, hence it has the possibility to smear out
potential shocks. Away from any potential shocks this equation is still convection dominated,
since the curvature appearing in the denominator is comparatively small. However, at field
values around the shock it might give a sizeable contribution. However, in close proximity
of the phase transition, i.e. when the shock, or a slightly smeared shock, approaches zero, it
becomes important that (44) only depends on the curvature, which vanishes exactly at van-
ishing field value. Due to this reason, we expect a shock to be present in the direct vicinity
of the phase transition. This marks a special regime at a first order phase transition, like the
scaling regime at a second order phase transition. How this plays out in detail, especially in
combination with the approach to convexity, will be extremely interesting to pursue in the
near future. Particularly, the Péclet number, i.e. the convection over diffusion rate, might be a
good start to quantify the competition between the different terms in (44).

Similarly, the presence of Fermions amounts to an additional source term in (43) in LPA.
This potentially spoils the outlined mechanism in a trivial manner within this truncation. In
this situation the phase transition is not fluctuation induced, but simply present due to the
mean-field fermionic determinant, and an investigation should involve at least a field depen-
dent Yukawa coupling to have the field dependent masses of fermions and bosons on the same
footing. The field dependence of the Yukawa coupling in such theories was partially investi-
gated in [88–92].

Table 3: Parameters obtained from a χ2-fit to (42) of the positions of the shocks
depicted in Figure 7.

Parameter

Prefactor Critical exponent Critical coupling

β ζ −λcrit
4

χ2-fit 6.57(45) 0.683(13) 0.104438(28)
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Additionally, whether this mechanism can be used to extract properties of a first order
phase transitions such as the nucleation rate in a convenient manner will be interesting to
pursue.

4 Conclusion and Outlook

In this work, we have presented the applicability and advantages of applying Discontinuous
Galerkin methods to the flow equations arising within the Functional Renormalization Group.
As application, we considered the O(N)-model in the large N limit in the Local Potential Ap-
proximation, where the flow equation of the effective potential can be cast into a conservative
form, Section 2.2, which allows for a straightforward application of DG schemes. We consid-
ered the associated Riemann problem, as well as initial conditions that lead to a first or second
order phase transition. The Riemann problem is considered in Section 3.1. It mainly led to
the conclusion that shocks propagate only a finite range in field space. Therefore, they are still
present in the solution at asymptotically large RG-times.

The case of a second order phase transition is presented in Section 3.2. We reproduced
well known results from the literature and demonstrated in addition the expected convergence
behavior of the scheme. The underlying stability and convergence properties also hold in the
flat region of the potential, which contrasts with methods that rely on the smoothness of the
solution, c.f. Section 3.2.2.

Initial conditions that lead to a first order phase transition are studied in Section 3.3. We
discovered the formation of a shock in the derivative of the potential, leading to the mechanism
behind first order phase transitions, explained in Section 3.3.2. This leads to an additional
description of the phase structure in terms of the shock. In the vicinity of the phase transition,
the position of the shock shows a power law behavior, like the order parameter in a second
order phase transition.

These very promising results are the starting point for exciting follow-up projects. One part
consists of investigating the mechanism for first order phase transitions further and establish-
ing it in general. This also includes making a connection to the usual observables considered
at such a phase transition. On the other hand, applying DG schemes to the PDE part of fRG
equations is a promising route for reliable, precision calculations. Our results represent a very
important step towards understanding the phase structure of strongly correlated systems such
as QCD or the Hubbard model.
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A Local approximation

In Section 1.2 we have introduced a dual expansion basis: ψn(x) for the modes and lk
i (x)

for the nodes, c.f. (5). The simplest, practical choice for the mode basis ψn(x) is the set of
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orthogonal Legendre polynomials Pn, which are part of the large family of Jacobi polynomials
P(α,β).

The Jacobi polynomials P(α,β)
n (x) are the solution to the singular Sturm-Liouville problem

d
dx

�

(1− x2)ω(x)
d

dx
P(α,β)

n (x)
�

= −λnω(x)P
(α,β)
n (x) , (A.1)

defined on the interval [−1, 1]. In (A.1) ω(x) = (1 − x)α(1 + x)β is the weight function
and λn = n(n+ α+ β + 1) are the eigenvalues. The Jacobi polynomials satisfy the weighted
orthonormality relation

∫ 1

−1

dx ω(x)P(α,β)
n (x)P(α,β)

m = δnm . (A.2)

To construct the polynomials, it is convenient to use their recurrence relation, see e.g. [48],
which relates the higher order Pn to the lower ones,

x P(α,β)
n (x) = anP(α,β)

n−1 (x) + bnP(α,β)
n (x) + an+1P(α,β)

n−1 (x) , (A.3)

where the coefficients are defined as

an =
2

2n+α+ β

√

√ n(n+α+ β)(n+α)(n+ β)
(2n+α+ β − 1)(2n+α+ β + 1)

,

bn = −
α2 − β2

(2n+α+ β)(2n+α+ β + 2)
. (A.4)

The recurrence relation can be used once the initial polynomials are defined,

P(α,β)
0 (x) =

√

√

2−α−β−1 Γ (α+ β + 2)
Γ (α+ 1)(β + 1)

,

P(α,β)
1 (x) =

1
2

P(α,β)
0 (x)

√

√ α+ β + 3
(α+ 1)(β + 1)

[(α+ β + 2) x + (α− β)] .

