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Abstract

We outline the unique opportunities and challenges in the search for “ultraheavy”
dark matter candidates with masses between roughly 10 TeV and the Planck scale
mp = 1016 TeV. This mass range presents a wide and relatively unexplored dark matter
parameter space, with a rich space of possible models and cosmic histories. We em-
phasize that both current detectors and new, targeted search techniques, via both direct
and indirect detection, are poised to contribute to searches for ultraheavy particle dark
matter in the coming decade. We highlight the need for new developments in this space,
including new analyses of current and imminent direct and indirect experiments target-
ing ultraheavy dark matter and development of new, ultra-sensitive detector technolo-
gies like next-generation liquid noble detectors, neutrino experiments, and specialized
quantum sensing techniques.
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1 Introduction

Contributors: Daniel Carney, Edward Kolb.

For decades, the search for dark matter (DM) has focused on two mass regions: ultralight
axions (or axion-like particles) with mass m, < 1 eV, and particles with mass around the
electroweak scale m, ~ 100 GeV with weak scale couplings (WIMP). Unfortunately, in spite
of heroic experimental efforts, ultralight or weak-scale DM particles have not been found.
This has motivated theorists to propose new cosmological mechanisms for the production of
DM, and for experimentalists to study new ways to search in unexplored ranges of mass and
interaction strength.

This community white paper focuses on one such less-explored region of parameter space:
“ultraheavy” dark matter (UHDM). Here by ultraheavy we will mean particles that have a mass

too large to be produced at any current colliders, m, % 10 TeV, while also having mass below
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roughly the Planck mass m, < m; ~ 10'° GeV. The lower bound also roughly corresponds
to the traditional relic production threshold m, Z 100 TeV set by unitarity bounds on the
production cross-section (see Sec. 2 for an extended discussion). The upper bound comes from
considering the expected number density of DM: under standard halo density assumptions,
Planck-scale dark matter would produce a flux of order 1 event/m?/yr [see Eq. (1)]. Thus dark
matter much beyond the Planck mass would be very difficult to detect directly in a terrestrial
experiment. The UHDM parameter space constitutes a vast and relatively unexplored frontier,
and our aim in this whitepaper is to outline the unique challenges and opportunities it presents.

We begin with an overview of the cosmological history and theory of such DM candidates.
In this mass regime, new production mechanisms beyond the usual cold thermal relic picture
must come into play. In addition to fundamental particles, a diverse set of DM candidates
becomes viable, including composite objects, solitons, and relics of decaying black holes.

We then move on to a discussion of detection prospects, aiming to motivate further work
with new and existing detection techniques. In the direct DM detection program, we empha-
size that current and next-generation detectors built to search for usual DM candidates are also
well-placed to search for certain UHDM candidates. We also highlight some ideas for future
experiments aiming specifically for heavier DM detection. Finally, we emphasize the possibility
of indirect detection of UHDM unstable to decays to visible signatures with a variety of current
and upcoming observatories.

2 Cosmic history and models

Contributors: Yang Bai, Joseph Bramante, Maira Dutra, Gopolang Mohlabeng, Ben Lehmann,
Andrew Long, Dipan Sengupta, Bibhushan Shakya, Carlos Blanco.

While much is known about the synthesis of Standard Model states, starting with Big Bang
Nucleosynthesis (BBN) onward to the present era of galaxies and accelerated cosmic expan-
sion, very little is known about the state of the Universe prior to BBN, when the Universe had
a temperature of around a few MeV. The synthesis of DM particles is usually presumed to oc-
cur before BBN, and the synthesis of UHDM particles in particular is highly dependent on the
unknown physics of the early Universe. In this section, we highlight a variety of cosmological
scenarios and models of UHDM leading to the observed DM abundance.

The emergence of a concordance A Cold Dark Matter (ACDM) cosmology points to evi-
dence that Standard Model particles were once thermalized in the early Universe [1]. Cur-
rently, we can empirically infer the thermal history of the Universe back up to the BBN scale,
when ultra-relativistic species (radiation) dominated the cosmic expansion. However, one ex-
planation for the flat, homogeneous and isotropic state of the present Universe is that it has
undergone a phase of exponential expansion, i.e. inflation. The inflaton field driving inflation
generates the radiation content, and therefore the cosmic entropy, via out-of-equilibrium de-
cay [2]. This so-called reheating period dilutes any cosmic relic, which leads one to expect that
DM was produced after inflation.

