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Abstract

Discriminating quark-like from gluon-like jets is, in many ways, a key challenge for many
LHC analyses. First, we use a known difference in PYTHIA and HERWIG simulations to
show how decorrelated taggers would break down when the most distinctive feature is
aligned with theory uncertainties. We propose conditional training on interpolated sam-
ples, combined with a controlled Bayesian network, as a more resilient framework. The
interpolation parameter can be used to optimize the training evaluated on a calibration
dataset, and to test the stability of this optimization. The interpolated training might
also be useful to track generalization errors when training networks on simulations.
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1 Introduction

Jets are the main analysis objects at the LHC, and the success of the LHC program is, to a large
degree, being driven by an improved understanding of jets experimentally and theoretically.
In practice, the main task in jet physics is to predict their features precisely, and to use them
to tag the parton initiating the jet. The improved understanding of subjet physics at the LHC
has allowed us to skip high-level observables and instead analyze jets using low-level detector

1

https://scipost.org
https://scipost.org/SciPostPhysCore.6.4.085
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhysCore.6.4.085&amp;domain=pdf&amp;date_stamp=2023-12-12
https://doi.org/10.21468/SciPostPhysCore.6.4.085


SciPost Phys. Core 6, 085 (2023)

output employing modern machine learning [1]. ML-tools can incorporate all available infor-
mation in a jet and significantly improve the performance of classic, multivariate jet taggers.
While, in the interest of optimality, taggers should be trained on data, ATLAS and CMS fol-
low a more conservative approach and train taggers on simulations. This attitude reflects a
flattering trust in theoretical simulations, but it also creates new sources of uncertainties.

In this paper we add uncertainty-aware features to the CMS ParticleNet tagger [2], using a
Bayesian classification network setup [3], and propose an interpolated training method using
conditional networks. This combination allows us to capture different sources of uncertain-
ties [4] while protecting the performance of the tagger. The Bayesian setup would raise a flag
when the training datasets are too inconsistent to be combined. The conflict between optimal
performance and uncertainty control is the key weakness of adversarial training approaches
and makes it preferable to instead use nuisance parameters to describe systematics [5]. For
theory uncertainties, adversarial approaches are not even likely to cover the full uncertainty
range [6].

ML-methods for jet tagging [7] can be applied to the whole range of top jets, Higgs jets,
W/Z-jets, τ-jets, bottom or charm jets, all the way to quark vs. gluon jets. From a theoretical
and an experimental perspective it is easiest to tag partons of which only the decay products
hadronize. For instance top taggers then look for distinctive features like the jet mass or
the multiplicity of subjet constituents [8–10]. Being a well-defined problem, top tagging has
played a key role in developing and establishing a wide range of network architectures [11],
including uncertainty-aware extensions.

In contrast, quark vs. gluon tagging is not actually defined theoretically, beyond leading-
order in QCD and including parton splittings. Still, because of its great analysis potential,
quark–gluon tagging has a long history [12–19], including early applications at the LHC [20–
25]. In spite of the serious theoretical challenges [26–35], efficient ML-approaches have been
devised to separate “quark jets” from “gluon jets” [36–41]. They include study of hadronization
and detector effects [42] and modern network architecture like transformers [43], Lorentz-
equivariant networks [44], and normalizing flows [45]. One way to overcome the fundamental
problem of defining quark and gluon jets is to instead use well-defined hypotheses in terms of
LHC signatures, for instance mostly quarks in LHC signals like weak boson fusion vs. gluons in
QCD backgrounds [46–50]. An alternative method is to train a classifier without labels, just
on samples with an enhanced partonic quark or gluon fraction [51].

In this paper we first look at a known issue, namely the differences between HERWIG and
PYTHIA jets and the effect of these differences on ML-taggers introduced in Sec. 2.1. To control
the cutting-edge ParticleNet tagger and understand its output better, we present its Bayesian
variant in Sec. 2.2. It allows us to understand the problem of quark–gluon taggers trained on
HERWIG and PYTHIA, as shown in Fig. 1, and makes it obvious that a naive resilience improve-
ment through decorrelation will massively hurt the performance of the tagger, as discussed in
Sec. 3. In Sec. 4 we target this problem through a new, interpolated training of the conditional
ParticleNet tagger on two distinct samples. We realize this interpolation with the same Parti-
cleNet classifier. After discussing this method in detail, we extend it to a fresh look at a more
interpretable, continuous calibration of jet taggers.

2 Dataset and classification network

One of the most exciting goals of subjet tagging is the discrimination of quarks versus gluons.
The precise task is not well-defined beyond leading order in QCD, but it approximates im-
portant questions like how to identify electroweak decay jets or how to separate weak boson
fusion from QCD backgrounds. In both cases, the signals are quark-enriched, while most QCD
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jets at the LHC come from gluon emission. Another aspect which makes quark–gluon tagging
especially interesting is that there exists a study which raises questions about the behavior of
ML-taggers in this application.

