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Abstract

We present a theoretical study of a mixture of antidipolar and nondipolar Bose-Einstein
condensates confined to an infinite tube. We predict the presence of a spin roton and
its associated instability, which triggers a continuous unmodulated–to–supersolid phase
transition. We characterize the phase diagram of the binary system, ranging from the
quasi-1D to the radial Thomas-Fermi (elongated 3D) regimes. We also present the dy-
namic formation of supersolids following a quench from the uniform miscible phase,
which maintains phase coherence across the system.
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1 Introduction

A supersolid is an exotic phase of matter that is characterized by the simultaneous pres-
ence of superfluid flow with the breaking of translational symmetry via periodic crystalline
order [1–6]. Although originally predicted with the condensation of defects in solid 4He, su-
perfluidity in these systems remains unobserved [7–11], hence direct observation of the super-
solid state in helium remains an open challenge. Using dilute ultracold quantum gases, phases
with supersolid properties have been created in Bose-Einstein condensates (BECs) with cavity-
mediated interactions [12], while experimentally realized supersolid states have been achieved
with spin-orbit-coupled BECs [13,14], being of the cluster variety proposed by Gross [2], with
each lattice site containing numerous atoms [15]. Experiments using BECs of highly magnetic
(dipolar) atoms have now also produced 1D [16–18] and 2D supersolid phases [19,20].

The transition from an unmodulated dipolar BEC to a supersolid is often associated with the
softening of a collective roton mode in the excitation spectrum [21, 22]. Roton excitations—
first predicted in dipolar systems in 2003 [23, 24] and confirmed experimentally in cigar-
shaped [25,26] and then in pancake-shaped [27,28] condensates—correspond to a local min-
imum in the dispersion relation. This minimum is a consequence of the anisotropic and long-
ranged interactions that result in effectively repulsive (attractive) interactions at small (large)
momenta. Roton instabilities have been experimentally used as a gateway to dynamically pro-
duce linear dipolar supersolids [16–18]. As the peak densities within these modulated states
increase, the role of beyond-mean-field quantum fluctuations grows [29, 30], stabilizing the
supersolid against a runaway collapse [31–34]. While dipolar supersolids have been observed
using various isotopes of dysprosium [16–18, 35, 36] and erbium [18, 37], the crucial role of
quantum fluctuations means that ∼ 104 atoms are required per modulation peak to attain
stabilization in these experiments.

Strongly dipolar condensate mixtures, comprised of two different species, are now avail-
able in experiments [38–41] and these open new possibilities for supersolidity. In the dipole-
dominated regime, where the contact interactions are weaker than the dipole-dipole interac-
tions (DDIs), supersolid phases have been predicted in both the miscible [42,43] and immis-
cible regimes [40], with both situations requiring quantum stabilization to counterbalance the
net attractive mean-field interactions. However, a distinguishing feature of two-component
systems is that the relevant excitation spectra become the spin (out-of-phase) and density (in-
phase) branches. While a density roton can cause the unmodulated miscible phase to form a
quantum-stabilized miscible supersolid [42], a spin roton can trigger a miscible-to-immiscible
phase transition at finite momentum, leading to a new phase—the domain supersolid—in which
the two components become partially immiscible and form alternating domains [44, 45]. In
contrast to other dipolar supersolids, domain supersolids can be stabilized without quantum
fluctuations, with notable consequences predicted: (i) a substantially higher number of lattice
sites for a fixed particle number, (ii) lower densities, and (iii) longer lifetimes.

While current studies of dipolar mixtures focus on systems with the bare atomic DDI, it is
also possible to effectively tune the strength and sign of the DDIs. When the dipoles are ro-
tated at a rate much greater than the trapping frequency (but less than the Larmor frequency),
the dipoles will follow the field and the bare DDI may then be replaced with an effective time-
averaged DDI [46]. A recent experiment demonstrated this effect in a condensate of 162Dy,
showing that by changing the tilt angle of the rotating field, the effective interaction can be
smoothly tuned through zero into an “antidipolar” regime [47]. Here, the DDI is inverted,
meaning that head-to-tail antidipoles repel and side-by-side antidipoles attract, as shown in
Fig. 1 (a). In the quasi-1D limit, an effective antidipolar interaction can also be achieved simply
by a tilt of the dipole polarization angle [48–50]. Experiments with ultracold polar molecules
have also shown that microwave shielding with circularly polarized light can induce a rapid
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rotation and hence antidipolar interactions between molecules [51,52]. For single-component
condensates, dipole tunability has been predicted to alter vortex-vortex interactions [53], sta-
bilize 3D dark [54] and 2D bright solitons [55, 56], induce straight-to-helical vortex transi-
tions [57], create roton excitations in the quasi-1D limit [58], and produce pancake-shaped
droplets [59–61]. Dipole tunability also presents a powerful tool for exploring new physics in
mixtures, and it remains to be seen how varying the strength and sign of the DDI can yield
potentially unique phases of matter. In particular, it is unclear whether systems with antidipo-
lar interactions can exhibit spin roton excitations or support supersolid phases. Furthermore,
if such phases exist, natural questions then arise: what geometries do they form? What is the
nature of the associated phase transition?

