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Abstract

In this paper, we construct an exactly solvable lattice Hamiltonian model to investigate
the properties of a composite system consisting of multiple topological orders separated
by gapped domain walls. There are interdomain elementary excitations labeled by a
pair of anyons in different domains of this system; This system also has elementary
excitations with quasiparticles in the gapped domain wall. Each set of elementary ex-
citations corresponds to a basis of the ground states of this composite system on the
torus, reflecting that the ground-state degeneracy matches the number of either set of
elementary excitations. The characteristic properties of this composite system lie in the
basis transformations, represented by the S and T matrices: The S matrix encodes the
mutual statistics between interdomain excitations and domain-wall quasiparticles, and
the T matrix encapsulates the topological spins of interdomain excitations. Our model
realizes a spatial counterpart of a temporal phase transition triggered by anyon con-
densation, bringing the abstract theory of anyon condensation into manifestable spatial
interdomain excitation states.
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1 Introduction

Topological orders in 2+1D dimensions, encapsulated by modular tensor categories, are char-
acterized by their topological quantum numbers, e.g., the anyon species, the ground-state de-
generacy on a torus, and the modular S and T matrices [1–3]. The number of anyon species
in a topological order coincides with the ground-state degeneracy on the torus, and the S and
T matrices correlate the transformations in the ground-state space with the mutual and self
statistics of the anyon species [4–11].

Although a categorical description provides a crucial understanding of a 2+1D topological
order, it focuses on the topological properties and omits some details of the topological system,
specifically the local internal degrees of freedom of anyons that are not preserved under local
perturbations. To overcome this limitation, one can represent the topological order through
an exactly solvable lattice model given certain input data [1–3, 12–23]. The lattice model
explicitly provides the wavefunctions of elementary excitation states and uncovers the internal
degrees of freedom using the input data, which are not apparent in a categorical theory.

While single topological orders have been well-explored, the composite systems consisting
of multiple topological orders divided by gapped domain walls remains largely uncharted.
Previous work has approached these domain walls algebraically using category theories [24,
25]. Yet, there persist essential questions demanding attention: What are the properties of
such a composite system? How would the properties of a single topological phase, such as the
ground-state degeneracy, and S and T matrics, be adapted in the composite system? What is
the spectrum of elementary excitation states in such a system? What are quasiparticles in this
system, especially those in the gapped domain wall?

These questions are not easily solvable by category theory because, as certain anyons moves
across the gapped domain wall from one domain to another, the internal degrees of freedom of
these anyons may turn to topological observables. Thus, to solve these questions, we require
an exactly solvable lattice Hamiltonian model of two topological phases separated by a gapped
domain wall. This paper explicitly presents such a model based on the extended Levin-Wen
model (LW model) [19] because it is the most general model of doubled 2 + 1D topological
orders. Our model enables us to examine the properties of the gapped domain wall and the
entire system intuitively through tangible wavefunctions.

On the other hand, in addition to gapped domain walls, the relationship between topo-
logical phases can also be established via phase transitions [17, 26–35]. An interesting type
of phase transitions between a topological phase (the parent phase) and another (possibly
trivial) topological phase (the child phase) is triggered by certain anyon condensation in the
parent phase. As having been extensively studied [26, 30, 32], interesting phenomema occur
during such a phase transition: 1) Certain anyons, including the condensed ones, may split
into a few sectors, so more precisely speaking, a condensed anyon may not fully condense but
only one ore more sectors in its splitting condense. This is analogous to the Higgs boson con-
densation in breaking the electroweak symmetry, where only a one-dimensional subspace of
the two-dimensional space the Higgs boson lives in condenses. 2) Since the condensed sectors
become the new vacuum, two types of sectors related by fusing with a condensed anyon in
the parent phase can no longer be distinguished in the child phase and thus are identified as
the same type of anyons. 3) The anyons that have trivial (nontrivial) braiding statistics with
the condensed anyons are unconfined (confined) in the child phase. 4) The child phase is
in fact a symmetry-enriched topological phase, with a hidden global symmetry. The hidden
symmetry has been made precise in Ref. [35], which also proves a generalized Goldstone the-
orem of anyon condensation. Therefore, the phase transition from a parent topological phase
to its child phase also belongs to the Landau-Ginzburg paradigm, however in a more general
sense [32,33,35,36].
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Such a phase transition is temporal and is believed to correspond to a spatial composite
system consisting of the parent and child topological phases separated by a gapped domain
wall [33]. In this paper, we solidify this correspondence by scrutinizing the duality between
anyon condensation phenomena and the elementary excitation states within our model. Since
these excitation states can be expressed through tangible wavefunctions, our model eluci-
dates the underlying physics of anyon condensation intuitively, offering a powerful method
for studying anyon condensation.

In this paper, we develop a subsystem condensation technique to construct a lattice model
of two topological phases: Starting with the lattice model describing a single parent phase,
we condense certain anyons in a subsystem (half) of the lattice, transforming the topological
phase in this subsystem into a child phase, while the original parent phase remains outside this
subsystem. This approach yields an exactly solvable lattice model simultaneously describing
the parent phase outside the subsystem, the child phase in the subsystem, and the gapped
domain wall separating them.

While this construction applies to general composite systems, for clarity and explicitness,
we shall only concentrate on the model in the special case of the doubled Ising and Z2 toric
code topological phases with a gapped domain wall in between. This specific example is simple
and familiar within the research community. Moreover, the anyon condensation between these
two phases encapsulates all the key phenomena — identification, splitting, and confinement
— of the general theory of anyon condensation, making it a perfect choice for our study. Inter-
estingly, despite the familiarity of this system, our model continues to reveal novel phenomena
of this anyon condensation, such as the detailed mechanics of splitting. Nevertheless, we un-
derscore that our construction methodology and conclusions are universally applicable and
can be readily extended to any composite systems according to the specific research interests.

Our model has the same input data of the extended Levin-Wen model that describes the
parent topological phase, without using any extra categorical data, and is thus as simple as
the original extended Levin-Wen model.

2 A brief review of the extended Levin-Wen model

Since our model is based on the extended LW model, we first briefly review the extended LW
model. To be specific and for our purposes, we only consider the model that describes the
doubled Ising phase.

The extended LW model is defined on a 2-dimensional honeycomb lattice (see Fig. 1a).
Associated with each vertex is a tail, presented as a dangling edge near the vertex. It is arbitrary
to choose the edge incident at the vertex to which to attach the tail because all choices are
equivalent up to gauge transformations (see Appendix A).

The input data of the extended LW model describing the doubled Ising phase is a set
LDI = {1,σ,ψ}, equipped with three functions N : L3

DI → N, d : LDI → R, and G : L6
DI → C.

Each edge and tail of the lattice is labeled by an element in LDI.
The function N sets the fusion rule and satisfies N k

i j = N k
ji = N j

ik, whose nonzero indepen-
dent elements are

N1
11 = N1

ψψ = N1
σσ = Nψσσ = 1 . (1)

The Hilbert space H is spanned by all possible assignments of the labels on the edges and tails,
subject to the constraint N k

i j ̸= 0 on any three incident edges (tails) labeled by i, j, k ∈ LDI.
The function d returns the quantum dimensions of the elements in LDI,

d1 = dψ = 1 , dσ =
p

2 . (2)
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The function G has the symmetry G i jm
kln = Gmi j

nkl = Gklm
i jn . The nonzero independent elements

are

G111
111 = G111

ψψψ = G1ψψ
1ψψ = 1 , G1σσ

1σσ = G1σσ
ψσσ = −Gψσσ

ψσσ
=

1
p

2
, G111

σσσ = G1ψψ
σσσ =

1
4p2

. (3)

The Hamiltonian of the extended LW model describing the doubled Ising phase reads

HDI := −
∑

V

QV −
∑

P

BDI
P . (4)

The vertex operator QV acts on the tail associated with vertex V as

QV
p

V

= δp,1
p

V

, (5)

where δ denotes the Kronecker delta function that δp,q = 1 if p = q else δp,q = 0.
The plaquette operator BDI

P acting on plaquette P is a sum:

BDI
P =

d1B1
P + dσBσP + dψBψP

4
, (6)

where Bs
P , s ∈ LDI is defined by

Bs
p

i0
k0
l0

i1 i2

i3
i4
i5

i6i7
e0

e1
e2

e3

e6

e7

p

q e4

e5
= δp,1 δq,1

∑

j0 j1 j2 j3 j4 j5 j6 j7∈LDI

� 7
∏

n=0

q

din d jn

�

×
�

Ge0 i0 i7
s j7 j0

Ge1 i1 i0
s j0 j1

Ge2 i2 i1
s j1 j2

Ge3 i3 i2
s j2 j3

Ge4 i4 i3
s j3 j4

Ge5 i5 i4
s j4 j5

Ge6 i6 i5
s j5 j6

Ge7 i7 i6
s j6 j7

� j0
j0
j0

j1 j2

j3
j4
j5

j6j7
e0

e1
e2

e3

e4

e5

1

1 e4

e5
. (7)

The doubled-Ising Hamiltonian (4) is exactly solvable because all the summands QV and
BDI

P therein are commuting projectors.

3 The lattice model with a gapped domain wall between the dou-
bled Ising and Z2 toric code phases

We now construct our model describing a doubled Ising phase and Z2 toric code phase sep-
arated by a gapped domain wall, via partial anyon condensation explained as follows. We
divide the entire lattice into two halves, left and right. See Fig. 1b. Here, the edges and tails
in the left (right) half are in red (blue); the plaquettes bounded by all red (blue) edges are in
light red (blue); the plaquettes bounded by both red and blue edges are in gray. Each edge
and tail of the entire lattice still take value in LDI, so the Hilbert space of our model is still H.
We shall trigger anyon condensation in the right (blue) half, such that the doubled Ising phase
therein will become the Z2 toric code phase through a phase transition.
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(a)

Doubled Ising domain Toric code domain

Domain wall

(b)

Figure 1: (a) The extended LW model describing the doubled Ising topological phase.
(b) Our model of the doubled Ising and Z2 toric code topological phases separated
by a gapped domain wall.