It is an open question whether the Universe was always radiation-dominated from the end
of inflationary reheating or reheating after some other antecedent period up to the epoch of
BBN. For example, one simple possibility is that an exotic BSM field fell out of equilibrium
with a reheated SM bath, and grew to dominate the cosmic expansion after becoming non-
relativistic, leading to a period of early matter domination (EMD) prior to BBN. In this case, the
Universe would usually have undergone a late reheating period associated with the decay of this
new field, injecting considerable entropy into the cosmic bath and diluting the abundance of
all decoupled particles. As a consequence, many DM models predicated on a purely radiation-
dominated Universe will entail heavier dark sector states, to compensate for late time dilution.
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Figure 1: A non-exhaustive representation of cosmological production mechanisms
of ultraheavy dark matter and corresponding models.

On the other hand, EMD also provides an intriguingly simple DM production scenario: The
BSM field could decay directly to a heavy, out-of-equilibrium DM state. This process alone
could set the relic abundance of DM.

The abundance can be determined, as described below, via several mechanisms that may
have occurred during eras of radiation, matter, or vacuum energy domination. In what follows,
we describe each of these production mechanisms. These are summarized in Figure 1.

Freeze-out: In this classic mechanism, DM particles begin in thermal equilibrium with the
SM bath, with equal rates of DM production and annihilation. When DM particles become
non-relativistic, their production is Boltzmann-suppressed, and they fall out of equilibrium as
cosmic expansion becomes faster than annihilation.

Partial-wave unitarity sets an upper limit on perturbative DM annihilation cross sections.
When DM is produced via freeze-out in a radiation-dominated Universe, an upper limit on
s-wave 2 — 2 annihilation cross sections leads to a lower limit on the DM abundance, in turn
translating to an upper limit of about 100 TeV on the DM mass [3]. However, if an EMD
occurred after freeze-out, smaller annihilation cross sections would be needed to overcome
the dilution and lead to the correct amount of DM. In this case, frozen-out DM with masses
beyond O(100 TeV) become allowed [4-6]. In models in which DM is much heavier than me-
diators, Sommerfeld enhancement of cross sections and the formation of bound states alters
unitarity bounds [7-11]. DM might also be part of a hidden thermal bath, with a temperature
different from the SM [12]. The lightest particles of the hidden sector can dominate the cos-
mic expansion after freeze-out, leading to an EMD era. In this case, diluted DM particles as
heavy as 10'° GeV become viable [13-16]. The unitarity bound can also be circumvented in
scenarios with additional degrees of freedom in the dark sector. In particular, in the presence
of an additional species ¢ with m; < m, < 3my, the DM y remains stable, but the process
xC" — yx attenuates the relic density and allows m, to be as large as 10° GeV [17]. If the
dark sector consists of many nearly-degenerate species that scatter with the SM through dark-
flavor-changing interactions, m, can be as large as 10'* GeV without violating the unitarity
bound [18].

x
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Freeze-in: In the freeze-in mechanism, the DM population is initially negligible, and is
produced via out-of-equilibrium decays and/or annihilation of species in the SM bath [19-21].
The production rates are always slower than the cosmic expansion and become negligible
before backreaction becomes important. The end of the freeze-in production depends on DM-
SM interactions. Typically, renormalizable couplings lead to an infrared freeze-in, in which
DM production stops when it becomes too heavy to be produced and the final relic density
depends only on the DM coupling strengths and mass.! On the other hand, non-renormalizable
couplings typically lead to production rates with a high temperature-dependence. In this case,
freeze-in can terminate during the post-inflationary reheating and is said to be ultraviolet,
with a final relic density depending on the reheat temperature. DM candidates produced via
ultraviolet freeze-in (UVFI) only need to be lighter than the maximal temperature of the SM
bath, which can be as high as 10> GeV [23-25]. In fact, the earliest proposals of UVFI detailed
the production of UHDM candidates [26-28].

