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Abstract

We study if the interplay between dynamical localization and interactions in periodically
driven quantum systems can give rise to anomalous thermalization behavior. Specifically,
we consider one-dimensional models with interacting spinless fermions with nearest-
neighbor hopping and density-density interactions, and a periodically driven on-site po-
tential with spatial periodicity m = 2 and m = 4. At a dynamical localization point,
these models evade thermalization either due to the presence of an extensive number
of conserved quantities (for weak interactions) or due to the kinetic constraints caused
by drive-induced resonances (for strong interactions). Our models therefore illustrate
interesting mechanisms for generating constrained dynamics in Floquet systems which
are difficult to realize in an undriven system.
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1 Introduction

The non-equilibrium dynamics of quantum systems has been extensively studied in recent
years [1–13]. Various kinds of time-dependent protocols have been considered such as quench-
ing and ramping [1–4,14–29], periodic driving [5–13], and quasiperiodic and aperiodic driv-
ing [30–38]. There have been several experimental studies of non-equilibrium dynamics in
systems of cold atoms trapped in optical lattices [39–48].

Periodic driving of quantum systems can give rise to a host of interesting phenomena
which have no equilibrium counterparts, such as the generation of drive-induced topological
phases [49–54], Floquet time crystals [55–57], dynamical localization [58–64], dynamical
freezing [65–70], tuning between ergodic and non-ergodic behaviors [71–73], and dynamical
transitions [74–79]. The out-of-equilibrium dynamics of a wide class of closes quantum sys-
tems is believed to be governed by the eigenstate thermalization hypothesis (ETH) [80–84].
According to ETH, all the eigenstates near the middle of the energy spectrum of a closed, non-
integrable and disorder-free quantum system are thermal; the thermal nature of such states
guarantees the ergodicity of the system. However, some instances are known where ETH is
violated, for example, in integrable quantum systems and in many-body localized phases in
one dimension in the presence of disorder and interactions [85, 86]. In recent years, it has
been found that ETH can be broken in some quantum systems which are not integrable and
have no disorder. The breaking of ETH may be weak or strong. In the case of weak ergodicity
breaking, systems evade ergodicity due to the presence of quantum many-body scars [87–98].
Quantum many-body scars are states which lie near the middle of the spectrum and have
anomalously low entanglement entropy between two halves of the system. The number of
scar states is typically much smaller than the full Hilbert space dimension. Moreover, the scar
states form a subspace which is almost decoupled from the thermal subspace. Hence they
are protected from thermalization for a long period of time and show persistent long-time
coherent oscillations in their dynamics; this has been observed recently in Rydberg atoms sim-
ulators. Furthermore, the interplay between quantum many-body scar states and periodic
driving can generate rich dynamical phase diagrams which have been studied in a number of
papers [73, 99–104]. One possible mechanism for strong ergodicity breaking is Hilbert space
fragmentation (HSF) [105–109]which occurs due to the presence of certain kinetic constraints
in the dynamics. These kinetic constraints lead to the fragmentation of the Hilbert space into
many disconnected sectors which can give rise to non-ergodic behavior in such systems. The
HSF in Floquet systems has been examined recently [110].

It has been shown in a series of theoretical works that quantum many-body scar states can
appear in systems hosting flat bands supported by compact localization [94–96]. Motivated
by this idea, we will pose a similar question in the context of Floquet systems undergoing
dynamical localization (DL) [58–64]. DL can be achieved in Floquet systems by tuning some
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of the system parameters which makes the effective hopping amplitudes zero or very small.
DL can thus be a powerful tool for generating flat bands. The effects of interactions then
become predominant which makes such systems highly promising platforms for investigating
correlated out-of-equilibrium phases of matter. DL is special to periodically driven systems
since this phenomenon has no equilibrium analog. Furthermore, the interplay between DL and
quasiperiodic driving can prevent thermalization in a quantum system; this has been studied
recently [111]. Having understood the rich possibilities that DL can offer in Floquet systems,
the natural question that motivates our work is as follows. Can the interplay between DL
and interactions in a one-dimensional disorder-free periodically driven closed quantum system
induce anomalous thermalization behavior?

Table 1: Schematic of main results obtained for the period-2 and period-4 models. µ
and ω denote the driving amplitude and frequency respectively.

Class of periodic po-
tential

Condition for dynami-
cal localization

Dynamical localiza-
tion and µ ≫ J , V

Dynamical lo-
calization and
µ= V ≫ J

m= 2 µ= nω (n= 1,2, · · · ) cMany-body flat
bands, slow ther-
malization due to
an emergent inte-
grability

Model of Hilbert
space fragmenta-
tion

m= 4 (φ = 0) µ= 2nω (n= 1,2, · · · ) Same as period-2
model

Same as the period-
2 model

m= 4 (φ = 7π/4) µ= nω (n= 1,2, · · · ) Many low-
entanglement
states near the mid-
dle of the spectrum
due to the presence
of an extensive
number of con-
served quantities

Model of Hilbert
space fragmenta-
tion but different
from the period-2
case

Another motivation for our work is as follows. As mentioned above, it has been known
for many years that periodic driving of non-interacting systems can be used to generate quan-
tum systems with a wide variety of band structures. It is therefore natural to ask if periodic
driving of interacting systems can produce new kinds of quantum many-body systems whose
parameters can be readily tuned.

The plan of this paper is as follows. In Sec. 2, we introduce our general model which
consists of a one-dimensional system of spinless fermions with nearest-neighbor hopping, an
on-site potential which is periodic in space [112] and is also driven periodically in time, and
a density-density interaction between nearest-neighbor sites. In Sec. 3, we study in detail
a model in which the potential has a periodicity of 2 sites. We first use first-order Floquet
perturbation theory to derive an effective Floquet Hamiltonian for a non-interacting system
when the driving amplitude and frequency are much larger than the hopping amplitude. We
find that the system shows DL for certain values of the system parameters. We look at a two-
point correlation function as a function of the stroboscopic time t = nT , where T = 2π/ω is
the time period. We find that the correlator can decay as a power-law, where the power de-
pends on the structure of the quasienergy dispersion around zero momentum. An interesting
dynamical phase transition is found to occur when the dispersion changes, and a crossover
between different powers occurs. Next, we look at the effects of interactions on DL. Exactly
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at a DL point, we find that there is an emergent integrability with a large number of con-
served quantities; these quantities are just the fermion occupation numbers (0 or 1) at the
different sites. An exact numerical calculation of the time evolution of the system confirms
this result from the Floquet Hamiltonian, namely, we find that the two-point correlation func-
tion and Loschmidt echo (which is the overlap between an initial state and its time-evolved
state) oscillate in time and show almost perfect revivals with a frequency which depends on
the interaction strength. The integrability disappears as we go away from a DL point, and the
Loschmidt echo then decays rapidly with time. In Sec. 3.4, we consider the combined effects
of resonances [113] and DL for the period-2 model. The first-order Floquet Hamiltonian then
has a remarkable structure in which we have both the large number of conserved quantities
as well as a density-dependent hopping in which the hopping between sites j + 1 and j + 2
depends on the occupation numbers on their neighboring sites j and j + 3. We thus obtain
dynamical constraints on the hopping. This leads to the appearance of an exponentially large
number of zero quasienergy states (an expression for this number is derived in Appendix A
using a transfer matrix method), a highly fragmented Hilbert space, and several states with
low entanglement entropy which lie near the middle of the quasienergy spectrum.

In Sec. 5, we study a model in which the potential has a periodicity of 4 sites. The poten-
tial has an amplitude which is driven periodically in time and a phase φ. The system has a
mirror symmetry for two values of the phase, 0 and 7π/4. At a DL point, a period-4 model
with φ = 0 behaves similarly as the period-2 model. But a period-4 model with φ = 7π/4
exhibits a different and remarkably rich set of behaviors. First, in the absence of interactions,
the Floquet Hamiltonian has the form of the Su-Schrieffer-Heeger (SSH) model in which the
nearest-neighbor hoppings have a staggered structure; this leads to the appearance of modes
near the ends of an open system. At a DL point, we obtain an extreme limit of the SSH model
in which hoppings on alternate bonds vanish. This leads to a large number of conserved quan-
tities which is the total fermion occupation number on two sites between which the hopping
is non-zero. Labeling the unit cell with two such sites as j, the conserved occupation number
n j can take the values 0, 1 and 2. It is convenient to map the two possible states of a unit
cell with n j = 1 to the states of a spin-1/2 object. We then discover that when interactions
are introduced, a set of consecutive unit cells all of which have n j = 1 is described by the
transverse field Ising model, in which neighboring spin-1/2’s have σx

j σ
x
j+1 interactions and

there is a transverse magnetic field term σz
j . In addition, the two boundary sites of this model

have a longitudinal magnetic field term σx
j . The exact spectrum of this model can be found by

mapping the spin-1/2 model to a model of fermions using the Jordan-Wigner transformation.
Once again we examine the spectrum of the entanglement entropy versus the quasienergy and
the time evolution of the Loschmidt echo. We find a clear fragmentation of the Hilbert space
in terms of the quasienergy spectrum, and the Loschmidt echo shows oscillations for a long
period of time. Both of these are consequences of the conserved quantities. We then study
the effects of a staggered on-site potential at a DL point; we find that the fragments of the
Hilbert space further break up into secondary fragments. Finally, we study what happens in
the period-4 model when both resonances and DL are simultaneously present. The Floquet
Hamiltonian again consists of a density-dependent nearest-neighbor hopping. We summarize
our main results in Sec. 7.
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2 Hamiltonian of period-m model

In this paper we will discuss a class of periodically driven one-dimensional models of interact-
ing spinless fermions. The general form of the Hamiltonian is

H(t) =
N
∑

j=1

[J (c†
j c j+1 +H.c.) + µ(t) cos(2π j/m+φ) c†

j c j + V n jn j+1] , (1)

where J is a uniform time-independent nearest-neighbor hopping, µ(t) is the strength of an
on-site potential which varies in space with period m (we will call this a period-m model), φ
is a phase whose significance will be discussed later, V is the strength of a nearest-neighbor
density-density interaction, n j = c†

j c j , and N denotes the number of sites (we will use periodic
boundary conditions unless otherwise specified). We will take µ(t) to be a periodic function
of time with a time period T and the form

µ(t) = µ f (t) ,

where f (t) = 1 , for 0 ≤ t < T/2 ,

= − 1 , for T/2 ≤ t < T , (2)

and f (t+T ) = f (t). Since H(t) = H(t+T ), we will use the Floquet formalism to examine this
model. The model can be analytically studied by performing a Floquet-Magnus expansion [1–
13] which is valid in the largeω limit, whereω= 2π/T is the driving frequency. However, we
will analytically study the model by finding an effective Floquet Hamiltonian HF using Floquet
perturbation theory (FPT) [11, 73, 114–116]; this approach is valid when both ω and µ are
much larger than all the other parameters of the model. We will examine in detail two classes
of models, period-2 and period-4, both analytically using the Hamiltonian HF and numerically
by computing the Floquet operator U which evolves the system through one time period. We
will set ħh= 1 in this paper.

3 Period-2 model

In this section we will consider the period-2 model, whose form can be obtained by putting
m= 2 and setting φ = 0 in Eq. (1),

H(t) =
N
∑

j=1

�

J (c†
j c j+1 +H.c.) + µ(t) cos(π j) + V n jn j+1

�

. (3)

This Hamiltonian can be written in the following form in the language of a unit cell with two
sites,

H(t) =
N/2
∑

j=1

�

J (a†
j b j + a†

j b j−1 +H.c.) + µ(t) (a†
j a j − b†

j b j) + V (n j,an j,b + n j,an j−1,b)
�

, (4)

where N/2 denotes the number of unit cells (we assume N is even), and each unit cell consists
of two sites labeled a and b with a†

j and b†
j denoting the creation operator for a particle at

odd- and even-numbered sites, respectively. We will assume periodic boundary conditions.
We will first study the non-interacting case with V = 0. The Hamiltonian in momentum

space is then given by

H(t) =
∑

k

[J ((1+ e−2ik)a†
k bk +H.c.) + µ(t) (a†

kak − b†
k bk)] , (5)
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where k takes N/2 equally spaced values lying in the range of (−π/2, π/2]. For each value
of k, we define the Floquet operator

Uk = T exp[−i

∫ T

0

d t Hk(t)] , (6)

where T denotes time ordering. The Floquet operator can be written in the form

Uk = e−iT HFk , (7)

where HFk is the time-independent effective Floquet Hamiltonian. Assuming µ≫ J , we can
write

Hk(t) = H0(t) + H1 ,

H0 = µ(t) (a
†
kak − b†

k bk) ,

H1 =
∑

k

[J (1+ e−2ik)a†
k bk +H.c.] . (8)

We will now calculate H(1)Fk using FPT to first order in the hopping J . We see from Eq. (2) that
the two instantaneous eigenvalues of H0 given by E±k (t) = ±µ(t) satisfy the condition

ei
∫ T

0 d t [E+k (t)−E−k (t)] = 1 . (9)

Hence we need to use degenerate FPT [11,73,114,116].
The eigenfunctions corresponding to E±k are given by

|+〉k =
�

1
0

�

, and |−〉k =
�

0
1

�

. (10)

To construct the first-order Floquet Hamiltonian, we start with the Schrödinger equation

i
d|ψ(t)〉

d t
= (H0 +H1)|ψ(t)〉 , (11)

where we assume that |ψ(t)〉 has the form

|ψ(t)〉=
∑

n

cn(t)e
−i
∫ t

0 d t ′En(t ′)|n〉 , (12)

and |n〉 = |±〉k in our case. Using Eq. (11) and keeping terms up to first order in H1, we find
that

cm(T ) = cm(0) − i
∑

n

∫ T

0

d t 〈m|H1|n〉 ei
∫ t

0 d t ′[Em(t ′)−En(t ′)] cn(0) . (13)

This can be re-written as follows

cm(T ) =
∑

n

(I − iH(1)Fk T )mn cn(0) , (14)

where I denotes the identity matrix and H(1)Fk refers to the first-order effective Hamiltonian.
We then find that

〈+|H(1)Fk |+〉= 0 , 〈−|H(1)Fk |−〉 = 0 ,

〈+|H(1)Fk |−〉= J (1+ e−2ik)eiA
�

sin A
A

�

, 〈−|H(1)Fk |+〉= J(1+ e2ik)e−iA
�

sin A
A

�

, (15)
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where

A =
µT
2
=
πµ

ω
. (16)

To first order in H1, therefore, H(1)F is given by

H(1)F = eiA
�

sin A
A

�

∑

k

[J (1+ e−2ik)a†
k bk +H.c.] . (17)

Before discussing further, we note a symmetry of the Floquet operator,

[Uk(µ, J)]−1 = Uk(µ,−J) , (18)

which follows from the expression in Eq. (7) and the fact that the driving protocol satisfies
µ(T − t) = −µ(t). Eq. (18) implies [77] that

HFk(µ, J) = − HFk(µ,−J) . (19)

Hence HF can only have terms with odd powers of J . This implies that the next order term
after the first order will be third order since there cannot be a term of second order in J .
Hence, the first-order effective Hamiltonian will be a very good approximation to the exact
Hamiltonian in the limit µ≫ J .