Knowing that the Z2 toric code phase can be obtained by condensing ψψ̄ anyons in the
doubled Ising phase [32, 35, 37], we are motivated to add to the doubled-Ising Hamiltonian
(4) the gapping term

∆H := −Λ
∑

E∈TC

Wψψ̄;1,1
E , Λ≫ 1 , (8)

where E ∈ TC represents all the blue edges, and Wψψ̄;1,1
E is the creation operator of the ψψ̄

anyons (to be defined in Section 4.1). The term ∆H renders the new ground states of the

system the +1 eigenstates of the creation operators Wψψ̄;1,1
E

�

�

�

E∈TC
, and thus are the superpo-

sitions of the states with arbitrarily many ψψ̄ anyons in the right half of the lattice. We say
that the ψψ̄ anyons in the right half of the lattice are condensed. The total Hamiltonian now
reads

H := −
∑

V

QV −
∑

P

BDI
P +∆H . (9)

By Eq. (D.3), the creation operators Wψψ̄;1,1
E of ψψ̄ quasiparticle pairs can be written as

Wψψ̄;1,1
E

jE

i

k
= (−1)δ jE ,σ jE

i

k
, (10)

where δ is the Kronecker delta function. Hence, any blue edge has to overcome a great energy
barrier (∝ Λ) to take value σ. For Λ → ∞, the blue edges in the right half of the lattice
effectively take value only in the input data LTC = {1,ψ} ⊂ LDI, equipped with the same δ, d,
and G functions as that of LDI but restricted to LTC:

δ111 = δ1ψψ = 1 , d1 = dψ = 1 , G111
111 = G111

ψψψ = G1ψψ
1ψψ = 1 . (11)

The right half of the system therefore describes the Z2 toric code phase [1, 2, 20], as a result
of ψψ̄ condensation.
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Due to ψψ̄ condensation, the effective Hilbert space Heff of the model is the subspace of
H in which all the blue edges can take value only in LTC = {1,ψ}:

Heff := PeffH , (12)

where Peff is the projector on the blue edges

Peff :=
∏

E∈TC

�

1−δ jE ,σ

�

=
∏

E∈TC

I +Wψψ̄;1,1
E

2
. (13)

Hereafter, we refer to the red (blue) edges/plaquettes the DI (TC) edges/plaquettes. The
gray plaquettes, bounded by both DI and TC edges, turn out to comprise the domain wall be-
tween the doubled Ising phase and Z2 toric code phase, and are thus called the DW plaquettes.
Since PeffB

σ
P Peff = 0 if P is a TC/DW plaquette, the effective plaquette operators acting on the

DW and TC plaquettes in Heff become

BDW
P := PeffB

DI
P Peff =

B1
P + BψP

4
, (14)

BTC
P := PeffB

DI
P Peff =

B1
P + BψP

4
. (15)

The effective Hamiltonian is the projection of the doubled-Ising Hamiltonian (4):

Heff := PeffHDIPeff = −
∑

V

QV −
∑

P∈DI

BDI
P −
∑

P∈DW

BDW
P −
∑

P∈TC

BTC
P , (16)

which is exactly solvable. The model describes the doubled Ising phase on the left, the Z2 toric
code phase on the right, and a gapped domain wall in between. We shall refer to Heff as the
Hamiltonian of our model from now on.

4 The spectrum of the elementary excitation states

We now study the spectrum of our model. We assume the sphere topology, in which our model
has a unique ground state |Φ〉; nevertheless, the results in this section apply to other topologies.
The ground state |Φ〉 is defined by

QV |Φ〉= BDI
P |Φ〉= 2BTC

P |Φ〉= 2BDW
P |Φ〉= |Φ〉 , (17)

where the factors 2 arise from the projection. In the ground state |Φ〉, all the tails have to take
value 1 ∈ LDI.

An excited state |ϕ〉 is an eigenstate, in which QV |ϕ〉 = 0 or BD
P |ϕ〉 = 0 at one or more

vertices V or plaquettes P. In such a state, there are quasiparticles at vertices V or plaquettes
P. Here, the superscript D refers to either DW, TC, or DI. We also dub the ground state |Φ〉 the
trivial excited state, in which there are trivial quasiparticles.

For our purposes, it suffices to study the excited states with at most two quasiparticles,
which we call elementary excitation states. Since in an elementary excitation state, all tails
take value 1 except the ones where the two quasiparticles are, we can omit the tails irrelevant
to these quasiparticles.
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(JDI, p)

(JDI, q)

(a)

(JDI, p)

(JDI, q)

(b)

Figure 2: Two ribbon operators in the doubled Ising phase. The two ribbon opera-
tors both create quasiparticles (J , p) and (J , q) at the ends of their paths, which are
homotopic. Hence, they are the same operators although they take very different
paths.

4.1 Review of the elementary excitation states in the doubled Ising phase

Since our model stems from the extended LW model describing the doubled Ising phase, we
first focus on the elementary excitation states in the parent doubled Ising phase described by
Hamiltonian HDI (4). The doubled-Ising ground state |Φ〉DI ∈H satisfies

QV |Φ〉DI = BDI
P |Φ〉DI = |Φ〉DI , (18)

for all vertices V and plaquettes P. Each doubled-Ising elementary excitation state |ϕ〉DI can
be obtained by acting a ribbon operator WL on the ground state |Φ〉DI [2,20]:

|ϕ〉DI =WL |Φ〉DI . (19)

The ribbon operator WL is defined along a path L, which crosses one or more edges in the
lattice, and creates a pair of quasiparticles at the two ends of L (see Fig. 2). The path L of a
ribbon operator can be homotopically deformed, with its two ends fixed.

We start with the elementary excitation states with a pair of quasiparticles in the two adja-
cent plaquettes with a common edge E. This state can be generated by ribbon operator W JDI;p,q

E
along the shortest path that crosses only one edge E. This shortest ribbon operator creates in
the two adjacent plaquettes a pair of quasiparticles (JDI, p) and (JDI, q), where JDI labels the
anyon species of the quasiparticles, while p and q label the charges of the quasiparticles [20].
Namely

|JDI; p, q〉DI = (JDI, p) (JDI, q)
E :=W JDI;p,q

E |Φ〉DI . (20)

We only consider the action of ribbon operator W JDI;p,q
E on the ground state |Φ〉DI. The action

reads

W JDI;p,q
E

jE =
∑

k∈LDI

√

√

√
dk

d jE

· zJDI;k
pq jE

jE

jE
kp

q
, (21)
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Table 1: The anyon species and charges of quasiparticles in the doubled Ising phase.

Quasiparticle Anyon species Charge

(11, 1) 11 1

(1σ,σ) 1σ σ

(1ψ,ψ) 1ψ ψ

(σ1,σ) σ1 σ

(σσ, 1)
σσ

1

(σσ,ψ) ψ

(σψ,σ) σψ σ

(ψ1,ψ) ψ1 ψ

(ψσ,σ) ψσ σ

(ψψ, 1) ψψ 1

(σσ, 1) (σσ, 1)

(a)

(σσ, 1) (σσ,ψ)

(b)

(σσ,ψ) (σσ, 1)

(c)

(σσ,ψ) (σσ,ψ)

(d)

Figure 3: The doubled-Ising elementary excitation states with anyon species σσ.
The charges of quasiparticles can take value arbitrarily in {1,ψ}.

where jE ∈ LDI is the label on edge E. The matrix elements zJDI;u
pqs are the components of the

tensor zJDI , and are listed in Appendix D.1. The tensor zJDI satisfies [20]

δ j,t N
t
rs

dt
zJDI;w

pqt =
∑

ulv∈LDI

dudvzJDI;v
lqr zJDI;u

pls Grst
pwuGsr j

qwvGsul
r vw , (22)

where the anyon species JDI labels different minimal solutions zJDI that cannot be the sum of
any other nonzero tensors. There are 9 anyon species:

11 , 1σ , 1ψ , σ1 , σσ , σψ , ψ1 , ψσ , ψψ̄ . (23)

Crossing any edge E in the doubled Ising phase, for each JDI ̸= σσ̄, there is only one
such ribbon operator W JDI;p,q

E with p = q. For JDI = σσ̄, the corresponding charges p and
q both can take values in {1,ψ} (see Table 1); hence, there are four different such ribbon
operators Wσσ̄;p,q

E with p, q ∈ {1,ψ}. All told, crossing any edge E, there are 12 shortest
ribbon operators.

There are four degenerate elementary excitation states |σσ̄; p, q〉DI = W JDI;p,q
E |Φ〉DI with

p, q ∈ {1,ψ}, as shown in Fig. 3. Each state has two quasiparticles, each of which can be either
(σσ̄, 1) or (σσ̄,ψ). While σσ̄ is the topological observable of these states, the degenerate
charges 1 and ψ cannot be distinguished experimentally [20], as they can be transformed
into each other by local operators B1σψσ

P and Bψσ1σ
P (defined in Eq. (E.1)). The elementary

excitation states in the doubled Ising phase hence are characterized by their anyon species.
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(JDI, p)
(JDI, q)
(JDI, q)

(JDI, r)
P

(a)

(JDI, p) (JDI, r)
P

(b)

(JDI, p) (JDI, r)
L

P

(c)

Figure 4: Concatenating two shortest ribbon operators to a longer one. (a) The state
generated by two shortest ribbon operators. (b) Annihilating the two quasiparticles
(JDI, q) in plaquette P results in (c): the state generated by the longer ribbon opera-
tor W JDI;p,r

L .

Then we study the states with two quasiparticles in two nonadjacent plaquettes, generated
by ribbon operators along longer paths. These ribbon operators result from concatenating
shorter ribbon operators. For example, in Fig. 4, the two shortest ribbon operators create
in plaquette P two identical quasiparticles (JDI, q), which are then annihilated, resulting in a
longer ribbon operator W JDI;p,r

L , which generates an elementary excitation state W JDI;p,r
L |Φ〉DI

with two quasiparticles at the end of path L. The matrix elements of such ribbon operators
are also given by zJDI tensors (see Appendix B.2).

4.2 The elementary excitation states of our model

Now we study the elementary excitation states of our model. These states are eigenstates of
the effective Hamiltonian Heff (16) in the effective Hilbert space Heff (12).

According to Appendix C, the projector (13), Peff, commutes with any doubled-Ising ribbon
operator W JDI;p,q

L in the effective Hilbert space Heff:

Peff

�

W JDI;p,q
L , Peff

�

= 0 . (24)

Then, together with Eq. (19), Peff projects the elementary excitation states |ϕ〉DI and the ribbon
operators W JDI;p,q

L of the doubled Ising phase to those of our model. While in the doubled
Ising phase, elementary excitations states do not discern the locations of the quasiparticles but
only their anyon species, in our model, nevertheless, locations of the quasiparticles do matter
because of the domain wall (see Fig. 5). In what follows, we shall study the elementary
excitation states of our model in the cases of different quasiparticle locations.