2.1 Quark–gluon datasets

The starting point of our study are two datasets of simulated quark and gluon jets [52–54],
each with 2M jets, one generated with PYTHIA and one generated with HERWIG. The two
samples are generated using the partonic processes

qq̄→ Z(→ νν̄) + g , and qg → Z(→ νν̄) + (uds) , (1)

at the 14TeV LHC, simulated with PYTHIA 8.226 [55, 56] and with HERWIG 7.1.4 [57]. Both
setups use default tunes and shower parameters. Hadronization and multi-parton interactions
(MPI) are turned on, and we do not consider jets with charm or bottom quark content (at the
level of the hard process). The jets are defined through anti-kT algorithm [58,59] in FASTJET

3.3.0 [60] with a radius of R = 0.4. No detector simulation is included, which cuts into the
realism of the analysis, but allows us to extract the underlying question and issues and solve
them before adding detector simulations to the problem. For each event the dataset keeps the
leading jet, provided

pT, jet = 500 . . . 550 GeV , and |η jet|< 1.7 . (2)

If we assume that all light-flavor jet constituents are approximately massless, each jet x i is
defined by

x i =
�

(pT,η,φ)k
	

, with k = 1, . . . , nC . (3)

For our analysis we allow for up to nC = 100 constituents per jet. The jets are zero-padded
with constituents, and all constituents have azimuthal angles φ within π of the jet.

We refer to the final-state jets from the two partonic processes in Eq. (1) as quark and
gluon jets, even through it is clear that this statement is scale dependent and only defined at
leading order in perturbation theory. A more appropriate way of referring to these jets would
be in the sense of semi-supervised learning and quark-enhanced vs. gluon-enhanced samples.
A standard way of realizing this setup would be jets reconstructed as coming from a two-body
Z-decay vs. jets produced in association with a Higgs boson.

We supplement the PYTHIA and HERWIG datasets with a third simulation of the two pro-
cesses in Eq. (1) using SHERPA 2.2.10 [61], again with the default tune and shower parameters.
Using PYHEPMC [62, 63], a PYTHON wrapper for the HEPMC2 [64] library, we select the con-
stituent coordinates of those final-state particles not labelled as neutrinos. The SHERPA jets
are defined through the PYJET [62, 65] interface to FASTJET. From a physics perspective, the
SHERPA jet resembles the HERWIG jets through the common use of cluster fragmentation, but
we will see that the numerical results differ.

Each of our three jet datasets consists of 20 files with 100k jets each, equally split between
quark and gluon jets. For each generator we divide the dataset into training/validation/test
subsets with 200k/50k/50k jets for quarks and gluons, each, unless mentioned otherwise.

For state-of-the-art jet tagging we need to include particle identification (PID) informa-
tion. Our PYTHIA and HERWIG datasets include two forms of PIDs [52], (i) the full particle-ID
information from PYTHIA or HERWIG, and (ii) experimentally realistic particle IDs. We follow
the ParticleNet approach [2], using the five particle types electron, muon, charged hadron,
neutral hadron, and photon, plus the electric charge as input to the network. The standard
encoding by the Particle Data Group in terms of large and irregular integer values is not an
ideal ML-input. Instead, we use a one-hot encoding of our experimentally realistic PIDs.
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Figure 1: Left: preliminary result of the ATLAS study on quark–gluon tagging, raising
questions on the best way to train such a tagger. Figure from Ref. [22]. The same
pattern has been observed in Fig. 8 of Ref. [37]. Right: our results on the same task,
using a new, Bayesian version of ParticleNet-Lite [2], trained on 400k PYTHIA and
HERWIG jets each, with the parameters given in Tab. 2. The first generator in our
labeling always refers to the training dataset and the second one to the test dataset.
The values in parantheses indicate the respective area under curve (AUC).

High-level observables

There exist standard kinematic observables for subjet physics, specifically quark–gluon dis-
crimination [48], for instance the multiplicity of constituents or particle flow objects (nPF),
the radiation distribution or girth (wPF) [66, 67], the width of the pT-distribution of the con-
stituents (pTD) [23], or the weighted angular correlator (C0.2) [68]. They are defined in terms
of the jet constituents as

nPF =
∑

i

1 , wPF =

∑

i pT,i∆Ri,jet
∑

i pT,i
,

pTD =

q
∑

i p2
T,i
∑

i pT,i
, C0.2 =

∑

i, j pT,i pT, j(∆Ri j)0.2

�∑

i pT,i

�2 .

(4)

Distinguishing quark jets from gluon jets exploits two features encoded in these observables
[42, 69]. First, the QCD color factors for quarks are smaller than for gluons, which means
radiating a gluon off a hard gluon versus off a hard quark comes with the ratio CA/CF = 9/4.
This leads for a higher multiplicity and broader girth for hard gluons. Second, the quark and
gluon splitting functions differ in the soft limit. The harder fragmentation for quarks leads to
quark jet constituents carrying a larger average fraction of the jet energy, tracked by pTD.