Out-of-equilibrium decay: DM can be directly produced from the decay of heavy fields
which are not part of a thermal bath. This is the case of inflaton [29-31] and moduli [32-34]
fields. Even when DM is heavier than the inflaton field and cannot be produced via decay
during the inflationary reheating, nonperturbative quantum effects at the onset of inflaton
oscillation (preheating) can still produce UHDM [35-37], with mass at the GUT scale [38].
Preheating could also produce dark monopole states that constitute DM [39]. It is also worth
mentioning that the highly energetic decay products of heavy fields might also produce UHDM
particles before the thermalization process is complete [40].

Phase transitions: UHDM can be produced at various stages of a first order phase transi-
tion, and can also be accompanied by gravitational wave signals. Production of UHDM with
masses much higher than the energy scale of the phase transition can occur when particles
present in the plasma cross ultrarelativistic bubble walls [41], or when such ultrarelativistic
bubble walls collide [42]. UHDM can also obtain the correct relic density when the phase
transition occurs in a confining sector and is supercooled, resulting in an appropriate dilu-
tion of the DM abundance [11, 43]. Bubble walls can filter dark matter particles out of the
plasma and thereby control their relic abundance [44,45] or collect them into composite ob-
jects [46,47]. A first order electroweak phase transition could produce DM in the form of
electroweak-symmetric solitons [48].

Gravitational particle production: All of the observational evidence for DM in our Uni-
verse arises from its gravitational interactions with ordinary states. Many DM models assume
additional non-gravitational interactions, but explain DM production via gravity in the early
Universe.

The phenomenon of inflationary gravitational particle production [49, 50], which occurs
for quantum field theories in curved spacetime [51,52], can explain DM production, e.g. WIM-
Pzillas [27,53-55]. Typically, although though there are important exceptions, production is
most efficient when the DM mass is comparable to the inflationary Hubble scale, m,
and since cosmological observations constrain H;s S 104 GeV, such models usually involve
superheavy elementary particles. Notable recent work has explored models of higher-spin
DM [56-61], models of superheavy DM with m, > Hj,; [62-64], improved analytical tech-
niques [65-67], and cosmological signatures such as isocurvature [68-70].

Primordial (extremal) black holes: Primordial black holes (PBHs) are a well-known DM
candidate, and heavy PBHs are best regarded as compact objects for phenomenological pur-
poses. However, very light PBHs have much more in common with elementary particles than
with astrophysical compact objects. In particular, a wide class of models accommodate non-
evaporating black hole remnants at the Planck scale or below. Such objects are effectively

~ Hinf:

1One can engineer complicated models of IR freeze-in with significantly heavy DM candidates, viz., the clock-
work scenarios [22].
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ultraheavy particles, and have long been considered a viable DM candidate [71,72]. This sce-
nario provides a natural formation mechanism for a secluded dark sector: any sufficiently light
population of PBHs quickly evaporates, leaving remnants that may only interact gravitation-
ally. Without any BSM fields, magnetic black hole solutions with a “hairy” cloud of electroweak
gauge and Higgs fields exist [73-76]. Depending on the UV completion for quantum gravity,
the Planck-scale relics of the black-hole-like endpoints of gravitational collapse may be re-
garded as a general DM candidate, e.g. [77]. These remnants could carry U(1) charges which
could lead to unique observational signatures [78,79].

3 Direct detection

Contributors: Yang Bai, Joseph Bramante, Christopher Cappiello, Daniel Carney, Reza Ebadi,
Jason Kumar, Rafael Lang, Nirmal Raj, Ibles Olcina, Shawn Westerdale.

Searches for ultraheavy dark matter are also possible with direct detection experiments,
including currently existing detectors designed to look for much lighter DM candidates. In this
section, we aim to motivate the basic detection problems and methods to perform searches
both with existing and purpose-built future experiments.

