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Abstract

We utilize neural network quantum states (NQS) to investigate the ground state proper-
ties of the Heisenberg model on a Shastry-Sutherland lattice using the variational Monte
Carlo method. We show that already relatively simple NQSs can be used to approximate
the ground state of this model in its different phases and regimes. We first compare
several types of NQSs with each other on small lattices and benchmark their variational
energies against the exact diagonalization results. We argue that when precision, gener-
ality, and computational costs are taken into account, a good choice for addressing larger
systems is a shallow restricted Boltzmann machine NQS. We then show that such NQS
can describe the main phases of the model in zero magnetic field. Moreover, NQS based
on a restricted Boltzmann machine correctly describes the intriguing plateaus forming
in magnetization of the model as a function of increasing magnetic field.
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1 Introduction

The neural network quantum states (NQSs) [1–10] have recently emerged as a promising alter-
native to common trial states in variational Monte Carlo (VMC) studies of quantum many-body
problems, especially lattice spin models. This research is driven by the fact that neural net-
works (NNs) are universal function approximators [11] as well as by the astonishing progress
in the field of machine learning (ML) in general. These advancements already led to a number
of effective ML applications suitable for the basic research of quantum systems and technolo-
gies [12–15]. For example, even simple NQSs, such as the restricted Boltzmann machine
(RBM), allow us to investigate the ground-state properties of various quantum spin models.
It was already shown that RBM can outperform standard trial states in the variational search
of the ground-state energies of the antiferromagnetic Heisenberg model [1]. Very promising
results have also been obtained for frustrated spin systems, such as the J1− J2 model [16–19].
Here NQSs can be trained to capture the nontrivial sign structure of the ground state and in
some cases have even achieved state-of-the-art accuracy [20] that delivers cutting edge results.
Nevertheless, two-dimensional frustrated quantum spin models continue to be a challenge for
NQSs as well as for other methods [21]. For example, it is not clear yet how to choose an op-
timal neural network architecture for a particular frustrated system, how important is the role
of the trial state symmetries in the learning process, or if an NQS with favorable variational
energy also encodes a physically correct state.

Not all of these issues are specific to NQSs. Results of any VMC calculations are dictated
to a large extent by the properties and limitations of the trial states used. An inappropriately
chosen variational state, that is, one with a small overlap with the ground state, can still give a
good estimate of the ground-state energy [22]. If some additional information is known about
the ground state, e.g., its symmetries, one can pick a more restrictive variational state function.
However, this is often not an optimal strategy if the goal is to find new phases or to locate a
phase boundary. In principle, NQSs could be a remedy for such problems. It is reasonable to
expect that a single, but expressive enough, NQS can be used to approximate distinct phases.
This assumption is supported by the results of Sharir et al. [23] who showed that NQSs can
have even higher expressive power than matrix product states [24] and projected entangled
pair states [25] as these can be efficiently mapped to a subset of NQSs. In other words, NQSs
can be effectively utilized to a larger class of quantum states than these powerful formalisms
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which are known primarily from their usage in Density Matrix Renormalization Group (DMRG)
but are also utilized as variational states in VMC [1,22,26].

In practice, it is not yet clear how to achieve this in a general case. Despite tremendous
progress, the research of frustrated quantum spin magnets is still in the stage of testing and
developing NQS architectures for simple models, often focusing primarily on reaching the
best variational energy in particular regimes [6, 16, 17, 19]. In the present work, we aim for
a different target. We want to demonstrate that even shallow NQSs can be sufficient for the
investigation of qualitatively different ground-state orderings including states forming only
in a finite magnetic field. To this goal, we focus on the ground state of antiferromagnetic
Heisenberg Hamiltonian on Shastry-Sutherland lattice known as the Shastry-Sutherland model
(SSM) which we introduce in more detail in Sect. 2. To our knowledge, this model of frustrated
quantum spin system has not been previously addressed within the NQS context, yet it seems
to be an ideal testbed for our purposes.

SSM was already investigated by a number of methods, including exact diagonalization
(ED) techniques [27–31], quantum Monte Carlo [32], various versions of DMRG [33–38],
perturbation theory [39–42] and even quantum annealing [43]. These studies have shown
that SSM has a rich ground-state phase diagram. In a zero magnetic field these include regions
such as singlet spin dimer phase, antiferromagnetic Néel state, spin plaquette singlet phase
and probably other phases. The introduction of a finite magnetic field further complicates the
picture. Consequently, it is challenging to find a single variational function that can correctly
approximate the whole ground-state phase diagram.