In Fig. 2 we show these four distributions for the quark and gluon jets simulated by PYTHIA,
SHERPA, and HERWIG. The biggest difference appears in nPF, where the quark distributions
from the three generators are similar, but the gluon distributions vary significantly. The max-
imum of the broad peak is the smallest, nPF ∼ 40 for the HERWIG gluons and the largest,
nPF ∼ 45 . . . 50 for PYTHIA gluons. This difference between HERWIG and PYTHIA jets is not
cause by noise or a broader distribution, but by an actually different prediction for nPF.

This difference in nPF vanishes for wPF, indicating that it comes from infrared and collinear
unsafe regions of phase space, and might become less relevant once we include detector ef-
fects. We emphasize that this does not mean we should expect the shower algorithms to fail,
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Figure 2: High-level observables, as defined in Eq. (4), for the three different gener-
ators, split into quark and gluon jets.

but that these difference are not easily computable in perturbative QCD. Similarly, the pTD dis-
tributions are significantly different for quarks and gluons, combined with a small shift in the
position of the comparably sharp gluon peaks from the different generators. Finally, the only
actual two-constituent correlation C0.2 is also different for quarks and gluons, but consistent
for the different generators. We have studied a range of additional high-level operators and
traced significant deviations between the gluon jets from the different generators to a strong
correlation with nPF.

In Fig. 3 we also show the correlations between the same observables, for each of the three
generators and separated into true quark and gluon jets. All observables are correlated with
the most powerful nPF, but this correlation is not very different for quarks and for gluons,
suggesting that a multi-dimensional analysis will be dominated by the completely understood
shifts in nPF.

Table 1: First Wasserstein distance, or earth mover’s distance, between quark and
gluon distributions for the observables defined in Eq. (4). We show 200k quark jets
and 200k gluon jets for each generator.

generator nPF wPF pT D C0.2

PYTHIA 2050 3207 4000 1316
SHERPA 1711 3149 3217 1112
HERWIG 1326 2910 3406 1128
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Figure 3: Correlations between the high-level observables from Eq. (4). We show
results for the three different generators, split into quark jets (left) and gluon jets
(right).

To judge the relevance of the difference in nPF from the different generators for quark–
gluon tagging we can separate quarks from gluons based on the individual observables given
in Eq. (4). We can estimate the power of the individual distributions using the Wasserstein
distances between 200k quark and gluon jet histograms, as given in Tab. 1. For all observables
the PYTHIA jets are most easily separated, followed by SHERPA for nPF and wPF, whereas HER-
WIG predicts a stronger discrimination power for pTD than SHERPA. The actual values of the
Wasserstein distance for the different kinematic observables depends on the detailed shape and
does not correlate with the separating power of a kinematic cut. We show the corresponding
ROC curves in Fig. 4, generated by choosing such a cut value for each observable. The nPF-
based and pTD-based tagging shows a significant degradation when tagging HERWIG jets as
compared to the easier-to-separate PYTHIA quarks and gluons. This confirms the observation
from Fig. 2, where both distributions for HERWIG gluons are further from the common quark
distributions than they are for the PYTHIA gluons. In contrast, the tagging performance from
wPF and C0.2 is unaffected by the choice of simulation and in general also much weaker.

To summarize the key result from this simple study — the most powerful observables for
quark–gluon tagging show a significant shift in the gluon predictions between HERWIG and
PYTHIA. This shift brings the HERWIG gluons closer to quarks.

2.2 Bayesian ParticleNet

To work with a controlled cutting-edge ML-tagger we develop a Bayesian version of the
ParticleNet(-Lite) graph convolutional network architecture [2] adapted from TENSORFLOW

to PYTORCH, to be able to use our standard Bayesian network. For a detailed discussion of
Bayesian networks we refer to some original Bayesian network papers [70–72] and the di-
dactic introduction in Ref. [1]. The ADAMW optimizer [73, 74], with a weight decay of 10−4,
minimizes the usual binary cross-entropy loss combined with a sigmoid activation function for
the classification task,

LPN = −
1
M

M
∑

i=1

yi log f (x i) + (1− yi) log
�

1− f (x i)
�

, (5)
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Figure 4: AUCs for quark–gluon discrimination based on individual high-level ob-
servables of Eq. (4), simulated with PYTHIA, SHERPA and HERWIG.

where M is the mini-batch size, f (x i) ∈ [0,1] the model prediction for jet i, and yi ∈ {0, 1}
the jet truth-label. The two term in the loss lead to a classification of

f (x i) → yi = 1 , quark signal ,

f (x i) → yi = 0 , gluon background .
(6)

We adopt the learning-rate scheduling from Ref. [2]. The feature input to the ParticleNet are
the hardest 100 jet-constituent particles, specifically
§

∆ηk , ∆φk , ∆Rk , log pT,k , log
pT,k

pT, jet
, log Ek , log

Ek

Ejet
, PIDk

ª

, (7)

where the first coordinates are computed relative to the jet axis. The distance in∆ηk and∆φk
are used to compute the distances between particles in the first edge convolution (EdgeConv)
block (coordinate input). The PID information includes the particle charge [2,52].

