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Abstract

We compute the first-order α′ corrections to well-known families of heterotic multi-
center black-hole solutions in five and four dimensions. The solutions can be either
supersymmetric or non-supersymmetric, depending on the relative sign between two of
the black-hole charges. For both cases, we find that the equilibrium of forces persists
after including the α′ corrections, as the existence of multi-center solutions free of un-
physical singularities shows. We analyze the possibility of black-hole fragmentation.
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1 Introduction

Over the last 30 years many extremal and multi-center black-hole solutions of supergravity the-
ories have been obtained, supersymmetric and non-supersymmetric.1 Many of those theories
can also be viewed as low-energy effective field theories of different string theory compactifi-
cations to lowest order in α′ and in the string coupling constant. This allowed Strominger and
Vafa to establish a relation between the entropy of the corresponding solutions (stringy black-
hole solutions) and the microscopic entropy of the corresponding compactification of string
theory which, in general, includes branes and other extended objects [2].

It is natural to try to extend this relation between macroscopic and microscopic entropies
to more general solutions and, more importantly perhaps, to higher orders in α′ and in the
string coupling constant. The calculations of both the macroscopic and microscopic entropies
have to be improved to the next order, independently, to be later compared. If this comparison
is to be understood as an unbiased test of this relation and of the viability of String Theory
as a theory of Quantum Gravity, each of these separate calculations must be internally self-
consistent: the correctness of one of them cannot solely rely on its agreement with the other
one if we do not want to suffer confirmation bias.

In the macroscopic side, this suggests the following program:

1. Find the first corrections in α′ and in the string coupling constant to the relevant super-
string effective field theory.

2. Find single- and multi-center black-hole solutions to the corrected action. This can be
done perturbatively so that the known zeroth-order solutions are recovered when α′ is
set to zero.

3. Compute the macroscopic entropy associated to the corrected black hole solution. This
entropy will no longer be the Bekenstein-Hawking one, since the corrected action will
contain higher-curvature terms and can no longer be understood as General Relativity
coupled to a prescribed set of interacting matter. One has to use Wald’s entropy.

4. The macroscopic entropy must be written in terms of charges that can be unambiguously
related to a string background, i.e. charges that can be associated to numbers of branes.

Only after a satisfactory completion of this program can the macroscopic entropy be com-
pared to the microscopic one, which must have been computed independently.

1For a review on black-hole solutions with many references see, for instance, [1].
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This program, though, presents many practical and conceptual difficulties:

1. We have a very limited knowledge of the corrections to the zeroth order superstring
effective action, specially of the corrections in the string coupling constant, which are
mainly unknown.

We know that the first corrections in α′ start at third order for the type II superstring
theories, but we do not have a complete knowledge of the effective action to that order.
This prevents us from doing fully reliable calculations of α′ corrections to the solutions
of these theories.

The situation with the heterotic superstring is much better: we know in full detail the α′

corrections to the effective action up to third order and in a form consistent with local
spacetime supersymmetry [3].2 In contrast, there is very limited information about the
string loop corrections [6].

2. Given the limitations in our knowledge of the string effective action we have just dis-
cussed, it is natural to focus on trying to obtain the first α′ corrections to black-hole
solutions of the heterotic superstring imposing the necessary conditions on the param-
eters to ensure that the string coupling constant is small enough that the string loop
corrections can be safely neglected.3

Furthermore, given the complexity of the corrected equations of motion, it is also natural
to consider at first, single, static, spherically-symmetric, extremal black holes with the
minimal number of charges that produce a regular event horizon and start by computing
the first-order α′ corrections only. These are the so-called 3-charge and 4-charge black
holes in 5 and 4 dimensions, respectively and all of them can be embedded in the het-
erotic superstring effective action. The 3-charge ones include a black hole dual to the
one originally considered by Strominger-Vafa [2], which is supersymmetric, together
with similar, non-supersymmetric black holes. The 4-charge ones include the heterotic
version of the Maldacena-Strominger-Johnson-Khuri-Myers black hole [7, 8], which is
supersymmetric, plus several similar non-supersymmetric black holes.4

The first-order α′ corrections to all these simplest but paradigmatic extremal black-hole
solutions have been found quite recently in a series of papers [9–13] and now it is natural
to take the next step and consider more complicated solutions: non-extremal, multi-
center, stationary...

There are good reasons to consider first, after the extremal 3- and 4-charge solutions,
the non-extremal ones, as we are going to argue when we discuss the calculation of the
macroscopic entropy. The first-order α′ corrections to some non-extremal solutions have
also been found [14, 15], but they are much harder to obtain since the general results
proven in [11] cannot be applied to the non-extremal solutions. Thus, it will be long
before the corrections to the non-extremal 4-charge black holes will be found.5

The general results proven in [11] do not seem to apply to stationary solutions either
but, fortunately for us, they do apply with little modifications for the multi-center ones,
and, in this paper we are going to profit from them to construct the first α′-corrected

2See also earlier work in Refs. [4,5].
3Actually, these and other similar conditions that guarantee that the α′ corrections are also negligible must also

be imposed on the zeroth-order solutions as well.
4An exhaustive study of the different non-supersymmetric 4-dimensional 4-charge back holes can be found in

Ref. [9].
5In Ref. [16] the first-order α′ corrections to the 4-charge non-extremal solutions have been computed, but only

in the particular case in which two of them are equal. The case in which the 4 charges are independent still seems
out of our reach.
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multi-center black-hole solutions both in 5- and in 4-dimensions and both supersym-
metric and non-supersymmetric. They are the multi-center generalization of the single,
static, extremal black-hole solutions whose α′-corrections were found in Refs. [9–13]
and include most of them.6 Before we introduce this particular work, though, it is con-
venient to discuss the rest of the program outlined above since it affects the reliability
of our results.

It is worth mentioning, though, that the solutions presented in Refs. [9–13] satisfy a
highly non-trivial consistency test: they are invariant (as families of solutions) under the
α′-corrected Buscher T duality transformations derived in Ref. [17] (see also Ref. [18]).
The multi-center solutions that we are going to present, being related to the general
solutions of Ref. [11] pass this strict test as well.

3. At lowest order in α′ and the string coupling constant, all string effective field theories
can be regarded as General Relativity (GR) coupled to particular kinds of interacting
matter and the entropy of any of their black-hole solutions is the Bekenstein-Hawking
entropy: one quarter of the area of the horizon in Planck units. This relation originates
in the proofs of the first and second laws of black hole mechanics [19, 20] (based on
Einstein’s equations) together with the discovery of the Hawking radiation [21] and the
precise relation between its (Hawking) temperature and the surface gravity of the black
hole.

At higher orders in α′, string effective actions contain terms of higher order in the cur-
vatures and can no longer be regarded as GR. However, we know that their black-hole
solutions still behave as thermal objects since the phenomenon of Hawking radiation
does not depend on the dynamics of gravity. Furthermore, it can be shown that the ze-
roth law (the fact that surface gravity is constant over the horizon) [20] can be proven
without the use of the Einstein equations [22] and, therefore, it will still hold in the
α′-corrected string effective field theory actions.

In GR, the relation between the area and the entropy was hinted at by the results ob-
tained by Christodoulou and Hawking [23–25] but there are no analogous results for
other theories of gravity suggesting a candidate to be identified with the entropy. For
this reason, Wald’s derivation of the first law of black hole mechanics for arbitrary diff-
invariant theories of pure gravity [26], based on previous work with Lee [27], constituted
a great breakthrough in this field. The quantity whose variation with respect to the mass
is the inverse of the Hawking temperature must be the black hole entropy and, in this
framework, it is known as Wald entropy. In order to confirm this identification one has
to prove that this quantity also satisfies the second law. This is a much harder problem,
but there is real progress in this direction [28–30].

As we have mentioned, the string effective action is a theory of gravity coupled to very
special interacting matter. Thus, an extension of Wald’s results including matter is nec-
essary to deal with it. In Ref. [31], Iyer and Wald considered diff-invariant theories
of gravity coupled to matter fields transforming as tensors under diffeomorphisms, ob-
taining, as a result, the celebrated Iyer-Wald prescription to derive the entropy formula
which has been widely used to compute the Wald entropy of α′-corrected near-horizon
limits of stringy black holes (see, e.g. Refs. [32,33] and references therein).

This formula was used in Refs. [10–13] to compute the Wald entropy of the extremal
black hole solutions found in those same references, but it was soon realized that the

6We have not found the multi-center generalization of all the possible non-supersymmetric black holes consid-
ered in Ref. [9].
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Iyer-Wald prescription cannot be directly and reliably applied to the heterotic superstring
effective action:

(a) The entropy formula produced is different if one uses the 10-dimensional or the
toroidally-compactified actions [34].