In addition, there are still open questions related to the ground-state phase diagram in
zero as well as in the finite magnetic field, even in some experimentally relevant regimes of
the model. This is important because several magnetic materials have a structure topologi-
cally equivalent to SSM. The most notable examples are SrCu2(BO3)2, BaNd2ZnO5 and rare
earth tetraborides RB4 (R−−Dy, Er, Tm, Tb, Ho) [44–48]. All exhibit an intriguing step-like de-
pendence of the overall magnetization on the external magnetic field, which has been found
to be inherent to SSM [49, 50]. Here, each plateau reflects a stable nontrivial spin ordering.
The magnetic behavior of these materials is not yet fully understood. This together with other
open problems, e.g., the prospect of a narrow spin liquid phase in a zero magnetic field, further
motivates the investigation of SSM and its generalizations [42,51–53].

Therefore, SSM presents a model system that has the right combination of properties that
are well understood and can be used to benchmark various NQSs, and of open problems that
can be potentially illuminated by these variational techniques. This includes the possibility to
address the rather complex behavior of a system in relation to a changing magnetic field.

The present work consists of two main parts. In the first one we explore SSM by employing
a number of NQS architectures and we test them against ED results for small lattices in zero
magnetic field. Here the primarily goal is to find one or few networks that are able to capture
the main well-understood ground-state orderings of SSM. Simultaneously, we require these
NQSs to have a high chance to describe the magnetization plateaus as well. This means that
the ideal network has to give a solid approximation of the ground-state orderings even when no
conditions on the total magnetization are imposed. Consequently, we do not focus on getting
the best possible variational energy for a particular set of parameters. Rather, we require a
good approximation of the energy in distinct regimes of the model, a correct description of the
particular orderings, and reasonable computational complexity that allows the usage of the
NQS on larger lattices. We argue that when precision, generality, and computational costs are
taken into account, a shallow RBM with complex parameters is still a good choice.

In the second part, we introduce a refined learning protocol for RBM NQS and test it for a
wide range of model parameters and different network sizes. We then utilize this protocol in
the study of larger systems. We first investigate the zero magnetic field scenario and demon-
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Figure 1: (a) The Shastry-Sutherland lattice. Bonds with coupling strength J are
represented by solid lines, while bonds with J ′ by dashed ones. The letters A and B
divide the “empty” squares into two subsets, which are used to define the plaquette
order parameter.

strate that RBM is expressive enough to capture all main phases of the system. We then move
to the model in a finite magnetic field and show that, with the right learning strategy, RBM is
able to capture the magnetization plateaus crucial for the description of real materials. This
opens a possibility that NQSs could be used to investigate several open problems, such as the
existence of still opaque spin-liquid phase and other orderings predicted but not yet confirmed
in SSM.

2 Shastry-Sutherland model

SSM is described by the Hamiltonian

Ĥ = J
∑

〈i, j〉

Ŝi · Ŝ j + J ′
∑

〈i, j〉′
Ŝi · Ŝ j − h

∑

i

Ŝz
i , (1)

where Ŝi =
1
2 σ̂i is the spin-1/2 operator at the i-th site with σ̂i being the vector of Pauli

matrices. The first term represents the exchange coupling between the nearest neighbors
on a square lattice (solid lines in Fig. 1). The second term is a sum over specific diagonal
bonds arranged in a checkerboard pattern (dashed lines in Fig. 1). Note that these sums are
interpreted in terms of nodes, i.e., there is no double counting. Both coupling constants are
antiferromagnetic (J , J ′ > 0) and we set J ′ as the unit of energy in the whole paper. The last
term describes the influence of the external magnetic field h pointing to the z-direction.

2.1 Basic properties of the ground state

The basic structure of the SSM ground state phase diagram is well understood. As illustrated
in Fig. 2, the SSM at h = 0 has at least three distinct ground-state orderings. These are the
dimer singlet (DS) state for (J ′ ≫ J), the Néel antiferromagnetic (AF) ordering (J ′ ≪ J) and
the plaquette singlet (PS) state in between. The phase transition from the DS to the PS state
is of the first order [29], but the nature of the transition from PS to AF is still in debate.
The ED study of Nakano and Sakai [30] suggests that the supposed PS phase actually consists
of at least two distinct phases. In addition, some recent studies argue that there is a so-called
deconfined quantum critical point (DQCP), which separates a line of first-order transitions or,
potentially, a narrow gapless spin liquid (SL) phase [37,38,54].
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Figure 2: Illustration of the SSM phase diagram for small h based on the results
from Ref. [38]. There is a first-order transition at J/J ′ ≈ 0.675 between DS and
PS phases. The gray squares in PS depict the plaquette singlets. The nature of the
transition between the PS and AF phases remains unresolved. It is not clear whether
there is a narrow spin liquid phase, a DQCP or just a second order transition in the
region labeled with a question mark.