While deterministic neural networks adapt a large number of weights to approximate a
training function, Bayesian neural networks (BNNs) learn distributions of these weights [72].1

We can then sample over the weight distributions to produce a central value and an uncertainty
distribution for the network output. In LHC physics, Bayesian networks can be applied to
classification [3], regression [75,76], and generative networks [4,77,78]. While it is in general
possible to separate these uncertainties into statistical and systematic (stochasticity [75] or
model limitations [76]), we know that our number of training jets is sufficiently large to only
leave us with systematic uncertainties from the training process.

The Bayesian loss follows from a variational approximation of the conditional probability
for the network parameters. It combines a likelihood loss with a regularization through a prior
for the weight distributions,

LBPN = −
1
M

M
∑

i=1

log p(yi|x i ,ω) +
1
N

KL
�

qµ,σ(ω), pµ,σ(ω)
�

(8a)

≈ − 1
M

M
∑

i=1

log p(yi|x i ,ω) +
1

2N

∑

weights ω j

�

µ2
j +σ

2
j − logσ2

j − 1
�

, (8b)

1In that sense there is nothing Bayesian about BNNs, they can just be viewed as an extremely efficient way to
train network ensembles.
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Table 2: Bayesian ParticleNet-Lite (BPN-Lite) architecture and hyperparameters [2].

hyperparameter BPN-Lite architecture

number of EdgeConv blocks 2
number of nearest neighbors 7
number of channels for each EdgeConv block (32, 32,32), (64,64, 64)
channel-wise pooling average
fully-connected layer 128 and ReLU
dropout probability 0.1
number of epochs 100
batch size 128
number of constituents 100, with highest pT

training/validation/testing 400k/100k/100k
signal-to-background ratio 1.0
re-sampling for testing 80 times

where we choose the prior as a Gaussian with mean zero and width one and use the fact that
the resulting weight distributions will become approximately Gaussian as well, described by
µ j and σ j . A change of prior has been shown to not affect the network output [3]. As in
Eq. (5) M denotes the mini-batch size, and N is the number of training jets.

The parameters µ j and σ j define the model parameters ω j of the Bayesian network and
need to be trained. In our case, only the weights in the linear and 2D-convolutional layers
are extended to Gaussian distributions. The hyperparameters of the original ParticleNet(-Lite)
network and its Bayesian counterparts are given in Tab. 2. We use the same BPN-Lite network
for quark vs. gluon discrimination and for the generator reweighting which we will introduce
in Sec. 4.

The performance of the BPN-Lite quark–gluon classifier is illustrated in the right panel of
Fig. 1. Note that the first generator in our labeling always refers to the training dataset and
the second one to the test dataset. Independent of the competitive AUC values we see that,
as before, the network trained and tested on PYTHIA performs best, closely followed by the
network trained on HERWIG and tested on PYTHIA. This suggests that the choice of training
sample only has a small effect. In contrast, when we test networks on HERWIG the perfor-
mance drops significantly, with the consistent training on HERWIG superseding the training on
the alternative PYTHIA dataset in terms of AUC and background-rejection performance. This
hierarchy indicates that, indeed, PYTHIA quarks and gluons are easier to separate than the
HERWIG quarks and gluons, and that the key features for this classification are similar for the
two generators. We will study this aspect more closely in the following section.

3 Where have all the gluons gone?

Trying to solve the puzzle of quark–gluon taggers trained and tested on different generators
will lead us to the more general question, namely how to control classification networks trained
on one dataset and tested on another. All combinations of training and testing the BPN-Lite
tagger are illustrated in Fig. 5, with some of the main results collected in the two tables. Since
the original PYTHIA and HERWIG results form the two extreme poles, we assign the three
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Figure 5: Left: ROC curves for training and testing on PYTHIA, SHERPA, and HER-
WIG in different combinations. Right: AUC and background-rejection performance
of the BPN-Lite for quark–gluon tagging, trained and tested on the three different
generators.

datasets to the real-world problem of training a tagger on two independent training datasets
and testing it on independent data as

• labelled training dataset 1: PYTHIA,

• labelled training dataset 2: HERWIG,

• independent test dataset: SHERPA.

We will start by comparing different trainings on the labelled PYTHIA and HERWIG datasets, as
motivated by Fig. 1 and eventually add SHERPA results as an independent test, in the sense of
actual data analyzed by the tagger.