(b) The entropy formula produced is Lorentz frame-dependent [35], which is utterly
unacceptable.

Both problems arise from the inadequate treatment of the Lorentz-Chern-Simons terms
present in the Kalb-Ramond field strength in the heterotic superstring effective action at
first order in α′.7 However, ultimately, this inadequacy follows from the over-restrictive
assumptions made on the matter fields in Ref. [31], which leads to the total absence
of non-gravitational work terms in the first law of black hole mechanics, such as those
proportional to the variations of electric charges. As explained in [37], for instance, most
matter fields are not simple tensor fields under diffeomorphisms, but sections of principal
bundles or more complicated structures. The only true tensor field in the Standard Model
is the metric.8

In Refs. [37, 40] we revised from this point of view Wald’s derivation of the first law
of black hole mechanics in simple theories, obtaining the expected work terms and,
as a bonus, restricted forms of the generalized zeroth laws.9 In Ref. [35] two of us
applied these ideas to the (by far) more complicated case of the heterotic superstring
effective action to first order in α′, obtaining the first law of black hole mechanics with
work terms10 and a Lorentz frame-independent and gauge-invariant expression for the
entropy.

In the frame typically used to construct the solutions, the entropy formula found in
Ref. [35] can be written in the same form as the one that follows from the Iyer-Wald
prescription, except for one coefficient.

As we have argued before, it would be wrong to decide which formula is right by just
comparing the Wald entropies of the α′-corrected stringy black holes obtained by apply-
ing them with the microscopic entropies. A internal consistency check of these entropy
formulas is badly needed.11

The property that the correct Wald entropy must satisfy is, precisely, that it satisfies the
first law: ∂ S/∂M = 1/T . It would be enough to check which entropy satisfies this
property, but this can only be done with α′-corrected non-extremal stringy black holes.
Finding an α′-corrected non-extremal 4-dimensional black hole and the non-extremal

7It should be stressed that these Chern-Simons terms are very different from those considered in Ref. [36],
present in the action and introducing additional total derivatives in its variation under diffeomorphisms: they
transform as 3-forms under diffeomorphisms, to start with.

8See Ref. [38] for a rigorous treatment of the principal bundle case and Ref. [39] for a different take on this
problem.

9Again, in the principal bundle case, this result was obtained in Ref. [38].
10Not all work terms were recovered in that article: at the time it was not known how to obtain the work terms

proportional to the variations of the magnetic charges in this formalism (a problem solved in Ref. [41]), nor the
terms proportional to the asymptotic values of the scalars found in Ref. [42] (a problem solved in Ref. [43]).
Furthermore, there are charges associated to fields that only enter the theory after dimensional reduction, such as
Kaluza-Klein vectors and it was not known how to recover the work terms proportional to the variations of those
charges using the 10-dimensional action. This problem has been partially solved in Ref. [44], but more work is
needed to understand the higher-dimensional origin of all the work terms that occur in the 4- or 5-dimensional
first laws.

11As we have stressed, the Iyer-Wald entropy formula is Lorentz frame-dependent, and this is enough to discard
it. However, since the entropy formula of Ref. [35] gives a numerically very close result, it does not hurt to
momentarily keep it in the game for the sake of the argument.
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versions of the 3-charge black holes to carry out this test was one of the main motivations
behind Refs. [14] and [15], respectively. In both cases it was the entropy computed using
the Lorentz frame- and gauge-independent formula of Ref. [35] that was shown to satisfy
the first law.

4. Having computed by internally-consistent methods the Wald entropy of stringy black-
hole solutions whose α′ corrections have been reliably computed as well it is tempting
to proceed immediately to compare that macroscopic entropy with the microscopic one.
However, only the entropies of corresponding systems must be compared; for instance,
the entropy of the (heterotic version of the) Strominger-Vafa black hole, which can be
considered the strong-coupling limit of a set of solitonic 5-branes (S5) and fundamental
strings (F1) with momentum flowing along them can be compared withe the entropy of
the heterotic superstring quantized on such a background.

At zeroth order in α′ the identification of the branes corresponding to a given black-
hole solution is straightforward: it follows directly from the calculation of the conserved
charges of the solution. The definitions of those conserved charges and their calculation
are unambiguous at that order and it is based on integrals of terms that satisfy Gauss
laws and give the same results whether they are integrated over the horizon or at spatial
infinity. The identification of the charges with numbers of branes is also unambiguous.

At first order in α′ the definitions of the conserved charges contain a large number of
higher-order terms. All these terms are necessary to obtain integrands that satisfy Gauss
laws but, since they are very hard to compute and they vanish asymptotically much faster
than the zeroth-order terms, they are typically ignored. These integrands give conserved
charges when integrated at spatial infinity but they give different results when integrated
over the horizon because the terms that have been ignored do not vanish there. Thus, we
have different notions of charge [45] with different properties of transformation under
duality and the problem of figuring out which charges correspond to the numbers of
charges12 that occur in the microscopic entropy and study their conservation.13 This is a
difficult and not yet solved problem that will be studied in more detail elsewhere [46],14

but the reader should be aware of its existence when comparing the macroscopic and
microscopic entropies at first and higher orders in α′ because their agreement depends
on the choice of variables.

It should be clear form this discussion that this is a research program still under way and
far from having been completed: the α′ corrections of many black-hole solutions (multi-center,
rotating...) and their entropies have not yet been computed, the identification of the branes
that give rise to the corresponding string background has to be clarified and, at some point in
the future, one would like to extend all these results to higher orders in α′ and in the string
coupling constant.

In this paper, as part of this program, we are going to focus on the α′ corrections to the
well-known multi-center generalizations of the 3- and 4-charge extremal, static, black-hole
solutions in 5 and 4 dimensions. We are interested in the corrections to the geometry and to
the entropy and their consequences. In particular, we want to know whether the α′ corrections
preserve the regularity of the horizons and of the rest of the spacetime. It has to be taken
into account that solutions describing collinear Schwarzschild black holes in static equilibrium
have long been known [47,48]. These solutions, however, have conical singularities in the line

12This problem is aggravated by the α′-dependent definitions that the fields theat descend from the 10-
dimensional Kalb-Ramond 2-form suffer in the dimensional reduction [18].

13Incidentally, this discussion casts a shadow over the results obtained using near-horizon solutions since only
the horizon charges can be computed with them.

14Nevertheless, see the discussion concerning the S5 brane at the end of Section 4.
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joining the centers or extending from the centers to infinity, known as struts, associated to the
external forces necessary to hold the system in equilibrium. The absence of these singularities
and the regularity of the horizons can be interpreted as a proof of the cancellation of interaction
energies and of the equilibrium of forces between the black holes [49,50] (see Figs. 1 and 2).15

We also want to know whether the fragmentation of large black holes into smaller black holes is
entropically favored. We are going to consider supersymmetric and some non-supersymmetric
multi-center black-hole solutions to see of and how the equilibrium of forces between the black
holes depends on supersymmetry.16

Out[ ]=

Figure 1: The absence of struts (conical singularities) joining the centers is a neces-
sary condition to interpret the solution as black holes in equilibrium without the help
of external forces.

Out[ ]=

Figure 2: The absance of struts (conical singularities) extending from the centers
to infinity is another necessary condition to interpret the solution as black holes in
equilibrium without the help of external forces.

Our calculation of the α′ corrections in mainly based on Ref. [11] in which a very general
class of α′-corrected solutions was found. This class includes multi-center black-hole solutions,
as we are going to show.

15For an extended discussion on this we refer to the Introduction of [51] and references therein.
16In the solutions that we are going to consider, the existence of unbroken supersymmetry depends on the

relative sign between two of the black-hole charges. This relative sign does not cover all the non-supersymmetric
possibilities in four dimensions, but the corrections to those not included here are much more difficult to deal
with [9].
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This paper is organized as follows: in Section 2 we review the five- and four-dimensional
multi-center black hole solutions we will work with at leading order in α′, starting with their
common ten-dimensional origin. In Section 3 we show the α′-corrected solutions and analyze
their thermodynamic properties. Finally, in Section 4 we summarize our main results and
discuss how the α′ corrections would affect the fragmentation of these extremal black holes
into smaller extremal black holes of the same kind. The appendices contain the low-energy
effective action and corresponding equations of motion of the heterotic superstring to first
order in α′ and a collection of results which are used in the main text.