We also note that the Floquet quasienergy EFk must be an even function of k if we hold
J , µ fixed. To prove this, we do the unitary transformation

Hk(t) → Vk Hk(t) V−1
k ,

where Vk =

�

1 0
0 e−ik

�

. (20)

Thus we obtain

Hk(t) =

�

µ(t) 2J cos k
2J cos k −µ(t)

�

. (21)

With this Hamiltonian, it is clear that

Uk(µ, J) = U−k(µ, J) , which implies that HFk(µ, J) = HF,−k(µ, J) . (22)

Hence the Floquet quasienergy must be an even function of k.

3.1 Dynamical localization for a single-particle system

It is evident from the form of the Hamiltonian obtained by first-order FPT that the system will
(approximately) exhibit DL [58–64] when

A = nπ , i.e., µ = nω , (23)

where n is a non-zero integer. We note that this condition for DL becomes more and more
exact as µ/J →∞ and the higher order corrections to the first-order effective Hamiltonian
become negligible. In this limit, H(1)Fk vanishes for all values of k which produces a flat band
with zero quasienergy. We can see in Fig. 1 (a) that for a system with J = 1, µ = 20, and
ω = 20, the quasienergy band is almost flat with a bandwidth ∆ ∼ 0.02. In this case, we
have taken µ≫ J , and the higher order corrections to the first-order effective Hamiltonian are
therefore very small. However, if we decrease the value of µ holding J fixed, the first-order
Floquet Hamiltonian becomes less and lass accurate, and the DL begins to fail as can be seen
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(a) (b)

Figure 1: Dispersion of quasienergies EFk at DL points: (a) Plot of EFk versus k
obtained from the exact numerical calculation for J = 1, µ = 20, and ω = 20. We
find that ∆ ∼ 0.02, which implies an almost perfectly flat band at zero energy. (b)
The same plot for J = 1, µ = 10, and ω = 10. In this case, the bandwidth ∆ = 0.08
which is four times larger than in the first case.

in Fig. 1 (b), for a system with J = 1, and µ=ω= 10. In this case, the bandwidth,∆ ∼ 0.08,
which is four times larger than in Fig. 1 (a). This is due to the fact that the third-order effective
Hamiltonian scales as J3/µ2 at the dynamical localization points (µ= nω) obtained from the
first-order effective Hamiltonian as seen in Appendix C. Interestingly, the third-order effective
Hamiltonian does not explicitly depend on the value of ω if one keeps J and µ fixed at the DL
points. Hence the bandwidth remains unaffected ifω is changed but µ= nω is kept fixed. For
instance, we find numerically that the bandwidth is the same for the parameter values (J = 1,
µ= 20, ω= 20) and (J = 1, µ= 20, ω= 10).

3.2 Dynamical phase transition

Motivated by our previous work [78], we now study the relaxation behavior of some correlators
for the non-interacting model (V = 0). We will examine the correlation function a†

j b j (where
j denotes a particular unit cell) at stroboscopic times t = nT ,

Cn = 〈Ψ0|a
†
j (nT )b j(nT )|Ψ0〉 , (24)

where |Ψ0〉 is an initial state. For simplicity, we will take |Ψ0〉 to be a product state in momen-
tum space with the form

|Ψ0〉 =
∏

k

a†
k |0〉 . (25)

Since this state is translation invariant, the correlator Cn will not depend on the unit cell index
j. We will now investigate the relaxation behavior of Cn for large values of n, particularly to
see if there is any crossover behavior. We observe numerically that generally in the µ ≫ J
limit (with a few exceptions), the correlation function exhibits a n−1/2 decay with oscillations
and there is no crossover behavior. To explain this, we first note that the Floquet quasienergy
obtained from the first-order Floquet Hamiltonian has the form

E±Fk = ± Ek ,

where Ek = 2J
�

sin A
A

�

cos k . (26)
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The stationary point of Ek within the first Brillouin zone lies at k = 0. Next, we can show that
the time-dependent part of the correlation function can be expressed as

δCn ∼
2
N

∑

k

[ f (k)e−i2nT Ek +H.c.] , (27)

where fk = 〈Ψ0|a
†
j (0)b j(0)|Ψ0〉. For N →∞ and assuming f (k) to be real, the above equation

takes the integral form

δCn ∼
1
π

∫ π/2

−π/2
dk f (k) cos(2nT Ek) . (28)

For large values of n, this integral gets a dominant contribution from the regions close to the
stationary points of Ek [75,77,78]. Therefore, expanding Eq. (28) around the stationary point
at k = 0, we find that

δCn ∼
1
π

∫

dk f (k = 0) eiζn(1−k2/2) , (29)

where ζ= 4J T (sin A/A). Assuming f (k) ̸= 0 for a generic initial state, we find that the corre-
lation function for large values of n will decay as a power n−1/2, and there will be oscillations
due to the term cos(ζn). This is the usual decay behavior unless there are competing terms
which come from higher-order corrections.

We encounter such higher-order terms slightly away from the DL points (we recall that a
DL point is where A is an integer multiple of π, i.e., µ/ω is an integer). Since an analytical
calculation of the third-order effective Hamiltonian is a tedious task, we analyze this regime
numerically. We first find the Floquet quasienergy from the numerically exact calculation and
then do a fitting analysis of it. The results we obtain from such an analysis are as follows.
We consider the parameter values J = 1, µ = 10, and ω = 10.6. Taking into account the
structure of the stationary point obtained from the first-order effective Hamiltonian, we fit the
numerically computed Floquet quasienergy around k = 0 as a function of k up to sixth order
in k. We find the following functional form

E(k) = p4k4 + p0 , where p4 = − 0.02882 , p0 = 0.07865 . (30)

All terms with odd powers of k are found to be zero which is expected by the symmetry dis-
cussed in Eq. (22). Further, the coefficients of k2 and k6 are also found to be zero at these
particular parameter values. Hence Eq. (30) shows that Ek goes as k4 near k = 0. An analysis
similar to the one following Eq. (29) then shows that

δCn ∼
1
π

∫

dk f (k = 0) ei2nT (p0+p4k4) . (31)

Assuming f (k) ̸= 0, we see that for large values of n, the correlation function will decay as
n−1/4 with oscillations due to the cos(2nT p0) term. This is what we see in the Fig. 2 (c): for a
system with the parameter values mentioned above, the correlation function function decays
as an oscillatory term times n−1/4. If we plot |δCn| (rather than δCn) versus n, the period of
oscillations∆n will be given by the condition, 2∆np0T = π, which implies that∆n=ω/(4p0).
Puttingω= 10.6, and p0 = 0.07865, we find that∆n ∼ 34), which agrees very well with the
oscillation period seen in Fig. 2. Interestingly, we observe a crossover from n−1/4 to n−1/2 as we
move slightly away from ω = 10.6. As mentioned earlier, the correlation function in general
decays as a power n−1/2 for large values of n in this class of systems. However, we observe
a different power law decay behavior (n−1/4) emerging at ω ≃ 10.6, and we, therefore, call
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ω ≃ 10.6 the critical frequency ωc . To see the crossover, we consider J = 1, µ = 10, and
ω = 10.7 as an example. We again follow the same fitting procedure, and find the following
functional form

E(k) = p4k4+ p2k2+ p0 , where p4 = −0.02823 , p2 = −0.009116 , p0 = 0.0981 . (32)

The terms with odd powers of k vanish as before. In contrast to the previous case, however,
there is now a competition between the k2 and k4 terms, which can be seen in Eq. (32). Close
to k = 0, we see that Ek has a leading contribution coming from the k4 term, followed by
a subleading correction due to the k2 term very close to k = 0. Expanding the integrand in
Eq. (28) around k = 0 then gives

δCn ∼
1
π

∫

dk f (k = 0) ei2nT (p0+p2k2+p4k4) . (33)

Defining a scaled variable k′ = kn1/4, and assuming f (k) ̸= 0, we find

δCn ∼
1

πn1/4
ei2nT p0 f (k = 0)

∫

dk′ eiT (p2k′2n1/2+p4k′4) . (34)

Since |p2| ≪ |p4|, it is clear from Eq. (33) that there will be a n−1/4 scaling (along with oscil-
lations) when |ε|n1/2 ≪ 1, where ε′ = p2/p4. However, when |ε′|n1/2 ≫ 1, the n−1/4 scaling
breaks down and we then encounter a different scaling law, namely, n−1/2 (along with oscil-
lations due to the cos(2nT p0) term). We can extract the crossover scale nc from this analysis;
a crossover between the n−1/4 and n−1/2 power-laws occurs when |ε′|n1/2

c ∼ 1, which implies
that nc ∼ 1/|ε′|2. To see this behavior, we define ε as ω = 1/(1/ωc − ε) [78], where ε∝ ε′,
and we look at the divergence behavior nearωc . We plot the crossover scale nc with ε in Fig. 2
(e), and then numerically fit the plot of nc versus ε. We find that nc ∼ 1/|ε|2 which agrees
with the analytically derived result.

3.3 Effects of interactions on dynamical localization

In this section, we will look at the effects of density-density interactions [61, 63],
HI =

∑

j V n jn j+1 on DL. For this case, we take the system to be at half-filling with periodic
or antiperiodic boundary conditions (cN+1 = c1 or − c1) depending on whether the particle
number is even or odd, respectively, to avoid any degeneracy in the spectrum. To get an an-
alytical understanding of this system, we will first compute the effective Hamiltonian up to
first order in V . Since HI is diagonal in the position basis and commutes with the unperturbed
Hamiltonian, H0(t), the effective Hamiltonian to first order in V simply reads as

H(1)F I =
∑

j

V n jn j+1 . (35)

Hence the full effective Hamiltonian to first order in J and V is as follows

H(1)F = H(1)F,J + H(1)F I ,

H(1)F,J = eiA
�

sin A
A

�

∑

k

�

J(1+ e−2ik)a†
k bk +H.c.

�

,

H(1)F I =
∑

j

V n jn j+1 . (36)

We note that the Floquet evolution operator U(T ) satisfies the same condition as mentioned
in Eq. (19) [77], and therefore HF possesses the symmetry

HF (µ, J , V ) = − HF (µ,−J ,−V ) . (37)
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(a) (b)

(c) (d)

(e)

Figure 2: Quasienergies and crossover behaviors of correlation functions: Plots
showing EFk as a function of k obtained from the exact numerical calculation for
J = 1, µ = 10, and (a) ω = 10.6 and (b) ω = 10.7. In plot (a), Ek ∼ k4 around
k = 0 as can be seen in Eq. (31). In plot (b), Ek ∼ k2 + εk4, where |ε| ≪ 1, as
seen in Eq. (33). Log-log plots of the absolute value of the n-dependent part of the
correlation function δCn as a function of the time nT , for J = 1, µ = 10, and (c)
ω= 10.6 and (d) ω= 10.7. (c) The correlation function decays as n−1/4 along with
oscillations. (d) The plot shows a crossover between an oscillatory term times n−1/4

and an oscillatory term times n−1/2. (e) Plot showing the variation of nc with |ε| as
we approach the critical frequency from the ω > ωc side, where ωc ≃ 10.6 is the
frequency where the correlation function decays as n−1/4. The numerically obtained
fitting indicates that nc ∼ 1/|ε|2.
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Hence the first-order effective Hamiltonian will be a very good approximation to the exact
Hamiltonian for µ≫ J , V , since the higher order corrections will be negligible compared to
the first-order term. We see from Eq. (36) that H(1)F, J = 0 at the DL points where A is an integer

multiple of π, and then H(1)F just reduces to H(1)F I . Consequently, the spectrum of the Floquet
quasienergies becomes easy to compute at any filling due to the diagonal form of the effective
Hamiltonian in the position basis.