Nevertheless, even without focusing on the possible DQCP and SL phase, the three main
orderings, namely DS, PS, and AF, already pose a sufficient challenge for a single variational
state because of their distinctive character and symmetries.

The DS phase is formed by an exactly (analytically) accessible state [55]. Numerous ana-
lytical and numerical methods have verified that it remains the ground state up to J/J ′ ≈ 0.675
[29, 30, 37]. In the limiting case of J ≪ J ′, the system is equivalent to an ensemble of inde-
pendent spin dimers, each of which forms a singlet ground state. The DS ground state is thus
a direct product of dimer singlet states

|ψ〉DS =
⊗

〈i, j〉′

1
p

2

�

|↑↓〉i, j − |↓↑〉i, j
�

. (2)

As such, it is antisymmetric with respect to the exchange of two intradimer spins and sym-
metric with respect to transformations rearranging only the spin pairs without swapping the
intradimer spins. The energy of the ground state of the dimer is

EDS = −
3
4

J ′ND , (3)

where ND is the number of dimers and ND = N/2 for lattice with periodic boundary conditions.
The PS phase can be understood as weakly coupled plaquette singlet states illustrated in

Fig. 2. Plaquette singlet is a ground state of an isolated 4-spin Heisenberg cluster with four
bonds arranged in a cycle [29]. The pattern of the plaquette singlets in Fig. 2 indicates that
the PS state is two-fold degenerate.

It is important to stress again that the relevant range J/J ′ discussed here (0.675 ≲ J/J ′

≲ 0.82) could be much more complex. As mentioned above, it has been argued that at
J/J ′ ≈ 0.70 the PS phase splits into two distinct regions with quantitatively different behav-
iors [30,37,38,54]. For the sake of simplicity, we omit this possibility in most of our discussion.
Nevertheless, this might be important for more detailed future studies.
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Figure 3: A simplified illustration of magnetization as a function of the external mag-
netic field h and coupling constant J inspired by Ref. [39]. A more detailed illustra-
tion would contain additional steps (e.g., supersolid phase); however, their actual
position and width are not clear yet. Singlet and triplet arrangements are displayed
for some of the plateaus (namely, mz = 1, 1/2, 1/3 and 1/4 plateaus are shown).

The AF phase stabilizes when J/J ′ ≳ 0.82. When J ′ becomes negligible, the ground state
of SSM is approaching the ground state of the antiferromagnetic Heisenberg model with only
nearest-neighbor bonds on a square lattice. Although this state is not analytically accessible, it
has previously been explored by Monte Carlo (MC) simulations [27]. Using the first-order cor-
rection to these quantum MC results, the energy of the SSM in the AF phase was estimated [27]
to be

EAF = (0.102J ′ − 0.669J)N , (4)

where N is assumed to be large.
A more detailed discussion of the symmetries of these three states is postponed to the

Appendix C. Note that the three main phases DS, PS, and AF are reasonably understood, and
simultaneously, they differ qualitatively. This is one of several qualities of the model that make
the SSM a suitable testbed for NQSs.

So far we have discussed the h= 0 case. When we introduce a finite magnetic field to the
DS phase in Eq. (2), some dimers can morph into triplet states. These triplets are formed in
repeating patterns, e.g., checkerboard, stripes, or more complex configurations (for illustra-
tion, see Fig. 3), giving rise to stable plateaus of constant magnetization in increasing magnetic
field.