2 Heterotic multi-center black-hole solutions at leading order

Let us begin with a review of two well-known families of multi-center black-hole solutions
in five and four dimensions which arise as solutions of the heterotic superstring effective field
theory compactified on a torus.17 Both families have as a common origin a very general class of
ten-dimensional solutions which depend on a choice of four-dimensional hyper-Kähler metric
(m, n= 1,2, 3,4),

dσ2 = hmn d xmd xn , (1)

and on a choice of three functions, Z0,Z+,Z−, which are harmonic in this hyper-Kähler space,
i.e. they satisfy the linear equations

d ⋆σ dZ0,+,− = 0 . (2)

This linearity allows us to construct multi-center solutions by “superposition” of several single-
center solutions.

In terms of these four objects, the string-frame line element dŝ2, the Kalb-Ramond 3-form field
strength Ĥ and the dilaton field φ̂ of the solutions take the form18

dŝ2 =
1

Z+Z−
d t2 −Z0 dσ2 −

k2
∞Z+
Z−

�

dz + k−1
∞

�

Z−1
+ − 1
�

d t
�2 − d y⃗ 2

(4) , (3a)

Ĥ = d
�

(2ε− 1) k∞
�

Z−1
− − 1
�

d t ∧ dz
�

+ ⋆σdZ0 , (3b)

e−2φ̂ = e−2φ̂∞Z−/Z0 . (3c)

The modulus φ̂∞ will correspond the asymptotic value of the dilaton if, as we will assume, the
functions Z− and Z0 asymptote to 1. Since the vacuum expectation value of the exponential

17This theory is described in Appendix A. At zeroth-order in α′ and after compactification and truncation on
T5 one obtains a 5-dimensional supergravity whose supersymmetric solutions have been classified and studied in
Ref. [54]. Some of them describe muticenter black-hole solutions. Further compactification on a circle gives the
4-dimensional solutions we are going to consider. Their uplift to 10 dimensions gives the heterotic supersymmetric
zeroth-order solutions we are describing in this section. In the 5-dimensional case, changing the global sign of the
Kalb-Ramond field one trivially obtains a new solution, but breaks supersymmetry [9]. In this way one obtains non-
supersymmetric multi-center black-hole solutions. In the 4-dimensional case there are more global sign changes
that transform solutions into solutions breaking supersymmetry [9]. See also Ref. [55]. Particular cases of the 4-
dimensional multi-center black hole solutions we are considering were found by Gibbons in Ref. [56] and include
the Majumdar-Papapetrou solutions Ref.s [57, 58] (see also Ref. [50]). For a more recent account of multi-center
black-hole solutions in String Theory see, e.g. [59] and references therein.

18We use hats to distinguish the ten-dimensional fields from the five- and four-dimensional ones.
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of the dilaton is the string coupling constant, for asymptotically-flat solutions we can make the
identification,

ĝs = eφ̂∞ . (4)

The coordinates y⃗(4), periodically identified with equal periods 2πℓs, where ℓs is the string
length, parametrize a four-dimensional torus T4 which has trivial internal dynamics, meaning
that all the Kaluza-Klein (KK) zero modes (scalars and vectors) are trivial.19 The coordinate
z ∼ z + 2πℓs further parametrizes a circle S1z whose asymptotic radius Rz is related to the
asymptotic value of the KK scalar associated to this compact direction, k∞, and to ℓs by

Rz = k∞ℓs . (5)

Finally, ε is the supersymmetry-breaking parameter. It takes two values, ε = {0,1}, which
correspond to the relative sign between two of the black hole charges. It turns out that the
configuration is supersymmetric only if ε = 1 [9]. We have not considered the possibility of
changing the sign of the second term in Ĥ. This sign becomes the sign of a third black-hole
charge upon dimensional reduction. At zeroth order, the effect of this change of sign is almost
trivial, but the first-order in α′ corrections are much more difficult to obtain than with the
chosen sign [9].

Many different solutions can be obtained from Eq. (3) by making particular choices of
hyper-Kähler space and harmonic functions. Many of them are singular or have no known
physical interpretation. Let us see which choices lead to five- and four-dimensional multi-
center black-hole solutions.

2.1 Multi-center black-hole solutions in five dimensions

The simplest choice of hyper-Kähler space which allows for five-dimensional multi-center
black-hole solutions is E4. The choice of harmonic functions in E4 that gives rise to multi-
center three-charge black holes is the following,20

Z+ = 1+
nc
∑

a=1

qa
+

ρ2
a

, Z− = 1+
nc
∑

a=1

qa
−

ρ2
a

, Z0 = 1+
nc
∑

a=1

qa
0

ρ2
a

, (6)

where nc is the total number of centers and

ρ2
a =
�

xm − xm
a

� �

xm − xm
a

�

, (7)

xm
a being the position of the ath center in E4. The parameters qa

+, qa
− and qa

0 must be taken
to be strictly positive in order to avoid naked singularities and, then, they correspond to the
absolute value of the charges associated to each black hole, up to normalization factors.

The five-dimensional form of the solution is obtained by compactification over the inter-
nal manifold, T4 × S1z . This operation can be conveniently carried out in two steps. Firstly,
we compactify over the trivial T4. The corresponding six-dimensional solution has exactly
the same form as the ten-dimensional one except for the term −d y⃗ 2

(4) in the metric, which is

not present in the former. Secondly, we reduce the six-dimensional solution over S1z . Using the

19In particular, the KK scalars associated to the T4 are equal to equal to their vacuum expectation values that we
set to 1 for convenience, as they do not play any rôle in our solutions.

20It has been recently proven in [52] that, in the Einstein-Maxwell theory, the standard multi-center black-hole
solutions are the only ones within the Majumdar-Papapetrou class that give rise to asymptotically-flat black holes
with regular event horizons. This extends a previous result by Chrusciel and Tod [53] to d > 4 dimensions.
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relations between the higher- and lower-dimensional fields provided in Appendix B, we obtain

ds2
E = (Z+Z−Z0)

−2/3 d t2 − (Z+Z−Z0)
1/3 d xmd xm , (8a)

H = 1
3!εmnpq∂qZ0 d xm ∧ d xn ∧ d x p , (8b)

F = d
�

k−1
∞

�

Z−1
+ − 1
�

d t
�

, (8c)

G = d
�

(2ε− 1) k∞
�

Z−1
− − 1
�

d t
�

, (8d)

e−2φ = e−2φ∞Z1/2
+ Z1/2

− Z−1
0 , (8e)

k = k∞Z1/2
+ Z−1/2

− , (8f)

where ds2
E stands for the five-dimensional line element in the so-called modified Einstein frame

[60],
F = dA , G = dC , (9)

are, respectively, the field strengths of the KK and winding vector fields, A and C ,

H = dB − 1
2A∧ G − 1

2 C ∧ F , (10)

is the 3-form field strength of the Kalb-Ramond 2-form B, k is the KK scalar associated to the
internal direction z andφ is the five-dimensional dilaton. In five dimensions, the Kalb-Ramond
field can be dualized into a vector field whose field strength is

K = d
��

Z−1
0 − 1
�

d t
�

. (11)

2.1.1 Thermodynamics

The solution is asymptotically flat and its only potential singularities sit at the centers xm = xm
a .

If the charge products qa
+qa
−qa

0 are finite, though, these are just coordinate singularities: near
the ath center, the metric is that of AdS2 × S3, which is one of the possible near-horizon ge-
ometries of extremal black holes in five dimensions [61]. Hence, the ath center is, actually a
two-sphere of finite radius (qa

+qa
−qa

0)
1/6 which corresponds to the event horizon of an extremal

black hole. The Bekenstein-Hawking (BH) entropy of the ath black hole is, then,

Sa
BH =

π2

2G(5)N

q

qa
+qa
−qa

0 . (12)

The entropy of the solution is just the sum of the entropies of all the black holes:

SBH =
∑

a

Sa
BH =

π2

2G(5)N

∑

a

q

qa
+qa
−qa

0 . (13)

Strictly speaking, only the total mass of the solution can be rigorously defined. From the
asymptotic expansion of the t t component of the metric we find that it is given by

M =
π

4G(5)N

∑

a

�

qa
+ + qa

− + qa
0

�

. (14)
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However, since the vector fields of the solution are Abelian, we can compute the charges of
each black hole independently and, as we have already mentioned, these are given given by
the parameters qa

+, qa
−, qa

0 up to signs and normalization. An isolated extremal black hole with
those charges would have a mass given by

M a =
π

4G(5)N

�

qa
+ + qa

− + qa
0

�

. (15)

Since the total mass is the sum of the would-be individual masses of all the black holes,

M =
nc
∑

a=1

M a . (16)

This fact implies that the black-holes mutual interaction energies (all the Einstein equations
know about [51]) are zero because there is a cancellation between all the different contri-
butions (gravitational, electromagnetic etc.) The cancellation of these interaction energies is
associated to a cancellation of the forces between the centers and, then, since the solution
is static, it is reasonable to conclude that the solution contains nc extremal black holes with
those charges and masses in equilibrium. The absence of singularities indicates that no exter-
nal forces are necessary to keep those black holes in equilibrium.