We now consider a system at half-filling with antiperiodic boundary conditions for J = 1,
µ = 20, ω = 20, V = 1, and L = 16, and calculate the spectrum of the Floquet quasiener-
gies and half-chain entanglement entropy. The dimension of the Hilbert space for N = L/2
and L = 16 is 16C8 = 12870. We first discuss the Floquet quasienergies and the degenera-
cies for some of the Floquet eigenstates which can be obtained analytically. We observe that
there are eight equally spaced quasienergies lying between 0 and 8V with a energy spacing
of V for L = 16, as shown in Fig. 3 (a). Next, there are exactly two Floquet eigenstates,
|±〉 = 1/

p
2
�

|1′〉 ± |2′〉
�

with EF = 0, where |1′〉 and |2′〉 are equal to |1010101010101010〉
and |0101010101010101〉 respectively in the number basis. Furthermore, there are 16 Floquet
eigenstates with EF = 8V . We note that the DL induces an emergent integrability which leads
to the appearance of many flat bands and several low-entanglement states (with SL/2≪ Spage,
where Spage = (L/2) ln2 − 1/2 [117, 118]) near the middle of the spectrum as can be seen
in Figs. 3 (a) and (b) respectively. However, this emergent integrability starts to break down
as we move away from a DL point, as we see in Fig. 3 (d), for J = 1, µ = 20, ω = 22 and
V = 1. In Figs. 3 (c) and (d), we observe that the flatness of the bands begins to disappear as
we move away from the DL limit.

In Fig. 4, we show some dynamical properties of the system, namely, the two-point correla-
tion function and the Loschmidt echo at a DL point and away from a DL point. The parameter
values chosen for this figure are the same as in Fig. 3. We will take the initial state to be the
ground state of the undriven Hamiltonian. In Fig. 4 (a), we see almost perfect revivals of
the correlation function in time, which is expected due to the emergent integrability at a DL
point. Further, the oscillation period of the revivals can be calculated by using the condition
eiVδt = 1. Hence the time period is given by δt = 2π/V , where V = 1 in our case. Away
from the DL point, the correlation function decays rapidly in time due to a breakdown of the
integrable structure. In Fig. 4 (c), we show the Loschmidt echo, |〈ψ(t)|ψ(0)〉|, for the same
parameter values as in Figs. 4 (a) and 4 (b) and with the same initial states. For the first case
with ω = 20, we again see perfect revivals with a period of 2π in Fig. 4 (c), upper panel. For
the second case with ω = 22, the amplitude of Loschmidt echo decays rapidly as shown in
Fig. 4 (c), lower panel. These results indicate that the system evades thermalization for a long
time at a DL point but thermalizes quickly as we go away from a DL point [58–64].

3.4 Effects of resonances

In this section we will examine the effects of resonances [5, 113] on DL for the period-2
model. To obtain an analytical insight for this case, we will consider parameter values with
µ = ω = V ≫ J and derive an effective Floquet Hamiltonian using first-order FPT. We first
consider a four-site system so that we can easily identify various non-trivial processes, and
we will then generalize it to larger system sizes. We find that a four-site system only offers
four distinct non-trivial processes for a particular choice of a periodic potential pattern due to
the constraints imposed by DL. We further note that there are two possible potential patterns
available for such a system consisting of four sites. Therefore, we need to consider a total of
eight distinct non-trivial processes while formulating the first-order effective Floquet Hamil-
tonian. These eight processes and the corresponding time-dependent effective Hamiltonians
are listed below.
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Figure 3: Quasienergy and entanglement entropy spectrum of the period-2
model at a DL point and away from a DL point: (a-b) Plots of the quasienergy
spectrum EF and half-chain entanglement entropy SL/2 as a function of EF exactly
at a dynamical localization point with J = 1, µ = ω = 20, and V = 1, where the
system exhibits many-body flat bands with many low-entanglement states near the
middle of the spectrum. (c-d) Plots showing the same quantities as in plots (a-b) but
away from a DL point, with J = 1, µ = 20, ω = 22 and V = 1. For this case, the
many-body flat bands start to disappear as we tune the system away from a DL point.

As an example, we consider the first process listed above and calculate the first-order Flo-
quet Hamiltonian for this case. We first note that the Hamiltonian can be recast as

H(t) = (µ(t) + V/2) I − (µ− V/2) σz + J σx ,

H0 = − (µ− V/2) σz ,

H1 = J σx , (38)

where I , σx and σz denote the identity and two of the Pauli matrices, and H0 and H1 are
the unperturbed Hamiltonian and perturbation, respectively. Assuming µ = ω and V ≫ J ,
the instantaneous eigenvalues of H0 are given by E±k = ±(µ(t) + V/2). The eigenfunctions

corresponding to E±k are given by |+〉 =
�

0
1

�

and |−〉 =
�

1
0

�

. These two eigenvalues
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Figure 4: Dynamics of the correlation function and Loschmidt echo at a DL point
and away from a DL point for the period-2 model: (a-b) Surface plots showing
the two-point correlation function as a function of site number and time nT with n
being the driving cycle number, at a dynamical localization point and away from a
dynamical localization point. The parameter values chosen for plots (a) and (b) are
the same as in Figs. 3. (c): Plots showing the Loschmidt echo versus time for the same
parameter values as in Figs. 3. For all four cases, we choose the initial state to be
the ground state of the undriven Hamiltonian. As shown in (a) and the upper panel
of (c), the dynamics demonstrates long-time oscillatory behaviors indicating a non-
ergodic behavior at a DL point. However, both correlation function and Loschmidt
echo decay rapidly with time as we move away from a DL point, as can be seen in
(b) and the lower panel of (c).

satisfy the condition given in Eq. (9), and we therefore use degenerate FPT. This gives

〈+|H(1)F |+〉= 0 , 〈−|H(1)F |−〉= 0 ,

〈+|H(1)F |−〉= J I(µ, V, T ) , 〈−|H(1)F |+〉= J I∗(µ, V, T ) ,

I(µ, V,ω) =
e−i(2µ−V )T/4 sin((2µ− V )T/4)

(2µ− V )T/2
+

e−i(2µ−3V )T/4 sin((2µ+ V )T/4)
(2µ+ V )T/2

. (39)

Putting µ = V = ω, we find that I(µ, V,ω) = −4i/(3π). Thus, the effective Hamiltonian for
this particular process is

H(1)F = −
4i
3π

n0c†
2c1(1− n3) + H.c. , (40)
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Table 2: Allowed processes and their corresponding effective time-dependent Hamil-
tonians for a four-site system with all possible patterns of periodic on- site potential
in the case dynamical localization and resonance for a period-2 model.

Pattern of periodic potential Process Effective time-dependent Hamiltonian

+ - + - 1100↔ 1010 H(t) =

�

V J
J 2µ(t)

�

+ - + - 0100↔ 0010 H(t) =

�

−µ(t) J
J µ(t)

�

+ - + - 0101↔ 0011 H(t) =

�

−2µ(t) J
J V

�

+ - + - 1101↔ 1011 H(t) =

�

V −µ(t) J
J V +µ(t)

�

- + - + 1100↔ 1010 H(t) =

�

V J
J −2µ(t)

�

- + - + 0100↔ 0010 H(t) =

�

µ(t) J
J −µ(t)

�

- + - + 0101↔ 0011 H(t) =

�

2µ(t) J
J V

�

- + - + 1101↔ 1011 H(t) =

�

µ(t) + V J
J V −µ(t)

�

where we have set J = 1. Following similar procedures, we can compute the effective Hamil-
tonians for all the other processes. These are given below.

Taking all these processes into account, the complete effective Hamiltonian for the case
where a resonance and DL occur simultaneously is given by

H = −
4i
3π

L/2
∑

j=1

�

(1− n2 j)c
†
2 j+2c2 j+1n2 j+3 + n2 jc

†
2 j+2c2 j+1(1− n2 j+3) + H.c.

�

+
4i
3π

L/2
∑

j=1

�

n2 j+1c†
2 j+3c2 j+2(1− n2 j+4) + (1− n2 j+1)c

†
2 j+3c2 j+2n2 j+4 + H.c.

�

. (41)

We can perform the unitary transformation c2 j → c2 j and c2 j+1 → ic2 j+1 to obtain a simpler
form of the effective Hamiltonian

H =
4

3π

L
∑

j=1

(n j − n j+3)
2
�

c†
j+2c j+1 + H.c.

�

. (42)

This form implies that hoppings between two nearest-neighbor sites are forbidden whenever
their neighboring sites are both completely empty or completely occupied. Hence, these for-
bidden processes act as kinetic constraints in the dynamics [105–110], and these constraints
can, in principle, lead the system towards an anomalous thermalization behavior. We also find
that the Hamiltonian in Eq. (42) has several zero-energy states which consist of single states
in the number basis. The number of such states can be found using a transfer matrix method
as shown in Appendix A. We discover that the number grows exponentially with system size
as 1.466L .

This mechanism can be further generalized to a lower frequency regime by considering the
other DL points and resonances given by µ = V = nω (n ̸= 1), keeping µ, V >> J . To obtain
an analytical insight in this limit, we can derive the first-order FPT Hamiltonian following
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Table 3: First-order effective FPT Hamiltonians for the allowed processes with all
possible patterns of periodic potential in the case of dynamical localization and res-
onance for a period-2 model.

Pattern of periodic potential Process First-order Floquet Hamiltonian

+ - + - 1100↔ 1010 H(1)F = − 4i
3πn0c†

2c1(1− n3)+ H.c.

+ - + - 0100↔ 0010 H(1)F = 0

+ - + - 0101↔ 0011 H(1)F = − 4i
3π(1− n0)c

†
2c1n3+ H.c.

+ - + - 1101↔ 1011 H(1)F = 0

- + - + 1100↔ 1010 H(1)F = 4i
3πn0c†

2c1(1− n3)+ H.c.

- + - + 0100↔ 0010 H(1)F = 0

- + - + 0101↔ 0011 H(1)F = 4i
3π(1− n0)c

†
2c1n3+ H.c.

- + - + 1101↔ 1011 H(1)F = 0

a similar procedure as charted out before. Interestingly, the first-order FPT Hamiltonian for
µ= V = nω, where µ, V ≫ J , and n is odd, reads as

H(1)F =
4

3πn

L
∑

j=1

(n j − n j+3)
2
�

c†
j+2c j+1 + H.c.

�

, (43)

which is the same Hamiltonian as obtained for the case µ = V = ω, but with a hopping
strength 4/(3πn). On the other hand, the first-order effective Hamiltonian for µ = V = nω,
where µ, V ≫ J and n is even, turns out to be

H(1)F = 0 , (44)

which implies that there should be a many-body flat band lying at EF = 0.
In Figs. 5 (a) and (b), we show the variation of the half-chain entanglement entropy SL/2

as a function of EF , obtained from exact numerical calculations and from the first-order FPT
Hamiltonian shown in Eq. (42) for J = 1, µ = ω = 20, and V = 20. Both these cases
point towards many low-entanglement states near the middle of the spectrum; these arise due
to the kinetic constraints simultaneously imposed by DL and the resonance condition. Be-
fore proceeding further, we note that the effective Hamiltonian described in Eq. (42) supports
many fragmented Hilbert space sectors [105–110], which can be shown as follows. First, there
are an exponentially large number of fragments each of which consists of a single state with
zero energy; this is shown in Appendix A. Next, there are simple fragments consisting of only
four states. Consider, for example, the fragment containing the states |0000111111110000〉,
|0001011111110000〉, |0000111111101000〉, and |0001011111101000〉, and their translated
partners (we have written all the states in the occupation number basis). The action of the
effective Hamiltonian on these four states is schematically shown in Fig. 6. Taking into ac-
count the action of the effective Hamiltonian on these four states, we find an effective 4× 4
Hamiltonian which represents this particular fragment,

H f rag =
4

3π







0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0






. (45)

The eigenvalues of this Hamiltonian are given by E1,2 = ±0.85, E3 = 0, and E4 = 0. Hence
these four eigenvalues offer two distinct difference in energies, i.e., ∆E = 0.85 and∆E = 1.7,
which will be important later in the discussion of dynamics.
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Figure 5: Entanglement entropy spectrum of the period-2 model for the case
of DL and resonance: Plots showing the entanglement entropy SL/2 as a function
of the Floquet quasienergy EF obtained from (a) the exact numerical calculation
and (b) the first-order effective FPT Hamiltonian shown in Eq. (42), for J = 1,
µ =ω = V = 20, and L = 16. (c) Plot showing Eexact versus EF PT obtained numer-
ically for the same parameter values as in plots (a) and (b). In (a) and (b), we see
many low-entanglement states near the middle of the spectrum. In both plots, the
color intensity indicates the density the states, implying that the majority of Floquet
eigenstates show almost thermal entanglement. Plot (c) shows that the quasiener-
gies obtained from the first-order FPT agree quite well with the exact numerically
computed values. However, as plots (a) and (b) show, there are a large number of
Floquet eigenstates for which the entanglement estimated from FPT is much smaller
than the exact numerically obtained values.