In this paper, we investigate the potential for supersolidity in binary antidipolar mixtures.
The atoms are confined in a 3D infinite tube with the dipoles rapidly rotating around the trap’s
long axis, resulting in antidipoles that preserve the overall cylindrical symmetry. We predict a
spin-roton mode and find that this is connected to a low-density supersolid phase consisting of
alternating domains, which does not require quantum fluctuations for its stabilization. We find
a unique supersolid geometry consisting of oblate spheroidal domains that maintain cylindri-
cal symmetry, since side-by-side antidipoles attract one another along both trapped directions,
while normal dipoles can only attract along one, resulting in strong domain anisotropies. We
explore the phase diagram, finding a broad binary supersolid region that extends from the
quasi-1D limit to the 3D tube regime. We investigate the unmodulated miscible–to–supersolid
phase transition and find that it is continuous throughout all regimes considered. Remark-
ably, our analytic prediction for this transition agrees well with the numerical data. Finally,
we show examples of dynamic supersolid preparation by simulating quenches across the tran-
sition starting from the unmodulated phase, and demonstrate that phase coherence can be
maintained in the binary supersolid regime.

2 Methods and system

Binary dipolar condensates can be described by coupled Gross-Pitaevskii equations (GPEs),

iħh∂Ψσ(x)
∂ t

=

�
−ħh

2∇2

2mσ
+ Vσ(x) +
∑
σ′

gσσ′nσ′(x) +
∑
σ′

∫
dx′Uσσ′(x− x′)nσ′(x′)

�
Ψσ(x) , (1)

with wavefunctions Ψσ (σ = 1, 2), particle density nσ(x) = |Ψσ(x)|2 and mass mσ. We
focus on harmonic potentials Vσ(x) = mσ(ω2

x x2 + ω2
y y2 + ω2

z z2)/2 with frequencies ωi ,
which we take to be the same between the components. The contact interaction strengths
are gσσ′ = 2πħh2aσσ′(mσ +mσ′)/mσmσ′ , with s-wave scattering lengths aσσ′ . The bare DDI
is

Uσσ′(r, t) =
µ0µσµσ′

4π
1− 3[e(t) · r̂]2
|r|3 , (2)

where e(t) describes the dipole orientation, which we assume to be be aligned by an external
magnetic field B(t) (i.e., e(t) = B(t)/|B(t)|), the dipole moments are µσ and r is the relative
position of the two interacting dipoles.

In the limit of an external magnetic field rotating much faster than the trap frequency at
an angle ϕ to the z axis, which we will later designate as the long axis of the tube, the DDI
can be time-averaged Uσσ′(t)→ Uσσ′ so that we obtain the effective interaction [46],

Uσσ′(r) =
µ0µσµσ′

4π

�
3cos2ϕ − 1

2

��
1− 3 cos2 θ

|r|3
�

, (3)
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where θ is the polar angle of r with respect to the z axis. When rotating the magnetic field at the
“magic angle” ϕ ≈ 54.7◦, Uσσ′(r) = 0 and the effective physics becomes that of a nondipolar
gas. Tiltingϕ past the magic angle, the DDI becomes antidipolar, where the standard energetic
preference for head-to-tail alignment is superseded by a side-by-side arrangement [Fig. 1(a)].

To illustrate the important physics, throughout this paper we focus on mixtures of one an-
tidipolar component (µ1 = 9.93µB, σ = 1) and one nondipolar component (µ2 = 0, σ = 2),
with equal masses m1 = m2 = m = 161.927u, corresponding to 162Dy. We concentrate on
the maximally antidipolar regime, ϕ = π/2, where the term in the first braces of Eq. (3)
produces an overall factor of −1/2 when compared with the non-rotating dipole. The in-
traspecies s-wave scattering lengths are taken to be a11 = a22 = 130a0, while interspecies
scattering length a12 is varied, and we consider a cylindrically symmetric infinite tube with
ωx = ωy ≡ ωρ = 2π× 100 s−1 and ωz = 0. We take the average linear densities of the two
components to be the same, n1 = n2, where nσ ≡ Nσ/L, with populations Nσ and L is the
tube length, while the total average linear density is n= n1 + n2.