Because each plateau signals a distinct stable ordering, it also presents a challenge for the
NQSs. Particularly so because a finite magnetic field does not allow for a simple restriction
of the Hilbert space to its zero magnetization part. This restriction was heavily utilized in
previous NQS investigations of quantum spin models. Note that it is mostly these plateaus
that make SSM interesting experimentally. Good examples are SrCu2(BO3)2, BaNd2ZnO5,
CaCo2Al8 and rare-earth tetraborides RB4 (R−−Dy, Er, Tm, Tb, Ho)) [44–48] which all exhibit
the intriguing step-like dependence of the overall magnetization on the external magnetic field
or show magnetic frustration and can be modeled by SSM or its generalizations.
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3 Methods

3.1 Variational Monte Carlo and machine learning

VMC is a standard method that allows us to stochastically evaluate the expectation values of
quantum operators without the need to probe the full Hilbert space. Suppose Ĥ is a fixed
Hamiltonian operator and |ψθ 〉 is a trial wave function that depends continuously on a set of
parameters θ . VMC searches for a ground state of Ĥ or its approximation in a variational way.
The goal is to minimize the variational energy

Eθ = 〈Ĥ〉θ :=
〈ψθ |Ĥ|ψθ 〉
〈ψθ |ψθ 〉

≥ E0 (5)

with respect to the vector of parameters θ , where E0 is the true ground-state energy providing
the lower energy bound. We utilize a fixed orthonormal basis {|σz〉} of the z-projected 1

2 -spins
and use the following notation

|ψθ 〉=
∑

σz

ψθ (σ
z) |σz〉 , where 〈σz|ψθ 〉 ≡ψθ (σz) , (6)

as is typical in NQS studies [56]. The variational energy in Eq. (5) is, in the jargon of ML,
a loss function. Using this loss function, the parameters θ are optimized to obtain the lowest
energy state that the chosen variational function can represent. In our calculations, we use
the VMC implementation from the NetKet NQS toolbox [9,56].

In general, the form of the trial wave function ψθ (σz) restricts the optimization process
to a subset of the Hilbert space. An improper choice of the ansatz can bias the approximation
towards a wrong phase or even can make the approach to the correct state impossible. Clearly,
this is where one can expect that NQSs could outperform standard variational states due to
their high expressiveness.

3.2 Neural network quantum states

Here, we explore several NQS architectures [6,9]. We chose these particular networks due to
their successful application in previous studies of other Heisenberg models.

Restricted Boltzmann machine (RBM) is a generative artificial NN constituted of a visible
layer with N nodes (one for each lattice site) fully connected with a single hidden layer with
M = αN nodes (hidden degrees of freedom) where α is the hidden layer density [1]. It can be
used to define an NQS

logψθ (σ
z) =

∑

i

σz
i ai +

∑

j

log

�

2 cosh

�

∑

i

Wi jσ
z
i + b j

��

, (7)

where the vector θ contains the variation network parameters θ = {a, b,W}. This NQS can be
interpreted as a one-layered fully-connected neural network with logcosh activation function
followed by a summation of the outputs and additional summation of visible biases [1]. Note
that complex-valued parameters are necessary in order to represent generally complex-valued
wave function outputs.

The size of the visible layer N is fixed by the size of the investigated spin system. How-
ever, the expressive power of RBM can be modified by changing α. The number of variation
parameters of RBM is O(αN2).

Modulus-phase split real-valued RBM (rRBM): Complex parameters, which generally
make the learning process harder, can be avoided by introducing two independent real-valued
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NNs [18,57] to represent the modulus A(σz) and the phase Φ(σz) of the wave function sepa-
rately

logψθ (σ
z) = A(σz) + iΦ(σz) . (8)

Unlike in the Ref. [57]where rRBM architecture proved to be advantageous in the investigation
of transverse-field Ising model, we have experienced that for SSM, the rRBM shows worse
results than complex-valued RBM. This is in accord with the recent study of other frustrated
systems, namely the J1 − J2 model [19]. Consequently, we discuss the results of this network
only briefly in Chapter 4.1 and focus predominately on complex-valued architectures.

Symmetric variant of RBM (sRBM): Carleo and Troyer [1] used translational symmetries
to reduce the number of variational parameters in RBM. They replaced the fully connected
layer with a convolutional layer and set the visible biases to the constant value a f across each
convolutional filter f . The resulting expression for its output is

logψθ (σ
z) =

F
∑

f=1

∑

g∈G

�

a f
N
∑

i=1

Tg(σ
z)i

︸ ︷︷ ︸

N
∑

i
σz

i=mz

+ log

�

2cosh

� N
∑

i=1

w f
i Tg(σ

z)i + b f

��

�

. (9)

Here Tg denotes a symmetry transformation of a spin configuration according to an element
g from the symmetry group G of order |G|. The index f denotes different feature filters. The
number of these filters F determines the size of the network M = F |G|. The resulting sRBM
has fewer variational parameters than the RBM by a factor of |G|. We can view this approach
as binding the values of some of the O(αN2) parameter making the total asymptotic number
of parameters O (αN). Carleo and Troyer [1] also showed that this approach significantly im-
proves the convergence and accuracy of the ground states of the antiferromagnetic Heisenberg
model on a square lattice. However, this approach suffers from two crucial disadvantages in
more general circumstances. The first drawback is that visible biases are inherently constant
for each filter f which significantly lowers the expressiveness of the network as discussed later
in this section. As we show in Appendix B, the sRBM architecture cannot be modified to ease
this condition while preserving symmetries. The second drawback is that sRBM is not applica-
ble if the ground state does not transform under the trivial irreducible representation (irrep)
of a given symmetry group.