In Figs. 7 (a) and (b), the variation of the Loschmidt echos with time, t = nT , is shown
as found from the exact numerical calculation and the first-order FPT, respectively, for the
parameter values, J = 1, µ = ω = V = 20, and L = 16, taking the initial state to be
|0000111111110000〉. We can show analytically that the Loschmidt echo for this particu-
lar choice of initial state takes the form |a+ b cos(∆Et)|, which implies that it oscillates with a
period ∆t = 2π/∆E. Putting ∆E = 0.85, the period of oscillation in the revival pattern turns
out to be ∆t ≃ 7.4, which almost perfectly captures the numerically obtained value. In Fig. 7
(c), we show the overlaps of the same initial state with the Floquet eigenstates (obtained from
the exact numerical calculation) as a function of EF , where the color bar indicates the vari-
ation of SL/2 of the Floquet eigenstates. Interestingly, we observe that the overlap is highest
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Figure 6: Schematic of a Hilbert space fragment for the period-2
case: Figure showing a particular Hilbert space sector consisting of four
states, |0000111111110000〉, |0001011111110000〉, |0000111111101000〉, and
|0001011111101000〉. The black and white dots indicate occupied and empty sites
respectively.

for the Floquet eigenstates with E ≃ ± 0.85 and 0, which almost identically agrees with the
analytically predicted values. Similarly in Figs. 8 (a-b), we show the entanglement entropy as
a function of the quasienergy for ω ≈ 6.67 (third DL point, i.e., n = µ/ω = 3) and ω ≈ 2.22,
(ninth DL point, i.e., n= 9) with the rest of the parameters being the same as in Fig. 5. In both
cases, we see many low-entanglement states with the range of quasienergies approximately
being 1/3 and 1/9 times those of the first case shown in Fig. 5; this agrees with the analyt-
ically derived first-order FPT Hamiltonian shown in Eq. (43). In Fig. 9, we again examine
the dynamics of the Loschmidt echo for J = 1, µ = V = 20, L = 16, and ω ≈ 6.67, 4, 2.85,
and 2.22, which correspond to the third, fifth, seventh, and ninth DL points. [Note that the
last value of ω is not much larger than the hopping amplitude J , and therefore does not lie in
the high-frequency regime. Nevertheless we see that the Loschmidt echo decays very slowly.
This shows that DL and resonances lead to very slow thermalization even when the driving
frequency is not very large]. For all four cases, we consider the same initial state as before,
and we see that the Loschmidt echo demonstrates long-time revivals, indicating that the sys-
tem shows very slow thermalization. Furthermore, the period of oscillations in the revival
pattern for all four cases can be explained by considering the first-order FPT Hamiltonian and
the effective Hamiltonian for the HSF cluster consisting of the four states described in Fig. 6.
As shown in Eq. (43), the DL points for µ = V = nω (n = 3, 5, 7, · · · ) renormalizes the
effective hopping strength of the effective Hamiltonian obtained for the case with µ = V =ω
by a factor of 1/n. We can then argue that the period of oscillations in the revival pattern for
these four cases will be ∆tn = n 2π/∆E, where n = 3, 5, 7, ... and ∆E ≈ 0.85. This implies
that the period of oscillations corresponding to the third, fifth, seventh and ninth DL points will
be ∆tn ≈ 22.2, 37, 51.8, and 66.6, which almost perfectly agrees with the exact numerical
calculation as seen in Fig. 9.

4 Thermodynamic stability of Hilbert space fragmentation in
period-2 model

In this section, we will discuss the stability of HSF in the thermodynamic limit (L →∞) in
the context of the period-2 model which is at a DL point along with a resonance. In Figs. 10
(a-c), the scaled entanglement entropy SL/2/L is shown as a function of the scaled quasienergy
EF/L for L = 12, 16 and 20, respectively, for µ= V =ω= 20. For this analysis, we employed
the exact diagonalization method for individual momentum sectors by using the translation
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Figure 7: Dynamics of the Loschmidt echo and overlaps with Floquet eigenstates
in a resonant case: (a-b): Plots of the Loschmidt echo versus time as obtained from
(a) the exact numerical calculation and (b) the first-order effective FPT Hamilto-
nian, for the same parameter values as in Fig. 5, taking the initial state (|Ini〉) to be
|0000111111110000〉. Both plots show show long-time oscillations in time showing
an anomalous thermalization behavior. (c): Overlaps of the same initial state with
the Floquet eigenstates as a function of EF computed from the exact numerical cal-
culation for the same parameter values, with a color bar indicating the variation of
SL/2. The quasienergies of the Floquet eigenstates having the highest overlaps with
the initial state agree with the analytically predicted values.

symmetry in order to access larger system sizes. For all three values of L, the range of the
scaled quasienergy turns out to be the same since the many-body bandwidth increases linearly
with L. Interestingly, we find that the scaled entanglement spectrum broadens with increasing
system size, as can be seen from Figs. 10 (a-c). The broadening of the entanglement spec-
trum indicates an increasing number of Hilbert space fragments and inert configurations of
states for larger system sizes. In Figs. 11 (a-b), the dynamics of the Loschmidt echo is shown
for L = 12, 16 and 20 for the parameter values µ = V = ω = 20 and µ = V = ω = 10,
respectively. For both sets of parameters, we consider three different choices of initial states,
|000111111000〉, |0000111111110000〉, and |00000111111111100000〉 for the three differ-
ent system sizes, with the dynamics of all three states being kinetically constrained to lie within
a single Hilbert space fragment consisting of four states, as shown in Fig. 6 for L = 16. As a
result, all three states execute long-time oscillations in the dynamics, as seen in Figs. 11 (a-b).
Furthermore, the envelop of the Loschmidt echo in the first case falls off very slowly compared
to the second case. This is due to the larger values of µ, V and ω in the first case; hence the
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Figure 8: Entanglement entropy spectrum of the period-2 model for the case of
DL and resonances in the intermediate and low driving frequency regime: (a-b)
Plots showing the entanglement entropy SL/2 as a function of the Floquet quasienergy
EF obtained from the exact numerical calculation for J = 1, µ = V = 20, L = 16,
and ω ≈ 6.67 (third DL point) and ω ≈ 2.22 (ninth DL point), respectively. In both
cases, we see many low-entanglement states in the middle of the spectrum, which
implies that the system breaks ergodicity.

first-order FPT is a better approximation to the exact Floquet Hamiltonian because the higher
order corrections are smaller. In Figs. 11 (c-d), we numerically fit the envelop of the Loschmidt
echo with time for L = 20 for the same parameter values same as in Figs. 11 (a-b). In both
cases, we see that the period of oscillations of the Loschmidt echo is almost the same, with
∆t ≃ 2π. However, the decay rate of the envelop for the first case is seen to be 1/τ1 ≃ 0.0036,
whereas the same quantity for the latter case is almost four times larger, 1/τ2 ≃ 0.0139. The
faster decay rate in the second case can be explained by the following argument. Due to the
symmetry discussed in Eq. (37), the correction to the first-order FPT effective Hamiltonian
will be of third order, which should scale as J3/µ2; this is derived in Appendix C at the DL
points for V = 0. Therefore, the decay rate 1/τ, whose dominant contribution is expected
to come from the third-order correction, should scale such that τ2/τ1 = (µ2/µ1)2. Putting
µ1 = 20 and µ2 = 10, we expect 1/τ2 = 4/τ1, which agrees quite well with the numeri-
cally fitted decay rate. In Figs. 12 (a-c), we examine the thermodynamic stability of HSF in
a regime with lower frequency by setting J = 1, µ = V = 20, ω ≈ 2.22 (which corresponds
to the ninth DL point), and system sizes L = 12, 16 and 18. The rescaled quasienergies for
all three cases are again observed to be the same due to the reason mentioned in the earlier
case. The low-entanglement states are also found to be quite stable with increasing system
size, which indicates the stability of the effective model even in the lower frequency regime.
In Fig. 13 (a-b), we show the variation of the half-chain entanglement entropy SL/2 with µ at
the stroboscopic number n = t/T = 2000 for µ = V = ω and µ = V = 9ω, respectively. We
have taken L = 16 and the initial state to be |0000111111110000〉 for this analysis. In both
cases, SL/2(nT ) gradually decreases with increasing values of µ= V , which shows a slow relax-
ation behavior in the large driving amplitude regime. It further reveals that there is a smooth
crossover from ergodic to non-ergodic behavior occurring in both cases with increasing values
of µ and V . In Fig. 13 (a), we observe a crossover occurring for 18 ≲ µ = V = ω ≲ 30,
which implies a slow relaxation behavior in the high-frequency regime. On the other hand,
in Fig. (b), we see a similar behavior occurring for 18 ≲ µ = V = 9ω ≲ 40, where ω lies
in the range of [2, 4.44], which necessarily lies in the low to intermediate driving frequency
regime. Therefore, we can conclude that DL and resonance-induced HSF in this model is valid
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Figure 9: Dynamics of the Loschmidt echo at other dynamical localization points
and at resonance: Plots of the Loschmidt echo versus time obtained by an exact
numerical calculation for J = 1, µ = V = 20, L = 16, and ω ≈ 6.67, 4, 2.85, and
2.22, which correspond to the third, fifth, seventh and ninth DL points, respectively.
For all four cases, we consider the initial state to be |0000111111110000〉, which
resides in a HSF cluster consisting of four states as discussed earlier. The Loschmidt
echo for all four cases demonstrates long-time revival behavior, indicating that the
thermalization is very slow at these parameter values.

for a broad range of driving frequencies even in the thermodynamic limit provided that the
amplitude of the driving and the strength of the interaction are strong enough to stabilize this
ergodicity-breaking mechanism. It is well-known in the literature that a generic many-body
interacting Floquet system is most susceptible to heating in the slow driving regime. However,
our model shows that the HSF mechanism emerging from the interplay between DL, interac-
tion and resonances provides significant protection against heating even in the case of slow
driving; this is a quite ubiquitous feature of this class of models.

5 Period-4 model

We will now discuss a model with the second type of periodic potential, namely, the period-4
model. The general form of the Hamiltonian for this class is given by

H =
∑

j

[J (c†
j c j+1 + c†

j+1c j) + µ(t) cos(π j/2+φ) c†
j c j + V n jn j+1] , (46)

where J denotes the nearest-neighbor hopping, µ is the amplitude of the periodic potential
with m = 4, V defines the nearest-neighbor density-density interaction, and φ refers to a
generalized phase. This model possesses a mirror symmetry [119] for certain special values
of φ. Since we are interested in mirror-symmetric configurations for our analysis, it turns out
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Figure 10: Scaled entanglement spectrum as a function of scaled quasienergy at
another DL point and at resonance for the period-2 model: (a-c) Plots showing
the scaled entanglement entropy SL/2 obtained from exact numerical calculations as
a function of the scaled quasienergy at a DL point with J = 1, µ = ω = V = 20 for
L = 12, 16 and 20, respectively. In all three cases, the range of the scaled quasienergy
appears to be the same. However, the spectrum of the scaled entanglement entropy
broadens with increasing system size, as can be seen in plots (a-c).

that we can only have two possible realizations, namely, φ = 0 and φ = 7π/4. We will denote
these as type-1 and type-2 cases respectively.

5.1 Type-1 mirror-symmetric case

Taking µ(t) to be proportional to µ in Eq. (46), we find that the on-site potential pattern for
φ = 0 is given by (µ, 0,−µ, 0) on four consecutive sites numbered (4n, 4n+1,4n+2,4n+3);
this is shown in Fig. 14 (a). Assuming µ≫ J , and using the results presented in Appendix B,
we find that the first-order FPT Hamiltonian is given by

H(1)F1 = J
L/4
∑

j=1

[Mc†
4 jc4 j+1 +Mc†

4 j+1c4 j+2 +M∗c†
4 j+2c4 j+3 +M∗c†

4 j+3c4 j+4 +H.c.] ,

M = eiµT/4
�

sin(µT/4)
µT/4

�

. (47)
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Figure 11: Variation of Loschmidt echo with time for different system sizes at
a DL point and at resonance: (a-b) Plots showing the variation of Loschmidt echo
with time for three different system sizes, L = 12, 16 and 20, and µ = V = ω = 20
and µ = V =ω = 10, respectively. (c-d) The fitting of the envelop of the Loschmidt
echo for L = 20 for the same parameter values as in plots (a) and (b). In plots (a-
b), we consider three different initial states for the three system sizes, all of them
being kinetically constrained to lie within a single Hilbert space cluster due to HSF.
Consequently, these states exhibit long-time persistent oscillations. We see that the
Loschmidt echo in (a) falls off very slowly compared to (b). Plots (c-d) show the
functional forms of the envelops of the Loschmidt echo as extracted from a fitting
analysis. In both cases, the period of oscillation of the Loschmidt echo is almost the
same, with ∆t ≃ 2π. However, the decay rate significantly increases as µ, V and ω
decreases, as is clear from the fitting form of the envelop.

Since the interaction term commutes with the unperturbed Hamiltonian, H0, that part of the
Hamiltonian will just be given by

H(1)F2 = V
L
∑

j=1

n jn j+1 , (48)

to first order in V .
The symmetry property discussed in Eq. (37) again holds for this model, and therefore,

similar to the period-2 case, this system will also exhibit DL when M = 0, i.e., when µ= 2nω
where n = 1, 2,3, · · · . Thus, this mirror-symmetric configuration [119] of the period-4 model
with φ = 0 and the period-2 model are identical to each other exactly at a DL point. In
Figs. 15 (a) and 15 (b), we show the Floquet quasienergy spectrum EF and the variation of

23

https://scipost.org
https://scipost.org/SciPostPhysCore.6.4.083


SciPost Phys. Core 6, 083 (2023)

−0.02 0.00 0.02
EF/L

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
L
/2
/L

L = 12

(a)

−0.02 0.00 0.02
EF/L

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
L
/2
/L

L = 16

(b)

−0.02 0.00 0.02
EF/L

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
L
/2
/L

L = 18

(c)

Figure 12: Scaled entanglement spectrum as a function of scaled quasienergy at
another DL point and at resonance for the period-2 model: (a-c) Plots showing
the scaled entanglement entropy SL/2 obtained from exact numerical calculations as
a function of the scaled quasienergy at a DL point with J = 1, and µ = V = 20 and
ω ≈ 2.22 for L = 12, 16 and 18, respectively. In all three cases, the range of the
scaled quasienergy appears to be the same with many low-entanglement states just
as we see in Fig. 10.

the entanglement entropy SL/2 with EF for J = 1, µ = 20, ω = 20, and V = 0.5. The
spectrum looks almost identical to the spectrum of the period-2 model at DL with many low-
entanglement states near the middle of the spectrum.