For reference, the quasi-1D regime requires that ℓ/ξ ≪ 1, where ℓ =
Æ
ħh/(mωρ) is the

characteristic length of the radial trap and ξ = ħh/
p

mµc is the healing length for chemical
potential µc . The parameters selected for our survey range between the quasi-1D regime
(ℓ/ξσ ≈ 0.3) and the elongated 3D (radial Thomas-Fermi) regime (ℓ/ξσ ≈ 10) at the highest
densities. Mean-field validity requires n1D(z)ξ≫ 1, where n1D(z) =

∫
dxdy n(x) [62], which

is well satisfied throughout our study since even at the lowest density we have nσξσ ≳ 102.
For ground state properties, Eq. (1) is evolved in imaginary time using a split-step Fourier

method, taking advantage of cylindrical symmetry of our system using Fourier-Hankel trans-
forms [63]. By choosing a cylindrical dipole-dipole interaction cutoff [64] that is truncated
beyond a length far greater than the lattice constant of any modulated state, we make use of
alias Fourier copies in the z-direction by allowing copies to interact with one another, so in
the numerics only a single unit cell need be considered. For each choice of a12 and n ≡ N/L,
where N = N1+N2, we solve for a range N and L values to find the energy minimum and then,
if periodic density modulations develop, the L at this minimum (when only a single lattice site
is considered) defines the lattice constant. When considering the real time dynamics of Sec. 5,
we allow non-isotropic radial excitations in the initial noise and the time evolution by switch-
ing to 3D Cartesian coordinates. We also increase the number of simulated domains to allow
longer wavelength z modes to contribute to the dynamics and relaxation of the system.

3 Two-component antidipolar rotons

In addition to solving the 3D GPE for the ground state, we gain insight for our system by ana-
lytically studying collective excitations of the uniform binary system in the quasi-1D limit. In
this regime, it is possible to achieve the same physics as the rotating antidipolar case by simply
tilting regular dipoles into one of the trapped directions of the tube [48,49] and proceeding as
we present here. For single-component systems, an antidipolar roton has been predicted [58],
and we wish to explore whether any roton modes exist for the binary antidipolar mixture,
which could in turn be associated with novel supersolid phases.

We assume that the wavefunction can be written as a separable ansatz with cylindrical sym-
metry, where the time dependence is contained in the z direction: Ψσ(r) = ζσ(ρ)ψσ(z, t),
where ρ =
p

x2 + y2. In the quasi-1D regime, the radial part is a normalized Gaussian,
ζσ(ρ) = exp
�−ρ2/(2ℓ2)
�
/(ℓ
p
π). By using the Bogoliubov-de Gennes formalism, the disper-

sion relations for the unmodulated states are (derivation in Appendix A),
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Figure 1: (a) Generation of antidipoles. Rapidly rotating dipoles (dark blue) tilted
at an angle ' results in an effective time averaged interaction Ū��0 . Tilting beyond
the magic angle results in antidipoles (orange), where the typical behavior of the
bare dipoles is reversed. (b) Dispersion relation for the miscible unmodulated case
for total density n̄= 250µm�1 using (4). Solid curves are for the spin branches (✏�)
at different a12, from darkest blue to lightest: a12 = 125a0 (no roton), a12 = 135a0
(spin roton), a12 ⇡ 136a0 (critical), a12 = 137a0 (unstable–imaginary energies not
shown). Dashed curves are the corresponding density branches (✏+), which remain
hard. The gray curve shows the trend towards lower roton momenta as the density
n̄ decreases.

sion relations for the unmodulated states are (derivation in Appendix A),
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Here, Ũ1D
��0 is the momentum-space dipolar potential cf. [55,60], where � (s, x) =

R1
x dy ys�1e�y

is the incomplete gamma function, and D��
0
= µ0µ�µ�0
�
3 cos2' � 1
�
/(16⇡`3).

We identify ✏� as the spin branch, which will be of profound interest to this work since it is
associated with an unmodulated-to-supersolid transition when the spin roton mode becomes
unstable. Conversely, ✏+ is the density branch, where excitations in both components oscillate
in phase, associated with the supersolids studied in Ref. [41], which we will not study here.

Figure 1 (b) shows both branches of the dispersion relation from the miscible unmodulated
quasi-1D theory (4). We show the spin branches ✏� for increasing a12 (solid blue lines, from
darkest to lightest with increasing a12) and see a spin roton minimum appear, which then
proceeds to deepen until it hits zero and ultimately becomes unstable (imaginary energy).
The density branches ✏+ are shown for the same interspecies interaction strengths as dashed
curves, however they remain almost unchanged within the parameter range shown here. By
tuning both n̄ and a12, we can pinpoint when the roton energy hits zero at some momentum
kc . At lower densities, kc decreases towards zero momentum and we show a small-kc example
in Fig. 1 (b) as a gray curve for n̄= 65µm�1. This behavior is suggestive of possible modulated
states where the domain size gets larger as the density decreases.
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Here, Ũ1D
σσ′ is the momentum-space dipolar potential cf. [58,65], where Γ (s, x)=

∫∞
x dy y s−1e−y

is the incomplete gamma function, and Dσσ
′
= µ0µσµσ′
�
3cos2ϕ − 1
�
/(16πℓ3).

We identify ε− as the spin branch, which will be of profound interest to this work since it is
associated with an unmodulated-to-supersolid transition when the spin roton mode becomes
unstable. This can also be understood as a miscible-to-immiscible phase transition at a finite
wavelength governed by the lowest roton energy. Conversely, ε+ is the density branch, where
excitations in both components oscillate in phase, associated with the supersolids studied in
Ref. [42], which we will not study here.