Derivatives can be computed from the lower order polynomials using the important relation

d
dx

P(α,β)
n (x) =

Æ

n(n+α+ β + 1)P(α+1,β+1)
n−1 (x) . (A.5)

The Legendre polynomials are the special case α = β = 0, i.e. Pn(x) = P(0,0)
n and their

properties and relations are easily obtained from the ones for the Jacobi polynomial.
In our implementation of the DG discretization method, we used the following convention

for ψn(x)

ψn(x) =

√

√2n− 1
2

Pn−1(x) . (A.6)

The nodal basis functions are chosen as the standard Lagrange interpolating polynomials,

li(x) =
∏

j=1 j ̸=i

x − x j

x j − x i
, (A.7)

which are well define and unique if the nodes x i are all distinct. It is advantageous to select the
nodes such that the transformation matrix between the modal representation ûn and the nodal
representation u(x i) is well conditioned. It can be shown, see e.g. [48], that the Legendre-
Gauss-Lobatto (LGL) points, defined as the N zeros of the equation

(1− x2)P ′N (x) = 0 , (A.8)

amount to an optimal choice.
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B Method of characteristics

In this appendix, we present the analytic solution of Equation (25). The PDE is a scalar quasi-
linear partial differential equation in conservative form, therefore an implicit solution can be
obtained using the method of characteristics [93]. The equation in conservative form is

∂tu(t,ρ) + ∂ρ

�

Ad
(Λe−t)d+2

(Λe−t)2 + u(t,ρ)

�

= 0 , (B.1)

and can be express in a quasilinear form performing the derivative on the flux,

∂tu(t,ρ)− Ad
(Λe−t)d+2

[(Λe−t)2 + u(t,ρ)]2
∂ρu(t,ρ) = 0 , (B.2)

combined with the initial condition

u(0,ρ) = u0(ρ) . (B.3)

The solution can be found by introducing the characteristic curves that are the solution of

dt(s)
ds

= 1 ,

dρ(s)
ds

= −Ad
(Λe−t(s))d+2

�

(Λe−t(s))2 + u(s)
�2 , (B.4)

du(s)
ds

= 0 ,

combined with the initial conditions

t(0) = 0 ,

ρ(0) = ρ0 , (B.5)

u(0) = u0(ρ0) .

This system of ordinary differential equation is equivalent to the original partial differential
equation (B.2) if we define

u(s) = u(t(s),ρ(s)) . (B.6)

The system (B.4) can easily be integrated, noting that u(s) is constant along the characteristic
and t(s) is the curve parameter. The result can be written as

u(s) = u0(ρ0) , and t(s) = s = t , (B.7)

and

ρ(t) = ρ0 − Ad

∫ t

0

(Λe−s)d+2

[(Λe−s)2 + u0(ρ0)]
2 ds . (B.8)

The integral can be carried out, leading to

ρ(t) = ρ0 −
AdΛ

d

2

�

e−d t

u0(ρ0) + (Λe−t)2
−

1
u0(ρ0) +Λ2

−
d(Λe−t)d−2

(d − 2)Λd
F2 1

�

1,
2− d

2
,
4− d

2
,−

u0(ρ0)
(Λe−t)2

�

+
dΛ−2

d − 2
F2 1

�

1,
2− d

2
,
4− d

2
,−

u0(ρ0)
Λ2

�

�

, (B.9)
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where F2 1 is the Gaussian or ordinary hypergeometric function, see e.g. [94]. The equation
(B.9) is a transcendental equation between ρ0, the position at the initial RG-time where u
has the value u0(ρ0) and ρ, which is the position at RG-time t where u has the same value.
Formally this can now be inverted, obtaining

ρ0 = ρ0(t,ρ) , (B.10)

giving the initial position of the value uΛ(ρΛ) as a function of the final one ρ(t). The solution
can be constructed using this inverse function as

u(t,ρ) = u0(ρ0(t,ρ)) . (B.11)

Practically, except for very simple cases, the solution of the transcendental equation (B.9)
cannot be achieved analytically. Therefore, the inversion is performed numerically.

The equation (B.9) can be used to find a simple expression for the RG-time evolution of
the minima of the potential, indeed if one use that u0(ρ0) = 0 and hence F2 1 = 1, we obtain

ρmin(t) = ρmin(0)−
AdΛ

d−2

d − 2

�

1− e−(d−2)t
�

. (B.12)

C Shock propagation and detection

C.1 Position of the shock

Consider an interval [ρL,ρR] that contains the position of the discontinuity at a given RG-time
t, namely ρL ≤ ξ(t) ≤ ρR. Additionally, the interval must be chosen small enough that it
only contains a single discontinuity. If this is not the case, it can always be split into multiple
intervals. The integral in ρ − space of our equation of interest (25) on this interval is

d
dt

∫ ρR

ρL

dρ u(ρ, t)−
∫ ρR

ρL

dρ ∂ρ f (t, u(ρ)) = 0 . (C.1)