To illustrate the problem, let us consider a single spin dimer (i.e., a single bond of SSM with
J = 0, J ′ = 1 and h= 0). Its ground state is a singlet |ψ0〉= (|↑↓〉 − |↑↓〉)/

p
2. The symmetry

group of the single-dimer Hamiltonian contains just two operations – an identity and a swap
of both spins G = {g12, g21}. If we apply the swap operation to the ground state, we obtain
T̂g21
|ψ0〉= (|↓↑〉 − |↓↑〉)/

p
2= −|ψ0〉. Although this state is a multiple of the ground state, we

see that it does not transform under the trivial irrep because one of its characters is χg21
= −1.

Since sRBM represents only states with T̂g |ψ〉 = |ψ〉; ∀g ∈ G, this symmetry should not be
used in sRBM. Note that we do not strictly follow this rule and sometimes use all available
lattice symmetries. The reason is that this leads to NQS with a small number of parameters
that are easy to optimize. The resulting variational energy can then be compared with the
energy obtained with RBM with the same α to check how well the full network is optimized,
i.e., if it leads to lower energy than sRBM. If not, this signals that the variational energy of
RBM can be lowered by better learning.

Projected RBM (pRBM): Recently, Nomura [58] introduced an alternative way to sym-
metrize RBM (or any other NN) using a quantum-number projection (also called incomplete
symmetrization operator)

ψG
θ (σ

z) =
∑

g∈G

χg−1ψθ (Tg(σ
z)) , (10)
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where g is an element of the given symmetry group G and χg is its character from
the irrep in question. The wave function on the right-hand side may be arbitrary and
it can be shown that the function on the left-hand side satisfies the desired transfor-
mation property ψG

θ
(Tg(σz)) = χgψ

G
θ
(σz) in case of one-dimensional representation or

ψG
θ ,a(Tg(σz)) =

∑d
b=1 D(g)abψ

G
θ ,b(σ

z) for more-dimensional irreps, where functionsψG
θ ,a form

a basis of d-dimensional irrep D(g)ab. Unfortunately, pRBM makes the learning process of NN
much more expensive than sRBM. The computational time increases by a factor of |G| pro-
ducing a computational cost O(αN2|G|). On the other hand, pRBM implementation does not
suffer from the problems mentioned for sRBM and it can be generalized by setting mutually
independent visible biases (see Appendix B).

Group-convolutional NN (GCNN): Group equivariant convolutional NNs represent a pro-
mising class of NNs built inherently on symmetries. They were proposed by Cohen and Ni [59]
as a natural extension of the well-known convolutional neural networks. While convolutional
networks preserve invariance under translations, GCNN are equivariant under the action of an
arbitrary group G (which may contain a subgroup of translations). Roth and MacDonald [60]
further improved GCNNs so that they can transform under an arbitrary irreducible represen-
tation of G, which is more suitable for NQSs for SSM. GCNN can be composed of any number
of hidden layers. The first and subsequent layers are given by

f 1
g = f

� N
∑

i=1

W0
g−1 iσ

z
i + b0

�

, f k+1
g = f

�

∑

h∈G

W k
g−1h f k

h + bk

�

, (11)

where f is a nonlinear activation function (the output is typically a vector since GCNN can
have multiple parallel feature filters) and f 1

g is a 1st-layer feature vector corresponding to

group element g. The result of the last layer f K
g = f ( j)Kg , where ( j) denotes the individual

features of the layer, is then projected in a fashion similar to that of pRBM

ψ(σz) =
∑

g∈G

∑

j

χg−1 exp
�

f ( j)Kg

�

. (12)

The main advantage over symmetrizing an arbitrary deep network by the formula form
Eq. (10) is that we do not need to evaluate the forward pass of the nonsymmetric wave func-
tion |G| times. This is achieved because each layer of the GCNN fulfills equivariance. GCNN
with K layers and a typical number of feature filters F in each layer has O(FN + KF2|G|)
parameters.