Figure 1 (b) shows both branches of the dispersion relation from the miscible unmodulated
quasi-1D theory (4). We show the spin branches ε− for increasing a12 (solid blue lines, from
darkest to lightest with increasing a12) and see a spin roton minimum appear, which then
proceeds to deepen until it hits zero and ultimately becomes unstable (imaginary energy).
The density branches ε+ are shown for the same interspecies interaction strengths as dashed
curves, however they remain almost unchanged within the parameter range shown here. By
tuning a12, we can pinpoint when the roton energy hits zero at some momentum kc . At lower
densities, the roton and kc decrease towards zero momentum and we show a small-kc example
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Figure 2: Binary modulated states for antidipolar-nondipolar mixtures. (a)-(d) Typi-
cal density isosurfaces showing several unit cells, with antidipolar (nondipolar) com-
ponent in orange (blue). (a2)-(d2) Integrated 1D densities for a unit cell of the
corresponding states in (a)-(d) [less than a unit cell is shown in (d2)]. (e) Phase
diagram. In the modulated regime, a superfluid component is labeled as super-
solid (SS), whereas states lacking superfluidity are denoted as incoherent-domain
(ID) phases. White contour lines show the lattice constant in µm, and states where
this is above 80µm define the macroscopic domain (MD) regime. The black dashed
line shows the spin roton instability predicted using our analytic result (4). Pa-
rameters: a11 = a22 = 130a0, ωρ = 2π × 100s−1, µ1 = 9.93µB, µ2 = 0, and
m1 = m2 = 161.927u.

in Fig. 1 (b) as a gray curve for n= 65µm−1. This behavior is suggestive of possible modulated
states where the domain size gets larger as the density decreases.

4 Ground-state properties

4.1 Binary antidipolar supersolids

To explore which phases may exist once the spin roton destabilizes, we make use of the fully
3D numerical formalism developed in Sec. 2. Figures 2 (a)-(d) show examples of the various
modulated ground states. In order to classify these, we use Leggett’s upper bound [5] for the
superfluid fraction for each component, which can be calculated as

f (σ)s =
L2

Nσ

�∫
dz

1∫
dxdy|Ψσ|2

�−1

, with 0≤ f (σ)s ≤ 1 , (5)
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where L =
∫

dz . One can also consider a total superfluid fraction of the binary system as the
weighted average f Tot

s = (N1 f (1)s + N2 f (2)s )/N , which is associated with the total nonclassical
reduction in the moment of inertia. For our purposes, it is also instructive to consider the
two individual f (σ)s since it gives insight into the behaviour of each component as parameters
are changed. In the miscible phase, the mean-field ground state is a pair of cylindrical, trans-
lationally invariant superfluids with f (σ)s = 1. This state is not a supersolid, however, since
there exist no periodic density modulations, hence it is useful to distinguish modulated from
unmodulated states via the density contrast,

Cσ =
nmax
σ − nmin

σ

nmax
σ + nmin

σ

, with 0≤ Cσ ≤ 1 , (6)

where nmax
σ (nmin

σ ) correspond to the maximum (minimum) of the on-axis density. The contrast
Cσ takes a nonzero value when modulation develops and saturates to unity if the domains
are isolated. As the change from supersolid to isolated domains appears continuous by this
measure, a choice must be made for the boundary. In this work, we follow Ref. [66] and label
a supersolid as a state with both Cσ > 0 and f (σ)s > 0.1.

While all examples shown in Fig. 2 (a)-(d) exhibit Cσ > 0, Fig. 2 (a) is the only one that
also has f (σ)s > 0.1 for both components and is thus a double supersolid (SS-SS) state. Figures
2 (b,c) both have f (σ)s < 0.1, being examples of double incoherent domain states (ID-ID). Note
that the lattice constant for Fig. 2 (c) is significantly larger than that for Fig. 2 (b), consistent
with the longer spin roton wavelength at lower densities [recall Fig. 1 (b)]. Figure 2 (d) is an
example of a state where the interaction energy cost of lengthening the domain is negligible
compared to the kinetic energy cost of forming a new domain wall. Each domain thus becomes
extremely long and we characterize such states as belonging to the macroscopic domain (MD)
regime.

Figures 2 (a2)-(d2) show the linear densities n1D
σ (z) =
∫

dxdy|Ψσ|2 for the corresponding
states in Figs. 2 (a)-(d), for a single unit cell (lattice constant). When both the lattice con-
stant and interspecies contact interaction strength are large, the antidipolar domains form flat
structures with density peaks near their ends, as in Figs. 2 (c2,d2). These peaked shoulders
are reminiscent of those triggered in dipolar condensates trapped by hard walls [64, 67–69],
where in our case the domain interface plays the role of the wall. These modulations may
signal a density roton within the antidipolar component domains.