Performance comparison

The Bayesian nature of the BPN-Lite tagger comes with two pieces of information, which allow
us to understand the network training. First, the Bayesian tagger provides a per-jet uncertainty
σpred(x i) on the classification output µpred(x i) ∈ [0,1]. This means we can separate jets for
which the network training leads to a confident classification from jets where the training
provides less information. Second, the final sigmoid layer of the classification network leads
to a correlation of µpred and σpred, namely

σpred(x i) ∝ µpred(x i)
�

1−µpred(x i)
�

. (9)

This inverse parabola correlation is a feature of the network structure and has to be present in
the Bayesian tagging output, its absence points to a stability issue in the networks training. In
Fig. 6 we show the µpred- and σpred-distributions for PYTHIA and HERWIG test datasets, after
consistently training the networks on PYTHIA and HERWIG. Already the µpred-distributions
shows three major issues:

1. While the tagging of quarks vs. gluons is never symmetric, training and testing on PYTHIA

indicates some gluons confidently identified as gluons µpred(x i)→ 0.
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Figure 6: Predictive means (µpred = 0 for gluons, µpred = 1 for quarks) and standard
deviations from the BPN-Lite tagger trained and tested on PYTHIA and HERWIG in
different combinations. The lower panels illustrate a stochastic pattern around the
correlation of Eq. (9).

2. Training and testing on HERWIG hardly ever allows the network to confidently identify
gluons with µpred ≲ 0.1.

3. Training on PYTHIA and testing on HERWIG identifies at least some gluons with as small
µpred as training and testing on PYTHIA.

Looking at the σpred-distribution, the results from training on PYTHIA look as expected as
long as we test on PYTHIA jets, but tested on HERWIG a slight shoulder around σpred ∼ 0.07
develops into a second peak. This peak corresponds to jets or phase-space configurations
where the PYTHIA training does not allow for a confident application to HERWIG jets. Second,
the general uncertainty after training on HERWIG jets peaks at larger σpred, indicating that the
network faces difficulties to extract the relevant features for the tagging, but also drops off at
smaller σpred values than the PYTHIA trainings. This reflects the problem with the single main
feature nPF, as expected from our discussion in Sec. 2.1.

Finally, the four lower panels in Fig. 6 show the per-jet correlation of the predictive means
and standard deviations. Again confirming our suspicions from Sec. 2.1 that training on HER-
WIG jets is not completely stable, leading to slight irregularities of the scattering pattern around
the inverse parabola predicted by Eq. (9).

High-level observables

We can trace back the problems with the performance and stability of the HERWIG training to
the high-level observables of Eq. (4). In Fig. 7 we show two of the most interesting kinematic
variables in slices of µpred, the probabilistic output of BPN-Lite. We know already that nPF is
the leading discriminating feature separating quarks from gluons, while C0.2 is the only actual
correlator amongst the standard high-level observables. In the upper panels we show PYTHIA

jets, in the lower panels HERWIG jets. The slices are bases on consistent training and testing
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Figure 7: Kinematic distributions defined in Eq. (4). We train the BPN-Lite tagger
consistently trained and tested on PYTHIA (upper) and on HERWIG (lower). The his-
tograms are normalized such that they reflect the fractions of jets in the respective
slices in µpred, extracted from consistent testing.

on the two samples. For µpred > 0.6 the two distributions agree, as expected for correctly
identified quarks.

While the two nPF-distributions are very similar for correctly identified quark-like jets with
µpred > 0.6, differences appear towards the gluon regime and become quite dramatic for
correctly identified gluons with µpred < 0.1. Requiring increasingly small µpred values for more
and more confidently identified gluons, the fraction of jets remaining in these slices from the
PYTHIA sample is much larger than it is for the HERWIG sample. While for PYTHIA jets values
nPF > 60 indicate confidently identified gluons, HERWIG gluons are harder to identify and
typically require nPF > 70 to lead to the rare occurrence of µpred < 0.1. In the right panels
we show the correlator C0.2. While the main difference is the number of jets in the individual
slices, we also see that the secondary maximum around C0.2 > 0.8 is predominantly, but not
exclusively populated by gluon jets.

Predictive uncertainties

Finally, we can see what the predictive uncertainties tell us in addition to this information from
the network performance. For a given tagger the predictive mean µpred and the predictive
standard deviation σpred are strongly correlated through Eq. (9), but this argument does not
hold for different training datasets. In Fig. 8 we show the predictive uncertainties the BPN-Lite
tagger extracts when training and testing on all possible combinations of PYTHIA, HERWIG, and
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Figure 8: Correlation between the predictive mean and average uncertainty from the
BPN-Lite tagger for different combinations of training and testing data.

SHERPA. In the ranges µpred ∼ 0.1 . . . 0.9 the different training samples define the size of the
predictive uncertainty.