Jastrow network: As a baseline, we also use a Jastrow network based on the standard
Jastrow ansatz [61,62]

ψθ = exp

 

∑

i, j

σz
i Wi, jσ

z
j

!

, (13)

where the variational parameters θ =
�

Wi, j

	

form a matrix of size N ×N . The Jastrow ansatz
is physically motivated by two-body interactions and assigns trainable parameters Wi, j to pair-
wise spin correlations. The number of its parameters scales as O(N2).

The complicated sign structure of the complex phases of the basis coefficients that form
the ground-state wave function presents a major challenge in optimizing the parameters of a
variational function of a frustrated spin system. In case of Heisenberg model on a bipartite
lattice consisting of sublattices A and B (i.e., SSM with J ′ = 0), this can be solved using the

Marshal sign rule (MSR) [63]. The MSR states that the sign of ψ(σz) is given by (−1)N
↑
A(σ

z)

where N ↑A(σ
z) is the total number of up-spins on a sublattice A. Because this alternates with

a spin-flip, it can be difficult for NN to learn the correct signs. However, it is possible to
circumvent this problem in two analogous ways.
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If the sign structure is dictated by MSR, the Hamiltonian can be gauge transformed by
changing the signs of some terms to make all wave function coefficients positive in the trans-
formed basis. In particular, we change σx → −σx and σ y → −σ y ; for ∀σ ∈ A. The same
result can be also obtained by setting the visible biases to ai = iπ/2 for i ∈ A and ai = 0 for
i ∈ B as this exactly reconstructs the Marshall sign factor (up to an overall constant factor). In
other words, the biases can be set to play the role of a Marshall basis. What is important here
is that in the general case the simple Marshall sign rule is not always applicable. Especially
problematic are systems with strong frustration [18,19,64]. The advantage of using the visible
biases instead is that their setting does not have to be known ahead, as it can be, despite possi-
ble technical difficulties, learned. Therefore, it is beneficial to include visible biases whenever
allowed by the architecture. An additional bonus is that free visible biases also allow one to
overcome an improper initialization of weights.

4 Results

4.1 Comparison of different NQSs architectures

It is too expensive to apply all NQSs introduced above to investigate the ground-state phase
diagram of SSM at large lattices. Therefore, in the first part of our investigation, we bench-
mark these NQSs against the exact results on smaller lattices obtained by the Lanczos ED
method. The aim is to identify a network that is both expressive enough to cover various
phases and computationally tractable even for large lattices. We focus on a regular lattice with
N = 4 × 4 = 16 points and an irregular lattice with N = 20 (see Appendix A). Throughout
this paper, we apply periodic boundary conditions for all lattices used, unless explicitly stated
otherwise. The irregular N = 20 is considered because N = 16 lattice has some undesirable
properties, e.g., some extra symmetries with trivial irrep which favor symmetric networks. It
also suffers from stronger finite-size effects and does not exhibit the PS phase. On the other
hand, it is regular and easy to calculate.

We initially focus on the cases represented by J/J ′ = 0.2 (DS phase), J/J ′ = 0.9 (AF
phase), and J/J ′ = 0.63. Case J/J ′ = 0.63 was chosen because it represents a realistic case,
namely, it is the exchange parameter ratio for SrCu2(BO3)2 at ambient pressure [34]. How-
ever, because its results are qualitatively in agreement with the case J/J ′ = 0.2, we discuss
them together as the DS results. Note that we investigate the model with and without MSR.
Since the goal here is to compare different networks, we estimate the accuracy of each archi-
tecture by comparing the average energy of the last 50 learning iterations E50 with the exact
result Eex. Note that this means that we are not using just the lowest obtained energies but
also test stability of the learning method. Consequently, the value of E50 is typically greater
than zero even when the network is able to reproduce the state exactly. The same computa-
tional protocol is used for each architecture. In particular, we used 2000 MC samples1 and
1000 training iterations for three values of fixed learning rates (0.2, 0.05,0.01). Each partic-
ular combination of architecture and basis (MSR or direct) was computed four times for each
learning rate (yielding 12 independent runs for each case of interest). This is to eliminate oc-
casional events when NN gets stuck in a local energy minimum too far from the ground state.
Zero magnetization was not implicitly assumed (i.e., we used local single-spin-flip Metropolis

updates in VMC). We summarize our results in Table 1 where the values are min
i

|E i
50−Eex|

Eex
, with

i enumerating the twelve independent runs.
There are several results in Table 1 which were important for our decision on which net-

work should be used in the detailed study of the phase diagram in larger lattices. Starting