2.1.2 Microscopic description

The string-theory description of these solutions is well known: they can be understood as a
superposition of solitonic 5-branes (S5) —often referred to as NS5 branes—wrapped around
the directions parametrized by the coordinates y1, · · · , y4, z, fundamental strings (F1) wound
around the circle parametrized by z and waves (W) carrying momentum propagating along
the same circle, as we illustrate in Table 1.

Table 1: Sources associated to five-dimensional black holes. The symbol × stands
for the worldvolume directions and − for the transverse directions. The symbol ∼,
in turn, denotes a transverse direction over which the corresponding object has been
smeared.

t z y1 y2 y3 y4 x1 x2 x3 x4

F1 × × ∼ ∼ ∼ ∼ − − − −
W × × ∼ ∼ ∼ ∼ − − − −
S5 × × × × × × − − − −

From the lower-dimensional point of view, these fundamental objects act as point-like
sources for the three different types of charges carried by our solutions. The locations of
the sources in the non-compact space coincides with the position of the centers, where the
Laplace Eqs. (2) are not satisfied unless we take into account the coupling of the sources to
the background fields. This give rise to a sum of Dirac delta functions, δ(4)(x − xa),21 each
of which is weighted by the fraction of the total tension/charge associated to all the sources
located at xm = xm

a , which in turn is proportional to the amounts of momentum, winding and
S5 branes in each of the centers, respectively denoted by na, wa and N a.22 This is exactly the
same kind of contribution that one gets from the Laplacian of Z+,−,0, with the only difference

21Strictly speaking, this is just an effective description of the actual situation: the centers xm = xm
a are not points,

but finite-radii two-spheres from which the Abelian fields’ fluxes “emerge” in radial direction.
22These parameters are assumed to be positive.
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that now the delta functions are weighted by qa
+, qa
− and qa

0 . Imposing that both contribu-
tions cancel (i.e. that the equations of motion are also satisfied at the centers), one finds the
following relation between both sets of parameters [10]:

qa
+ =

g2
s α
′2

R2
z

na , qa
− = g2

s α
′wa , qa

0 = α
′ N a . (17)

Using these relations and the expression of the five-dimensional Newton constant in terms
of stringy variables

G(5)N =
πg2

s α
′2

4Rz
, (18)

one can rewrite the Bekenstein-Hawking entropy and the mass in terms of the source param-
eters as follows

SBH = 2π
∑

a

p
nawaN a , (19a)

M =
n
Rz
+

Rz

α′
w+

Rz

g2
s α
′ N , (19b)

where n=
∑

a na, w=
∑

a wa and N =
∑

a N a are the total momentum, winding and number
of S5-branes respectively. As we can see, the total energy of the configuration only depends on
the absolute value of the total charges, no matter how they are distributed among the different
centers. This will no longer be the case in presence of higher-derivative corrections, as we will
see Section 3.

2.2 Multi-Center black-hole solutions in four dimensions

In order to describe multi-center black-hole solutions in four dimensions, one of the directions
of the hyper-Kähler space must be compactified, which in practice means that it has to be
isometric. Supersymmetry is preserved in the compactification along this isometric direction if
the isometry is consistent with the hyper-Kähler structure, i.e. if the isometry is triholomorphic.
In this case, the hyper-Kähler space must belong to the Gibbons-Hawking class [62,63].

As we will see in the next section, there is another advantage for considering Gibbons-
Hawking spaces: their contribution to the α′-corrected Bianchi identity takes a form (the
Laplacian of a function) that allows us to solve the Bianchi identity in a fully analytic fash-
ion [11].

If w ∼ w + 2πℓs is the compact coordinate adapted to the isometry, a Gibbons-Hawking
metric can be written in the form

dσ2 = hmn d xmd xn = ℓ2∞H−1
�

dw+ ℓ−1
∞χ
�2
+H d x⃗ 2

(3) , (20)

where H is the Gibbons-Hawking function and χ is a 1-form which satisfying the equation

dχ = ⋆(3) dH , (21)

where ⋆(3) the Hodge star operator in E3. The above equation implies that H is harmonic in E3.
This property is also satisfied by the functions Z+,−,0 if they are harmonic in E4 and we demand
that they do not depend on the isometric coordinate w. The modulus ℓ∞ corresponds to the
asymptotic value of the KK scalar ℓ associated to the circle parametrized by w. The asymptotic
radius of this circle is given in terms of ℓ∞ an the string length ℓs by

Rw = ℓ∞ℓs . (22)
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The choice that allows us to describe multi-center black-hole solutions in four dimensions is

Z+ = 1+
nc
∑

a=1

qa
+

ra
, Z− = 1+

nc
∑

a=1

qa
−

ra
, Z0 = 1+

nc
∑

a=1

qa
0

ra
, H = 1+

nc
∑

a=1

qa
H

ra
, (23)

where ra = || x⃗ − x⃗a||. As before, x⃗a denotes the position of the ath center in E3 and the
parameters qa

+, qa
−, qa

0 and qa
H are assumed to be strictly positive.

The 1-form χ is given, locally, by

χ =
∑

a

qa
H cosθadφa , (24)

where ra,θa,φa are spherical coordinates associated to the ath center

x⃗ − x⃗a = (ra sinθa cosφa, ra sinθa sinφa, ra cosθa) . (25)

With these choices, the ten-dimensional solution can be rewritten locally in the form

dŝ2 =
1

Z+Z−
d t2 − ℓ2∞

Z0

H
�

dw+ ℓ−1
∞χ
�2 −Z0Hd x⃗ 2

(3)

− k2
∞

Z+
Z−

�

dz + k−1
∞

�

Z−1
+ − 1
�

d t
�2 − d y⃗ 2

(4) , (26a)

Ĥ = d
�

(2ε− 1) k∞
�

Z−1
− − 1
�

d t ∧ dz
�

+ ℓ∞ ⋆(3) dZ0 ∧ dw , (26b)

e−2φ̂ = e−2φ̂∞Z−/Z0 . (26c)

In order to avoid Dirac-Misner string singularities we have to impose the following “quan-
tization conditions” on the qa

Hs’:

qa
H =

RwW a

2
, W a ∈ Z+ ∀ a . (27)

The four-dimensional solution is obtained by compactifying the above solution on the six-
torus T6 = T4 × S1z × S

1
w by using (twice) the results in Appendix B. It has the following

non-vanishing fields,

ds2
E = (Z+Z−Z0H)−1/2 d t2 − (Z+Z−Z0H)1/2 d x⃗ 2

(3) , (28a)

(Aα) =





ℓ−1
∞χ

k−1
∞

�

Z−1
+ − 1
�

d t



 , (28b)

(Cα) =
�

(2ε− 1) k∞
�

Z−1
− − 1
�

d t , ℓ∞χ0

�

, (28c)

�

Gαβ
�

=





ℓ2∞Z0/H 0

0 k2
∞Z+/Z−



 , (28d)

e−2φ = e−2φ∞

√

√Z+Z−
Z0H

, (28e)
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where
e−2φ∞ = e−2φ̂∞k∞ℓ∞ , (29)

and
χ0 =
∑

a

qa
0 cosθadφa . (30)

2.2.1 Thermodynamics

The reasoning leading to the identification of the locations of the poles of the harmonic func-
tions with extremal black-hole event horizons is identical to that of the five-dimensional case.
Now, the near-horizon geometries are AdS2 × S2 and the radius of the ath of these spaces is
(qa
+qa
−qa

0qa
H)

1/4. The Bekenstein-Hawking entropy to the ath black hole is

Sa
BH =

π

G(4)N

q

qa
+qa
−qa

0qa
H , (31)

and the entropy of the complete spacetime is its sum

SBH =
∑

a

Sa
BH . (32)

We can also assign a mass M a to the ath center

M a =
1

4G(4)N

�

qa
+ + qa

− + qa
0 + qa

H
�

, (33)

and the cancellation of the mutual interaction energies follows from the relation between the
total mass M and the putative masses of the individual black holes

M =
∑

a

M a =
1

4G(4)N

�

∑

a

qa
+ +
∑

a

qa
− +
∑

a

qa
0 +
∑

a

qa
H

�

. (34)

2.2.2 Microscopic description

The main difference between the four- and five-dimensional cases is that in the four-
dimensional case there is one more type of charge: the magnetic charge associated to the
Kaluza-Klein vector. The sources for these charges are Kaluza-Klein monopoles. Their topo-
logical charges are the integers W a, whose relation with the magnetic charges qa

H was found in
Eq. (27) by imposing the absence of Dirac-Misner string singularities. The remaining sources
(fundamental strings, waves and S5-branes) are those of the five-dimensional black holes
smeared over the coordinate w which is transverse to their worldvolume directions, see Ta-
ble 2.