As the mass of each DM constituent increases, the number density and corresponding flux
of particles decreases. Assuming the standard DM mass density of p ~ 0.3 GeV/cm® and
mean velocity of v ~ 220 km/s, the expected flux of DM particles of individual mass m
passing through a detector is

4

.85 m
d=nv~ 0.8 x(—m). (D

Even a background-free detector is limited by needing at least a handful of dark matter par-
ticles to pass though during its lifetime. In a typical single-scatter search, the sensitivity of
an experiment scales with the fiducial mass of the detector. However, ultraheavy dark matter
may scatter several times as it crosses the detector for large enough cross sections, in which
case the area of the detector becomes the most relevant factor [80].

The detailed sensitivity of a DM experiment to UHDM depends on how the UHDM couples
to the Standard Model constituents in the detector. As examples of the basic ideas, here we
will focus on two key cases. The first is UHDM coupled to nuclei through a weak, short-range
interaction; essentially a much heavier version of the WIMP The second is UHDM coupled to
the Standard Model for a long-range force, which in the ultimate limit could simply be the
gravitational coupling.

Consider first a search for UHDM with a weak contact interaction with nuclei. Fig. 2
shows current limits and projections on the ultraheavy parameter space under two models
with different relationships between the DM-nucleus (o x) and DM-nucleon (anx) Cross sec-
tions, respectively. In Model I (left) DM is opaque to the nucleus and no scaling from nucleon
to nucleus is assumed, while in Model II (right) the typical A* scaling arising from contact
interactions with the Born approximation is assumed. For more details on these models see
Refs. [81,100]. We note that when the DM-nucleus cross section approaches the geometric
cross section of the nucleus, the Born approximation is no longer valid, and this A* scaling
breaks down. The breakdown leads to a cross section that saturates at this geometric limit for
a repulsive interaction, and one which displays resonant behavior for an attractive interaction.
However, it may be possible to preserve the A* scaling for models of composite DM or light
mediators.

It is important to note that for a large enough scattering cross section, dark matter can
scatter so often in the overburden and lose enough energy that it becomes undetectable when

6
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Figure 2: Current and projected experimental regions of ultraheavy parameter space
excluded by cosmological/astrophysical constraints (green), direct detection dark
matter detectors (blue), neutrino experiments (red/orange), space-based experi-
ments (purple), and terrestrial track-based observations (yellow). Both models con-
sidered here assume different relations for the cross section scaling from a single
nucleon to a nucleus with mass number A. In the left plot, we assume no scaling
with A; in the right plot, we assume the cross section scales like A* (e.g., with two
powers coming from nuclear coherence, and two from kinematic factors). Limits are
shown from DEAP-3600 [81], DAMA [82,83], interstellar gas clouds [84,85], a recast
of CRESST and CDMS-I [86], a recast of CDMS and EDELWEISS [87,88], a detector
in U. Chicago [89], a XENONI1T single-scatter analysis [90], tracks in the Skylab and
Ohya plastic etch detectors [83], in ancient mica [91], the MAJORANA demonstra-
tor [90], IceCube with 22 strings [92], XQC [93], CMB measurements [94,95], and
IMP [96]. Also shown is the future reach of the liquid scintillator detector SNO+ as
estimated in [97,98]. Not shown are recent limits from XENON1T [99] that overlap
with other limits displayed; however this search constrains new parameter space in
spin-dependent scattering.

it reaches an experiment, depending on the detector’s energy threshold [80,97]. For relatively
light DM, this attenuation is most accurately modeled using Monte Carlo simulations, which
can track the trajectories of individual particles in 3-dimensional space as they scatter with
nuclei in the overburden (see e.g. Ref. [101]). However, when the DM is much heavier than a
nucleus, it follows a nearly straight trajectory, and requires a large number of collisions to be
appreciably slowed. This means that attenuation of UHDM can be modeled as a continuous
energy-loss process along a straight trajectory, which is computationally much faster than the
full Monte Carlo approach [86,102]. The resulting “ceiling”, the maximum cross section to
which an experiment is sensitive, is approximately proportional to the DM mass for UHDM, as
can be seen in many of the exclusion regions in Fig. 2.