1For N = 16, exact samples were used. For details, see ExactSampler in [9].
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Table 1: Comparison of the precision (lower is better) of NQS variational results

on lattices N = 16 and N = 20. The listed values were calculated as min
i

|E i
50−Eex|

Eex
,

where E i
50 is the average energy of the last 50 iterations of the i-th run. A number of

variational parameters are also shown for each architecture. The difference between
GCNN and GCNNt is that for GCNN we used all the symmetries and the correct char-
acters for the expected ground state, whereas GCNNt utilized only the translation
symmetry. The error 0.0 here means a relative error less than 10−7 which we con-
sider as a “numerical precision” due to the standard MC errors which are typically
larger even for L = 16.

N = 4× 4 J/J ′ = 0.2 (DS) J/J ′ = 0.63 J/J ′ = 0.9 (AF)
architecture params direct MSR direct direct MSR

Jastrow 256 5.8×10−5 1.1×10−5 6.3×10−6 6.2×10−2 2.1×10−2

RBM (α= 2) 560 1.9×10−5 1.6×10−5 1.7×10−5 4.7×10−3 5.1×10−3

RBM (α= 16) 4368 2.8×10−5 1.4×10−5 1.9×10−5 1.6×10−3 1.1×10−3

rRBM (α= 2) 1088 2.3×10−4 2.1×10−4 5.2×10−5 8.3×10−3 7.9×10−3

rRBM (α= 8) 4352 2.3×10−4 2.2×10−4 1.1×10−5 9.3×10−3 7.8×10−3

sRBM (α= 4) 18 0.0 0.0 3.8×10−6 4.8× 10−3 2.5× 10−3

sRBM (α= 16) 69 0.0 0.0 2.7×10−6 8.9×10−4 3.8×10−4

sRBM (α= 128) 545 0.0 0.0 4.9×10−6 1.3×10−3 8.5×10−5

pRBM (α= 0.5) 136 7.9×10−5 1.2×10−4 6.9×10−5 1.5×10−3 8.5×10−4

pRBM (α= 2) 544 9.1×10−6 2.2×10−5 6.5×10−6 7.1×10−5 2.0×10−5

GCNN 2188 6.2×10−6 3.6×10−6 1.2×10−5 3.2×10−5 3.6×10−5

GCNNt 268 4.2×10−7 5.1×10−7 4.0×10−7 4.9×10−3 4.7×10−3

N = 20 J/J ′ = 0.2 (DS) J/J ′ = 0.63 J/J ′ = 0.9 (AF)

Jastrow 400 1.1×10−5 1.0×10−3 2.5×10−3 1.4×10−1 3.0×10−2

RBM (α= 2) 860 2.2×10−5 1.4×10−5 7.5×10−4 6.6×10−3 6.2×10−3

RBM (α= 8) 3380 1.2×10−5 1.7×10−5 1.7×10−3 2.2×10−3 2.1×10−3

sRBM (α= 4) 85 1.2×10−1 1.5×10−1 1.4×10−1 5.0×10−2 1.4×10−3

pRBM (for AF) 336 2.3×10−1 2.3×10−1 5.2×10−2 3.5×10−3 3.0×10−3

pRBM (for DS) 336 7.1×10−4 6.8×10−5 1.2×10−3 4.4×10−2 4.7×10−2

with RBM, one can see that networks with α = 2 (560 parameters for N = 16 and 860 for
N = 20) and 8 (3380 parameters for N = 20) and 16 (4398 parameters for N = 16) show
similar precision, where the significantly larger networks are notably better (approximately
three times) only in the AF phase. For the general case, considering the computational costs,
this favors the computationally less demanding network with α = 2. Also interesting is the
comparison with the Jastrow network. Both architectures have comparable precision in the
DS phase for N = 16, however, in the AF phase and in the DS phase for N = 20 with MSR,
RBM is one or even two orders of magnitude more precise than the Jastrow ansatz.