5.2 Type-2 mirror-symmetric case

The period-4 model with φ = 7π/4 is another mirror-symmetric configuration with many
interesting properties, which we will now discuss in detail. Taking µ(t) to be proportional
to µ
p

2 in Eq. (46), the on-site potential pattern for φ = 7π/4 is given by (µ,µ,−µ,−µ) on
four consecutive sites numbered (4n, 4n+ 1, 4n+ 2, 4n+ 3). Assuming µ≫ J , we obtain the
following first-order FPT Hamiltonian,

H(1)F1 = J
L/4
∑

j=1

(c†
4 jc4 j+1 +M1c†

4 j+1c4 j+2 + c†
4 j+2c4 j+3 +M∗1 c†

4 j+3c4 j+4 +H.c.) + V
L
∑

j=1

n jn j+1 ,

M1 = eiµT/2
�

sin(µT/2)
µT/2

�

. (49)
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(a) (b)

Figure 13: Slow relaxation behavior in the high and low frequency regimes ob-
served from the dynamics of entanglement entropy at different two dynami-
cal localization and resonance points: (a-b) The half-chain entanglement entropy
SL/2 versus µ at the stroboscopic number n = t/T = 2000 for µ = V = ω and
µ = V = 9ω, respectively. For this analysis, we have taken L = 16 and the initial
state to be |0000111111110000〉. In both cases, we see that SL/2(nT ) gradually de-
creases with increasing values of µ = V , showing a slow relaxation behavior in the
large driving amplitude regime. We further see a smooth crossover from ergodic to
non-ergodic behavior occurring in both cases with increasing values of µ and V . In
Fig. (a), we see the crossover occurring for 18 ≲ µ = V = ω ≲ 30, which shows
a slow relaxation behavior in the high-frequency regime. In Fig. (b), we observe a
similar crossover occurring for 18 ≲ µ = V = 9ω ≲ 40, where ω lies in the range of
[2,4.44]. This regime shows a slow relaxation behavior when the ratio of the driving
frequency to J lies in the regime of low to intermediate values.

Remarkably, we see that the non-interacting part of the Hamiltonian exactly describes the SSH
model [120], with nearest-neighbor hoppings which have alternating strengths given by J and
J |M1|. (It is clear that |M1| is always smaller than 1. The phase of M1 can be removed by doing
a unitary transformation of the form c j → c je

iα j with appropriately chosen α j ’s). We thus see
that the periodicity of the model has effectively reduced from 4 to 2.

The expression for M1 implies that this model will exhibit DL for µ= nω, where n=1, 2, · · ·
Exactly at these points, the effective first-order Hamiltonian is given by

H(1)F1 = J
L/4
∑

j=1

(c†
4 jc4 j+1 + c†

4 j+2c4 j+3 +H.c.) + V
∑

j

n jn j+1 . (50)

The non-interacting part of this Hamiltonian is an extreme limit of the SSH model with al-
ternating nearest-neighbor hoppings γ1 = 1, and γ2 = 0. Our model therefore inherits the
property of the SSH model that a system with open boundary conditions has topologically
protected zero-energy edge modes provided that the hopping strength on the leftmost or right-
most bond is weaker than the strength of the bond next to it. For φ = 7π/4, we find that the
leftmost bond (between sites numbered 0 and 1) has a hopping strength which is larger than
the strength of the next bond, and therefore, the system has no edge modes. However, the
system has edge modes for φ = π/4, i.e., when the bonds are shifted by one unit cell and
the stronger and weaker bonds get interchanged (see the schematic pictures in Fig. 16). In
Figs. 17 (a) and 17 (b), we see two zero-energy edge modes and no edge modes for φ = π/4
and φ = 7π/4, respectively, for J = 1, µ = ω = 20 and L = 2000 with open boundary con-
ditions. As shown in Figs. 17 (c) and 17 (d), the two modes are localized at the two edges of
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Figure 14: Schematic of the mirror-symmetric periodic potential pattern for the
period-4 model: Schematic diagrams showing the potential patterns for the two
mirror-symmetric configurations of the period-4 model corresponding to φ = 0 and
7π/4.

the system, which can be seen from a plot of the probability |ψ( j)|2 versus the site number j.
Note that the parameter values J = 1 and µ =ω = 20 imply that the system is at a DL point.
Another interesting point to observe is that a static model with a nearest-neighbor hopping J
and a period-4 time-independent potential with strength µ does not have any such zero-energy
end modes.

Since the interaction part again commutes with unperturbed Hamiltonian, H0, the effective
Hamiltonian to first order in V again reads as H(1)F2 = V

∑

n jn j+1. The interplay between
interaction and DL in this case gives rise to various intriguing phenomena. We will study
this in the next few sections using an effective spin model based on the first-order Floquet
Hamiltonian.

0 2500 5000 7500 10000 12500
State no.

0

1

2

3

E
F

(a)

0 1 2 3
EF

0

1

2

3

4

5

S
L
/2

Spage

(b)

Figure 15: Quasienergy and entanglement entropy spectrum of the period-4
model with φ = 0: Plots showing the spectrum of (a) EF and (b) SL/2 as a function
of EF at a DL point with µ = 2ω = 20 and V = 0.5. Both the spectra look identical
to those of the period-2 case at a DL point.
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Figure 16: Schematic of the topologically protected edge modes for the period-4
model at a DL point: Schematic picture showing topologically protected zero-energy
edge modes for the φ = π/4 at a DL point and no edge modes for φ = 7π/4.

5.2.1 Effective spin model based on first-order effective Hamiltonian

To derive the effective spin model, it is convenient to recast the effective Hamiltonian in terms
of unit cells

H = J
L/2
∑

j=1

�

(a†
j b j +H.c.) + V (n j,an j,b + n j,an j−1,b)

�

, (51)

where a j and b j denote the annihilation operators on the even and odd numbered sites of the j-
th unit cell. (Henceforth we will refer to the j-th unit cell as the j-th site for convenience). The
schematic of the periodic-4 model at a DL point is shown in Fig. 18. This above form suggests
that the particle number n j at the j-th site (unit cell) commutes with H(1)F . Hence H(1)F has L/2
conserved quantities. (Note that these will be only approximately conserved quantities. The
exact effective Hamiltonian will have higher order terms which do not commute with these
quantities). For a system consisting of two sites with nmax

j = 2, we can have nine possible
effective Hamiltonians which are shown in the table below.

Table 4: Allowed configurations and the corresponding effective Hamiltonians for
two unit cells at a DL point with µ≫ V for a period-4 model.

n1 n2 Effective Hamiltonian
0 0 E = 0
0 2 E = V
2 0 E = V
2 2 E = 3V
0 1 H = J(a†

2 b2 +H.c.)
1 0 H = J(a†

1 b1 +H.c.)
1 2 H = J(a†

1 b1 +H.c.) + V b†
1 b1 + V

2 1 H = J(a†
2 b2 +H.c.) + Va†

2a2 + V
1 1 H = J(a†

2 b2 + a†
1 b1 +H.c.) + V nb,1na,2
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(a) (b)

(c) (d)

Figure 17: Quasienergies and wave function probabilities of the edge modes:
(a-b): Plots of EF in increasing order versus state number for a system with open
boundary conditions with J = 1, µ = ω = 20. (a) A system with φ = π/4 supports
two zero-energy edge modes, while (b) a system with φ = 7π/4 does not. (c-d):
Plots showing the probability versus site number for the edge modes showing that
the modes are localized at the ends of the system.

Figure 18: Schematic of period-4 model with interaction at a DL point: The
schematic picture of the period-4 model at a DL point, with a nearest-neighbor hop-
ping which alternates between J and zero, and an interaction V .
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In the table above, n1 and n2 are the occupation numbers of the first and second unit cells,
respectively. We can see that eight out of the nine possibilities shown above can be mapped
to a non-interacting problem. The only instance when the effects of the interaction is non-
trivial is when both the unit cells are singly occupied. For this case, an effective spin degrees
of freedom can be defined as

| ↑〉 = |10〉 , | ↓〉 = |01〉 , (52)

where |10〉 defines a unit cell with the left and the right sites being occupied and empty,
respectively, and |01〉 means the other way around. With this definition, the correlated two-
site problem takes the following form

H = J (σx
1 +σ

x
2 ) +

V
4
(1−σz

1) (1+σ
z
2) , (53)

where σz and σx are Pauli matrices. This two-site problem can now be generalized to larger
system sizes. To do so, we first consider the case where all the sites are singly occupied. The
effective spin Hamiltonian for this case is given by

H =
L/2
∑

j=1

�

Jσx
j +

V
4
(1−σz

jσ
z
j+1)

�

, (54)

which is essentially the transverse field Ising model with the interaction term −V/4 and the
transverse field J . The other four cases for a system with L/2 − 2 unit cells being singly
occupied and with the two boundary unit cells being either empty or doubly occupied have
effective spin Hamiltonians as follows.

In Table 5, nL and nR denote the occupation numbers of the leftmost and rightmost unit
cells labeled j = 1 and L/2, respectively. Therefore, we see from Table 5 that the effective
spin Hamiltonian has the form of the transverse field Ising model with additional longitudinal
magnetic field terms of strength ±V/4 at the boundary sites, depending on the adjoining sites
having n = 0 or 2. Before proceeding further, we perform the transformation σx

j → σz
j ,

σz
j →−σ

x
j , and σ y

j remains unchanged. The Hamiltonian then takes the form

H = J
L/2−1
∑

j=2

σz
j −

V
4

L/2−2
∑

j=2

σx
j σ

x
j+1 +

V
4
(±σx

2 ∓ σ
x
L/2−1) +

V (L − 4)
8

+
�

0,
V
2

,
V
2

, V
�

, (55)

where the last term depends on the four possible boundary conditions. It may appear that the
longitudinal field terms at the boundary sites 2 and L/2 − 1 would make it difficult to find
the energy spectrum analytically for this model. To overcome this problem, we add two more

Table 5: The four possible effective spin Hamiltonians emerging from a system with
L/2− 2 unit cells being singly occupied and two boundary unit cells, each of them
either completely occupied or completely empty, at a DL point with µ ≫ V for a
period-4 model.

nL nR Effective spin Hamiltonian

0 0 H = J
∑L/2−1

j=2 σx
j − (V/4)

∑L/2−2
j=2 σz

jσ
z
j+1 + (V/4)(−σ

z
2 +σ

z
L/2−1) + V (L − 4)/8

0 2 H = J
∑L/2−1

j=2 σx
j − (V/4)

∑L/2−2
j=2 σz

jσ
z
j+1 + (V/4)(−σ

z
2 −σ

z
L/2−1) + V L/8

2 0 H = J
∑L/2−1

j=2 σx
j − (V/4)

∑L/2−2
j=2 σz

jσ
z
j+1 + (V/4)(σ

z
2 +σ

z
L/2−1) + V L/8

2 2 H = J
∑L/2−1

j=2 σx
j − (V/4)

∑L/2−2
j=2 σz

jσ
z
j+1 + (V/4)(σ

z
2 −σ

z
L/2−1) + V (L + 4)/8
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sites, labeled 1 and L/2, with Pauli operators σx
1 and σx

L/2, which couple to σx
2 and σx

L/2−1
respectively [121]. The Hamiltonian then becomes

H = J
L/2−1
∑

j=2

σz
j −

V
4

L/2−1
∑

j=1

σx
j σ

x
j+1 +

V (L − 4)
8

, (56)

where we have ignored some constants. Note that σx
1 and σx

L/2 commute with the Hamil-
tonian. Hence, there are four decoupled sectors of states corresponding to σx

1 = ±1 and
σx

L/2 = ±1. These four sectors precisely cover the four possible combinations of ± signs in
Eq. (55).

The Hamiltonian in Eq. (56) can now be solved analytically by writing it in terms of Ma-
jorana fermion operators using the Jordan-Wigner transformation,

σx
j =

 

j−1
∏

i=1

σz
i

!

α j ,

σ
y
j =

 

j−1
∏

i=1

σz
i

!

β j , (57)

where α j , β j are Majorana operators. In terms of these operators, the Hamiltonian takes the
form

H = − iJ
L/2−1
∑

j=2

α jβ j −
iV
4

L/2−1
∑

j=1

α j+1β j . (58)

Since this Hamiltonian is quadratic in terms of Majorana operators, it describes a non-
interacting system and its spectrum can be found exactly [121].