Since the energy deposited by each interaction is independent of the DM mass (because
m, > my), the total amount of energy deposited in the detector by a passing DM particle
scales linearly with the cross section. This means that the total signal can span many orders of
magnitude in deposited energy, and the signal shape can vary from one to many continuous
hits inside the detector. As such, it is necessary for analyses to maintain sensitivity over a large
range. The broad range of possible signal manifestations highlights the need for many differ-
ent detector technologies capable of sampling various regions of this model space. Other chal-
lenges that may arise in these DM searches include computational difficulties related to per-
forming a full optical simulation with a very large number of scatters, designing DAQ schema
and low-level analyses that adequately differentiate between bright, long-duration pulses pro-
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duced by ultraheavy DM and instrumental noise, and, at the lower end of the multi-scatter
regime, adequately discriminate against pile-up or multi-scatter backgrounds.

Since the UHDM is very heavy, it is not appreciably deflected during each scattering event,
and so the signal here is essentially a track of sub-threshold events. For a detector using a
time projection chamber (TPC) which is able to determine both the time and location of the
energy depositions, this is a striking signal. Not only is this type of search almost background-
free, but it constitutes a direct measurement of the dark matter velocity vector [98]. With the
observation of a sufficient number of such tracks, one could obtain a direct measurement of
the dark matter velocity distribution. Note that this would be very different from the more
commonly considered case of directional dark matter direct detection, in which one attempts
to measure the energy and direction of the recoiling nucleus, and from this infer the velocity
of the incoming dark matter particle. Instead, for multiply-interacting dark matter, one would
directly measure the dark matter particle’s velocity vector.

This track-like signature will also appear for models of UHDM coupled to the Standard
Model through long-range forces, our second case study. If the force has sufficiently long
range (i.e. is mediated by a sufficiently light boson), the DM will act coherently across an
entire many-body target. One can then consider detecting it by using large, even macroscopic,
targets [103-109]. A proof of concept demonstration was given in Ref. [108], which used
a microgram-scale mechanical accelerometer to search for heavy, composite DM coupled to
nuclei through a light gauged B-L vector boson. Any new long-range force coupling to nuclei is
up against strong limits from existing experiments, but current generation sensors can already
go beyond these limits in certain cases [110,111]. Ultimately, with sufficiently heavy DM,
it has been suggested [103-105] that one could use the only coupling DM is guaranteed to
have—gravity—to perform searches this way. This would require a large array of devices,
operating in a deeply quantum regime, as pursued by the Windchime collaboration [112].
Such an array would be sensitive to a wide variety of UHDM candidates [109]. In addition,
well-characterized geologically old rock samples can also serve as UHDM detectors leveraging
the long track-like signature as a background discrimination tool. Samples that have been
stable for more than ~ 10 years provide sensitivity to even heavier UHDM candidates due to
their long exposure time [113].

We also note that if an O(1) fraction of DM is composed of charged PBH remnants, as
proposed by Ref. [79], such objects can be detected terrestrially by several means. In partic-
ular, these objects exhibit unique signatures in large-volume LAr detectors, and are robustly
detectable given an appropriate triggering mechanism. (See also Ref. [114].) Paleo-detectors
[115] are also expected to be sensitive to charged remnants due to their long exposure times.
Additionally, some UHDM candidates around the Planck mass, such as electroweak-symmetric
solitons, could be discovered by nuclear capture signals [116]. For a wide range of UHDM
models with a geometric interaction with the target nuclei, the O(1 GeV) photon energy from
the radiative capture process may also be detectable at the IceCube detectors, similar to the
search for non-relativistic magnetic monopoles [117]. Moreover, certain models of composite
DM that cause nuclei and leptons to be accelerated in their binding potential, result in high en-
ergy bremsstrahlung photons [ 118] and low energy Migdal effect electrons [119], detectable at
large-volume and DD experiments. Finally, scenarios with baryon charged multiply-interacting
particles coupled to low mass mediators could also be detected with liquid scintillators [120].