Splitting the integral around the discontinuity results in

d
dt

∫ ξ(t)

ρL

dρ u(ρ, t) +
d
dt

∫ ρR

ξ(t)
dρ u(ρ, t) = f (t, u(t,ρR))− f (t, u(t,ρL)) . (C.2)

The RG-time derivative can be done explicitly and leads to

dξ(t)
dt
(u(ρR, t)− u(ρL, t))− f (t, u(t,ρR)) + f (t, u(t,ρL))

= −
∫ ρR

ξ(t)
dρ ∂tu(ρ, t)−

∫ ξ(t)

ρL

dρ ∂tu(ρ, t) . (C.3)

In the limit ρL → ξ−(t) and ρR → ξ+(t) the right-hand side vanishes, and we obtain the
equation

dξ(t)
dt
(uR(t)− uL(t))− fR(t) + fL(t) = 0 , (C.4)
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where we have used the definitions

uR(t) = lim
ρ→ξ+(t)

u(ρ, t) ,

fR(t) = lim
ρ→ξ+(t)

f (t, u(ρ, t)) , (C.5)

uL(t) = lim
ρ→ξ−(t)

u(ρ, t) ,

fL(t) = lim
ρ→ξ−(t)

f (t, u(ρ, t)) .

The equation for the position of the discontinuity is described by

dξ(t)
dt

=
fR(t)− fL(t)
uR(t)− uL(t)

=
[[ f ]]
[[u]]

, (C.6)

which can be integrated to obtain the RG-time evolution of the shock.

C.2 Shock detection

To determine the position of the jump discontinuities in our numerical approximation uh(t,ρ)
we follow the procedure outlined in [95,96], i.e. the method of concentration.

We briefly summarize here how this procedure is practically applied. While shock capturing
schemes are very interesting by itself and are a promising future direction, we restrict ourselves
here to the extraction of the position of discontinuities during post-processing. Discontinuities,
i.e. their position and height can be extracted by folding the function f (x), which is assumed
to be piecewise continuous, with a suitable concentration kernel, which acts as

Kϵ ∗ f (x) = [[ f ]](x) +O(ϵ) . (C.7)

To define the concentration kernel from a numerical point of view, we have to understand
how a discontinuous function is expanded in our basis. Consider the expansion of a piecewise
smooth function f (x) in terms of Jacobi polynomials,

f (x)≃
N
∑

k=0

f̂kPk(x) , with f̂k =

∫ 1

−1

dxω(x) f (x)Pk(x) . (C.8)

Utilizing the Sturm-Liouville equation (A.1), assuming that the function f has a jump [[ f ]](c)
for x = c, it is possible to obtain an estimation for the decay of the spectrum f̂k with k,

f̂k =
−1
λk

∫ 1

−1

dx
�

(1− x2)ω(x)P ′k(x)
�′

f (x)

= [[ f ]](c)
1
λk
(1− c2)ω(c)P ′k(x) +O

�

1
λk

�

. (C.9)

This equation expresses the fact that next to a jump the coefficients of the mode expansion
decays like 1

λk
, which is substantially slower than far away from a jump. In (C.9) λk refers

to the eigenvalue of the associated Sturm-Liouville equation, c.f. (A.1). Motivated by this
characteristic property of the spectrum of a particular polynomial expansion, it is possible to
define a quantity that detects the discontinuity from the mode expansion of the function. The
concentration kernel for Legendre polynomial was obtained in [95] and is defined as

KσN ∗ f =
p

2
π

N

p

1− x2
N
∑

k=1

σ

�

|k|
N

�

f̂kψ
′
k(x) , (C.10)
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whereσ(ξ) is an adequate concentration factor. There are different possibility for this function
and an extensive discussion can be found in [95]; for our implementation we have made the
simple choice of σ(ξ) = 1. In the vicinity of the discontinuity, and away from it, this kernel
behaves as

KσN ∗ f =

¨

O( 1
N ) , x ̸= c ,

[[ f ]](c) + const. log N
N , x = c .

(C.11)

Consequently, it is possible to pinpoint the discontinuity, when examining the scaling of this
operator with the number of nodes. However, is more convenient to enhance the separation
of scale between the smooth part and the discontinuity, namely

N
p
2 (KσN ∗ f )p =

¨

O
�

N−
p
2

�

, x ̸= c ,

[[ f ]](c)N
p
2 , x = c ,

(C.12)

where p is the enhancement exponent. Using this operator, it is possible to construct an oper-
ator that is non-vanishing only in the presence of the jump,

K p
N ,J ∗ f =

(

KN ∗ f , if
�

�

�N
p
2 (KσN ∗ f )p

�

�

�> J ,

0 , otherwise,
(C.13)

where J is an appropriately chosen threshold. This additional definition becomes very im-
portant for smaller values of N if we want to achieve a good separation of scales between
shocks and smooth parts of the solution. In our implementation, we have chosen the heuristic
values p = 2 and J = 5.0 × 10−8. With this set of parameters, we were able to detect the
discontinuities in Section 3.3 efficiently.
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