4.2 Phase diagram

In Fig. 2 (e), we present the ground-state phase diagram for the antidipolar-nondipolar mix-
ture as a function of the total linear density n and interspecies contact interactions a12 using
full 3D calculations. We find a double supersolid (SS-SS) phase (green) where both com-
ponents develop density modulations while retaining robust superfluid connections. Further
increasing a12, the contrast smoothly saturates (Cσ → 1) while the superfluid connections
within each component decay, f (σ)s → 0, eventually forming a binary array of alternating inco-
herent domains (ID-ID) (blue). Sandwiched between these two regions is a narrow incoherent
domain-supersolid (ID-SS) phase (red), for which the domains of the antidipolar component
(σ = 1) are isolated, while the non-dipolar component (σ = 2) retains superfluidity. The ID-
SS regime occurs since each antidipolar domain tends to be radially wider and axially shorter
than those of the nondipolar component, owing to side-by-side antidipolar attraction, creat-
ing larger voids between the antidipolar domains. As n increases, the role of interactions is
enhanced and the domains of the antidipolar component tend to form flat discs, which acts to
broaden the width of the ID-SS regime as a function of a12.
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Figure 3: Phase diagram showing (a) average and (b) difference in superfluid frac-
tions for the two components. Panel (a) highlights the broad binary supersolid re-
gion, while (b) demonstrates a density-dependent reversal as to which component
has the higher superfluid fraction. Parameters are the same as in Fig. 2.

Values of the lattice constant in microns are shown as white contours on Fig. 2 (e). At high
densities, the lattice constant tends to be relatively insensitive to parameter changes, while at
low densities it tends to increase rapidly as either n decreases or a12 increases. Continuing to
densities lower than n ≈ 100µm−1 while maintaining immiscibility leads to the macroscopic
domain regime (black). Due to the challenges accurately characterizing the energies of large
domains, we consider systems with lattice constants larger than 80µm as the MD regime.

The black-dashed curve on Fig. 2 (e) marks where a spin roton mode first destabilizes
the unmodulated miscible phase, calculated using the quasi-1D theory developed in Sec. 3 by
determining where Eq. (4) predicts an instability as a function of a12 and n. The critical value
of a12 tends to decrease with increasing n because of the disc-like dipolar domains that form
in the immiscible phase at higher average densities. This tends, on average, to decrease the
combined (dipolar + contact) intraspecies interactions, which has the effect of favouring the
immiscible phase as the ground state at lower values of a12. The instability curve predicts the
location of the phase transition of the full 3D system to remarkable accuracy, even at the bottom
right of the phase diagram for which ℓ/ξ≈ 5, where one might expect a crossover to the radial
Thomas-Fermi regime. At the left edge of the phase diagram, roughly below n≈ 50µm−1, the
roton wavelength tends to diverge [recall the gray curve in Fig. 1 (b)], consistent with the
immediate transition from the unmodulated miscible phase to the macroscopic domain phase,
similar to a phonon instability.

We now investigate the superfluid nature of the ground state phase diagram in more de-
tail. Figures 3 (a,b) present the average superfluid fraction ( f (1)s + f (2)s )/2, and the differ-
ence f (1)s − f (2)s , respectively. The unmodulated miscible-to-supersolid phase transition can be
identified in Fig. 3 (a) by a change from white to yellow, indicating a reduction of the super-
fluid fraction from unity. Figure 3 (b) shows that the two superfluid fractions are similar for
most of the diagram. At higher densities the antidipolar component tends to have a relatively
lower superfluid fraction, since the shorter domains inhibit the superfluid connection between
modulation peaks. Below roughly n ≈ 200µm−1 the situation flips, and the antidipolar com-
ponent becomes more superfluid compared to the nondipolar component. Here, the longer
domain lengths allow head-to-tail repulsion to supersede the previously dominant side-by-side
attraction. Since the contact interactions are balanced between the components, the extra an-
tidipolar repulsion causes their domains to now be slightly longer than those of the nondipolar
component at low densities. In principle, there could be a narrow regime where SS-ID states
exist with f (1)s − f (2)s > 0, however due to the sensitivity of the system for this parameter range
it does not appear on our diagram.
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n= 200µm−1 n= 5000µm−1

Figure 4: Crossing the unmodulated miscible-supersolid transition at two fixed total
densities, indicated above each column. Upper panels show the total energy per
particle (units of ħhωρ) as a function of the intercomponent interaction strength. The
dotted line shows the energy of a state that is forced to be unmodulated across the
transition, while the solid lines show the ground state energy. Lower panels show
the corresponding ground state contrast (black) and superfluid fraction (green) for
the dipolar component (solid) and non-dipolar component (dashed). The inset in (d)
shows the contrast close to the transition, highlighting that even though the transition
sharpens, it remains apparently continuous. Other parameters are the same as in
Fig. 2.

4.3 Transition order

Here, we investigate whether the unmodulated miscible-to-supersolid phase transition is first-
order or continuous. Figure 4 shows two cuts across the transition, one at low fixed den-
sity n = 200µm−1 [Figs. 4 (a,c)] and the other deep within the radial Thomas-Fermi regime
n = 5000µm−1 [Figs. 4 (b,d)]. In Figs. 4 (a,b), we compare the energy per particle for states
that are forced to be unmodulated (dotted line) and the ground state which is allowed to
develop modulations (solid).