4.2.1 The elementary excitation states with quasiparticle pairs in the toric code domain

Here, we study the elementary excitation states of our model with a pair of quasiparticles in two
adjacent plaquettes completely in the toric code domain. These states result from projecting
the elementary excitation states |JDI; p, q〉DI (20) in the doubled Ising phase:

|1;1, 1〉 := Peff

�

�11̄; 1, 1
�

DI = Peff

�

�ψψ̄; 1, 1
�

DI ,

|ε;ψ,ψ〉 := Peff

�

�ψ1̄;ψ,ψ
�

DI = Peff

�

�1ψ̄;ψ,ψ
�

DI ,

|m; 1, 1〉 := Peff |σσ̄; 1, 1〉DI ,

|e;ψ,ψ〉 := Peff |σσ̄;ψ,ψ〉DI , (25)

where we define the four nonvanishing states after the projection as |JTC; p, p〉, with
JTC ∈ {1,ε, e, m} the anyon species and p ∈ {1,ψ} the charges of the quasiparticles. See
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Peff

(JDI, p)

(JDI, q)

(JDI, p)

(JDI, q)

(a)

Peff

(JDI, p)

(JDI, p)

(JTC, p)

(JTC, p)

(b)

Peff

(JDI, p) (JDI, q) (JDI, p) (JTC, q)

(c)

Peff

(JDI, p)

(JDI, p)

(JDW, p)

(JDW, p)

(d)

Peff

(JDI, p)
(JDI, q)

(JDI, p)
(JDW, q)

(e)

Peff(JDI, p)
(JDI, p)

(JDW, p)
(JTC, p)

(f)

Figure 5: Projecting the doubled-Ising elementary excitation states results in the
elementary excitation states in our model. (a) The two quasiparticles in our model
are all in the doubled Ising domain. (b) The two quasiparticles are all in the toric
code domain. (c) The two quasiparticles are respectively in the doubled Ising domain
and the toric code domain. (d) The two quasiparticles are all in the gapped domain
wall. (e) The two quasiparticles are respectively in the doubled Ising domain and
the gapped domain wall. (f) The two quasiparticles are respectively in the toric code
domain and the gapped domain wall.

Fig. 5b. But not all doubled-Ising elementary excitation states are projected to states in Heff:

Peff |σσ̄;ψ, 1〉DI = Peff |σσ̄; 1,ψ〉DI = 0 ,

Peff

�

�σ1̄;σ,σ
�

DI = 0 ,

Peff

�

�σψ̄;σ,σ
�

DI = 0 ,

Peff |1σ̄;σ,σ〉DI = 0 ,

Peff |ψσ̄;σ,σ〉DI = 0 . (26)

These states are infinitely (Λ→∞) gapped by ∆H, and should not appear in Heff.
The four elementary excitation states |JTC; p, p〉 are precisely the known four elementary

excitation states in the Z2 toric code phase. These states are generated by the ribbon operators
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W JTC;p,p
E acting on the ground state (17) |Φ〉 of our model

|JTC; p, p〉= (JTC, p) (JTC, p) =W JTC;p,p
E |Φ〉 , (27)

where the ribbon operators are the projections

W 1;1,1
E := PeffW

11̄;1,1
E Peff = PeffW

ψψ̄;1,1
E Peff ,

W ε;ψ,ψ
E := PeffW

ψ1̄;ψ,ψ
E Peff = PeffW

1ψ̄;ψ,ψ
E Peff ,

W m;1,1
E := PeffW

σσ̄;1,1
E Peff ,

W e;ψ,ψ
E := PeffW

σσ̄;ψ,ψ
E Peff . (28)

Note that the two plaquettes sharing edge E must lie within the toric code domain.
These ribbon operators W JTC;p,q

E read

W JTC;p,q
E

jE =
∑

k∈LTC

√

√

√
dk

d jE

· zJTC;k
pp jE

jE

jE
kp

p
. (29)

The components zJTC;k
pp jE

are listed in Appendix D.2 and are precisely those comprising the ribbon
operators in the extended LW model describing the Z2 toric code phase [20].

Ribbon operators defined along longer paths crossing edges in the toric code domain can
be obtained also by concatenating shorter ribbon operators. We shall not dwell on this.

4.2.2 The elementary excitation states with interdomain quasiparticle pairs

Now we consider what we call interdomain elementary excitation states, each having one quasi-
particle (JDI, p) in the doubled Ising domain and the other (JTC, q) in the toric code domain. An
interdomain state bears two different topological observables, JDI in the doubled Ising domain
and JTC in the toric code domain. See Fig. 5c. We label interdomain elementary excitation
states as |JDI - JTC; p, q〉.

There are 8 distinct interdomain elementary excitation states, as listed in Table 3.

Table 2: The anyon species and charges of quasiparticles in the toric code domain.

Quasiparticle Anyon species Charge

(1,1) 1 1

(e,ψ) e ψ

(m, 1) m 1

(ε,ψ) ε ψ
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Table 3: The interdomain elementary excitation states.

Elementary excitation state Doubled-Ising quasiparticle Toric-code quasiparticle
�

�11 - 1;1, 1
�

(11,1)
(1, 1)�

�

�ψψ - 1;1, 1
¶

(ψψ, 1)
�

�ψ1 -ε;ψ,ψ
�

(ψ1,ψ)
(ε,ψ)�

�

�1ψ -ε;ψ,ψ
¶

(1ψ,ψ)

|σσ - m; 1, 1〉 (σσ, 1)
(m, 1)

|σσ - m;ψ, 1〉 (σσ,ψ)

|σσ - e; 1,ψ〉 (σσ, 1)
(e,ψ)

|σσ - e;ψ,ψ〉 (σσ,ψ)

These states can be generated by the ribbon operators along paths L across the gapped
domain wall:

|JDI - JTC; p, q〉= (JDI, p) (JTC, q)
L

E1

E4

=W JDI - JTC;p,q
L

E1 E4 . (30)

The ribbon operators W JDI - JTC;p,q
L are projected from the doubled-Ising ribbon operators

along same paths L:
W JDI - JTC;p,q

L := PeffW
JDI;p,q
L Peff , (31)

and are explicitly written as

W JDI - JTC,pq
L

j1

j2
j3

j4

j5

j6
j7

=
∑

j′1 j′2∈LDI

∑

j′3 j′4∈LTC

z
JDI; j′1
pq j1

z
JTC; j′4
qq j4

×

√

√

√

d j1

d j′1

G
r j4 j′4
q j4 j′′4

G j7 j3 j4
q j′4 j′3

G j6 j2 j3
q j′3 j′2

G j5 j1 j2
q j′2 j′1

p
q

j1

j′1

j′2 j′3
j′′4
j4

j5

j6
j7

. (32)

4.2.3 The elementary excitation states with domainwall quasiparticle pairs

Now we study the domainwall elementary excitation states, i.e., the elementary excitation states
with a pair of quasiparticles in two adjacent plaquettes within the gapped domain wall (see
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Table 4: The quasiparticle species and charges of the quasiparticles in the gapped
domain wall.

Quasiparticle Anyon species Charge

(1,1) 1 1

(e,ψ) e ψ

(m, 1) m 1

(ε,ψ) ε ψ

(χ,σ) χ σ

(χ,σ) χ σ

Fig. 5d). These states are projected from the doubled-Ising elementary excitation states with
a pair of quasiparticles in the same plaquettes. Namely,

|1;1, 1〉 := Peff

�

�11̄; 1, 1
�

DI = Peff

�

�ψψ̄; 1, 1
�

DI ,

|ε;ψ,ψ〉 := Peff

�

�ψ1̄;ψ,ψ
�

DI = Peff

�

�1ψ̄;ψ,ψ
�

DI ,

|χ;σ,σ〉 := Peff

�

�σ1̄;σ,σ
�

DI = Peff

�

�σψ̄;σ,σ
�

DI ,

|χ̄;σ,σ〉 := Peff |1σ̄;σ,σ〉DI = Peff |ψσ̄;σ,σ〉DI ,

|m; 1, 1〉 := Peff |σσ̄; 1, 1〉DI ,

|e;ψ,ψ〉 := Peff |σσ̄;ψ,ψ〉DI , (33)

where we define the six nonvanishing states after the projection as |JDW; p, p〉, with
JDW ∈ {1,ε, m, e,χ, χ̄} the quasiparticle species and p ∈ LDI the charges of the quasiparticles.
Graphically,

|JDW; p, p〉= (JDW, p) (JDW, p) . (34)

Although there are 6 distinct domain wall elementary excitation states (33), there are 10
different ribbon operators across an edge E in the gapped domain wall:

W 1;1,1
E,1 := PeffW

11̄;1,1
E Peff , W 1;1,1

E,2 := PeffW
ψψ̄;1,1
E Peff ,

W ε;ψ,ψ
E,1 := PeffW

ψ1̄;ψ,ψ
E Peff , W ε;ψ,ψ

E,2 := PeffW
1ψ̄;ψ,ψ
E Peff ,

Wχ;σ,σ
E,1 := PeffW

σ1̄;σ,σ
E Peff , Wχ;σ,σ

E,2 := PeffW
σψ̄;σ,σ
E Peff ,

W χ̄;σ,σ
E,1 := PeffW

1σ̄;σ,σ
E Peff , W χ̄;σ,σ

E,2 := PeffW
ψσ̄;σ,σ
E Peff ,

W m;1,1
E := PeffW

σσ̄;1,1
E Peff ,

W e;ψ,ψ
E := PeffW

σσ̄;ψ,ψ
E Peff . (35)

Since E is a DI edge taking value in LDI = {1,ψ,σ},

W JDW;p,p
E,1 ̸=W JDW;p,p

E,2 , (36)
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Table 5: The elementary excitation states with one doubled-Ising quasiparticle and
one domainwall quasiparticle.