The ranking of the three generators providing the training dataset is independent of the
test sample. This confirms that the predictive uncertainty of the Bayesian network reflects
almost entirely limitations in the training data. While µpred andσpred are correlated for a given
training dataset, theσpred values in a given range of µpred are not correlated with the respective
µpred values for different generators. For instance, the poorly performing HERWIG training
might not exploit features optimally, but it is less affected for instance by the stochasticity of the
training data. We also see that any kind of training on PYTHIA and HERWIG will provide smaller
uncertainties on the independent SHERPA data than a Bayesian network trained on SHERPA and
tested on SHERPA. We again emphasize that this kind of behavior should not appear for µpred,
because consistent training should provide better performance than inconsistent training, but
it can happen for σpred, as it reflects limitations of the training dataset only.

4 Resilient interpolated training

Once we have understood what the physics issues and the ML-implications with the PYTHIA

and HERWIG training datasets are, we can follow the setup from the beginning of Sec. 3 and
see how to best deal with two significantly different training datasets, when the tasks is to
identify quarks in a third, independent dataset (SHERPA). This corresponds to the standard
ATLAS and CMS strategy, which is to train ML-classifiers on Monte Carlo simulations, under-
stand their behavior, and then apply them to data. The major drawback of this strategy is a
generalization error whenever simulations do not reproduce data perfectly. Such a generaliza-
tion error can introduce a bias, but at the very least it is leading to non-optimal performance.
A re-calibration should remove biases, but it will not improve poorly trained taggers. We pro-
pose a flexible choice of training data, defining an optimal training dataset by evaluating the
tagger performance on an independent calibration dataset.

A related question is how to estimate systematic uncertainties related to the choice of
training data. In general, whenever uncertainties can be described reliably, it is preferable to
include the corresponding nuisance parameters in the analysis, instead of removing a model
dependence through adversarial training [5]. Decorrelating theory uncertainties induced by
different datasets is especially tricky, since it enforces an insensitive direction in feature space
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Figure 9: Bayesian ParticleNet-Lite, trained on reweighted HERWIG → PYTHIA jets
and tested on PYTHIA jets. The curves should be compared to those in Fig. 6.

and does not allow us to claim that a general dependence on different training datasets is
significantly reduced [6].

In the case of HERWIG vs. PYTHIA training for quark–gluon tagging the situation would be
even worse, because the two datasets are systematically different in a way that is fully cor-
related with the features used for tagging. Decorrelating the difference of the two datasets
would effectively remove nPF from the available features and render the tagger useless. In-
stead, we need to find a way to best train the tagger and assign an uncertainty to this choice
of training data.

Interpolated training samples

To add some resilience to the otherwise extreme choice of training either on HERWIG or on
PYTHIA, we would like to use a combination of the two datasets for a stable training, bench-
marked on the independent SHERPA data. There are, at least, two ways to interpolate between
the two training datasets. First, we simply train the network on mixtures of quarks from PYTHIA

and HERWIG vs. mixtures of gluons from PYTHIA and HERWIG in the same proportions,

HERWIG training
0≤r≤1←−−−→ PYTHIA training . (10)

The interpolation parameter r for the mixed sample is the fraction of PYTHIA jets in the training
dataset.

An alternative method to achieve the same interpolated training is to train a discriminator
on PYTHIA vs. HERWIG quark and gluon jets and to re-weight the HERWIG jets to their PYTHIA

counterparts. Since each jet now comes with a weight, this method is also only defined on
jet samples. This method has the advantage that we can train the network conditional on the
interpolation parameter r = 0 . . . 1, to stabilize the training. In our case, the discriminator
between HERWIG and PYTHIA jets is the same BPN-Lite network used to tag quarks vs. gluons.
We use the same settings as in Tab. 2 and the same loss function as in Eq. (8). The only
difference it that for the HERWIG vs. PYTHIA case we use generator truth-labels instead of jet
truth-labels. We train the HERWIG vs. PYTHIA discriminator for quarks and gluons separately.

Using the per-jet reweighting factors from the classification network,

w(x i) =
pPY(x i)
pHE(x i)

, (11)
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Figure 10: Performance of the interpolated training on HERWIG → PYTHIA, using
mixed samples (upper) and conditional reweighting (lower). The performance is
tested on pure HERWIG, PYTHIA, and independent SHERPA data. The error bars reflect
six independent network trainings.

we can train a quark–gluon classifier on wr -reweighted HERWIG jets. The weights enter the
BPN-Lite loss function of Eq. (8) as

LBPN = −
1
M

M
∑

i=1

w(x i)
r log p(yi|x i ,ω) +

1
2N

∑

weights ω j

�

µ2
j +σ

2
j − logσ2

j − 1
�

, (12)

and the reweighting exponent r is used as an additional feature input, uniformly sampled from
[0,1] during training. In Fig. 9 we illustrate how the conditional reweighting network works
on HERWIG jets. We show the distributions of the predictive mean µpred and the predictive
uncertainty σpred for a tagger trained conditionally on the weighted samples and tested on
PYTHIA jets. In the limit r → 1 the results approach the consistent PYTHIA training and testing
shown in Fig. 6.