Across the transition, the separation of the branches appears smooth in both scenarios,
supporting a lack of metastability and signalling a continuous phase transition. This is further
reinforced by Figs. 4 (c,d), which show the superfluid fraction (green) and contrast (black) for
both components, with both f (σ)s and Cσ varying smoothly across the transition. Interestingly,
the transition significantly sharpens at the higher density, especially noticeable in Cσ, however
the focussed inset in Fig. 4 (d) reveals that it remains smooth. The superfluid fraction is not
shown in the inset since it remains at f (σ) > 0.98.
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For a single-component dipolar gas confined to a tube [22], or in an elongated trap [16–
18], the transition can be discontinuous with a jump in the superfluid fraction and contrast.
However, it has also been shown that both the order and type (i.e. unmodulated-to-supersolid
or unmodulated-to-incoherent droplet) of transition can depend on the density [66, 70, 71].
In our system, we tend to have relatively low densities that support supersolidity, and thus we
do not discount a possible change in transition order as n increases past 5000µm−1.

5 Dynamic supersolid formation

To investigate the preparation of binary antidipolar supersolids in realistic settings, we show
their formation with 3D dynamic simulations. Figure 5 shows two ramps of a12 across the
spin roton instability, starting from the unmodulated miscible phase, along paths schematically
shown with arrows in Fig. 5 (c). In each ramp a12 is increased at a constant rate into either
the SS-SS regime [Fig. 5 (a)] or the ID-ID regime [Fig. 5 (b)], with the end of each ramp
shown as a vertical white line, and then a12 is held static for a further 1s. Figures 5 (a,b) show
the time-dependent linear density n1D

1 (z) of the antidipolar component, while the nondipolar
component has a complementary density that fills the dark regions, and is not explicitly shown.
For both examples, we have selected a total system length that is expected to yield six domains
per component at the end of the ramp. For each simulation, we added thermal and quantum
fluctuations to the initial state (see Appendix B).

After crossing the phase transition, the system begins to form modulated states. Following
some initial excitations, each case ultimately relaxes to its long-time crystal structure before
100ms. In the experiment by Tang et al. [47], the condensate lifetimes already reached around
160ms, when using relatively low rotational frequency of order 103 Hz, and theoretical predic-
tions point to substantially longer lifetimes when the rotational frequency is increased [72,73].

Interestingly, due to both initial noise and the finite rate at which the transition is crossed,
competing excitation wavelengths result in defects in the crystal structure which take the form
of extra domains when compared with the ground state. In the SS-SS regime, these defects
are corrected quickly due to the strong superfluid connection. If extra domains form in the
ID-ID quench, as in Fig. 5 (b) where eight domains form, the system is not able to correct the
defect since atom tunnelling through the other components’ domains is strongly discouraged.

In order to compare the two regimes after the quench, we establish a measure of global
phase coherence, indicative of the superfluid quality. We therefore define the phase coherence,

Pσ(t) = 1− 2
π

∫
dr|φσ(r, t)− 〈φσ(t)〉|nσ(r, t)∫

dr nσ(r, t)
, (7)

where the local phase is defined via Ψσ(r, t) =
p

nσ(r, t)eiφσ(r,t), and the average over the
phase is calculated by choosing a branch cut such that 〈φσ(t)〉 = 1

Nσ

∫
dr nσ(r, t)φσ(r, t) is

minimized at any given time. A value Pσ = 1 corresponds to perfect phase coherence across
the system, while Pσ = 0 indicates complete incoherence. Figure 5 (d) shows the phase
coherence for both quenches described above, with the SS-SS quench shown in blue and the ID-
ID quench shown in red. When quenching into the SS-SS regime, the phase remains relatively
uniform across the system, supporting that the superfluid character remains robust, while the
quench into the ID regime has a wildly varying phase. We also point out that in general we
expect P1 < P2, since the nondipolar component tends to have the greater superfluid fraction
in this region of the phase diagram. For this reason, P1 becomes the limiting measure of phase
coherence in the SS-SS state and therefore we do not show P2.
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Figure 5: Crystallization from dynamic ramps of the intercomponent interactions
from a12 = 108a0 [miscible phase] to (a) a12 = 116a0 [SS-SS phase] and (b)
a12 = 188a0 [ID-ID phase], as shown schematically in (c). Both (a,b) show the
time-dependent linear density of the antidipolar component (nondipolar component
not shown). Both ramps in (a,b) are performed at a constant rate of 0.4a0/ms, and
the end of each ramp is marked by a vertical white line. Panel (d) shows the phase
coherence P1(t) of the dipolar component, as defined by Eq. (7), for the shallow
SS-SS quench (blue) and the deeper ID-ID quench (red). Average linear density is
fixed at n= 800µm−1 and other parameters are the same as in Fig. 2.