Elementary excitation state Doubled-Ising quasiparticle Domainwall quasiparticle
�

�11 - 1;1, 1
�

(11,1)
(1, 1)�

�

�ψψ - 1;1, 1
¶

(ψψ, 1)
�

�ψ1 -ε;ψ,ψ
�

(ψ1,ψ)
(ε,ψ)�

�

�1ψ -ε;ψ,ψ
¶

(1ψ,ψ)
�

�σ1 -χ;σ,σ
�

(σ1,σ)
(χ,σ)�

�

�σψ -χ;σ,σ
¶

(σψ,σ)

|1σ - χ̄;σ,σ〉 (1σ,σ)
(χ̄,σ)

|ψσ - χ̄;σ,σ〉 (ψσ,σ)

|σσ - m; 1, 1〉 (σσ, 1)
(m, 1)

|σσ - m;ψ, 1〉 (σσ,ψ)

|σσ - e; 1,ψ〉 (σσ, 1)
(e,ψ)

|σσ - e;ψ,ψ〉 (σσ,ψ)

for JDW = 1,ε,χ and χ̄, but

W JDW;p,p
E,1 |Φ〉=W JDW;p,p

E,2 |Φ〉= |JDW; p, p〉 . (37)

Specifically,

W JDW;p,p
E,i

jE =
∑

k∈LDI

√

√

√
dk

d jE

· zJDW;k
pp jE

jE

jE
kp

p
, (38)

where the coefficients zJDW;k
pq jE

are listed in Appendix D.3. The indices p, q, k ∈ LDI, but the index
jE is restricted to LTC = {1,ψ} because edge E only takes value in LTC in the ground state (17)
|Φ〉.

4.2.4 The elementary excitation states with doubled-Ising-domainwall quasiparticle
pairs

We now consider the elementary excitation states with one doubled-Ising quasiparticle
(JDI, p) and one domainwall quasiparticle (JDW, q) in the adjacent plaquettes. See Fig. 5e.
These elementary excitation states are defined as

|JDI - JDW; p, q〉 :=W JDI;p,q
E |Φ〉 , (39)

where W JDI;p,q
E is the ribbon operator across a DI edge E between the doubled Ising domain
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Table 6: The elementary excitation states with one toric-code quasiparticle and one
domainwall quasiparticle.

Elementary excitation state Domainwall quasiparticle Toric-code quasiparticle

|1 - 1;1, 1〉 (1, 1) (1,1)

|e - e;ψ,ψ〉 (e,ψ) (e,ψ)

|m - m; 1, 1〉 (m, 1) (m, 1)

|ε -ε;ψ,ψ〉 (ε,ψ) (ε,ψ)

and the gapped domain wall.

W JDI;p,q
E

jE =
∑

k∈LDI

√

√

√
dk

d jE

· zJDI;k
pq jE

jE

jE
kp

q
. (40)

There are 12 possible distinct elementary excitation states, as in Table 5.
4.2.5 The elementary excitation states with toric-code-domainwall quasiparticle pairs

We consider the case in Fig. 5f: the elementary excitation states with one toric-code quasipar-
ticle and one domainwall quasiparticle. These elementary excitation states are defined as

|JDW - JTC; p, q〉 :=W JTC;p,p
E |Φ〉 , (41)

where W JTC;p,p
E is the ribbon operator across TC edge E between the toric code domain and the

gapped domain wall.

W JTC;p,p
E

jE =
∑

k∈LTC

√

√

√
dk

d jE

· zJTC;k
pp jE

jE

jE
kp

p
. (42)

There are 4 distinct elementary excitation states generated by W JTC;p,q
E , as in Table 6.

Concatenating the ribbon operators in (40) and (42) results in the interdomain ribbon
operators (31).

5 Correspondence with anyon condensation

As mentioned in the introduction, our model of two topological phases separated by a gapped
domain wall can be regarded as a spatial counterpart of the phase transition (which is tem-
poral) from one phase (the parent phase) to the other (the child phase) triggered by anyon
condensation. See Fig. 6.

An intermediate phase during the phase transition was introduced as merely a method
to study the procedure of anyon condensation [26]. The anyon condensation in a parent
phase first leads to an intermediate phase where splitting and identification have been com-
pleted, while the confinement occurs during the transition from the intermediate phase to the
child phase. Interestingly, this auxiliary, virtual intermediate phase corresponds to the physi-
cal gapped domain wall between the parent and child phases. For example, Figure 7 records
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Table 7: The projection-state correspondence in the phenomena of splitting, identi-
fication, and confinement in the toric code domain.

Phenomenon Projection Interdomain states

Splitting
Peff |σσ̄; 1, 1〉DI = |m; 1, 1〉 |σσ̄ - m; 1, 1〉 , |σσ̄ - m;ψ, 1〉

Peff |σσ̄;ψ,ψ〉DI = |e;ψ,ψ〉 |σσ̄ - e; 1,ψ〉 , |σσ̄ - e;ψ,ψ〉

Identification

Peff

�

�11̄; 1, 1
�

DI = |1; 1,1〉
�

�11̄ - 1; 1,1
�

Peff

�

�ψψ̄; 1, 1
�

DI = |1; 1,1〉
�

�ψψ̄ - 1; 1,1
�

Peff

�

�ψ1̄;ψ,ψ
�

DI = |ε;ψ,ψ〉
�

�ψ1̄ -ε;ψ,ψ
�

Peff

�

�1ψ̄;ψ,ψ
�

DI = |ε;ψ,ψ〉
�

�1ψ̄ -ε;ψ,ψ
�

Confinement

Peff

�

�σ1̄;σ,σ
�

DI = 0

Peff

�

�σψ̄; 1, 1
�

DI = 0 There is no interdomain state

Peff |1σ̄;σ,σ〉DI = 0 with JDI = σ1̄, σψ̄, 1σ̄, ψσ̄.

Peff |ψσ̄;σ,σ〉DI = 0

the relations between the quasiparticles in different domains in our model, corresponding to
different stages in a phase transition induced byψψ̄ condensation in the doubled Ising phase.
Here, we shall use our model to formulate this correspondence rigorously.

The three main phenomena — splitting, identification, and confinement — that occur in
a phase transition due to anyon condensation can find their spatial counterparts in the ele-
mentary excitation states of our model. In Eq. (25), the doubled-Ising elementary excitation
states |JDI; p, p〉DI in the parent phase are projected to the states |JTC; p, p〉 with quasiparticles
in the toric code domain of our model. On the other hand, any interdomain elementary excita-
tion state (30) |JDI - JTC; p, q〉 bears a pair of topological observables JDI - JTC. The allowed pairs
JDI - JTC in the interdomain elementary excitation states are in one-to-one correspondence with
the projections from |JDI; p, q〉DI to |JTC; p, q〉. Table 7 records this correspondence. We dub
this correspondence the projection-state correspondence. We now exhibit this correspondence
from three aspects: splitting, identification, and confinement.

Doubled Ising Domain

JDI

Dom
ain

W
allJDW

Toric Code Domain

JTC Parent Phase

JDI

Intermediate Phase

JDW

Child Phase
JTC

x

(a)

t

(b)

Figure 6: The correspondence between (a): our model with gapped domain wall
between the doubled Ising domain and toric code domain and (b): the anyon con-
densation from the parent doubled Ising phase to the child toric code phase via an
auxiliary intermediate phase.
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Figure 7: Relations between the quasiparticle species in different domains (phases).

JDI JDW JTC

σσ̄

11̄

ψψ̄

ψ1̄

1ψ̄

σ1̄

σψ̄

1σ̄

ψσ̄

m

e

m

e

1 1

ε ε

χ

χ̄

Splitting

Identification

Identification

Identification

Identification

(confined)

(confined)

Confinement

Confinement

5.1 Splitting

Seen in Table 7, the originally indistinguishable elementary excitation states |σσ̄; 1, 1〉DI and
|σσ̄;ψ,ψ〉DI are projected to the topological different states |m; 1, 1〉 and |e;ψ,ψ〉 via ψψ̄
condensation. It appears that the anyon species σσ̄ in the doubled Ising phase ‘splits’ into two
anyon species e and m in the toric code domain. This phenomenon is precisely what is known
as splitting in the language of anyon condensation.

The phenomenon of splitting can also be seen spatially in the interdomain elementary
excitation states under the projection-state correspondence. The projection from the doubled-
Ising elementary excitation state |σσ̄; 1, 1〉DI to the toric-code state |m, 1, 1〉 corresponds to the
allowed pair σσ̄ - m in the interdomain elementary excitation states

|σσ - m; 1, 1〉 , |σσ - m;ψ, 1〉 , (43)

while Peff |σσ̄;ψ,ψ〉DI = |e,ψ,ψ〉 corresponds to the allowed pair σσ̄ - e in

|σσ - e; 1,ψ〉 , |σσ - e;ψ,ψ〉 . (44)

These four interdomain states all have JDI = σσ̄, but JTC can be m or e. See Fig. 8. This phe-
nomenon is the spatial counterpart of the splitting of anyons in anyon condensation. Namely,
an anyon σσ̄ in the doubled Ising domain may hop into the toric code domain by crossing the
gapped domain wall and become either an anyon e or m.

With our model, splitting can also be understood dynamically as follows. The states
|σσ̄; p, q〉DI with p, q ∈ {1,ψ} in Fig. 3 are indistinguishable in the doubled Ising phase,
as they can be transformed into each other by the local operators B1σψσ and Bψσ1σ (E.1).
The local operators Bpσqσ

P however do not commute with the condensation term ∆H (8) in
Hamiltonian (9). After ψψ̄ condensation, the charges 1 and ψ can no longer transform into
each other by local operators, and are thus associated with individual topological observables
m and e respectively. An infinite energy barrier Λ→∞ prevents the toric-code states |m; 1, 1〉
and |e;ψ,ψ〉 from transforming into each other.
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5.2 Identification

Seen in Table 7,
�

�11̄; 1, 1
�

DI and
�

�ψψ̄; 1, 1
�

DI in the parent phase are both projected to |1;1, 1〉
in the toric code domain of our model, while

�

�ψ1̄;ψ,ψ
�

DI and
�

�1ψ̄;ψ,ψ
�

DI are both projected
to |ε;ψ,ψ〉. This phenomenon is called identification in anyon condensation.

The projections from elementary excitation states
�

�11̄; 1, 1
�

DI and
�

�ψψ̄; 1, 1
�

DI in the parent
phase to |1; 1,1〉 in our model individually correspond to the interdomain elementary excita-
tion states

�

�11̄− 1;1, 1
�

,
�

�ψψ̄− 1; 1,1
�

, (45)

which have different doubled-Ising topological obervables 11̄ and ψψ̄ but same toric-code
topological obervable 1. The projections from

�

�ψ1̄;ψ,ψ
�

DI and
�

�1ψ̄;ψ,ψ
�

DI to |ε;ψ,ψ〉 re-
spectively correspond to the interdomain elementary excitation states

�

�ψ1̄− ε;ψ,ψ
�

,
�

�1ψ̄− ε;ψ,ψ
�

, (46)

with different doubled-Ising topological observables ψ1̄ and 1ψ̄ but same toric-code topolog-
ical observable ε. It appears that the quasiparticles (11̄, 1) and (ψψ̄, 1) in the doubled Ising
domain become the same toric-code quasiparticle (1, 1) when hopping into the toric code do-
main, while (ψ1̄, 1) and (1ψ̄,ε) are identified to be (ε,ψ). This phenomenon is the spatial
counterpart of identification in anyon condensation.