Table 2: Sources associated to the four-dimensional black holes.

t z y1 y2 y3 y4 w x1 x2 x3

F1 × × ∼ ∼ ∼ ∼ ∼ − − −
W × × ∼ ∼ ∼ ∼ ∼ − − −
S5 × × × × × × ∼ − − −

KK6 × × × × × × ∼ − − −
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Due to this smearing, the relations between the parameters qa that occur in the harmonic
functions and the source parameters are no longer given by Eqs. (17), but instead by [12]23

qa
+ =

g2
s α
′2

2R2
zRw

na , qa
− =

g2
s α
′

2Rw
wa , qa

0 =
α′

2Rw
N a . (35)

In terms of the source parameters, na, wa, N a and W a, the entropies and putative masses
of each of the centers read

Sa
BH = 2π

p
nawaN aW a , (36a)

M a =
na

Rz
+

Rz

α′
wa +

Rz

g2
s α
′ N

a +
R2

wRz

g2
s α
′2

W a . (36b)

The total entropy and mass are just the sums.

3 Heterotic multi-center black-hole solutions at first order in α′

It was shown in Ref. [11] that the first-order α′ corrections to the general ten-dimensional
heterotic background considered in the previous section and given in Eqs. (3) can be analyti-
cally obtained in the supersymmetric case for arbitrary choices of harmonic functions as long
as the hyper-Kähler metric is a Gibbons-Hawking space or E4. Here we extend the results
of [11] to the ε= 0 case, which does not preserve any supersymmetry. In this section we will
just describe the corrected solutions.24 They have exactly the same form as the leading-order
solutions described in Section 2 with the only difference that the functions Z+ and Z0 get α′

corrections.25 For any solution to the zeroth-order equations of motion of the form Eq. (3),
the corrections to these functions are given by26

Z+ = Z(0)+ −α
′

¨

ε

2

∂mZ
(0)
+ ∂mZ

(0)
−

Z(0)0 Z(0)−
+H+

«

+O(α′2) , (37a)

Z0 = Z(0)0 +α′







1
4





∂mZ
(0)
0 ∂mZ

(0)
0

�

Z(0)0

�2 +
∂mH(0)∂mH(0)
�

H(0)
�2



+H0







+O(α′2) , (37b)

where now Z(0)+,−,0 and H(0) are the zeroth-order value of those functions (i.e. harmonic func-
tions in the hyper-Kähler metric hmn) and H0 and H+ are arbitrary harmonic functions in the
hyper-Kähler metric hmn (which does not get any corrections) which will be determined later
on by imposing appropriate boundary conditions.

23Although we use the same symbols for the parameters that occur in the harmonic functions for the five- and
four-dimensional cases, they are different. In particular, they have different dimensions.

24Additional details are provided in Appendix D.
25This is only true for the 10-dimensional solutions, because the definitions of some the lower-dimensional

fields (all those descending from the 10-dimensional Kalb-Ramond 2-form) have α′ corrections [18]. These will
not be needed for our purposes: we only need the lower-dimensional metrics, whose expression in terms of the Z
functions do not change.

26Here we are using flat indices in the hyper-Kähler space m, n, . . ., whose metric does not get any corrections.
Thus, ∂mX∂mY ≡ hmn∂mX∂nY .
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The functions H and Z− do not get any corrections, hence they are simply given by

Z− = Z(0)− +O(α′2) , (38a)

H =H(0) +O(α′2) . (38b)

Let us now discuss the corrections to the multi-center black-hole solutions studied in the
previous section.

3.1 Multi-Center black-hole solutions in five dimensions

Plugging the functions Z(0)0 and Z(0)+ chosen in Eqs. (6) in Eqs. (37a) and (37b), we get

Z+ = Z(0)+ +α
′



−2εZ−1
− Z(0)−1

0

∑

a,b

qa
+qb
−nm

a nm
b

ρ3
aρ

3
b

+H+



+O(α′2) , (39a)

Z0 = Z(0)0 +α′



Z(0)−2
0

∑

a,b

qa
0qb

0 nm
a nm

b

ρ3
aρ

3
b

+H0



+O(α′2) , (39b)

where we have defined the unit radial vectors

nm
a ≡ (x

m − xm
a )/ρa . (40)

We just have to determine the harmonic functions H+ and H0. We shall impose the fol-
lowing two conditions:

1. The solutions will be asymptotically flat with the following normalization of the func-
tions: lim||x ||→∞Z+,0 = 1. This implies

lim
||x ||→∞

H+,0 = 0 . (41)

2. The coefficients of the 1/ρ2
a poles of Z0,+ which arise in the ρa → 0 will not be renor-

malized. That is

Z+|x→xa
∼

qa
+

ρ2
a

, Z0|x→xa
∼

qa
0

ρ2
a

. (42)

H0 and H+ must be harmonic functions of the same type as Z(0)0 and Z(0)+ to preserve asymp-
totic flatness:

H0,+ = α0,+ +
∑

a

βa
0,+

ρ2
a

. (43)

Then, the above conditions determine the coefficients α0,+,βa
0,+ as follows,

α0 = α+ = 0 , βa
0 = −1 , βa

+ = 2ε
qa
+

qa
0

, (44)

yielding

H+ = 2ε
∑

a

qa
+

qa
0ρ

2
a

, H0 = −
∑

a

1
ρ2

a
. (45)
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Hence, the final form of the functions that get α′ corrections is

Z+ = Z(0)+ − 2εα′



Z−1
− Z(0)−1

0

∑

a,b

qa
+qb
−nm

a nm
b

ρ3
aρ

3
b

−
∑

a

qa
+

qa
0ρ

2
a



+O(α′2) , (46a)

Z0 = Z(0)0 +α′



Z(0)−1
0

∑

a,b

qa
0qb

0 nm
a nm

b

ρ3
aρ

3
b

−
∑

a

1
ρ2

a



+O(α′2) . (46b)

The two conditions imposed to determine H0,+ have a physical motivation. The first con-
dition is equivalent to asking the non-renormalization of the asymptotic value of the string
coupling, the radius of the internal direction and, therefore, of the five-dimensional Newton
constant. These constants defined the vacuum and, therefore, we are dealing with corrected
solutions in the original vacuum. This allows us to compare the masses and the charges of the
black holes before and after the corrections.

The second condition is meant to keep unmodified the relation between the parameters
of the solution qa

0,+,− and the physical parameters specifying the microscopic system, na, wa

and N a Eq. (17). As we have already discussed, this is due to the fact that na, wa and N a are
proportional to the coefficients of the poles of the functions [10,12]. It is worth remarking that
this condition implies that the 1/ρ2 coefficient in the asymptotic expansion of the functions
can be corrected. Indeed, we find

Z0 ∼ 1+
1
ρ2

�

∑

a

qa
0 −α

′nc

�

+ . . . , Z+ ∼ 1+
1
ρ2

∑

a

�

qa
+ +

2εα′qa
+

qa
0

�

+ . . . (47)

Another natural choice of harmonic functions H0,+ would have been to simply set both of
them to zero. In such case, the 1/ρ2 coefficients in the asymptotic expansion would remain
invariant, while the coefficients of the poles of the functions would be corrected, contrarily to
what happens with the choice we have made. Nevertheless, it is important to emphasize that
both choices are physically equivalent since they give rise to the same solution parametrized
in very different ways. For instance, the identifications in Eq. (17) are no longer valid if we
choose H0,+ = 0.