To examine the effects of DL on the thermalization of the system, we consider the variation
of the half-chain entanglement entropy SL/2 with the quasienergy EF , which gives a static mea-
sure of ergodicity. As shown in Figs. 19 (a) and 19 (b), we consider the system at a DL point
with J = 1, µ = 20, and ω = 20, and take V to be 0.5 and 2, respectively. In the first case,
we observe many finger-like structures [122] in the entanglement spectrum, which are due to
the presence of an extensive numbers of approximate conserved quantities arising due to the
DL. Furthermore, the DL offers many frozen states with extremely low-entanglement values,
i.e., SL/2 = ln2≃ 0.693 or 2 ln 2≃ 1.386 near the middle of the spectrum. Some of the frozen
states can be found easily from the effective Hamiltonian, such as |22220000〉, |20220200〉,
|22202000〉 and their translated partners. Nevertheless, as shown in Fig. 19 (b), these finger-
like structures are absent for V = 2 due to the disappearance of these approximate conserved
quantities with increasing interaction strength. The low-entanglement states near the middle
of the spectrum are still present, which again indicates that this system would thermalize very
slowly. We can, therefore, conclude that this slow thermalization occurs due to two possible
mechanisms:
(i) the existence of extensive numbers of conserved quantities arising due to the DL, which
grows exponentially with the system size as 3L/2 (which grows less rapidly than the Hilbert
space dimension which goes as 2L) [123]. We emphasize again that these quantities are con-
served to a good approximation only for µ≫ J , V .
(ii) the presence of many frozen state configurations, which do not participate in the dynamics
at a DL point.
In Fig. 19 (c), we consider a system away from a DL point with µ= 10, ω= 20 and V = 0.5,
and we see that the low-entanglement states have disappeared, signaling that the system
should thermalize quickly.
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Figure 19: Entanglement entropy spectrum for the period-4 case at a DL point
and away from a DL point: Plots showing the half-chain entanglement entropy
SL/2 versus the quasienergy EF . For all three cases, we take J = 1 and ω = 20.
For the first two cases, we consider a DL point with µ = 20, and (a) V = 0.5 and
(b) V = 2, respectively. (a): The entanglement entropy consists of many finger-like
structures with multiple low-entanglement states near the middle of the spectrum.
(b): No finger-like structure is present; however, the system still exhibits multiple
low-entanglement states near the middle of the spectrum. (c): We consider a point
away from DL, with µ= 10, and V = 0.5. As opposed to the behavior at a DL point,
we see the system exhibits low-entanglement states (except at the end points of the
quasienergy spectrum where the entanglement is always low). In all the plots, the
color intensity indicates the density of states. In plot (c) we see that the majority of
the Floquet eigenstates show thermal entanglement.

To see a dynamical signature of slow thermalization, we study the time evolution of the
Loschmidt echo precisely at a DL point with two non-trivial initial states, i.e., |1〉=|21012101〉
and |2〉=|21102110〉. As shown in Fig. 20 (a), the Loschmidt echo exhibits long-time revivals,
showing that the system shows very slow thermalization. To gain an analytical understand-

ing, we first derive an effective Hamiltonian for the state |210〉, He f f =

�

V J
J 0

�

. This

Hamiltonian has the energy eigenvalues E± =
V
2 ±

Ç

J2 + V 2

4 . Taking this into account, we see
that the initial state |1〉 would have the highest overlap with 4× 24 = 64 such Floquet eigen-
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Figure 20: Dynamics of the Loschmidt echo starting from an initial state and
the overlap with Floquet eigenstates at a DL point for the period-4 model: (a-
b): Variation of Loschmidt echo with time for two different initial states (|Ini〉),
|210120101〉, and |21102110〉, respectively, for four DL points with µ= 20, V = 0.5,
andω= 5, 6.67, 10 and 20 (satisfyingω= µ/n). In all these cases, the initial states
show perfect revivals due to the presence of approximate conserved charges. (c-d):
The overlaps of these two initial states with the Floquet eigenstates as a function
of EF , with the color bar indicating the variation of SL/2. The initial states have
significant amounts of overlap with a large number of Floquet eigenstates, and some
of these eigenstates have extremely low entanglement.

states with EF = 4V , 4V + 4
Ç

J2 + V 2

4 , 4V − 4
Ç

J2 + V 2

4 , 4V +
Ç

J2 + V 2

4 , 4V + 2
Ç

J2 + V 2

4 ,

4V −
Ç

J2 + V 2

4 , and 4V − 2
Ç

J2 + V 2

4 . From the numerically obtained data for a system with
µ = ω = 20, and V = 0.5, we find that two Floquet eigenstates with EF = 4V = 2 and

4V + 2
Ç

J2 + V 2

4 = 4.06 have the highest overlaps with this particular initial state, which
agrees quite well with the analytically predicted values. Within the approximation of these
two highest overlapping states, the Loschmidt echo will have a time-dependence of the form be
|1+ei(E1−E2)t |= 2| cos((E1−E2)t/2)|which oscillates with a period given by∆t = 2π/(E1−E2).
For the parameter values given above, we find∆t ∼ 3, which agrees with what we see in Fig. 20
(a). In a similar manner, we can find the period of oscillation for the other three DL points with
ω= 5, 6.67 and 10. For Fig. 20 (b), we choose the initial state |2〉 which has the highest over-
laps with 64 such Floquet eigenstates. As shown in Fig. 20 (b), we see long-time oscillating
behaviors in the Loschmidt echo at the four DL points, which again indicates that the system
will not thermalize for a long time. In Figs. 20 (c) and (d), we plot the overlaps of these two
initial states, |1〉 and |2〉, with all the Floquet eigenstates at a DL point with µ=ω= 20, where
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Figure 21: Dynamics of entanglement entropy and correlation function at a DL
point and away from a DL point for the period-4 model: (a-b): Plots showing
the dynamics of SL/2 and the correlation function 〈n j(nT )n0(0)〉 for the initial state
|21012101〉 at a DL point with J = 1, µ= 20,ω= 10, and V = 0.5. (c-d): Same plots
away from a DL point with J = 1, µ = 20, ω = 11, and V = 0.5. (a): At a DL point,
we see that the entanglement entropy increases extremely slowly before reaching a
saturation value which is less than the thermal value. (b): The correlation function
shows a behavior similar to SL/2 with a long-time revival pattern. (c): Away from a
DL point, SL/2 reaches a saturation value soon after an initial growth in time. (d):
The correlation function demonstrates a similar behavior, suggesting thermalizing
behavior away from a DL point. Note that the time scales in (c-d) are much shorter
than in (a-b).

the color bar shows the variation of the entanglement entropy of the Floquet eigenstates. In
both cases, we observe that these two initial states have overlaps with multiple Floquet eigen-
states, some of them having extremely low entanglement entropy which possibly causes the
long- time persistent oscillations in the Loschmidt echo.

To further confirm the above findings, we investigate the dynamics of SL/2 and the unequal-
time two-point density-density correlation function with the initial state taken to be |21012101〉.
As shown in Figs. 21 (a), we see that the entanglement entropy slowly increases before reach-
ing a saturation value for µ= 2ω= 20 and V = 0.5, as expected. Further, the saturation value
(∼ 3.5) is much less than Spage ∼ 5.1 signaling a deviation from a volume law behavior. In
Fig. 21 (b), we examine the two-point correlation function with the same initial state and see
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a behavior similar to SL/2. Thus, the dynamics also confirms the behaviors predicted from the
static signatures. In Figs. 21 (c) and 21 (d), we repeat the same analysis for the system away
from a DL point, namely, for µ= 20,ω= 11, and V = 0.5. As opposed to Fig. 21 (a), we see in
Fig. 21 (c) that the entanglement entropy saturates quite quickly. In Fig. 21 (d), the two-point
correlation function exhibits a similar behavior with the saturation value of 〈n j〉2 = 1/4 at
half-filling, which suggests that thermalization has occurred.

Finally, we compare the results obtained from the exact numerics and the first-order FPT
calculation for µ≫ J , V . In Figs. 22 (a) and 22 (b), we see that the quasienergies obtained
from exact numerics and from first-order FPT for J = 1, µ=ω= 20 (lying at a DL point), and
V = 0.5 agree very well with each other. However, the results for the entanglement entropy do
not agree that well. We believe that this disagreement is due to the corrections in FPT which
are higher than first-order. The correction terms have a relatively small effect on the Floquet
quasienergies but have a noticeable effect on the Floquet eigenfunctions. Consequently, the
entanglement entropy deviates significantly from the exact numerical values. Nevertheless, we
note that the qualitative behavior of the entanglement entropy is the same in the two cases.
In Figs. 22 (c) and 22 (d), we compare the same plots as in Figs. 22 (a) and 22 (b) but for
J = 1, µ = 10, ω = 20, and V = 0.25, which is away from a DL point. Since the first-order
term dominates over higher order corrections away from a DL point, we see that the Floquet
quasienergy and entanglement entropy agree with each other almost identically.

5.2.2 Effects of staggered on-site potential

It is interesting to incorporate the effects of a staggered on-site potential with amplitude w
in the period-4 model with φ = 7π/4 since such a potential commutes with the unperturbed
Hamiltonian H0. Hence, in the presence of such a potential, the first-order FPT Hamiltonian
becomes H(1)F,stagg = w

∑L
j=1(−1) jn j . This term can also be incorporated within the effective

spin model. Assuming that all the unit cells are singly occupied (so that there is no boundary
field), we obtain

H =
L/2
∑

j=1

�

σx
j +

V
4
(1−σz

jσ
z
j+1) + wσz

j

�

(59)

(In general, the σz term only appears for unit cells with single occupation, and has no effect
on unit cells with n j = 0 or 2). The other sectors where only some of the unit cells have single
occupation get modified in a similar way. In Fig. 23, we show the variation of the entanglement
entropy SL/2 versus EF for a system with J = 1, µ = ω = 20, V = 0.5, and (a) w = 1 and
(b) w = 3. In both cases the spectrum contains multiple finger-like primary structures with
further secondary fragments [124], and the secondary fragments become more prominent
with increasing value of the staggered potential. In Fig. 24, the dynamics of the Loschmidt
echo is shown for a system with w= 3, and ω= 5, 6.67, 10 and 20, respectively. For all four
DL points, the Loschmidt echo for the initial state |21012101〉 exhibits an oscillatory behavior
for a long period of time, which implies that the system thermalizes very slowly.

5.2.3 Effects of resonances

We have so far discussed cases with V ≪ µ where the system shows very slow thermalization
at a DL point. In this section, we will address the effects of resonances at two DL points, i.e.,
µ = ω = V and µ = 2ω = V . For both cases, we note that µ, V ≫ J , which is the opposite
limit to the previously examined cases, and we want to investigate whether this limit can give
rise to non-ergodic behavior similar to the period-2 model. To do so, we will first derive an
effective Hamiltonian based on the first-order FPT. Similar to the period-2 case, we will first
identify the non-trivial processes for a system with four sites. Due to the periodic pattern of
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Figure 22: Comparison of the exact numerical results with the first-order FPT:
Entanglement entropy SL/2 obtained from (a) exact numerical computations and (b)
first-order FPT, for a system with J = 1, µ =ω = 20, and V = 0.5 (a DL point). The
quasienergies agree quite well; however, SL/2 turns out to be generally smaller from
the first-order FPT in comparison to the exact numerically obtained values. (c-d)
show the same plots as in (a-b) but for a system with J = 1, µ = 10, ω = 20, and
V = 0.5 (away from a DL point). For these parameter values, both the quasienergies
and the entanglement entropy obtained from the exact numerical computation agree
almost perfectly with the first-order FPT results.

the on-site potential, we need to consider a total of sixteen independent processes to construct
the time-dependent effective Hamiltonian. These are shown in Table 6.

As an example, we will derive the effective time-independent first-order FPT Hamiltonian
for the first process shown in Table 6. In this case, the effective time-dependent Hamiltonian
can be written as

H(t) = (µ(t) + V/2) I + (µ+ V/2) σz + J σx ,

H0 = (µ+ V/2) σz , H1 = J σx , (60)

where H0 and H1 are the unperturbed Hamiltonian and the perturbation, respectively, and we
will assume that µ, V ≫ J . The instantaneous eigenvalues of H0 are E± = ±(µ(t)+V/2). The

eigenfunctions corresponding to E±k are given by |+〉 =
�

1
0

�

and |−〉 =
�

0
1

�

. These two

eigenvalues again satisfy the condition given in Eq. (9). Therefore, following the usual steps
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Figure 23: Entanglement entropy spectrum with a staggered on-site potential at
a DL point: Plots of SL/2 versus EF at a DL point with J = 1, µ = ω = 20, V = 0.5,
and (a) w = 1 and (b) w = 3. In both cases we see many finger-like structures
with multiple secondary fragments, with the effect becoming clearer with increasing
strength of the staggered potential w. The color intensity indicates the density of
states, revealing that the majority of states demonstrate athermal behavior with SL/2
being much smaller than the thermal value.

of degenerate FPT, we obtain

〈+|H(1)F |+〉= 0 , 〈−|H(1)F |−〉 = 0 ,

〈+|H(1)F |−〉 = J I(µ, V, T ) , 〈−|H(1)F |+〉 = J I∗(µ, V, T ) ,

I(µ, V,ω) =
ei(2µ+V )T/4 sin[(2µ+ V )T/4]

(2µ+ V )T/2
+

ei(2µ+3V )T/4 sin[(2µ− V )T/4]
(2µ− V )T/2

. (61)

Substituting µ= V =ω, I(µ, V,ω) turns out to be 4i/(3π). Thus, the effective Hamiltonian for
a system consisting of four sites with this specific choice of periodic potential pattern becomes
(setting J = 1)

H(1)F =
4i
3π

n0 c†
2c1 (1− n3) + H.c. (62)

Following the same procedure, we can compute the effective Hamiltonian for all the other
processes.

These results enable us to deduce the complete first-order effective Hamiltonian for
µ=ω= V , namely,

H =
4i
3π

L/2
∑

j=1

(−1) j
�

(1− n2 j)c
†
2 j+2 c2 j+1n2 j+3 + n2 jc

†
2 j+2c2 j+1(1− n2 j+3) +H.c.