5.3 Confinements

Seen in Table 7, the states
�

�σ1̄;σ,σ
�

DI,
�

�σψ̄;σ,σ
�

DI, |1σ̄;σ,σ〉DI and |ψσ̄;σ,σ〉DI in the par-
ent phase are all projected to 0 in Heff of our model via ψψ̄ condensation. This phenomenon
is called confinement in anyon condensation. This is because in the toric code domain, the
edges and tails cannot take value σ in the states in Heff.

Correspondingly, there is no interdomain elementary excitation states |JDI - JTC; p, q〉 with
JDI = σ1̄, σψ̄, 1σ̄ or ψσ̄, as the quasiparticles (σ1̄,σ), (σψ̄,σ), (1σ̄,σ) and (ψσ̄,σ) in
the doubled Ising domain cannot hop into the toric code domain unless overcoming infinite
energy barriers Λ→∞. This phenomenon is the spatial counterpart of confinement in anyon
condensation.

In anyon condensation, the doubled-Ising anyons σ1̄ and σψ̄ in the doubled Ising phase
become the same quasiparticle χ in the intermediate phase, and 1σ̄ and ψσ̄ become χ̄; how-
ever, χ and χ̄ in the intermediate phase are confined in the Z2 toric code phase because of
their nontrivial braiding with the new vacuum in the intermediate phase. Now that the gapped
domain wall is the spatial counterpart of the intermediate phase, we can see that domainwall
quasiparticles χ and χ̄ also have nontrivial braiding with the trivial quasiparticle 1 in the
gapped domain wall (to be defined in Eq. (66)).

(σσ̄, 1) (m, 1)

(a)

(σσ̄,ψ) (m, 1)

(b)

(σσ̄, 1) (e,ψ)

(c)

(σσ̄,ψ) (e,ψ)

(d)

Figure 8: The interdomain elementary excitation states with doubled-Ising topolog-
ical observable σσ.
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Figure 9: Our model on a torus: Two gapped domain walls (gray) separate the dou-
bled Ising domain (red) and Z2 toric code domain (blue).

(a)

H-Loop

V -Loop

(b)

Figure 10: (a) Gapped domain walls and noncontractible loops on the torus. (b) The
corresponding lattice picture of (a).

6 The bases of the ground states on the torus

The defining properties of a topological phase are usually obtained from the ground states of
the topological phase on the torus [1–3]. For example, on the torus, a topological phase has a
ground-state degeneracy, which is a topological quantum number of the topological phase. For
instances, on the torus, the doubled Ising phase has GSD = 9, while the Z2 toric code phase
has GSD = 4. In this section, we shall find two distinct and typical ground-state bases of our
model on the torus (see Fig. 9), using noncontractible loop operators to be constructed shortly.
These two ground-state bases will lead us to the characteristic properties of our model, as to
be shown in Sections 6.3, 7.1 and 7.2.

6.1 The domainwall basis of the ground-state subspace

Sewing the two ends of a ribbon operator results in a loop operator [1,2]. If the loop path is
noncontractible, we have a noncontractible loop operator. Loop operators preserve the ground-
state subspace because no anyons are created. On the torus, there are two homotopic classes
of noncontractible loops: V loop along the gapped domain wall, and H loop across the gapped
domain wall. Here V stands for “vertical” and H “horizontal”. See Fig. 10.

There are 6 loop operators W JDI - JTC
H along H-loop, labeled by the interdomain topological

observable pairs JDI - JTC:

W 11̄ - 1
H = I , Wψψ̄ - 1

H , Wψ1̄ - ε
H , W 1ψ̄ - ε

H , Wσσ̄ - m
H , Wσσ̄ - e

H . (47)

Similarly, there are 6 noncontratible loop operators along the V -loop, labled by JDW:

W 1
V = I , W ε

V , W m
V , W e

V , W χ̄
V , Wχ

V . (48)
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All these operators are linearly independent. They generate an algebra denoted by A. See
Appendix F.1.

The algebra A generates the entire ground-state subspace H0 of our model given any
ground state:

H0 =A |Φ〉 , ∀|Φ〉 ∈H0\{0} . (49)

We leave the full proof of Eq. (49) in Appendix F.2 but sketch the proof as follows. Since Peff
commutes with the loop operators of the parent phase in Heff:

Peff

�

W JDI
H , Peff

�

= Peff

�

W JDI
V , Peff

�

= 0 , (50)

it projects the doubled-Ising loop operators W JDI
H and W JDI

V to W JDI - JTC
H and W JDW

V of our model,
and projects the ground-state subspace HDI

0 of the parent phase to H0 of our model. Now that
the doubled-Ising loop operators W JDI

H and W JDI
V can generate HDI

0 given any ground state of
the parent phase, A can generate H0 of our model given any ground state of our model.

We shall construct a ground-state basis using W JDW
V as follows. There exists a unique ground

state |Φ〉V ∈H0, such that
W JDI - JTC

H |Φ〉V = dJDI - JTC
|Φ〉V , (51)

for all operators W JDI - JTC
H , which generate a largest commutative subalgebra of A. Here

dJDI - JTC
= 1 for all pairs JDI - JTC are the only positive eigenvalues of W JDI - JTC

H . This common
eigenstate can be obtained up to factors by

|Φ〉V = PH |ϕ〉 , (52)

given arbitrary |ϕ〉 ∈Heff, where

PH =
I +Wψψ̄ - 1

H

2

I +Wψ1̄ - ε
H

2

I +W 1ψ̄ - ε
H

2

I +Wψψ̄ - 1
H + 2Wσσ̄ - m

H

4

I +Wψψ̄−1
H + 2Wσσ̄ - e

H

4
P0 .

(53)
Here,

P0 =
∏

P∈DI

BDI
P

∏

P∈DW

BDW
P

∏

P∈TC

BTC
P

∏

V

QV , (54)

such that P0Heff = H0, where BDI
P , BDW

P , BTC
P and QV are the plaquette operators and vertex

operators in the Hamiltonian Heff (16) of our model.
Since |Φ〉V is the common eigenstate of all W JDI - JTC

H , according to Eq. (49),

H0 = span
¦

W JDW
V |Φ〉V
©

. (55)

The states W JDW
V |Φ〉V are orthonormal and thus form a basis of H0. We define

|JDW〉V :=W JDW
V |Φ〉V . (56)

We call this basis the domainwall basis, depicted in Fig. 11a.

6.2 The interdomain basis of the ground-state subspace

The algebra A has more than one largest commutative subalgebra. The 6 V -loop operators
W JDW

V also generate a largest commutative subalgebra of A and determine another unique
ground state |Φ〉H , such that

W JDW
V |Φ〉H = dJDW

|Φ〉H , (57)
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where d1 = dε = dm = de = 1, dχ = dχ̄ =
p

2. This common eigenstate can be obtained up to
factors as

|Φ〉H = PV |ϕ〉 , ∀|ϕ〉 ∈Heff , (58)

where

PV =
I +W ε

V

2

I +W m
V

2

I +W e
V

2

I +W ε
V +
p

2W χ̄
V

4

I +W ε
V +
p

2Wχ
V

4
P0 . (59)

Hence, we obtain what we call the interdomain basis of H0:

|JDI − JTC〉H :=W JDI−JTC
H |Φ〉H , (60)

as depicted in Fig. 11b.

6.3 Ground-state degeneracy on the torus

According to the domainwall basis |JDW〉V (56) or interdomain basis |JDI - JTC〉H (60) of the
ground-state subspace on the torus, our model of the doubled Ising and Z2 toric code phases
separated by two gapped domain walls on the torus has

GSDtorus = 6 . (61)

This GSD agrees with the number of the domainwall quasiparticle species JDW, as well as the
number of interdomain topological observable pairs JDI - JTC. This is a generalization of the
correspondence between the GSD of a topological phase on the torus and the number of anyon
species of this topological phase. We can simply replace the input data of our model with that
of any other parent and child phases: for any two domain-wall-separated topological phases
related by anyon condensation, the following correspondence holds.

GSD on the torus

The number of domain
wall excitation states

The number of inter-domain
topological observable pairs.

(62)

Note that the GSD in Eq. (61) has also been obtained before by algebraic methods [25].

7 The S and T matrices

Besides the ground-state degeneracy, another fingerprint of the topological phase consists of
the S and T matrices, which generate the basis transformations in the ground-state Hilbert
space H0 on the torus. We shall construct the S and T matrices of our model and show their
physical significance.

7.1 The S matrix on the torus

We define the S matrix as the basis transformation (see Fig. 11):

SJDW,JDI−JTC
:= V〈JDW|JDI − JTC〉H , (63)
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V -Loop

JDW

(a)

S

H-Loop

JTCJDI

(b)

Figure 11: The S matrix: the basis transformation from (a) the domainwall basis
{|JDW〉V } to (b) the interdomain basis {|JDI − JTC〉H}.

which up to phase factors reads

S =
p

2
4



























11̄− 1 ψψ̄− 1 ψ1̄− ε 1ψ̄− ε σσ̄−m σσ̄− e

1 1 1 1 1 1 1

ε 1 1 1 1 −1 −1

m 1 1 −1 −1 1 −1

e 1 1 −1 −1 −1 1

χ̄
p

2 −
p

2
p

2 −
p

2 0 0

χ
p

2 −
p

2 −
p

2
p

2 0 0



























. (64)

The Levin-Wen model of a single topological phase on the torus is invariant under rotations
generated by a π

2 rotation of the lattice [6]; the S matrix of the model represents the π2 rotation
and is thus symmetric and unitary. Nevertheless, our model on the torus does not have this
rotation invariance due to the gapped domain walls, so the S matrix (63) has nothing to do
with rotations. Since the domainwall basis and interdomain basis are labeled by different sets
of quasiparticle species, our S matrix is neither symmetric nor unitary.