6 Conclusions

In summary, we have predicted a spin-roton mode in a mixture of antidipolar and nondipo-
lar condensates, and find that this is associated with a transition to a binary supersolid phase
that does not require quantum fluctuations for its stabilization. Using full 3D calculations,
we characterize the phase diagram of the system as a function of atomic density and inter-
species interactions. We demonstrate the presence of binary supersolid, incoherent domain,
macroscopic domain and unmodulated miscible phases. The parameter choices for calcula-
tions presented in this work correspond to the mJ = 8 and mJ = 0 spin projections of 162Dy
in the J = 8 state. We also expect qualitative agreement of our results with atoms of vari-
ous species with different magnetic moments, even when both components are dipolar [38].
Recent experiments have demonstrated that mixtures of highly magnetic Er and nonmagnetic
bosonic Yb atoms are possible [41]. Mixtures of Dy and weakly magnetic K [74] also have
potential by using the bosonic isotope of each.

The antidipolar interactions in a tube allow for supersolids with a far cleaner cylindri-
cal geometry as compared to standard dipoles, which instead must be aligned along a trap
direction and are therefore manifestly asymmetric due to magnetostriction. In the case of an-
tidipoles aligned along the tube, a remarkable supersolid geometry can form, exhibiting an

11

https://scipost.org
https://scipost.org/SciPostPhysCore.6.4.084


SciPost Phys. Core 6, 084 (2023)

array of pancake-like domains in the radial Thomas-Fermi regime. We study the order of the
unmodulated-to-supersolid phase transition over a broad range of parameters and find that it
is always continuous, in contrast to single-component systems of regular dipoles where it may
be either first-order or continuous, although we do not discount the possibility that this may
occur for our system under different conditions. Using a quasi-1D theory, we are also able
to demonstrate that the location of this transition may be calculated analytically, agreeing re-
markably well with the 3D model over the range of parameters we study here. Returning to
fully 3D calculations, we show that the supersolid and incoherent domain phases can form
dynamically by crossing the transition at a finite rate, with implications for experimental real-
ization. The dynamics we present in Sec. 5 show evidence of defects, which must form after
any finite quench across a second-order phase transition. Since the transition remains second-
order throughout a wide parameter range, the system presented here can be the focus of future
studies of the Kibble-Zurek mechanism and defect formation in supersolids.
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A Derivation of Bogoliubov-de Gennes excitations

In this appendix, we provide details for the derivation of the Bogoliubov-de Gennes spectrum
given in Eq. (4) of the main text. Starting from the full 3D GPE in Eq. (1), we insert the
separable wavefunction ansatz Ψσ(r) = ζσ(ρ)ψσ(z, t), multiply both sides by ζσ(ρ), and
integrate over the azimuthal dimensions to obtain the quasi-1D GPE,

iħh∂ψσ
∂ t

=

�
− ħh

2

2m
∂ 2

∂ z2
+

1
2πℓ2

∑
σ′

gσσ′ |ψσ′(z, t)|2 +
∑
σ′

∫
dz′ U1D

σσ′(z − z′)|ψσ′(z′, t)|2
�
ψσ . (A.1)

We consider deviations from states which are uniform in the z-direction and have average
density nσ using some small parameter λ,

ψσ(z, t) =
Æ

nσ
�
1+λ
�
uσ(z)e

−iεt/ħh − v∗σ(z)e
iε∗ t/ħh�	e−iµc

σ t/ħh , (A.2)

where the perturbation is written in terms of the Bogoliubov amplitudes, uσ and vσ and ε are
the quasiparticle mode energies. We then can write a set of coupled equations by keeping only
terms of linear order in λ. In momentum space (F[wσ(z)] = w̃σ(k)), these equations become,

εũσ(k) =
ħh2k2

2mσ
ũσ(k) +

p
n̄σ

2πℓ2

∑
σ′

gσσ′
�
ũσ′(k)− ṽσ′(k)
�p

n̄σ′

+
p

n̄σ
∑
σ′

Ũ1D
σσ′(k) [ũσ′(k)− ṽσ′(k)]

p
n̄σ′ , (A.3)

εṽσ(k) = −
ħh2k2

2mσ
ṽσ(k) +

p
n̄σ

2πℓ2

∑
σ′

gσσ′
�
ũσ′(k)− ṽσ′(k)
�p

n̄σ′

+
p

n̄σ
∑
σ′

Ũ1D
σσ′(k) [ũσ′(k)− ṽσ′(k)]

p
n̄σ′ . (A.4)
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The quasi-1D dipolar potential is given by [48–50,58,75,76],

U1D
σσ′(z − z′) = Dσσ

′
�

2|z − z′|
ℓ
−p2π

�
1+
|z − z′|2
ℓ2

�
e
|z−z′|2

2ℓ2 erfc
� |z − z′|p

2ℓ

�
+

8
3
δ

� |z − z′|
ℓ

��
,

(A.5)
where Dσσ

′
= µ0µσµσ′
�
3cos2ϕ − 1
�
/(16πℓ3). The Fourier transform of the quasi-1D in-

teraction potential is Ũ1D
σσ′ = 4Dσσ

′
ℓ
h

k2ℓ2

2 e
k2ℓ2

2 Γ
�
0, k2ℓ2

2

�
− 1

3

i
. We have also used chemical

potential

µc
σ =

1
2πℓ2

∑
σ′

gσσ′ n̄σ′ −
4ℓ
3

∑
σ′

Dσσ
′
, (A.6)

in the uniform miscible phase. The equations (A.3)-(A.4) result in a 4× 4 matrix equation of
the form εw=Mw with w≡ {ũ1, ṽ1, ũ2, ṽ2}, and M is a matrix, which can be straightforwardly
solved analytically for the mode energies ε±, shown in Eq. (4).