In conclusion, the multi-scatter frontier opens up new parameter space to be explored by
direct detection and neutrino experiments. It has already been demonstrated that dedicated
analyses of existing data can be very fruitful in exploring new parameter space [81, 82, 90].
As the total integrated DM fluxes of future DM experiments are expected to increase by or-
ders of magnitudes over their run-time, the maximum DM mass reachable in a direct search
experiment (e.g. DARWIN/G3, Argo, or eventually possibly ktonne-scale detectors [121]) will
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be able to reach beyond the Planck mass ~ 10!° GeV/c? [80]. Moreover, a variety of new
detector technologies, including mechanical sensors, can be brought to bear on this frontier.
These are exciting prospects for the search of ultraheavy DM and these efforts will hopefully
continue to expand as larger detectors come online in the following years.

4 Indirect detection

Contributors: Carlos Blanco, J. Patrick Harding, Rebecca Leane, Elisa Pueschel, Nirmal Raj,
Nicholas Rodd, Carsten Rott.

If dark matter is not perfectly stable, then it can decay and produce Standard Model states
that stream through the Universe to our detectors. Similarly, it could be that the primary
signature of DM appears through its annihilation into SM states.? Searching for DM through
these final states is known as indirect detection, and should the DM fall in the ultraheavy mass
window, the physics of these searches is considerably enriched. Ultraheavy DM models in
this category may be generically produced in the early Universe by a number of mechanisms
discussed above, including freeze-out, freeze-in, gravitational production, and involving phase
transitions.

For dark matter with mass well above the electroweak scale, the decays will inevitably
produce a rich array of final states, including photons, neutrinos, and charged cosmic rays.
This is true even if the DM decays only into neutrinos, as the neutrinos can shower electroweak
bosons at such masses [124,125]. Accordingly, such searches are inherently multimessenger,
and benefit broadly from improvements in high energy astronomy. This point is highlighted
in Fig. 3, where a partial set of present limits on the lifetime for DM— bb are shown as an
example. The results in green show limits obtained from low energy y-rays collected by the
Fermi-LAT telescope [126]. In Table 1, we provide a list of current and future observatories
and their sensitivities to the relevant standard model final states.

Note that while Fermi is optimized to search for O(GeV) photons, it can be sensitive to much
heavier DM, as the high energy photons, electrons, and positrons produced in the decay will
interact with cosmic background radiation, generating a cascade process converting energy
down to lower scales [130-134]. The lower bound on the lifetime of heavy DM becomes
essentially mass independent for DM masses above a few PeV if any appreciable portion of the
mass energy is deposited into electromagnetic channels, since leptons and photons at these
energies rapidly produce electromagnetic cascades extending down to GeV energies which
may become visible in the isotropic gamma-ray sky [134]. If the direct decay products can be
observed, however, the constraints are generally stronger as seen from the other constraints in
Fig. 3. The IceCube collaboration has set strong constraints on the prompt neutrinos produced
by O(PeV) DM [123,127], and the results are shown in cyan in the plot. Finally, in red we
show constraints from instruments searching for high energy cosmic rays, such as KASCADE,
Pierre Auger Observatory, and Telescope Array [128,135]. Many other instruments can search
for the signature of heavy DM decay, including extensive air shower observatories such as
HAWC [136] or Tibet AS, [137,138].

All indirect searches for heavy DM are underpinned by a detailed theoretical understanding
of the production and propagation of the high energy particles involved. As mentioned above,
the propagation effects are central in determining what spectrum of states arrives at the de-
tector. When considering photon final states, a careful accounting of the inverse-Compton
scattering (ICS) contribution is also required [139]. Furthermore, the full development of
electromagnetic cascades, from a cycle of ICS and pair-production, must be taken into ac-
count in order to predict diffuse and isotropic signals [ 131-134, 140]. Before the propagation

2See for example [122,123]. For simplicity, we will mostly focus on decay in what follows.
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Figure 3: (Left) A subset of current indirect detection constraints on the DM lifetime
for decays to bb. The results are chosen to highlight the complementarity between
different search strategies for this single DM hypothesis, and in particular we show
limits obtained using y-ray [126], neutrino [127], and cosmic-ray [128] studies.
See the text for additional details. (Right) An example of the near term improve-
ments that will be achieved in y-ray searches for heavy DM. For this specific channel
(DM— bb), it is clear that SWGO will considerably improve our reach, however, we
note that for other channels leading results will be obtained by CTA. (We note that
the results in this figure up to 2 TeV originally appeared in Ref. [129].)