The S matrix of a single topological phase not only transforms the ground-state bases on
the torus but also characterizes the mutual statistics of the anyons in the topological phase.
This feature of the S matrix is generalized in our model. That is, the matrix elements of our S
matrix (64) can be understood in the following sense of braiding

JDI JTC

JDW

=
SJDW,JDI−JTC

S1,11̄−1
. (65)

Note that in Eq. (64), domainwall quasiparticles χ and χ̄ have nontrivial mutual statistics
with the trivial domainwall quasiparticle 1:

Sχ,ψψ̄−1

S1,11̄−1
=

Sχ̄,ψψ̄−1

S1,11̄−1
= −
p

2 . (66)

See Section 5.3.
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7.2 The T matrix on the torus

Although our model on the torus is not invariant under the π
2 rotation of the lattice, it is still

invariant under the shear, i.e., the T transformation, of the lattice along the vertical direction.
The T transformation exchanges the positions of two vertically neighboring vertices in the

ovals in Fig. 12. After the T transformation, for any two horizontally adjacent plaquettes in
the original lattice, the one on the right is shifted by one plaquette upward relative to the one
on the left. See for example the plaquettes P1 and P2 in Fig. 12b.

Figure 13 shows how the T transformation acts on the entire lattice. In the lattice, the
number of columns is equal to the number of plaquettes in each column (e.g., the number
is 4 for the lattice in Fig. 13), so the configuration of the lattice on the torus is invariant
and thus the Hilbert space of our model is unchanged under the T transformation. The T
transformation can be represented in this invariant Hilbert space. Note that any loop remains
a loop under the T transformation; hence, the T transformation preserves the ground-state
Hilbert space H0.

To see how the T transformation acts on a basis state of the Hilbert space, we can zoom
in to see how T acts in the vicinity of a dashed oval:

a0

a1

a2

e1

e2
=⇒
q

da1
da′1

Ga0e1a1

a2e2a′1

a0

a′1

a2

e1

e2

. (67)

We define the T matrix as a representation of the T transformation over the interdomain basis:

TJDW−JTC,KDW−KTC
:= H〈JDI − JTC| T |KDW − KTC〉H . (68)

(a) (b)

P1

P2E1 E2

E3

T

(c)

P1 P2

E1 E2 E3

(d)

P1

P2

E1

E2

E3

Figure 12: The T transformation and change of perspectives. (a) The original lattice
on the torus. Each oval encircles the vertices to be exchanged under the T transfor-
mation. (b) Two horizontally adjacent plaquettes P1 and P2. (c) The plaquettes P1
and P2 after the T transformation. (d) is (c) in a more convenient perspective.
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(a)

T

(b)

Figure 13: The T transformation on the entire torus. The number of columns and
the number of plaquettes in each column are both 4. (a) The original lattice. (b) The
lattice after the T transformation and the change of perspective. The plaquettes in
deeper colors illustrate how the plaquettes shift under the T transformation.

The matrix T is diagonal and reads

JDI − JTC 11̄− 1 ψψ̄− 1 ψ1̄− ε 1ψ̄− ε σσ̄−m σσ̄− e

TJDI−JTC,JDI−JTC
1 1 −1 −1 1 1

(69)

The diagonal elements TJDI−JTC,JDI−JTC
of the T matrix on the torus are also the topological spins

θJDI
= θJTC

= TJDI−JTC,JDI−JTC
of the anyons JDI and JTC:

JDI JTC = TJDI−JTC,JDI−JTC

JDI JTC
. (70)

The S matrix (63) and T matrix (68) generate all possible basis transformations of the
ground states of our model on the torus.

8 Conclusion

In this paper, we construct an exactly solvable lattice Hamiltonian model to investigate the
properties of a composite system consisting of multiple topological orders separated by gapped
domain walls. We develop a subsystem condensation technique to construct a lattice model
of two topological phases: Starting with the lattice model describing a single parent phase,
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we condense certain anyons in a subsystem (half) of the lattice, transforming the topological
phase in this subsystem into a child phase, while the original parent phase remains outside this
subsystem. This approach yields an exactly solvable lattice model simultaneously describing
the parent phase outside the subsystem, the child phase in the subsystem, and the gapped
domain wall separating them.

Analyzing the spectrum of the elementary excitation states of our model leads to the fol-
lowing main results.

1. We find a richer spectrum of our composite system than the sum of the two single topo-
logical orders: There are interdomain elementary excitations labeled by a pair of anyons
in different domains; There are also elementary excitations with quasiparticles in the
gapped domain wall.

2. We explicitly establish the correspondence between the transformations of anyons in
anyon condensation with the manifestable interdomain elementary excitation states in
our model.

3. Both the set of interdomain elementary excitations and the set of domain-wall quasipar-
ticles respectively correspond to a basis of the ground states of this composite system
on a torus, reflecting that the ground-state degeneracy (GSD) of our model on the torus
equals the number of quasiparticle species in the gapped domain wall, as well as the
number of interdomain elementary excitation species.

4. We construct the S and T matrices that generate the basis transformations of the ground
states on the torus. Our S matrix also encodes the braiding between the anyons crossing
the gapped domain wall around the quasiparticles in the gapped domain wall, and the
T matrix records the topological spins of interdomain excitations.

Our construction methods and conclusions can be directly utilized for any composite sys-
tem including a parent topological phase and a child phase separated by topological interfaces,
inspiring further novel results about composite topological systems consisting of multiple topo-
logical orders separated by gapped domain walls.
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A Gauge transformations of the positions of tails

In the lattice of the extended LW model, each tail associated with vertex V is chosen to attach
to any one of the three edges incident at V . Different choices lead to different lattice configu-
rations and hence different Hilbert spaces of the extended LW model. Nevertheless, since tails
are internal degrees of freedom that cannot be probed, the different Hilbert spaces underline
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V1

j0

j1

r

(a)

W̃ JDI;p,q
E

V1

k

j0

j0

j1

p

q

r

(b)

µr

V1

k

j0

l

j1p

q

r

(c)

F

V1

j0

l

j1

p

s

(d)

Figure 14: The action of W JDI;p,q
E on the state where a tail r is associated with V1.

the same topological phase. Specifically, these Hilbert spaces are equivalent up to the gauge
transformation µ:

µp
p

i

k

l
j

V

=
∑

m∈LDI

Æ

dl dm Gkpl
jim p

i

k

m
jV

. (A.1)

Besides the gauge transformation of the positions of tails, the directions of tails are also
defined up to gauge transformations [20]. For example, the following two states are equivalent
up to a gauge transformation:

p

i

k

l
j

V

p

i

k

l
j

V

. (A.2)

B The matrix elements of the doubled-Ising ribbon operators

In Section 4.1, we have defined the action of shortest ribbon operators W JDI;p,q
E on the states

where all tails take value 1 ∈ LDI:

W JDI;p,q
E

jE =
∑

k∈LDI

√

√

√
dk

d jE

zJDI;k
pq jE

jE

jE
kp

q
, (B.1)

where jE ∈ LDI is the label on edge E, and zJDI;k
pq jE

are listed in Appendix D.1.
In this appendix, we define the actions of any ribbon operators on any states in H of the

doubled Ising phase.

B.1 Matrix elements of shortest ribbon operators

Here, we define the action of the shortest ribbon operator W JDI;p,q
E on the states, in which there

are nontrivial tails attached on edge E.
We start with the simplest case where the tail is associated with the upper vertex V2 of edge

E and carries a charge r and points to the right:

W JDI;p,q
E j0

j2 r

V2

=
∑

ks∈LDI

Æ

dkds zJDI,k
pq j0

Gr j2 j0
kqs

j2

j0
kp

s

V2

. (B.2)
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This action formally is the composition of two operators W̃ JDI;p,q
E and F :

W JDI;p,q
E j0

j2 r

V2

= FW̃ JDI;p,q
E j0

j2 r

V2

. (B.3)

First, the operator W̃ JDI;p,q
E acts as

W̃ JDI;p,q
E j0

j2 r
V2

=
∑

k∈LDI

√

√

√
dk

d j0

zJDI;k
pq j0

j0

j0

k

j2

p

q

r
V2

. (B.4)

Now there are two tails (q and r) associated with vertex V2 on edge E, which can then be fused
by operator F :

F
j0

j0

k

j2

p

q

r
V2

:=
∑

s∈LDI

q

d j0 ds Gr j2 j0
kqs

j0

k

j2

p

s

V2

. (B.5)

The result is Eq. (B.2).
Similarly, when edge E has one tail (r) associated with the lower vertex V1 and pointing

right, W JDI;p,q
E acts on the state as

W JDI;p,q
E j1

j0
r

V1

=
∑

kls∈LDI

dk

Æ

dl ds zJDI,k
pq j0

Gkp j0
j1r l Gq j0k

l rs

j0

j1
lp

s

V2

,

(B.6)
which is also a composition of the actions of two operators:

W JDI;p,q
E j1

j0
r

V1

= FµrW̃
JDI;p,q
E j1

j0
r

V1

. (B.7)

See Fig. 14.
All other matrix elements of ribbon operators W JDI;p,q

E can be obtained likewise.
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j1

j2 j3

j4

j5
j6

j7

W JDI;q,r
E4

W JDI;p,q
E1

j1

j1

j′1

j2 j3

j4

j4

j′4

j5
j6

j7

p

q

q

r
�

µ∗q

�4 j′1

j′1
j1
j1

j′2 j′3

j′′4
j4

j5
j6

j7

p

q

q
r

F
j′′1

j1

j′1

j′2 j′3

j′′4
j4

j5
j6

j7

p

s r
BDI

P

j1

j′1

j2 j3

j′′4
j4

j5
j6

j7

p
r

Figure 15: Concatenating shorter ribbon operators to a longer one.

B.2 Concatenating shorter ribbon operators to a longer ribbon operator

Now we define the ribbon operators along longer paths. Consider ribbon operator W JDI;p,q
L in

Fig. 4c, whose path L crosses two edges labeled by j1 and j4 respectively:

W JDI;p,r
L

j1

j2
j3

j4

j5

j6
j7

=
∑

q j′1 j′2 j′3 j′4 j′′4 ∈LDI

z
JDI; j′1
pq j1

z
JDI; j′4
qr j4

×

√

√

√

d j1

d j′1

G
r j4 j′4
q j4 j′′4

G j7 j3 j4
q j′4 j′3

G j6 j2 j3
q j′3 j′2

G j5 j1 j2
q j′2 j′1

p
r

j1

j′1

j′2 j′3
j′′4
j4

j5

j6
j7

. (B.8)

The operator W JDI;p,r
L can be formally written as

W JDI;p,r
L = BDI

P

∑

q∈LDI

F(µ∗q)
4W JDI;q,r

E4
W JDI;p,q

E1
, (B.9)

see Fig. 15.
All matrix elements of the doubled-Ising ribbon operators taking any paths can be obtained

likewise.