B Initial state preparation for dynamics

The fluctuations added at the beginning of the quenches in Sec. 5 are approximated as,

ψ(r, 0) =ψ0(r) +
∑
nℓν

′
φn(x)φℓ(y)
�
αeikνz + βe−ikνz

�
, (B.1)

where ψ0(r) is the ground state in the miscible regime, φn(x) are eigenmodes of the non-
interacting 1D harmonic oscillator, α and β are Gaussian random variables with mean
〈|α|2〉 = 〈|β |2〉 = �e(εnℓν−µ)/kB T − 1

�−1
+ 1

2 [77]. The prime in Eq. (B.1) indicates that
the sum has been restricted to εnℓν < 2kB T . The energies are therefore given by
εnℓν = ħhωρ(n + ℓ + 1) + 2ħh2ν2/(mL2). The fluctuations here are also useful in breaking
the continuous translational symmetry of the miscible state. In the simulations presented in
this paper, we selected a temperature of T = 5nK for the initial noise.
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[69] P. Juhász, M. Krstajić, D. Strachan, E. Gandar and R. P. Smith, How to realize a ho-
mogeneous dipolar Bose gas in the roton regime, Phys. Rev. A 105, L061301 (2022),
doi:10.1103/PhysRevA.105.L061301.

[70] G. Biagioni, N. Antolini, A. Alaña, M. Modugno, A. Fioretti, C. Gabbanini, L. Tanzi and
G. Modugno, Dimensional crossover in the superfluid-supersolid quantum phase transition,
Phys. Rev. X 12, 021019 (2022), doi:10.1103/PhysRevX.12.021019.

[71] J. C. Smith, D. Baillie and P. B. Blakie, Supersolidity and crystallization of
a dipolar Bose gas in an infinite tube, Phys. Rev. A 107, 033301 (2023),
doi:10.1103/PhysRevA.107.033301.

[72] S. B. Prasad, T. Bland, B. C. Mulkerin, N. G. Parker and A. M. Martin, Instability of ro-
tationally tuned dipolar Bose-Einstein condensates, Phys. Rev. Lett. 122, 050401 (2019),
doi:10.1103/PhysRevLett.122.050401.

[73] D. Baillie and P. B. Blakie, Rotational tuning of the dipole-dipole interaction in a Bose gas of
magnetic atoms, Phys. Rev. A 101, 043606 (2020), doi:10.1103/PhysRevA.101.043606.

[74] C. Ravensbergen, E. Soave, V. Corre, M. Kreyer, B. Huang, E. Kirilov and R. Grimm,
Resonantly interacting Fermi-Fermi mixture of 161Dy and 40K, Phys. Rev. Lett. 124, 203402
(2020), doi:10.1103/PhysRevLett.124.203402.

[75] S. Sinha and L. Santos, Cold dipolar gases in quasi-one-dimensional geometries, Phys. Rev.
Lett. 99, 140406 (2007), doi:10.1103/PhysRevLett.99.140406.

[76] M. J. Edmonds, T. Bland, D. H. J. O’Dell and N. G. Parker, Exploring the stability
and dynamics of dipolar matter-wave dark solitons, Phys. Rev. A 93, 063617 (2016),
doi:10.1103/PhysRevA.93.063617.

[77] P. B. Blakie, A. S. Bradley, M. J. Davis, R. J. Ballagh and C. W. Gardiner, Dynamics and
statistical mechanics of ultra-cold Bose gases using c-field techniques, Adv. Phys. 57, 363
(2008), doi:10.1080/00018730802564254.

18

https://scipost.org
https://scipost.org/SciPostPhysCore.6.4.084
https://doi.org/10.1103/PhysRevResearch.4.013086
https://doi.org/10.1103/PhysRevA.105.L061301
https://doi.org/10.1103/PhysRevX.12.021019
https://doi.org/10.1103/PhysRevA.107.033301
https://doi.org/10.1103/PhysRevLett.122.050401
https://doi.org/10.1103/PhysRevA.101.043606
https://doi.org/10.1103/PhysRevLett.124.203402
https://doi.org/10.1103/PhysRevLett.99.140406
https://doi.org/10.1103/PhysRevA.93.063617
https://doi.org/10.1080/00018730802564254

	Introduction
	Methods and system
	Two-component antidipolar rotons
	Ground-state properties
	Binary antidipolar supersolids
	Phase diagram
	Transition order

	Dynamic supersolid formation
	Conclusions
	Derivation of Bogoliubov-de Gennes excitations
	Initial state preparation for dynamics
	References