In any case, these ambiguities disappear once the solution is expressed in terms of the
physical quantities. The behavior of the functions near the ath center is given by

Z+ ∼
g2

s α
′2na

R2
zρ

2
a

, Z− ∼
g2

s α
′wa

ρ2
a

, Z0 ∼
α′N a

ρ2
a

, (48)

while, asymptotically, we find

Z+ ∼ 1+
g2

s α
′2|Q+|

R2
zρ

2
, Z− ∼ 1+

g2
s α
′|Q−|
ρ2

, Z0 ∼ 1+
α′|Q0|
ρ2

, (49)

where we have defined, for later convenience,

Q+ = n+ 2ε
∑

a

na

N a
, Q− = (2ε− 1)w , Q0 = − (N − nc) , (50)
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which coincide with the asymptotic charges of the solution, defined as

ℓ−1
s Q+ =

g2
s

16πG(5)N

∫

S3∞

e−2φk2 ⋆ F , (51a)

TF1Q− =
ĝ2

s

16πG(10)
N

∫

T4×S3∞

e−2φ̂ ⋆̂ Ĥ , (51b)

TS5Q0 =
1

16πG(10)
N

∫

S3∞

Ĥ , (51c)

where

TF1 =
1

2πα′
, TS5 =

1
(2πℓs)5 g2

s ℓs
, (52)

are the string and S5-brane tensions, respectively.

3.1.1 Regularity of the corrected solutions

From the behavior of the functions near the centers Eqs. (48), we see that the corrected solu-
tions describe nc regular event horizons as long as the charge parameters are strictly positive,
qa
+,−,0 > 0. When the corrections are taken into account, though, even if we take all these pa-

rameters to be positive, there exists the possibility that the functions Z+ and Z0 vanish at some
points outside the event horizons, giving rise to naked (curvature) singularities. However, we
can argue that in the solutions we are considering in this paper, all eventual curvature singu-
larities that might appear must be spurious.27 The reason is simply that they are not present
in the zeroth-order solutions. Therefore, if they appear in the corrected solutions, it must be
in a regime of charge parameters where the perturbative expansion is no longer justified, as
the vanishing of the functions can only happen when the corrections cancel the leading-order
contributions, which tells us that they are equally important. This can be seen very clearly in
the single-center solutions. In this case, the corrections are given by [9]

Z+ = 1+
q+
ρ2
+

2εq+α
′
�

ρ2 + q0 + q−
�

q0 (ρ2 + q−) (ρ2 + q0)
+O(α′2) , (53a)

Z0 = 1+
q0

ρ2
−α′

ρ2 + 2q0

(ρ2 + q0)
2 +O(α′2) . (53b)

The function Z+ is always strictly positive if q+,−,0 > 0. However, the function Z0 can vanish
and change sign, which is far worse. However, this only happens if q0 ≪ α′ (see Fig. 3), in
which case the perturbative expansion is no longer justified. Hence, naked singularities of the
corrected solutions only arise for values of the parameters for which the perturbative expansion
breaks down and we should not worry about them. A graphic depiction of a particular solution
is givenin Figs. 6 and 7.

27Note that this claim does not apply to the conical singularities (struts) we are also discussing in the paper.
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Figure 3: Plot of the function Z0 for the solution with a single center nc = 1 and for
several values of the charge q0/α

′ = {0.2,1, 5}. As we can see, when the value of q0
is sufficiently small, (spurious) naked singularities appear.
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Figure 4: Plot of the function Z0 for the solution with multiple centers nc = 5 along
the plane x3 = x4 = 0. The plane spanned by x1 and x2 does not contain any of the
centers. The centers are placed in the vertexes of a 5-cell.

In the multi-center case, we have exactly the same situation. In any case, it is, of course,
important to check that the we have found solutions are free of these pathologies when we take
the charges to be large as compared toα′. We have done so numerically for several multi-center
configurations and we have found no singularities whenever the charges are larger than ℓs, in
agreement with our general argument: even if we consider a complicated configuration (see
Fig. 4), approaching a center the corrections to Z+, 0 reduce to those of a single BH (see Fig. 5).
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Figure 5: Plot of the function Z0 for the solution with multiple centers nc = 5 along
a direction passing through a center for several values of the charge of such center
qa

0/α
′ = {0.1,0.2, 0.5,1}. As we can see, when the value of q0 is much smaller than

α′, (spurious) naked singularities appear. The centers are placed in the vertexes of a
5-cell.
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Figure 6: Plot of the gt t component of the metric in the Einstein frame Eq. (8a) for
a planar configuration of 3-charged extremal BHs in 5 dimensions. x1 and x2 are
the same of Eq. (7). The charges and the positions are positive and randomly picked
such that the average distance among the BHs is 5 times the average value of the
charges in units of α′.

20

https://scipost.org
https://scipost.org/SciPostPhysCore.6.4.072


SciPost Phys. Core 6, 072 (2023)

Figure 7: 3-dimensional version of the plot in Fig. 6. In this figure we do not have
infinite throats because the coordinates we are using are defined outside of the BHs
horizons where gt t = 0.

3.1.2 Thermodynamic properties of the corrected black holes

The ADM mass of the α′-corrected five-dimensional black holes can be straightforwardly com-
puted from the asymptotic expansion of t t component of the metric. The result can be ex-
pressed in several ways,

M =
n
Rz
+

Rz

α′
w+

Rz

g2
s α
′N +

2ε
Rz

∑

a

na

N a
−

ncRz

g2
s α
′

=
|Q+|
Rz
+

Rz|Q−|
α′

+
Rz|Q0|
g2

s α
′ ,

(54)

which highlight different aspects of the corrections to the mass, as we are going to discuss.
First, observe that we can associate a mass to the ath black hole given by28

M a =
na

Rz

�

1+
2ε
N a

�

+
Rzwa

α′
+α′ (N a − 1) , (55)

and that it is still true that the total mass is given by the sum of these putative individual
black-hole masses, M =

∑

a M a. Again, this is telling us that there is a cancellation of the
interaction energies between the black holes, which is precisely what allows them to be in
static equilibrium. However, contrarily to what happens at zeroth order, the total mass not
only depends on the total amounts of winding, momentum and S5-branes, but also on the
particular distribution of these objects among the different centers.

In order to discuss the corrections to the mass, we have to specify the quantities that we
keep fixed. There are two natural possibilities: either we fix the asymptotic (Maxwell) charges,
Q+,−,0, or the total number of stringy sources, n, w and N . This distinction is necessary because
these quantities do not coincide when taking into account α′ corrections, as we have just seen
in Eq. (50). In fact, the correction to the mass just vanishes when the asymptotic charges are

28These individual masses can be found by setting nc = 1 in Eq. (54).
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kept fixed, as reported in [9]. In contrast, when fixing n, w and N , one finds that the correction
to the mass is given by

δM |n,w,N =
2ε
Rz

∑

a

na

N a
−

ncRz

g2
s α
′ =

1
Rz

�

2ε
∑

a

na

N a
−

nck
2
∞

g2
s

�

. (56)

As we can see, the correction in the non-supersymmetric case (ε = 0) is always negative
and, furthermore, it decreases linearly with the number of centers. This means that the frag-
mentation of these bound states is energetically favored in the non-supersymmetric case. We
will come back to this issue in Section 4. In the supersymmetric case, in turn, the correction
does not have a definite sign.

The entropy of these black holes can be obtained by means of the entropy formula derived
in [35]29 based on the results of [37,40], as it has recently been done in [9] for single black-
hole solutions. Since this entropy is just an integral over the event horizon, it is just the sum
of all the entropies of the individual black holes, and we can simply use the result in [9] to get

SW =
∑

a

Sa
W , Sa

W = 2π
p

nawaN a

�

1+
2ε
N a

�

. (57)

As we can see, the correction to the entropy for fixed na, wa and N a vanishes in the non-
supersymmetric case, in agreement with the results of [33, 64]. The result in the supersym-
metric case coincides with previous results in the literature, see [18,33,34,64,65].

3.2 Multi-Center black-hole solutions in four dimensions

Plugging Eqs. (23) in Eqs. (37a) and (37b) and choosing the harmonic functions H0,+ with
the same prescription as in the five-dimensional case, we obtain that the corrections to Z+ and
Z0 are the following,30

Z+ = Z(0)+ −
εα′

2



Z(0)−1
0 Z−1

− H−1
∑

a,b

qa
+qb
−nm

a nm
b

r2
a r2

b

−
∑

a

qa
+

qa
0qa

Hra



+O(α′2) , (58a)

Z0 = Z(0)0 +
α′

4



Z(0)−2
0 H−1
∑

a,b

qa
0qb

0 nm
a nm

b

r2
a r2

b

+H−3
∑

a,b

qa
Hqb

Hnm
a nm

b

r2
a r2

b

−
∑

a

2
qa
Hra



+O(α′2) ,

(58b)

where, now, nm
a ≡ (x

m − xm
a )/ra and m= 1, 2,3.