C Proof of the commutation in Heff of Peff and the doubled-Ising
ribbon operators

In this section we prove Eq. (24):

Peff

�

W JDI;p,q
L , Peff

�

= 0 . (C.1)

Obviously, Eq. (24) holds when JDI = 11̄, ψψ̄, ψ1̄, 1ψ̄ and σσ̄ because these anyon
species all have charges in {1,ψ} that are preserved under the projection.
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σ

E2

E1

E3 E4

V1

V2

(a)

σ

E2

E1

E3 E4

V1

V2

(b)

σ

p1

p2

p3 p4

E2

E1

E3 E4

V1

V2

(c)

Figure 16: Two different cases where a tail with charge σ is attached to a TC edge
E2. (a) The tail σ is associated with the vertex V1 with an incident DI edge E1. (b) is
equivalent to (a) up to a µ∗σ gauge transformation. (c) The tail σ is associated with
the vertex V2 with two incident TC edges E3 and E4.

We then consider the ribbon operators W JDI;p,q
L with JDI = σ1̄, σψ̄, 1σ̄ and ψσ̄. These

operators create quasiparticles with charge σ at the ends of path L. Note that Eq. (24) holds
when path L crosses DI edges because Peff only acts on the TC edges, we only need to consider
the projections of states |ϕ〉 =W JDI;p,q

L |Φ〉 with nontrivial tails σ on TC edges. There are two
cases of these states, depicted in Fig. 16a and Fig. 16c.

In the first case, the tail σ is associated with vertex V1 with an incident DI edge E1. Up to
the gauge transformations introduced in Appendix A, this state is equivalent to the state with
tail σ on DI edge E1 (see Fig. 16b) and therefore satisfies Eq. (24).

In the second case, the tail σ is associated with vertex V2 with two other incident TC edges
E3 and E4. Note that

N1
σσ = Nψσσ = 1 , Nσ11 = Nσ1ψ = Nσψ1 = Nσψψ = 0 , (C.2)

one of the labels p1 and p2 on edge E2 must be σ. If p1 = σ, Wψψ̄;1,1
E2

|ϕ〉= −|ϕ〉; otherwise, if
p2 = σ, one of the labels p3 and p4 must be σ. Since associated with vertex V there is at most

one nontrivial tail that has been on edge E2, we have Wψψ̄;1,1
E3

= −|ϕ〉 or Wψψ̄;1,1
E4

|ϕ〉= −|ϕ〉.
Therefore,

Peff |ϕ〉= 0 , (C.3)

which leads to
PeffW

JDI;p,q
L Peff = PeffW

JDI;p,q
L = 0 . (C.4)

D The components of z tensors

D.1 Nonzero components of zJDI tensors in the doubled Ising domain

Equation (22)
δ j,t N

t
rs

dt
zJDI;w

pqt =
∑

ulv∈LDI

dudvzJDI;v
lqr zJDI;u

pls Grst
pwuGsr j

qwvGsul
r vw , (D.1)

has 9 minimal solutions zJDI , labeled by the 9 double-Ising anyon species. The nonzero com-
ponents of these tensors are

z11̄,1
111 = z11̄,ψ

11ψ = z11̄,σ
11σ = 1 , (D.2)

zψψ̄,1
111 = zψψ̄,ψ

11ψ = 1 , zψψ̄,σ
11σ = −1 , (D.3)
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zψ1̄,ψ
ψψ1 = 1 , zψ1̄,1

ψψψ
= −1 , zψ1̄,σ

ψψσ
= i , (D.4)

z1ψ̄,ψ
ψψ1 = 1 , z1ψ̄,1

ψψψ
= −1 , z1ψ̄,σ

ψψσ
= −i , (D.5)

zσσ̄,1
111 = zσσ̄,ψ

ψψ1 = zσσ̄,1
ψψψ

= 1 , zσσ̄,ψ
11ψ = −1 , zσσ̄,σ

1ψσ = zσσ̄,σ
ψ1σ = 1 , (D.6)

zσ1̄,σ
σσ1 = 1 , zσ1̄,σ

σσψ
= i , zσ1̄,1

σσσ = e
iπ
8 , zσ1̄,ψ

σσσ = e−
3iπ
8 , (D.7)

zσψ̄,σ
σσ1 = 1 , zσψ̄,σ

σσψ
= i , zσψ̄,1

σσσ = e−
7iπ
8 , zσψ̄,ψ

σσσ = e
5iπ
8 , (D.8)

z1σ̄,σ
σσ1 = 1 , z1σ̄,σ

σσψ
= −i , z1σ̄,1

σσσ = e−
iπ
8 , z1σ̄,ψ

σσσ = e
3iπ
8 , (D.9)

zψσ̄,σ
σσ1 = 1 , zψσ̄,σ

σσψ
= −i , zψσ̄,1

σσσ = e
7iπ
8 , zψσ̄,ψ

σσσ = e−
5iπ
8 . (D.10)

D.2 Nonzero components of zJTC tensors in the toric code domain

The tensors zJTC , JTC ∈ {1, e, m,ε}, are

z1,u
pqs = z11̄,u

pqs = zψψ̄,u
pqs , zε,upqs = zψ1̄,u

pqs = z1ψ̄,u
pqs , zm,u

pqs = δp,1zσσ̄,u
pqs ,

ze,u
pqs = δp,ψzσσ̄,u

pqs , p, q, s, u ∈ LTC . (D.11)

The nonzero components of zJTC tensors are

z1,1
111 = z1,ψ

11ψ = 1 , (D.12)

ze,ψ
ψψ1 = ze,1

ψψψ
= 1 , (D.13)

zm,1
111 = −zm,ψ

11ψ = 1 , (D.14)

zε,ψ
ψψ1 = −zε,1

ψψψ
= 1 . (D.15)

These zJTC tensors are the four minimal solutions to the equation

δ j,t N
t
rs

dt
zJTC;w

pqt =
∑

ulv∈LTC

dudvzJTC;v
lqr zJTC;u

pls Grst
pwuGsr j

qwvGsul
r vw , (D.16)

with all indices in LTC = {1,ψ}.
Note that although the doubled-Ising tensor zσσ̄ (D.6) also solves Eq. (D.16), it is not a

minimal solution but the sum of two minimal solutions ze and zm:

zσσ̄,u
pqs = zm,u

pqs + ze,u
pqs , p, q, r, s ∈ LTC . (D.17)

D.3 Nonzero components of zJDW tensors in the gapped domain wall

The tensors zJDW , JDW ∈ {1, e, m,ε,χ, χ̄}, are

z1,u
pqs = z11̄,u

pqs = zψψ̄,u
pqs , zε,upqs = zψ1̄,u

pqs = z1ψ̄,u
pqs , zm,u

pqs = δp,1zσσ̄,u
pqs , ze,u

pqs = δp,ψzσσ̄,u
pqs ,

zχ,u
pqs = zσ1̄1,u

pqs = zσψ̄,u
pqs , zχ̄,u

pqs = z1σ̄,u
pqs = zψσ̄,u

pqs , p, q, u ∈ LDI , s ∈ LTC , (D.18)

where the nonzero components are

z1,1
111 = z1,ψ

11ψ = 1 , (D.19)
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ze,ψ
ψψ1 = ze,1

ψψψ
= 1 , (D.20)

zm,1
111 = −zm,ψ

11ψ = 1 , (D.21)

zε,ψ
ψψ1 = −zε,1

ψψψ
= 1 , (D.22)

zχ,σ
σσ1 = 1 , zχ,σ

σσψ
= i , (D.23)

zχ̄,σ
σσ1 = 1 , zχ̄,σ

σσψ
= −i . (D.24)

The tensors zJDW are the 6 minimal solutions to the equation

δ j,t N
t
rs

dt
zJDW;w

pqt =
∑

ulv∈LDI

dudvzJDW;v
lqr zJDW;u

pls Grst
pwuGsr j

qwvGsul
r vw , (D.25)

with all indices in LDI except that r, s, t ∈ LTC = {1,ψ}.

E Measuring elementary excitation states by local operators

E.1 Local operators in the doubled Ising phase

Since our model stems from the extended LW model describing the doubled Ising phase, we
first focus on the local operators in the doubled Ising phase. In the doubled Ising phase, the
local operators Bpsqu

P are defined by

Bpsqu
P

Pi0
i1

i2 i3

i4

i5i6e0

e2

e3

e4

e5

e6

p′ = δp,p′

∑

j0 j1 j2 j3 j4 j5 j6∈LDI

� 6
∏

n=0

q

din d jn

�

�

Gsup
i0 i1 j1

Gsuq
j1 j0 i0

�

×
�

Ge2 i2 i1
s j1 j2

Ge3 i3 i2
s j2 j3

Ge4 i4 i3
s j3 j4

Ge5 i5 i4
s j4 j5

Ge6 i6 i5
s j5 j6

Ge0 i0 i6
s j6 j0

� j0
j1

j2 j3

j4

j5j6e0

e2

e3

e4

e5

e6

q . (E.1)

The local operators Bpsqu
P preserve the anyon species JDI of the elementary excitation states

|JDI; p, r〉DI but change the charges of the doubled-Ising quasiparticles (JDI, p) in plaquettes P.

Bpsqu
P

P
(JDI, p′) (JDI, r) ∝ δp,p′

P
(JDI, q) (JDI, r) . (E.2)

There are in total 12 local operators Bpsqu
P acting on plaquette P:

B1111
P , B1ψ1ψ

P , B1σ1σ
P , B1σψσ

P , Bψ1ψψ
P , Bψψψ1

P ,

BψσψσP , Bψσ1σ
P , Bσ1σσ

P , BσψσσP , Bσσσ1
P , BσσσψP . (E.3)
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E.2 Measurement operators in the doubled Ising phase

Now we define the measurement operators of the elementary excitation states in the doubled
Ising phase via the local operators defined above. Since the doubled-Ising elementary excita-
tion states |JDI; p, q〉DI are determined by quasiparticles (JDI, p) and (JDI, q) therein, to measure
the elementary excitation states, we only need to detect the quasiparticles in the plaquettes.