Optimized training data and uncertainties

The new aspect in this section is the performance of the interpolated training on the indepen-
dent SHERPA data. Now, r can be understood as a hyperparameter of the network training, so
we can choose an optimal value from the independent calibration sample, in our case SHERPA.
The actual tagging performance of the two methods of interpolated training is shown in Fig. 10,
with mixed samples in the upper panels and reweighting in a conditional network setup in the
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Figure 11: Performance of the interpolated training on HERWIG→ PYTHIA, using con-
ditional reweighting. The performance is tested on equal parts of HERWIG, PYTHIA,
and SHERPA jets. The error bars reflect six independent network trainings.

lower panels. First, the results of the two methods are completely consistent with each other.
They are also consistent with our previous results; for r = 1 the performance on all three
test datasets approaches the results from proper PYTHIA training in Fig. 5. Similarly, in the
limit r = 0 we reproduce the performance of HERWIG-based training. In between, we observe
a continuous and featureless performance drop from PYTHIA to SHERPA training. Compar-
ing the two methods, the conditional reweighting setup is smoother than the mixed sample
training. Finally, after optimizing the interpolated training sample, the achieves performance
comes very close to the consistent SHERPA training and testing.

As a side remark, while testing on SHERPA jets leads us to conclude that a choice r → 1
provides the optimal tagging performance, we can also test the interpolated training on com-
bination of HERWIG, PYTHIA, and SHERPA jets. Because the power of the main tagging features
in the SHERPA dataset tends to lie in between HERWIG and PYTHIA, shown in Tab. 1, an inter-
polated training with r ≈ 0.5 now gives the best tagging performance as shown in Fig. 11.

After optimizing the performance on a calibration dataset, we can also vary the interpo-
lation parameter r around its optimal value to estimate the uncertainty from our parameter
choice. In the lower panels of Fig. 10 we see that for our setup the uncertainty from optimizing
in the range r ≈ 0.5 . . . 1.0 are significantly smaller than the variation from different network
trainings. Strictly speaking, the performance gap even of the best training on the combined
PYTHIA and HERWIG sample is significant, gauged by the uncertainty from the choice of r
and from different trainings. While our example interpolates between two samples, this kind
of uncertainty estimate can easily be generalized to many training setups with a conditional
reweighting network.

Training-related, predictive uncertainties

We can make use of the uncertainty-aware BPN-Lite tagger to provide the uncertainties σpred
for the interpolated training shown in Fig. 12. In analogy to the performance test in Fig. 10
we now show σpred as a function of the interpolation parameter r. We know from Fig. 8
that the predictive uncertainties are given by the training data, and we can confirm that the
interpolated training reproduces the small HERWIG uncertainties for r = 0 and the slightly
larger PYTHIA uncertainties for r = 1. The reweighted and less consistent sample does not
pose a challenge to the training, and the induced generalization errors are not large enough to
affect the results for the different test datasets. As alluded to before, the interpolated training
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Figure 12: Predictive width for interpolated training on HERWIG → PYTHIA, using
conditional reweighting. The error bars indicate the ranges from six independent
trainings.

on PYTHIA and HERWIG comes with smaller uncertainties than consistent training on SHERPA,
even when tested on SHERPA data. This can make sense, if the predictive uncertainties just
reflect limitations in the training, for instance noise or stochasticity.

Calibration and uncertainties

One measurement where we expect the generalization error to appear is the calibration of the
different taggers. In principle, the Bayesian PN-Lite tagger should be calibrated, but of course
the calibration is only guaranteed when we train and test on consistent data. Any deviation
from this consistency is expected to lead to a poorer calibration. In the left panel of Fig. 13 we
first confirm that the consistent training and testing leads to well-calibrated taggers over the
entire tagging score.

The picture changes when we train the tagger conditionally on the HERWIG–PYTHIA inter-
polation and evaluate the calibration on the independent SHERPA sample. In the right panel of
Fig. 13 we see that HERWIG training leads to a well-calibrated tagger on the SHERPA dataset,
reflecting the fact that the physics properties behind the two samples are similar. On the other
hand, training on PYTHIA data leads to a poorly calibrated tagger on SHERPA data. Here, the
fraction of correctly identified quark jets is lower than the score, which means the tagger is
overconfident. This is consistent with PYTHIA being the dataset where it is easiest to separate
quarks from gluons.

Because the change in the calibration curve reflects a more dramatic r-dependence than the
network performance in Fig. 10 and the predictive uncertainty in Fig. 12, it provides the best
handle on the generalization error which arises when we train a tagger flexibly on different
generated samples and apply it to actual (calibration) data.