The behavior of all the functions that determine the four-dimensional solutions near the
black-hole horizons (ra→ 0) is,

Z+ ∼
g2

s α
′2na

2R2
zRwra

, Z− ∼
g2

s α
′wa

2Rwra
, Z0 ∼

α′N a

2Rwra
, H ∼

RwW a

2ra
, (59)

29As explained in that reference, in general, the Iyer-Wald formula derived in [31] using the formalism of [26,27]
is not valid in presence of matter fields because the vast majority of them have gauge freedoms that were not
correctly taken into account. In particular, in the case of the first-order in α′ heterotic superstring effective action,
the entropy formula derived using the Iyer-Wald prescription is not gauge invariant (it is frame-dependent). In
certain frames, the entropy formula derived using the Iyer-Wald prescription and the entropy formula derived
in [35] take the same form, except for a factor of 2 in one of the terms. The factor of 2 that occurs in the entropy
formula derived in [35] leads to an entropy that satisfies the first law of black-hole thermodynamics in the α′-
corrected non-extremal Reissner-Nordström black hole [14].

30The expressions for the harmonic functions in this case are H+ =
∑

a
εqa
+

2qa
0 qa

H ra
and H0 = −
∑

a
1

2qa
H ra

.
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where we have used Eqs. (35) and (27). Asymptotically, we find the following behavior

Z+ ∼ 1+
g2

s α
′2|Q+|

2R2
zRwr

, Z− ∼ 1+
g2

s α
′|Q−|

2Rwr
, Z0 ∼ 1+

α′|Q0|
2Rwr

, H ∼ 1+
Rw|QH|

2r
, (60)

where we have defined

Q+ = n+ 2ε
∑

a

na

N aW a
, Q− = (2ε− 1)w , Q0 = −

�

N −
∑

a

2
W a

�

, QH =W , (61)

which again coincide with the asymptotic charges of the solution.

3.2.1 Thermodynamic properties of the corrected solutions

The total mass of the four-dimensional black-hole solution is given by

M =
n
Rz
+

Rzw
α′
+

RzN
g2

s α
′ +

R2
wRzW

g2
s α
′2 +

2ε
Rz

∑

a

na

N aW a
−

2Rz

g2
s α
′

∑

a

1
W a

=
|Q+|
Rz
+

Rz|Q−|
α′

+
Rz|Q0|
g2

s α
′ +

R2
wRz|QH|
g2

s α
′2 .

(62)

It displays analogous features to the mass of the five-dimensional ones. First, the total mass is
again the sum of the putative individual masses of each black hole, given by

M a =
na

Rz

�

1+
2ε

N aW a

�

+
Rzwa

α′
+

Rz

�

N a − 2
W a

�

g2
s α
′ +

R2
wRzW a

g2
s α
′2 . (63)

Again, this fact can be interpreted as directly related to the no-force condition between the
black holes. In addition to this, we observe that the correction to the mass also vanishes when
we keep the asymptotic charges constant. Instead, when we keep the parameters n, w, N and
W constant, we obtain a non-vanishing correction,

δM |n,w,N ,W =
2
Rz

�

∑

a

εna

N aW a
−

k2
∞

g2
s

∑

a

1
W a

�

, (64)

which is, again, negative in the non-supersymmetric case and decreases with the number of
centers.

The Wald entropy can be computed as in the five-dimensional case, making use of the
results of [9], and it has the value

SW = 2π
∑

a

p
nawaN aW a

�

1+
2ε

N aW a

�

. (65)

4 Discussion

Our main results can be summarized as follows: we have computed the first-order α′ correc-
tions to multi-center black-hole solutions in five and four dimensions which provide effective
descriptions of bound states of fundamental strings, momentum waves, solitonic 5-branes and
KK monopoles. We have shown that the first-order α′ corrections do not introduce any singu-
larities and that, therefore, the equilibrium of forces between them is preserved.
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We have also seen how the relation between the asymptotic charges and the numbers
of fundamental objects is altered by the α′ corrections, see Eqs. (50) and (61). As a con-
sequence, we have seen that the mass can have corrections when n, w, N and W are kept
fixed even if the corrections for the asymptotic charges vanish. Interestingly enough, we have
observed that when the total number of fundamental objects is kept fixed, the masses of the
non-supersymmetric solutions receive negative corrections that decrease with the number of
centers, indicating us that black-hole fragmentation is energetically favored. The question
now is whether this process is allowed or not.

Clearly, a necessary condition for the fragmentation process to be allowed is that the con-
served charges of the initial and final configurations are identical. At the two-derivative level,
the conserved charges are proportional to the total numbers of the different fundamental ob-
jects, which means that these numbers must not change. The number of centers nc can, in
principle, change, but it does not appear explicitly in the entropy formula at this order. Then,
at this order, the fragmentation is, in principle, allowed, but entropically disfavored.

As already mentioned, in presence of α′ corrections (which introduce Chern-Simons
terms), one can define several notions of charge and not all of them are necessarily con-
served [45]. Therefore, the first thing we have to do is to figure out which notions of charge
are conserved and which are not. A thorough analysis of all the possible notions of charge,
their physical interpretation and their properties in this context requires much more work and
will be carried out elsewhere [46]. Thus, here we will just focus on one of them, the solitonic
5-brane charge. The presence of S5 branes modifies the Bianchi identity of the Kalb-Ramond
2-form B̂ as follows:

ĝ2
s

16πG(10)
N

�

dĤ −
α′

4
R̂(−)

â
b̂ ∧ R̂(−)

b̂
â

�

= ⋆̂ĴS5 . (66)

The current JS5 describes the coupling of external sources (S5 branes) to the magnetic dual
of the KR 2-form. Following [45], we refer to it as the brane-source current. By definition, it is
localized, which in this context means that it vanishes whenever the sourceless (supergravity)
equations of motion are satisfied. For instance, in the five-dimensional configurations we have
studied, the brane-source current associated to S5 branes is given by

⋆̂ĴS5 = − ĝ2
s TS5

∑

a

N a ⋆4 δ
(4)(x − xa) , where

∫

E4

⋆4δ
(4)(x − xa) = 1 , (67)

since it is precisely at the centers where Eqs. (2) are not satisfied. Therefore, the brane-source
charge, defined as the integral of ⋆̂ĴS5, is proportional to (minus) the total number of S5
branes,

∫

E4

⋆̂ĴS5 = − ĝ2
s TS5

∑

a

N a = − ĝ2
s TS5N . (68)

As explained in [45], brane-source charges are not conserved quantities in presence of
Chern-Simons terms. The heterotic case is, however, a bit peculiar because, when taking a
exterior derivative in (66), we arrive to

d⋆̂ĴS5 =
ĝ2

s α
′

32πG(10)
N

D̂(−)R̂(−) â b̂ ∧ R̂(−)
â b̂ = 0 , (69)

if the Bianchi identity of the curvature tensor of the torsionful spin connection R̂(−)
â b̂, defined

in Eq. (A.2), is not modified by the presence of sources, that is

D̂(−)R̂(−) â b̂ = D̂R̂â b̂ = 0 . (70)
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This implies that the total number of 5-branes, N , must remain constant in the fragmen-
tation process. The same happens with the Maxwell solitonic 5-brane charge, which in the
five-dimensional case is given by Q0 = − (N − nc), see Eq. (50). Hence, it is evident that
the fragmentation is forbidden if both Maxwell and brane-source charges are conserved. An
analogous analysis in the four-dimensional case yields the same conclusion.
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A The heterotic superstring effective action

The α′ corrections that appear in the effective action of the heterotic superstring were first
studied in [3–5], see also [6, 66–69] for more recent studies. Here we are following [3],
adapting their results to the conventions of [1]. Working with a consistent truncation in which
all the gauge fields are trivialized, we have that the effective action of the heterotic string that
includes the first-order α’ corrections31 is given by

Ŝ =
ĝ2

s

16πG(10)
N

∫

d10 x
Æ

| ĝ| e−2φ̂
�

R̂− 4(∂ φ̂)2 +
1

2 · 3!
Ĥ2 −

α′

8
R̂(−) µ̂ν̂

â
b̂R̂(−)

µ̂ν̂ b̂
â

�

, (A.1)

where
R̂(−)

â
b̂ = dΩ̂(−)

â
b̂ − Ω̂(−)

â
ĉ ∧ Ω̂(−) ĉ b̂ , (A.2)

is the curvature of the torsionful spin connection,

Ω̂(−)
â

b̂ ≡ ω̂
â

b̂ −
1
2

Ĥ(0)ĉ
â

b̂ ê ĉ , (A.3)

and, in their turn, ω̂â
b̂ is the Levi-Civita spin connection and

Ĥ(0) = dB̂ , (A.4)

is the zeroth-order the 3-form field strength of the Kalb-Ramond 2-form B̂. The first-order field
strength is given by

Ĥ = dB̂ +
α′

4
Ω̂L
(−) , (A.5)

where

Ω̂L
(−) = dΩ̂(−)

â
b̂ ∧ Ω̂(−)

b̂
â −

2
3
Ω̂(−)

â
b̂ ∧ Ω̂(−)

b̂
ĉ ∧ Ω̂(−) ĉ â , (A.6)

31Some terms of second order in α′ are implicitly included in this expression, in order to give it a more convenient
form, but they should be consistently ignored.