The measurement operators ΠJDI,p
P of quasiparticles (JDI, p) in plaquette P is a linear com-

position of local operators
Π

JDI,p
P :=
∑

su

πJDI
psuBpspu

P . (E.4)

Here the coefficients πJDI
psu satisfy

π
JDI
psu

π
JDI
p1p

=
dsdu

dp
zJDI;u

pps , (E.5)

where πJ
p1p is a normalization factor, such that

Π
JDI,p
P

P
(J ′DI, p′) (JDI, r) = δp,p′δJDI,J

′
DI

P
(J ′DI, p′) (JDI, r) . (E.6)

The measurement operators ΠJDI
P of anyon species JDI are thus

Π
JDI
P =
∑

p∈JDI

Π
JDI,p
P , (E.7)

where p ∈ JDI are the charges of JDI anyons, i.e., there exist q, s, u ∈ LDI, such that zJDI,u
pqs ̸= 0.

E.3 Local operators and measurement operators in the toric code domain and
the gapped domain wall

The local operators in our model are projected from the local operators (E.1) in the doubled
Ising phase, while the measurement operators of quasiparticles in our model are projected
from the doubled-Ising measurement operators (E.4).

There are four local operators acting on the TC plaquette P:

PeffB
1111
P Peff , PeffB

1ψ1ψ
P Peff , PeffB

ψ1ψψ
P Peff , PeffB

ψψψ1
P Peff , (E.8)

which comprise the measurement operators of the four quasiparticles (JTC, p) in the toric code
domain

Π
1,1
P =

1
2

Peff

�

B1111
P + B1ψ1ψ

P

�

Peff ,

Π
m,1
P =

1
2

Peff

�

B1111
P − B1ψ1ψ

P

�

Peff ,

Π
e,ψ
P =

1
2

Peff

�

Bψ1ψψ
P + Bψψψ1

P

�

Peff ,

Π
ε,ψ
P =

1
2

Peff

�

Bψ1ψψ
P − Bψψψ1
�

P
Peff . (E.9)
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In the gapped domain wall, since s is restricted to LTC, there are 6 local operators:

PeffB
1111
P Peff , PeffB

1ψ1ψ
P Peff , PeffB

ψ1ψψ
P Peff ,

PeffB
ψψψ1
P Peff , PeffB

σ1σσ
P Peff , PeffB

σψσσ
P Peff . (E.10)

They comprise the measurement operators of the domainwall quasiparticles (JDW, p).

Π
1,1
P =

1
2

Peff

�

B1111
P + B1ψ1ψ

P

�

Peff ,

Π
m,1
P =

1
2

Peff

�

B1111
P − B1ψ1ψ

P

�

Peff ,

Π
e,ψ
P =

1
2

Peff

�

Bψ1ψψ
P + Bψψψ1

P

�

Peff ,

Π
ε,ψ
P =

1
2

Peff

�

Bψ1ψψ
P − Bψψψ1

P

�

Peff ,

Π
χ,σ
P =

p
2

2
Peff

�

Bσ1σσ
P + iBσψσσP

�

Peff ,

Π
χ̄,σ
P =

p
2

2
Peff

�

Bσ1σσ
P − iBσψσσP

�

Peff . (E.11)

Using the measurement operators (E.4), (E.9) and (E.11) in different areas of our model,
we can measure the quasiparticle species of our model. See Table 1, 2, 4, 5 and 6.

F The algebra of the noncontractible loop operators

F.1 The multiplications of noncontractible loop operators

The loop operators W JDI−JTC
H (47) and W JDW

V (48) generate a 36-dimensional algebra A. Here,
we list the multiplications of these loop operators, which completely determine this algebra.

The six H-loop operators W JDI−JTC
H are commutative:

�

W 1ψ̄−ε
H

�2
=
�

Wψ1̄−ε
H

�2
=W 11̄−1

H = I , Wψ1̄−ε
H W 1ψ̄−ε

H =Wψψ̄−1
H ,

Wψ1̄−ε
H Wσσ̄−e

H =W 1ψ̄−ε
H Wσσ̄−e

H =Wσσ̄−m
H ,
�

Wσσ̄−e
H

�2
=

W 11̄−1
H +Wψψ̄−1

H

2
. (F.1)

The six V -loop operators W JDW
V along the gapped domain wall are also commutative:

�

W e
V

�2
=
�

W m
V

�2
=W 1

V = I , W e
V W m

V =W ε
V ,

W e
V Wχ

V =W m
V Wχ

V =W χ̄
V ,
�

Wχ
V

�2
=W 1

V +W ε
D . (F.2)

Multiplying W JDW
V and W JDI−JTC

H generate the additional 25 linearly independent symmetry
operators.

Wσσ̄ - m
H W m

V =W m
V Wσσ̄ - m

H ,

Wσσ̄ - e
H W e

V =W e
V Wσσ̄ - e

H ,

Wσσ̄ - e
H W m

V = −W m
V Wσσ̄ - e

H ,

Wσσ̄ - m
H W e

V = −W e
V Wσσ̄ - m

H ,
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Wσσ̄ - e
H W ε

V = −W ε
V Wσσ̄ - e

H ,

Wσσ̄ - m
H W ε

V = −W ε
V Wσσ̄ - m

H ,

Wψψ̄ - 1
H Wχ

V = −Wχ
V Wψψ̄ - 1

H ,

Wψψ̄ - 1
H W χ̄

V = −W χ̄
V Wψψ̄ - 1

H ,

Wψψ̄ - 1
H W m

V =W m
V Wψψ̄ - 1

H ,

Wψ1̄ - ε
H W ε

V =W ε
V Wψ1̄ - ε

H ,

Wψ1̄ - ε
H Wχ

V = −Wχ
V Wψ1̄ - ε

H ,

Wψ1̄ - ε
H W χ̄

V = −W χ̄
V Wψ1̄ - ε

H ,

W 1ψ̄ - ε
H Wχ

V = −Wχ
V W 1ψ̄ - ε

H ,

W 1ψ̄ - ε
H W χ̄

V = −W χ̄
V W 1ψ̄ - ε

H ,

Wψ1̄ - ε
H W m

V = −W m
V Wψ1̄ - ε

H ,

W 1ψ̄ - ε
H W m

V = −W m
V W 1ψ̄ - ε

H ,

Wψ1̄ - ε
H W e

V = −W e
V Wψ1̄ - ε

H ,

Wσσ̄ - m
H Wχ

V ,

Wχ
V Wσσ̄ - m

H ,

Wσσ̄ - e
H Wχ

V ,

Wχ
V Wσσ̄ - e

H ,

Wσσ̄ - m
H W χ̄

V ,

W χ̄
V Wσσ̄ - m

H ,

Wσσ̄ - e
H W χ̄

V ,

W χ̄
D Wσσ̄ - e

H . (F.3)

All other multiplications of operators are not linearly independent:

Wψψ̄−1
H W e

V =W e
V Wψψ̄−1

H =Wψψ̄−1
H W m

V +W e
V −W m

V ,

W 1ψ̄−ε
H W ε

V =W ε
V W 1ψ̄−ε

H =Wψ1̄−ε
H W ε

V +W 1ψ̄−ε
H −Wψ1̄−ε

H ,

W 1ψ̄−ε
H W e

V = −W e
V W 1ψ̄−ε

H =Wψ1̄−ε
H W e

V +W 1ψ̄−ε
H W e

V −Wψ1̄−ε
H W m

V ,

Wχ
V Wσσ̄−e

H Wχ
V =Wχ

V Wσσ̄−m
H Wχ

V = 0 . (F.4)
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F.2 Generating the entire ground-state subspace

Finally, we prove Eq. (49): For any given two ground states |Φ〉 ∈Heff and
�

�Φ′
�

∈Heff of our
model on the torus, there exists an operator W ∈A, such that

�

�Φ′
�

=W |Φ〉 . (F.5)

Since the ribbon operators in our model are projected from the doubled-Ising ribbon oper-
ators in the doubled Ising phase, the doubled-Ising loop operators in our model on the torus —
the special cases of ribbon operators — are also projections of the doubled-Ising loop operators
along the same paths:

W 1
V = PeffW

11̄
V Peff = PeffW

ψψ̄
V Peff ,

W ε
V = PeffW

ψ1̄
V Peff = PeffW

1ψ̄
V Peff ,

W m
V +W e

V = PeffW
σσ̄
V Peff ,

Wχ
V = PeffW

σ1̄
V Peff = PeffW

σψ̄
V Peff ,

W χ̄
V = PeffW

1σ̄
V Peff = PeffW

ψσ̄
V Peff ,

W 11̄−1
H = PeffW

11̄
H Peff ,

Wψψ̄
H = PeffW

ψψ̄
H Peff ,

Wσσ̄−m
H +Wσσ̄−e

H = PeffW
σσ̄
H Peff ,

Wψ1̄−ε
H = PeffW

ψ1̄
H Peff ,

W 1ψ̄−ε
H = PeffW

1ψ̄
H Peff . (F.6)

Therefore, the algebra A in our model satisfies

A= PeffADIPeff , (F.7)

where the algebra ADI is generated by all noncontractible loop operators W JDI
D , W JDI

H in the
doubled Ising phase on the torus along H-loop and V -loop.

On the other hand, in the doubled Ising phase, the projector

PDI
0 =
∏

P

BDI
P

∏

V

QV , (F.8)

projects the total Hilbert space H to the doubled-Ising ground-state subspace HDI
0 :

PDI
0 H =HDI

0 . (F.9)

In our model, the projector

P0 =
∏

P∈DI

BDI
P

∏

P∈DW

BDW
P

∏

P∈TC

BTC
P

∏

V

QV , (F.10)

projectes the effecitve Hilbert space Heff to the ground-state subspace H0. Note that
P0 = PeffP

DI
0 Peff, the projector Peff projects HDI

0 to H0:

PeffHDI
0 = PeffHDI

0 . (F.11)

Therefore, for any two ground states |Φ〉 and
�

�Φ′
�

of our model, there exist doubled-Ising
ground states |Φ〉DI and

�

�Φ′
�

DI, such that

|Φ〉= |Φ〉DI ,
�

�Φ′
�

=
�

�Φ′
�

DI . (F.12)
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Since HDI
0 is generated by the algebra ADI given any doubled-Ising ground state |Φ〉DI, there

exists a doubled-Ising operator W DI ∈ADI, such that
�

�Φ′
�

DI =W DI |Φ〉DI . (F.13)

As their projections,
�

�Φ′
�

=
�

PeffW
DIPeff

�

|Φ〉DI , (F.14)

where PeffW
DIPeff ∈ A. Therefore, the algebra A generates the entire ground-state subspace

H0 of our model given any ground state |Φ〉.
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