To summarize our findings from the interpolated training between HERWIG and PYTHIA and
testing on SHERPA: if we are interested in the tagging performance only, we need to optimize
r → 1, corresponding to training on pure PYTHIA jets. When we want to minimize the Bayesian
uncertainties from the training data, training with r → 0, or on HERWIG, will give the smallest
predictive uncertainties. Finally, when we want to maintain the tagger calibration, we again
need to train on r → 0 (HERWIG). Even in ML-applications there is no one size that fits all.
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Figure 13: Left: calibration curves for consistent PYTHIA and HERWIG training and
testing. Right: the same calibration curves using conditional HERWIG → PYTHIA

reweighting on the training data, tested on SHERPA. We also show the benchmark
results from training on pure HERWIG and PYTHIA jets, corresponding to r ∈ {0, 1}.

Continuous calibration

If it possible to train a tagger on a continuous interpolation between different datasets, the
same kind interpolation should be possible between a simulated training dataset and an ap-
proximately labeled calibration dataset. A reliable training dataset should then be transferable
into the actual data continuously, and without major changes in the performance and the be-
havior of the ML-tagger.

Instead of the interpolated training of Eq. (10), we now look at a triangle, defined by
flexible training on an interpolated HERWIG–PYTHIA dataset and an additional interpolation
between the training data and the independent SHERPA data,

HERWIG/PYTHIA training
0≤r≤1←−−−→ SHERPA training . (13)

In this scheme, we can interpolate several ways, within the training data, as described before,
and from any kind of training data to the calibration data. The calibration data will not be
properly labeled, so we can either rely on an approximate labeling or apply classification with-
out labels [51]. The only tool required to implement this complex interpolation program is
the same ParticleNet classification network that is used for the actual tagging task.

In Fig. 14 we illustrate the network training on a continuous interpolation between the
simulated data and the calibration data. The benchmark performance is defined by the con-
sistent SHERPA training and testing. As expected, there is hardly any change in performance
when we train on PYTHIA jets, which means that the calibration of the tagger can focus on
the correct calibration. The situation is different for HERWIG training data, where the per-
formance indicates a generalization gap, but the calibration of the tagger is stable across the
interpolation parameter. A situation like the one shown in Fig. 14 indicates that training the
tagger on simulations (PYTHIA) and applying it to data is, essentially, optimal, with a very
small uncertainty due to the generalization.

5 Conclusions

Now that it has become clear that ML-jet taggers will provide a transformative performance
boost to a huge number of LHC analyses, we should turn our attention to aspects like resilience,
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Figure 14: Performance of the interpolation between training and test data, using
conditional reweighting PYTHIA → SHERPA (upper) and HERWIG → SHERPA (lower).
The performance is benchmarked on pure HERWIG, PYTHIA, and SHERPA data. The
error bars reflect six independent trainings.

uncertainties, control, or explainability. None of these are particularly strong points for classic
multivariate taggers, so we again expect ML-taggers to further outperform traditional methods.

As long as we train taggers on simulations and test them on, or apply them to, an inde-
pendent dataset, generalization errors will limit their performance, even if we remove biases
through calibration. These generalization errors contribute to the theory uncertainty, specifi-
cally the dependence of the analysis outcome on the Monte Carlo simulation.

First, we have shown for quark–gluon tagging based on HERWIG and PYTHIA training data
that improving the resilience through adversarial training is bound to fail, because the number
of constituents is not only the leading tagging feature, it is also the main difference between
the two simulations.

Just relying on two discrete datasets makes it hard to properly evaluate the corresponding
theory uncertainty. We proposed a conditional training on a continuous interpolation between
two training datasets, where the interpolation is best implemented using re-weighting through
a classification network. The continuous interpolation parameter allows us to optimize the
tagging performance and to estimate the related uncertainty. Our method can be generalized
to larger numbers of training datasets and to continuous parameters describing the training
datasets.
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A Bayesian version of the ParticleNet(-Lite) subjet tagger allows us to track the stability of
the conditional training and identify training-related uncertainties or even a breakdown of the
interpolated training. For our application to quark–gluon tagging, trained on an interpolation
between HERWIG and PYTHIA jets and tested on SHERPA jets, we find that from a pure perfor-
mance perspective, training on PYTHIA gives the best results. They are very close to training
on SHERPA and indicate a very small generalization gap. In contrast, if we are interested in
small predictive uncertainties from the Bayesian network, we best train on HERWIG data. Sim-
ilarly, for in a stable calibration HERWIG training also outperforms PYTHIA training, reflecting a
common physics picture between HERWIG and SHERPA. For a test dataset combining the three
generators, an interpolated training dataset right in between HERWIG and PYTHIA performs
best. This indicates that different objectives require a flexible approach to simulation-based
training.

Finally, we have speculated that our continuous interpolation between training samples can
be generalized to an interpolation between training and calibration data, turning the actual
calibration into a continuous procedure, where stability issues should be easily detectable.
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