can be considered, however, a detailed understanding of the prompt spectra emerging from
the initial decays is required. For the range of DM masses considered in this white paper, the
center-of-mass energies involved in the decay can reach the Planck scale, well above energies
involved in colliders such as the LHC. Nevertheless, a common approach adopted in the lit-
erature is to adapt simulation software optimized for the LHC, such as Pythia [141-143].
More recently, results have become available which perform dedicated calculations relevant
to heavy DM decays. See in particular Ref. [125], where it is shown the spectra can depart
significantly from Pythia. In the future, further work will be required to ensure that accurate
predictions of how heavy DM should appear in our telescopes are available.

The current generation of ground-based imaging gamma-ray instruments (VERITAS, HESS
and MAGIC) provide sensitivity to DM annihilation and decay up to and above 100 TeV [152,
153]. As mentioned previously for Fermi-LAT, while the energy sensitivity range of the current-
generation instruments extends to ~100 TeV, it is possible to probe DM masses well beyond
this range, as the detected final-state photons from the DM decay or annihilation are expected
at lower energies. The future CTA observatory, with sensitivity to gamma rays up to ~300
TeV, will probe heavy DM with a factor of ~10 better sensitivity than the current-generation
instruments [154]. The future SWGO observatory, with energy reach up to >1 PeV, will be
able to probe DM masses more than 100x better than the current HAWC constraints, as shown
in Fig. 3 [129].

Neutrino observatories are also highly sensitive to decaying UHDM. Stringent bounds on
heavy decaying DM have been achieved with IceCube excluding lifetimes of up to 1028 s de-
pending on the decay mode [127,155]. Bounds are extremely competitive to indirect searches
with y-rays [152] and are the world’s strongest for DM masses above 10 TeV. These searches
continue to explore BSM scenarios with DM masses beyond the reach of LHC and have a high
discovery potential. Neutrino signals from heavy decaying DM have been discussed exten-
sively [130,156-161]. At present the observed astrophysical neutrino flux is not well enough
measured to determine if it contains hints of heavy decaying DM [131,157,158,162-168]. A
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Table 1: A non-exhaustive list of current and future indirect detection experiments
sensitive to ultraheavy dark matter. See Refs. [135,144-151].

Experiment Final state | Threshold/sensitivity | Field of view | Location
Current experiments

Fermi Photons 10 MeV —10% GeV | Wide Space

HESS Photons 30 GeV - 100 TeV Targeted Namibia

VERITAS Photons 85 GeV - > 30 TeV Targeted USA

MAGIC Photons 30 GeV - 100 TeV Targeted Spain

HAWC Photons 300 GeV - >100 TeV | Wide Mexico

LHAASO (partial) Photons 10 TeV - 10 PeV Wide China

KASCADE Photons 100 TeV - 10 PeV Wide Germany

KASCADE-Grande Photons 10 - 100 PeV Wide Italy

Pierre Auger Observatory | Photons 1-10EeV Wide Argentina

Telescope Array Photons 1-100 EeV Wide USA

IceCube Neutrinos | 100 TeV - 100 EeV Wide Antarctica

ANITA Neutrinos | EeV - ZeV Wide Antarctica

Pierre Auger Observatory | Neutrinos | 0.1 - 100 EeV Wide Argentina
Future experiments

CTA Photons 20 GeV - 300 TeV Targeted Chile & Spain

SWGO Photons 100 GeV - 1 PeV Wide South America

IceCube-Gen2 Neutrinos | 10 TeV - 100 EeV Wide Antarctica

LHAASO (full) Photons 100 GeV - 10 PeV Wide China

KM3NeT Neutrinos | 100 GeV - 10 PeV Wide Mediterranean Sea

POEMMA Neutrinos | 20 PeV - 100 EeV Wide Space

significant increase in event statistics will be required to better constrain DM models or dis-
cover any signal. IceCube-Gen2 will be particularly important to obtain better sensitivity to
heavy DM.