�

+
L/2
∑

j=1

�

(1− n2 j+1) c†
2 j+3c2 j+2(1− n2 j+4) + n2 j+1c†

2 j+3c2 j+2n2 j+4 +H.c.
�

. (63)

The form of this Hamiltonian suggests that certain nearest-neighbor hoppings are forbidden,
as elaborated below, when the DL and resonance condition are simultaneously satisfied; in
principle this can lead to an anomalous thermalization behavior. In Fig. 25, we show the vari-
ation of SL/2 with EF obtained from exact numerical calculations and from the first-order FPT
analysis, for J = 1, and µ=ω= V = 20. As anticipated, the middle of the entanglement spec-
trum consists of many low-entanglement states possibly due a fragmented nature of the Hilbert

36

https://scipost.org
https://scipost.org/SciPostPhysCore.6.4.083


SciPost Phys. Core 6, 083 (2023)

0 50 100

0.6

0.8

1.0
L
os
ch
m
id
t
ec
h
o

ω = 5

0 50 100

0.8

1.0
ω = 6.67

0 50 100

t

0.8

1.0

L
os
ch
m
id
t
ec
h
o

ω = 10

0 50 100

t

0.8

1.0
ω = 20

Figure 24: Dynamics of Loschmidt echo in the presence of a staggered potential:
Plots showing the dynamics of Loschmidt echo for the initial state |21012101〉 at four
DL points with J = 1, V = 0.5, w = 3, µ = 20, and ω = 5, 6.67, 10 and 20. In all
four cases, the Loschmidt echos show an oscillatory behavior with an extremely slow
decay, suggesting that the system retains the information of the initial state for a long
period of time.

space as described below. For example, we can see that this effective Hamiltonian supports
a simple fragment which consists of only one state, |1100110011001100〉, and its translated
partners. To construct this single fragment, we note the following constraints following from
Eq. (63). The hopping on the bonds (2 j + 1,2 j + 2) is only possible if the neighboring sites
have (n2 j , n2 j+3) = (0, 1) or (1, 0). However, the hopping on the bonds (2 j+2, 2 j+3) requires
the neighboring sites to have (n2 j+1, n2 j+4) = (0, 0) or (1, 1). These two constraints enables
us to show that the above state forms a fragment on its own, and it does not mix with other
states due to the action of the Hamiltonian. In Fig. 26 (a) and (b), we study the dynamics
of the Loschmidt echo for the initial state |1100110011001100〉 using the exact Floquet dy-
namics and the first-order effective Hamiltonian, respectively. In both cases, we find that the
Loschmidt echo stays very close to 1, with some small oscillations in (a). In Fig. 26 (c), we see
that these initial states have highest overlap with two mid-spectrum Floquet eigenstates with
SL/2 = ln 2. Since SL/2 for this initial state is much smaller than Spage(≃ 5.1 for L = 16), this
state is likely to retain its initial memory for a long period of time.

Now we will consider the case µ = 2ω = V . Although both µ = ω and µ = 2ω give
rise to DL for a non-interacting system, the presence of V makes a significant difference in the
effective Hamiltonian description. Going through the same procedure as before, we obtain the
effective Hamiltonian

H =
L/2
∑

j=1

[(1− n2 j+1) (1− n2 j+4) + n2 j+1 n2 j+4] (c
†
2 j+2c2 j+3 + H.c.) . (64)
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Table 6: Allowed processes and their corresponding effective time-dependent Hamil-
tonians for a four-site system with all possible patterns of the periodic potential in a
period-4 model in which both resonances and dynamical localization are present.

Pattern of periodic potential Process Effective time-dependent Hamiltonian

+ + - - 1100↔ 1010 H(t) =

�

2µ(t) + V J
J 0

�

+ + - - 0100↔ 0010 H(t) =

�

µ(t) J
J −µ(t)

�

+ + - - 0101↔ 0011 H(t) =

�

0 J
J −2µ(t) + V

�

+ + - - 1101↔ 1011 H(t) =

�

V +µ(t) J
J V −µ(t)

�

+ - - + 1100↔ 1010 H(t) =

�

V J
J 0

�

+ - - + 0100↔ 0010 H(t) =

�

−µ(t) J
J −µ(t)

�

+ - - + 0101↔ 0011 H(t) =

�

0 J
J V

�

+ - - + 1101↔ 1011 H(t) =

�

µ(t) + V J
J V +µ(t)

�

- - + + 1100↔ 1010 H(t) =

�

−2µ(t) + V J
J 0

�

- - + + 0100↔ 0010 H(t) =

�

−µ(t) J
J µ(t)

�

- - + + 0101↔ 0011 H(t) =

�

0 J
J 2µ(t) + V

�

- - + + 1101↔ 1011 H(t) =

�

V −µ(t) J
J V +µ(t)

�

- + + - 1100↔ 1010 H(t) =

�

V J
J 0

�

- + + - 0100↔ 0010 H(t) =

�

µ(t) J
J µ(t)

�

- + + - 0101↔ 0011 H(t) =

�

0 J
J V

�

- + + - 1101↔ 1011 H(t) =

�

−µ(t) + V J
J V −µ(t)

�

Note that there is no hopping on the bonds (n2 j+1, n2 j+2). This implies that the occupation
number n2 j+n2 j+1 in the j-th unit cell commutes with the effective Hamiltonian for all values
of j. Hence there are L/2 approximately conserved quantities, which can protect some of
the mid-spectrum states from thermalization for a long time. In Fig. 27, the entanglement
entropy spectrum obtained by (a) exact numerics and (b) first-order FPT are shown for J = 1,
µ = 2ω = V = 20, and L = 16. The fragmentation in the spectrum points towards the
existence of conserved charges following from the first-order effective Hamiltonian.
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Table 7: First-order effective FPT Hamiltonians corresponding to the allowed corre-
lated processes for a four-site system with all possible patterns of periodic potential
in the case of dynamical localization and resonance for a period-4 model.

Pattern of periodic potential Process First-order Floquet Hamiltonian

+ + - - 1100↔ 1010 H(1)F = 4i
3πn0c†

2c1(1− n3) +H.c.

+ + - - 0100↔ 0010 H(1)F = 0

+ + - - 0101↔ 0011 H(1)F = 4i
3π(1− n0)c

†
2c1n3 +H.c.

+ + - - 1101↔ 1011 H(1)F = 0

+ - - + 1100↔ 1010 H(1)F = 0

+ - - + 0100↔ 0010 H(1)F = (1− n0)c
†
2c1(1− n3) +H.c.

+ - - + 0101↔ 0011 H(1)F = 0

+ - - + 1101↔1011 H(1)F = n0c†
2c1n3 +H.c.

- - + + 1100↔ 1010 H(1)F = 4i
3πn0c†

2c1(1− n3) +H.c.

- - + + 0100↔ 0010 H(1)F = 0

- - + + 0101↔ 0011 H(1)F = − 4i
3π(1− n0)c

†
2c1n3 +H.c.

- - + + 1101↔ 1011 H(1)F = 0

- + + - 1100↔ 1010 H(1)F = 0

- + + - 0100↔ 0010 H(1)F = (1− n0)c
†
2c1(1− n3) +H.c.

- + + - 0101↔ 0011 H(1)F = 0

- + + - 1101↔ 1011 H(1)F = n0c†
2c1n3 +H.c.

6 Experimental accessibility

Flat-band induced quantum many-body scars and HSF have been observed in recent years
in the context of equilibrium systems. One of the common mechanisms for these is compact
localization which requires special kinds of lattice structures. However, DL-induced flat bands
can appear in extremely simple lattice models; therefore, this mechanism is experimentally
advantageous compared to the systems demonstrating compact localization. This is one of the
main reasons that motivated us to pursue this idea. Moreover, the intricate interplay between
DL and resonances in this class of models induces a HSF which is different from the models
of HSF discussed in the literature until now. A well-studied model of HSF has a conservation
of the total particle number and the total dipole moment [105, 106]. However, the class of
models studied here does not conserve the dipole moment but conserves a staggered Ising
interaction (see Appendix B); hence this model merits a more detailed investigation. Further,
our model for HSF does not seem to arise from any limit of an equilibrium model, unlike an
earlier model of HSF which appear in the large V limit of a model of spinless fermions which
have a nearest-neighbor interaction with strength V [105, 106]. Therefore, periodic driving
is necessary to realize this new kind of non-equilibrium HSF. Furthermore, the kind of driving
we chose for our proposed models can be realized in cold-atom systems, and therefore opens
up new possibilities for further explorations in experimental settings.

7 Discussion

The central results presented in our paper are as follows. We have unraveled an intricate
dynamical behavior of a class of disorder-free one-dimensional interacting spinless fermionic
models with a periodically driven on-site potential which is also periodic in space. In the
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Figure 25: Entanglement entropy spectrum for a resonant case at a DL point
of the period-4 model: Plots showing the entanglement entropy SL/2 versus the
quasienergy EF obtained from (a) an exact Floquet calculation and (b) the first-
order FPT Hamiltonian, for a DL point exhibiting a resonance with J = 1 and
µ = ω = V = 20. The color intensity indicates the density of states, suggesting
that most of the states attain the thermal value. However, there are also many low-
entanglement states present near the middle of the spectrum. The quasienergy spec-
trum obtained from FPT (b) agrees well with the exact numerically computed spec-
trum (a). However, the entanglement entropy obtained from the first-order FPT is
much less than the exact numerically obtained values for many of the states.

absence of interactions, this class of models exhibits DL for a particular set of parameter values,
giving rise to one or more flat bands. We have focused in detail on two models, corresponding
to potentials with period-2 and period-4 on the lattice. For the period-2 model, we describe a
dynamical phase transition which can be observed in the relaxation behavior of correlators in
the absence of any interactions. Our investigation shows that a crossover behavior between
different power laws of the decay of correlations generally occurs away from the DL points. We
find that in the period-2 model, the flat bands which arise due to DL are stable in the presence
of a comparatively weak interaction strength due to an emergent integrability. Further, the
spectrum of half-chain entanglement entropy as a function of the Floquet quasienergy for a
weakly interacting system reveals that there are many low-entanglement states near the middle
of the quasienergy spectrum, implying that the system may evade thermalization for a long
time. The persistent oscillations in the correlation functions and in the Loschmidt echo which
survive for a long period of time support the above statement about thermalization. However,
these oscillations decay rapidly in time when we move away from these fine-tuned parameter
values.

Remarkably, our model also exhibits Hilbert space fragmentation due to the presence of
kinetic constraints when the DL and resonance condition are simultaneously satisfied and the
interaction is strong. In the case of period-4, the behavior appears to be much more intriguing,
even in the regime of weak interaction. The period-4 model possesses two mirror-symmetric
configurations, corresponding to two values of the phase, φ = 0 and φ = 7π/4. Our study re-
veals that the φ = 0 case is identical to the period-2 model at the DL, although the conditions
for DL for the two cases are slightly different. The φ = 7π/4 model is much more rich com-
pared to the earlier models. In the strong driving limit, the first-order Floquet perturbation
theory suggests that the φ = π/4 model at the DL points reduces to the SSH Hamiltonian with
perfect dimerization, with the hopping amplitudes alternating as γ1 = 0 and γ2 = 1 respec-
tively. Hence the system supports robust zero-energy edge modes, which are topologically
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Figure 26: Dynamics of Loschmidt echo and the overlap with the Floquet eigen-
states for a resonant case at a DL point of the period-4 model: (a) Dynamics of the
Loschmidt echo for an initial state (|Ini〉), |1100110011001100〉, obtained from (a)
an exact numerical calculation and (b) from the first-order effective Hamiltonian, for
a system with J = 1, µ =ω = 20, V = 20, and L = 16. In both cases, the Loschmidt
echo is found to stay close to 1, showing that the system retains the memory of the
initial state for a long period of time. (c) Overlap of the initial state with the Floquet
eigenstates for the same parameter values with the color bar showing the variation
of SL/2. The Floquet eigenstates having the highest overlap with this initial state lie
exactly in the middle of the Floquet eigenvalue spectrum and have extremely low
entanglement.

protected. The entanglement spectrum in this regime demonstrates a finger-like structure
with many low-entanglement states near the middle of the quasienergy spectrum. We find
that there are some initial states which either show long-time persistent oscillations or do not
participate in the dynamics at all. We put forward two possible mechanisms for this ergodicity
breaking.
(i) There exists an extensive numbers of conserved quantities at the DL points giving rise to
sectors which are decoupled from the each other. The number of sectors grows exponentially
with the system size as 3L/2, which is slower than the growth of the Hilbert space dimension 2L .
We would like to emphasize that these quantities are only approximately conserved quantities;
the conservation becomes more and more exact as the driving amplitude is increased.
(ii) Another possibility is that there are many configurations of frozen states which do not
evolve with time. However, these states quickly thermalize as we move away from a DL point.
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Figure 27: Entanglement spectrum at another DL point and at resonance for the
period-4 model: Plots showing the entanglement entropy SL/2 obtained from (a)
exact numerical calculations and (b) first-order Floquet Hamiltonian, at a DL point
with J = 1, and µ = 2ω = V = 20. Both calculations show that the quasienergy
spectrum consists of multiple fragments with several low-entanglement states lying
near the middle of the spectrum. The color intensity indicates the density of states,
revealing that the majority of states do not attain the thermal value of te entangle-
ment entropy which is given by the upper envelop of the plots.

In the presence of interactions, the period-4 model with φ = 7π/4 is found to have a
Floquet Hamiltonian which describes the transverse field Ising model with longitudinal fields
at the boundaries. We find it surprising and remarkable that periodic driving of a period-4
model can be tuned to generate well-known systems like the SSH model and the transverse
field Ising model which have been extensively studied for many years.