25

https://scipost.org
https://scipost.org/SciPostPhysCore.6.4.072


SciPost Phys. Core 6, 072 (2023)

is the Chern-Simons 3-form of Ω̂(−)
â

b̂. Thus, Ĥ satisfies the Bianchi identity

dĤ =
α′

4
R̂(−)

â
b̂ ∧ R̂(−)

b̂
â . (A.7)

A.1 Equations of motion

In order to derive the equations of motion, it is highly convenient to use the lemma proven in
[3], which states that the variation of the action with respect to the torsionful spin connection,
δS/δΩ̂(−)

â
b̂, yields terms of order O(α′2) when evaluated on-shell. Since we are ignoring

such higher-order terms, we can simply obtain the equations of motion by varying the action
only with respect to explicit occurrences of the fields (i.e., those which do not occur through
the torsionful spin connection). Doing so, one obtains

R̂µ̂ν̂ − 2∇̂µ̂∂ν̂φ̂ +
1
4

Ĥµ̂ρ̂σ̂Ĥν̂
ρ̂σ̂ −

α′

4
R̂(−) µ̂ρ̂

â
b̂R̂(−) ν̂

ρ̂ b̂
â =O(α′2) , (A.8a)

(∂ φ̂)2 −
1
2
∇̂2φ̂ −

1
4 · 3!

Ĥ2 +
α′

32
R̂(−) µ̂ν̂

â
b̂R̂(−)

µ̂ν̂ b̂
â =O(α′2) , (A.8b)

d
�

e−2φ̂ ⋆Ĥ
�

=O(α′2) . (A.8c)

B Torus compactification

The reduction of the heterotic superstring effective action over a torus to first order in α′ has
been carried out in Ref. [70]. Here, however, we only need to know the relation between the
lower- and higher-dimensional fields at leading order in the α′ expansion:32

ĝµν = gµν − GαβAαµA
β
ν , (B.1a)

ĝµα = −GαβAβµ , (B.1b)

ĝαβ = −Gαβ , (B.1c)

B̂µν = Bµν − Aα[µ|Cβ |ν] , (B.1d)

B̂µα = Cαµ − BαβAβµ , (B.1e)

B̂αβ = Cαβ , (B.1f)

φ̂ = φ + 1
2 log det(Gαβ) . (B.1g)

32Here we are using the first letters of the Greek alphabet for the internal indices instead of the Latin letters
m, n, · · · , to avoid possible confusions with the indices of the hyper-Kähler space. We are also using an unconven-
tional C for some of the fields descending from the Kalb-Ramond 2-form.
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The inverse relations are

gµν = ĝµν − ĝαβ ĝµα ĝνβ , (B.2a)

Aαµ = ĝαβ ĝµβ , (B.2b)

Gαβ = − ĝαβ , (B.2c)

Bµν ≡ B̂µν + ĝαβ ĝα [µB̂ν]β , (B.2d)

Cαµ ≡ B̂µα + B̂αβ ĝβγ ĝµγ , (B.2e)

Cαβ = B̂αβ , (B.2f)

φ = φ̂ − 1
2 log |det( ĝαβ)| . (B.2g)

C Curvature components

For convenience, we change coordinates introducing the coordinate u = t − k∞z. The com-
putations will be performed in the following vielbein basis

ê+ =
du
Z−

, ê− = d t −
Z+
2

du , êm = Z1/2
0 vm , (C.1)

where vm is a vierbein of the hyper-Kähler metric, namely dσ2 = vmvnδmn. In the following
we will use ∂m to indicate the partial derivative with respect to the flat indexes of the hyper-
Kähler vielbeins vm, i.e. we use

∂m = vm
m∂m . (C.2)

C.1 Torsionful spin connection

The components of the torsionful spin connection Ω̂(−) â b̂ = ω̂â b̂ −
1
2 Ĥ(0)

ĉ â b̂
ê ĉ are given by

Ω̂(−)+− =
ε

Z1/2
0

∂m logZ− êm , (C.3a)

Ω̂(−)−m =
ε

Z1/2
0

∂m logZ− ê+ , (C.3b)

Ω̂(−)+m =
Z−

2Z1/2
0

∂mZ+ ê+ +
1− ε

Z1/2
0

∂m logZ− ê− , (C.3c)

Ω̂(−)mn =
�

ω̃pmn +M−mnpq∂q logZ0

� êp

Z1/2
0

, (C.3d)
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where ω̃mn is the hyper-Kähler spin connection33 and M−mnpq = δm[pδq]n −
1
2εmnpq are the

anti-self-dual so(3) subalgebra of of so(4).

C.2 Curvature 2-form

The non-vanishing components of the curvature 2-form are

R̂(−)−m =
ên ∧ ê+

Z0
ε

�

∇n∂m logZ− −
1
2
∂m logZ−∂n logZ0 −M−pmnq∂p logZ−∂q logZ0

�

, (C.4a)

R̂(−)+m =
Z− ên ∧ ê+

2Z0

�

∇n∂mZ+ −
1
2
∂n logZ0∂mZ+ + (ε− 1)∂m logZ−∂nZ0

− ε∂mZ+∂n logZ−
�

+ (1− ε)
en ∧ e−

Z0

�

∇n∂m logZ−

−
1
2
∂m logZ−∂n logZ0 −M−pmnq∂p logZ−∂q logZ0

�

, (C.4b)

R̂(−)mn = R̃mn + F̃mn , (C.4c)

where

R̃mn = dω̃mn + ω̃mp ∧ ω̃pn , (C.5a)

F̃mn = dÃmn + Ãmp ∧ Ãpn , (C.5b)

and
Ãmn =M−mnpq∂q logZ0 vp . (C.6)

When computing the mn components of the curvature 2-form, Eq. (C.4) it is crucial that
the spin connection ω̃mn and the connection Ãmn satisfy opposite self-duality relations,

ω̃mn = +
1
2
εmnpq ω̃pq , Ãmn = −

1
2
εmnpqÃpq , (C.7)

i.e., each of these connections belongs to one of the two orthogonal subspaces, so±(3), in which
so(4) = so+(3)⊕ so−(3) splits.

D The general α′-corrected solution

The α′ corrections to the equations of motion and Bianchi identity are encoded in the so-called
T-tensors [3], which are given by

T̂ (2)
â b̂
= −

1
4

R̂(−) âĉ d̂ êR̂(−) b̂
ĉ d̂ ê , (D.1)

T̂ (4) = R̂(−) â b̂ ∧ R̂(−)
b̂â , (D.2)

T̂ (0) = T̂ (2)
â b̂
ηâ b̂ . (D.3)

33It is defined through dvm + ω̃m
n ∧ vn = 0.
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Using the calculations displayed in Appendix C, one can check that all the T-tensors are
equal to those of the supersymmetric case [11] except for T̂ (2)++ , which simply vanishes in the
non-supersymmetric case. Since the left-hand side of the ++ component of the Einstein equa-
tions is proportional to the Laplacian of Z+, this function does not receive α′ corrections when
ε= 0. Hence, we find [11]

Z+ = Z(0)+ −
εα′

2

∂mZ
(0)
+ ∂mZ

(0)
−

Z(0)0 Z(0)−
+O(α′2) , (D.4)

where Z(0)+,−,0 are the functions that determine the zeroth-order solution through Eqs. (3). As
discussed in the main text, the solution for Z+ is only specified up to a harmonic function,
which corresponds to the freedom we have to fix the boundary conditions. The correction to
the function Z0 can be found by solving the Bianchi identity (A.7). Given that T̂ (4) does not
depend on ε, the solution is the same as the one found in [11], namely

Z0 = Z(0)0 +
α′

4

�

∂mZ
(0)
0 ∂mZ

(0)
0

(Z(0)0 )2
+
∂mH(0)∂mH(0)

(H(0))2

�

+O(α′2) . (D.5)
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