Mass-dependent limits may also be set on the DM annihilation cross sections in combina-
tion with scattering cross sections if we consider DM annihilations inside celestial bodies after
they are captured. Annihilation products that may be detected are those that can escape the
celestial body, such as neutrinos or long-lived mediators that can decay to visible states. Par-
ticularly strong constraints can come from DM capture in the Sun, by virtue of its large mass
and proximity. Leading constraints on DM annihilations to neutrinos in the Sun come from
Super-Kamiokande [169], IceCube [170], and ANTARES [171]. While these publications dis-
play limits for DM mass < 10 TeV, these may be extended to higher masses in a straightforward
manner, with a lower bound on the mass set only by the minimum detectable flux.

For heavy annihilating DM, more energetic neutrinos are produced, which leads to strong
attenuation and a highly suppressed neutrino flux in the Sun. In this case, long-lived or boosted
mediator production of neutrinos can greatly increase the detectability, as shown in Ref. [172].
For long-lived or boosted mediator production of gamma rays, it was pointed out in Ref. [172]
that HAWC is an optimal observatory to search for heavy DM. HAWC has consequently set
leading limits, displaying results for up to DM masses of 10° TeV [173]. In the future, SWGO
and LHAASO may have even better sensitivity to TeV-scale solar gamma rays from DM [172,
174]. We strongly urge these collaborations to display the full extent of their limits along
the DM mass axis. The importance of populations of celestial bodies as the dominant source
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of DM annihilations, and as a probe of heavier-than-10-TeV DM with gamma rays, has also
been investigated [175]. Similar DM gamma-ray searches using Fermi-LAT data of Jupiter
have been performed [176]; although the results are only displayed up to 10 GeV DM mass,
this search would also be able to provide sensitivity to much heavier DM.

A complementary method to probe heavy DM, down to smaller-than-electroweak scat-
tering cross sections, is to observe the brightening of cold, isolated neutron stars (NS) via
the transfer of DM kinetic energy during capture [177]. This may be done using upcoming
infrared telescopes such as JWST, TMT and ELT [177] or telescopes operating at lower wave-
lengths if DM clusters into subhalos [ 178]; the possible presence of DM annihilations, a model-
dependent issue, may boost the NS luminosity and help reduce telescope integration times.
Various key particle and astrophysics implications of this probe have been investigated [179-
200]. Assuming the presence of DM annihilation, this celestial body heating may also be
detected using the Earth [201,202] and exoplanets and brown dwarfs [203], which may be
observable using JWST, Rubin, or the Roman telescopes in the next few years [203]. The obser-
vation of Population III stars is another probe of UHDM interactions with baryons [204,205].
See also Refs. [206,207]. Accumulation of asymmetric dark matter in compact astrophysical
objects can also lead to low-mass black hole formation. Such black holes can be discovered
by gravitational wave observatories, and this can in turn probe new parts of the parameter
space [208-210].

Finally, cosmological observations could also constrain ultraheavy DM. CMB anisotropies
would carry imprints of DM scattering with SM matter, which may be exploited to probe a wide
range of DM masses [94,95,211,212]. Moreover, ultraheavy DM produced gravitationally is
accompanied by primordial non-Gaussianities that may be enhanced and observed in the CMB
power spectrum [213,214].

S5 Summary

Ultraheavy dark matter presents an exciting and relatively unexplored regime of possible dark
matter candidates. A rich variety of production mechanisms and DM models are viable in this
parameter space. Existing direct and indirect detection programs already exhibit significant
sensitivity to a number of potential candidates. In the future, we encourage these experiments
to display the constraints on the entire range of DM mass sensitivity up to the ultraheavy
scales considered here. We have presented a few example searches in order to encourage other
experimental collaborations to consider analyses of these heavy DM candidates. Moreover, a
number of technologies in current development are quickly coming online and will continue to
explore swathes of open parameter space. We look forward to continuing rapid developments
in this exciting frontier in the search for dark matter.
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