We also discuss the effects of a staggered on-site potential on the DL. In this case, we find
that the finger-like structure in the entanglement spectrum further breaks up into secondary
fragments, and the Loschmidt echo produces long-time coherent oscillations at the same fine-
tuned parameter values. Next, we examine the stability of this non-ergodic behavior whenever
the DL and resonance condition are simultaneously satisfied. To study this regime, we choose
two different sets of parameter values, µ =ω = V ≫ J , and µ = 2ω = V ≫ J . In both cases,
the non-interacting part of the effective Hamiltonian supports DL. For µ = ω = V ≫ J , the
entanglement spectrum again demonstrates many low-entanglement states and slow thermal-
ization of the system. In this regime, the effective Floquet Hamiltonian found using first-order
perturbation theory shows that DL and resonances together put strict restrictions on the al-
lowed hopping processes, and these restrictions protect some of the mid-spectrum states from
thermalization. These kinetic constraints on the dynamics generate dynamically disconnected
sectors, a phenomenon called Hilbert space fragmentation. For µ = 2ω = V ≫ J , we see
a fractured entanglement spectrum with many segments and with many low-entanglement
states near the middle of the quasienergy spectrum. The first-order effective Hamiltonian for
this case shows that there are an extensive numbers of conserved quantities. Furthermore, as
in the previous case, some processes are again strictly forbidden due to the combination of DL
and resonance. These two mechanisms can, in principle, lead the system towards non-ergodic
behavior.

We would like to emphasize that the results obtained from the first-order Floquet Hamil-
tonian (such as the appearance of a large number of conserved quantities) agree well with the
results from an exact numerical calculation of the Floquet operator only when (i) the driving
amplitude and frequency are much larger than all the other parameters of the system, and (ii)
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the time scale of observation of correlation functions and Loschmidt echos is not very large.
The two sets of results are expected to deviate from each other at very long times because the
effects of higher-order terms in the FPT then become important.

In summary, we have presented a number of models in this paper which can be tailored by
Floquet engineering to exhibit rich topological and dynamical phase diagrams which have no
counterparts in a time-independent (undriven) model.
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A Appendix A

In this appendix we will consider the model described in Eq. (42),

H =
L
∑

j=1

(n j − n j+3)
2
�

c†
j+2c j+1 + H.c.

�

, (A.1)

where we have set the coefficient in front to be equal to 1 for simplicity, and we assume L to
be even. This model has three conserved quantities given by the total particle number and the
total staggered Ising interactions (σz

iσ
z
i+1 where σz

i = 2ni − 1) on odd- and even-numbered
bonds,

C1 =
L
∑

j=1

n j ,

C2 =
L/2
∑

j=1

(−1) j (2n2 j−1 − 1) (2n2 j − 1) ,

C3 =
L/2
∑

j=1

(−1) j (2n2 j − 1) (2n2 j+1 − 1) . (A.2)

We will use a transfer matrix method to determine the number of zero-energy states which
consist of a single state in the number basis for the Hamiltonian given in Eq. (A.1). We see
from that Hamiltonian that there cannot be any hopping between sites j+1 and j+2 if either
(i) the occupation numbers at sites (n j , n j+3) are either (0, 0) or (1, 1), or
(ii) the occupation numbers at sites (n j+1, n j+2) are either (0,0) or (1,1).
Hence, any configuration which satisfies any of the above conditions for all values of j must
necessarily be a zero-energy state. This leads us to define an 8× 8 transfer matrix T1 whose
rows correspond to the eight possible occupation numbers (n j , n j+1, n j+2), i.e., (111), (110),
(101), (100), (011), (010), (001) and (000), and the columns correspond in a similar way to
the eight possible occupation numbers (n j+1, n j+2, n j+3). The conditions given above imply
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that T1 must have the form

T1 =























1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1























. (A.3)

We now have to find the eigenvalues of this matrix. We first note that the matrix has two
4× 4 blocks which are not coupled to each other: the blocks consist of the rows and columns
numbered (1235) and (4678), and the two blocks have identical eigenvalues. We can therefore
look at either of the two blocks and find the four eigenvalues; the eigenvalues of T1 will then
be given by these four eigenvalues, each repeated twice. The block corresponding to (1235)
takes the form

T ′1 =







1 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0






. (A.4)

We find that one of the eigenvalues of T ′1 is zero. The other three eigenvalues must therefore
be solutions of a cubic equation which turns out to be

λ3 −λ2 − 1= 0 . (A.5)

The solutions of this equation are found to be

λ =
1
3
+

2
3

cos
�

1
3

cos−1
�

29
2

�

−
2πk

3

�

, (A.6)

where k can take the values 0, 1, 2. We then find that the three eigenvalues are 1.466 and
−0.233±0.793i approximately. The eigenvalues of the original transfer matrix T1 are therefore
given by 1.466, −0.233±0.793i and 0, each repeated twice. Hence, for a system with a large
number of sites L, the number of zero-energy states grows exponentially as 1.466L (compared
to the total number of states which grows as 2L).

It is interesting to compare the number of zero-energy states in this model with the number
of such states in a different model which also has a kinetic constraint on the nearest-neighbor
hoppings [105,106]. The Hamiltonian of that model is given by

H =
L
∑

j=1

�

1 − (n j − n j+3)
2
�

�

c†
j+2c j+1 + H.c.

�

. (A.7)

This model is known to have three conserved quantities given by the total particle number and
the total dipole numbers (nini+1) on odd- and even-numbered bonds,

C4 =
L
∑

j=1

n j ,

C5 =
L/2
∑

j=1

n2 j−1 n2 j ,

C6 =
L/2
∑

j=1

n2 j n2 j+1 . (A.8)
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It has been shown recently that this model can appear as the effective Hamiltonian of a peri-
odically driven system for some special values of the driving parameters [110]. In this model,
we see that there cannot be any hopping between sites j + 1 and j + 2 if either
(i) the occupation numbers at sites (n j , n j+3) are either (0,1) or (1,0), or
(ii) the occupation numbers at sites (n j+1, n j+2) are either (0, 0) or (1, 1).
To find the number of zero-energy states in this model, we again construct an 8× 8 transfer
matrix which now takes the form

T2 =























1 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1























. (A.9)

This matrix has a 6× 6 block consisting of the rows and columns numbered (124578) and a
2×2 block consisting of the rows and columns numbered (36) which are not coupled to each
other. The 6 × 6 block is found to have eigenvalues (1/2)(1 ±

p
5), (1/2)(1 ± i

p
3), 0 and

0, while the 2× 2 block has eigenvalues ±1. Hence the number of zero-energy states in this
model grows with the system size as τL , where τ= (1+

p
5)/2≃ 1.618 is the golden ratio.

B Appendix B

In this appendix, we will derive the first-order FPT for a two-site model with nearest-neighbor
hopping J , and on-site potentials µ1 and µ2, which can then be generalized to a system with
larger system sizes. We will further assume that the on-site potential is periodically driven in
time with a square pulse protocol. Assuming µ1, µ2≫ J , we can recast the Hamiltonian as

H = H0 +H1 , where H0 =

�

µ1 f (t) 0
0 µ2 f (t)

�

, and H1 =

�

0 J
J 0

�

. (B.1)

The eigenfunctions corresponding to E1,2 = µ1 f (t) and µ2 f (t) are given by |+〉=
�

1
0

�

and

|−〉=
�

0
1

�

respectively. The instantaneous eigenvalues E1,2 satisfy the degeneracy condition

in Eq. (9). Following the procedure for degenerate FPT outlined in Eqs. (11-14), we find that

〈+|H(1)F |+〉 = 〈−|H
(1)
F |−〉 = 0 , 〈+|H(1)F |−〉 = 〈−|H

(1)
F |+〉

∗ = JeiB
�

sin B
B

�

, (B.2)

where B = (V1 − V2)T/4. Hence H(1)F is given by

H(1)F = JeiB
�

sin B
B

�

(c†
1c2 + c†

2c1) . (B.3)

C Appendix C

In this section we will derive the third-order effective Hamiltonian using Floquet perturbation
theory for the period-2 model for V = 0 at a dynamical localization point obtained from the
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first-order effective Hamiltonian. Following the usual steps of perturbation theory, we find
that the third-order effective Floquet Hamiltonian is

〈m|H(3)F T |n〉 = − 〈m|M (3)|n〉 +
1
3
〈m|(M (1))3|n〉 ,

〈m|M (3)|n〉=
∑

p,q

〈m|H1|p〉〈p|H1|q〉〈q|H1|n〉
∫ T

0

ei
∫ t

0 (Em(t1)−Ep(t1)) d t1 d t

×
∫ t

0

ei
∫ t′

0 (Ep(t2)−Eq(t2)) d t2 d t ′
∫ t ′

0

ei
∫ t′′

0 (Eq(t3)−En(t3)) d t3 d t ′′ ,

〈m|(M (1))3|n〉=
∑

p,q

〈m|H1|p〉〈p|H1|q〉〈q|H1|n〉
∫ T

0

ei
∫ t

0 (Em(t1)−Ep(t1)) d t1 d t

×
∫ T

0

ei
∫ t′

0 (Ep(t2)−Eq(t2)) d t2 d t ′
∫ T

0

ei
∫ t′′

0 (Eq(t3)−En(t3)) d t3 d t ′′ . (C.1)

While writing Eq. (C.1), we use the fact that the second-order term M (2) is zero for our
particular model with our choice of driving protocol due to the symmetry discussed in Eq.
(19). Since the perturbation part of the Hamiltonian for our model is off-diagonal in the basis,
|m〉= |±〉, the only non-zero matrix elements for the third-order effective Hamiltonian are

〈+|H(3)F |−〉 = − 〈+|M
(3)|−〉 +

1
3
〈+|(M (1))3|−〉 , 〈−|H(3)F |+〉 = 〈+|H

(3)
F |−〉

∗ , (C.2)

where

〈+|M (3)|−〉= 〈+|H1|−〉〈−|H1|+〉〈+|H1|−〉
∫ T

0

e2i
∫ t

0 µ(t1) d t1 d t

×
∫ t

0

e−2i
∫ t′

0 µ(t2) d t2 d t ′
∫ t ′

0

e2i
∫ t′′

0 µ(t4) d t4 d t ′′ , (C.3)

〈+|(M (1))3|−〉= 〈+|H1|−〉〈−|H1|+〉〈+|H1|−〉
∫ T

0

e2i
∫ t

0 µ(t1) d t1 d t

×
∫ T

0

e−2i
∫ t′

0 µ(t2) d t2 d t ′
∫ T

0

e2i
∫ t′′

0 µ(t4) d t4 d t ′′ . (C.4)

For our model, we find using Eq. (8) that

〈+|H1|−〉〈−|H1|+〉〈+|H1|−〉= 8 e−ik cos3 k . (C.5)

For our choice of driving protocol, the integral in Eq. (C.3) can be written as

∫ T

0

e2i
∫ t

0 µ(t1) d t1 d t

∫ t

0

e−2i
∫ t′

0 µ(t2) d t2 d t ′
∫ t ′

0

e2i
∫ t′′

0 µ(t4) d t4 d t ′′

=

∫ T/2

0

e2iµt d t

∫ t

0

e−2iµt ′ d t ′
∫ t ′

0

e2iµt ′′ d t ′′

+

∫ T

T/2
e−2iµ(t−T ) d t

∫ t

0

e−2i
∫ t′

0 µ(t1) d t1 d t ′
∫ t ′

0

e2i
∫ t′′

0 µ(t3) d t3 d t ′′ .

(C.6)
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At the dynamical localization points µ = nω obtained from the first-order FPT Hamiltonian,
the first integral in Eq. (C.6) is given by

∫ T/2

0

e2iµt d t

∫ t

0

e−2iµt ′ d t ′
∫ t ′

0

e2iµt ′′d t ′′ = −
T

4µ2
, when µ= nω . (C.7)

The second integral in Eq. (C.6) can be written as a sum of three integrals,

∫ T

T/2
e−2iµ(t−T ) d t

∫ t

0

e−2i
∫ t′

0 µ(t1) d t1 d t ′
∫ t ′

0

e2i
∫ t′′

0 µ(t3) d t3 d t ′′

=

∫ T

T/2
e−2iµ(t−T ) d t

∫ T/2

0

e−2iµt ′ d t ′
∫ t ′

0

e2iµt ′′ d t ′′

+

∫ T

T/2
e−2iµ(t−T ) d t

∫ t

T/2
e2iµ(t ′−T ) d t ′

�

∫ T/2

0

e2iµt ′′ d t ′′ +

∫ t ′

T/2
e−2iµ(t ′′−T ) d t ′′

�

.

(C.8)

The three integrals in Eq. (C.8) at the dynamical localization points reduce to

1.

∫ T

T/2
e−2iµ(t−T ) d t

∫ T/2

0

e−2iµt ′ d t ′
∫ t ′

0

e2iµt ′′ d t ′′ = 0 ,

2.

∫ T

T/2
e−2iµ(t−T ) d t

∫ t

T/2
e2iµ(t ′−T ) d t ′

∫ T/2

0

e2iµt ′′ d t ′′ = 0 ,

3.

∫ T

T/2
e−2iµ(t−T ) d t

∫ t

T/2
e2iµ(t ′−T ) d t ′

∫ t ′

T/2
e−2iµ(t ′′−T ) d t ′′ = −

T
4µ2

, (C.9)

when µ= nω. Similarly, we can show that the integral related to (M (1))3 in Eq. (C.4) is

∫ T

0

e2i
∫ t

0 µ(t1) d t1 d t

∫ T

0

e−2i
∫ t′

0 µ(t2) d t2 d t ′
∫ T

0

e2i
∫ t′′

0 µ(t4) d t4 d t ′′ = 0 , when µ= nω .

(C.10)

Therefore, the third-order effective Hamiltonian for V = 0 at the dynamical localization points
µ= nω is given by

H(3)F =
4J3

µ2

∑

k

cos3 k
�

e−ika†
k bk +H.c.

�

. (C.11)

Interestingly, we see that H(3)F scales as J3/µ2 at the dynamical localization points µ = nω,
and it does not explicitly depend on ω at these special points.
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