For N = 16, the sRBM architecture demonstrates superior performance. The full automor-
phism group of the finite lattice has been used in its implementation. Despite the resulting
small number of variational parameters, it shows excellent precision. In fact, a significant
increase of α is not that advantageous (compare the cases α = 4 and α = 128). In the DS
phase, the use of symmetries allowed sRBM to find the ground-state energies within the nu-
merical precision (hence the zero error). Since sRBM can be thought of as RBM with additional
constraints on the values of the weights, this already suggests that the learning protocol for
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RBM can be improved, which we demonstrate in the next section. However, it is important
to stress that the excellent results are a consequence of the special symmetries of the N = 16
lattice. Both the DS and AF states transform under the trivial irreducible representation, and
the automorphism group is therefore applicable without special treatment. This is not true for
the DS ground state in different tiles, including regular ones such as N = 6 × 6 (for a more
detailed discussion of the symmetries, see Appendix C). This is illustrated in the second part
of Table 1 where sRBM with α = 4 gives very poor results in the DS phase of N = 20 due to
the improper treatment of symmetries. In short, using symmetries in sRBM for states that do
not transform under a trivial irrep can make the variational energy significantly worse than
for simple RBM. For N = 20, sRBM also fails in the AF phase, but only when adopting a direct
basis. This implies that sRBM has trouble learning the correct sign structure of the state for
larger lattices, which can be attributed to the fixed visible biases.

The remaining architectures, namely pRBM and GCNN, show excellent accuracy for N=16.
They clearly outperform all other networks in the AF phase. However, the results at N = 20
are less convincing, especially when one takes into account that these networks are more
computationally demanding than RBM even for cases when RBM contains more parameters.
Furthermore, the precision reached required the usage of correct symmetries of the expected
state, i.e., the proper line form Table 2 in Appendix C. If one uses an improper one, i.e., if
different state is expected, as illustrated by the last two lines in Table 1, the precision can drop
by several orders of magnitude. Similarly, precision decreases significantly for both GCNN
and pRBM when we use only the group of translations instead of the full symmetry group, as
illustrated by GCNNt in Table 1. Note that for this case, the precision in the AF phase drops
to the level of a simple RBM with α = 2. The network is much better in the DS phase, but in
the following chapter, we will demonstrate that even RBM with α = 2 and modified learning
protocol can reach the numerical precision in this phase. Although we cannot exclude that
much better results could be obtained for the symmetrized pRBM and GCNN networks with
a different learning protocol, considering their much higher computational demands and the
necessity to identify a priori the correct irrep symmetries for each lattice type to make the
learning efficient, the presented results favor RBM for the study of larger clusters.

The last question to be addressed here is whether using MSR would be beneficial. Table 1
shows several cases where MSR is favorable in the AF phase (e.g., for sRBM and N = 16), but
this is not a general rule. In addition, its usage comes with a price as well. We have noticed
that the MSR basis seems to strongly favor the AF ordering even for J/J ′ where PS is already
the ground state in exact results. We will discuss this briefly when addressing larger lattices.

To wrap it up, in general, the usage of MSR basis does not lead to significantly better results.
With some exceptions, the networks presented here are able to approximate the ground-state
energy quite well even without MSR. Therefore, we will mostly omit the MSR from further
discussion. Furthermore, if the symmetry of the ground state is known, it is worth using
this information in building the NN. If not, then the usage of just translations does not lead
to a significant improvement of the precision. Fortunately, the complex-valued RBM with
visible biases can give a very good approximation of the ground-state energy without any
restrictions. Its clear advantage is that no preliminary information about the ground-state
properties is needed. As such, it is suitable for problems where the character of the ground
state or position of the phase boundary is unknown. In addition, the precision of RBM for SSM
can be significantly improved using a different learning strategy discussed in the following
section.

4.2 Investigation of the ground-state phase diagrams

Focusing solely on RBM allowed us to test several learning strategies and employ more precise
MC calculations. What follows is a description of the best learning protocol we have found,
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which we used to produce all the results discussed below. It proved to be beneficial to use
more precise MC calculations already during training. We typically generate 4000–12000 MC
samples at every sampling step. It was also more advantageous to run 10–30 independent
learnings (with random initial variational parameters) with shorter learning times than to use
few runs with a lot of learning iterations. We used approximately 2000 training iterations in
each run. During learning, we have been lowering the learning rate η by several discrete steps.
Typically, we started with η = 0.08 (≈200 iterations), then changed it to η = 0.04 (≈1600
iterations), followed by η= 0.02 (≈100 iterations), η= 0.01 (≈100 iterations) and η= 0.003
(≈50 iterations). The trained RBM was then used to calculate the expectation values of the
energy and order parameters, introduced in the next section, where we used 12–60 thousand
evaluation steps. Consequently, the Monte Carlo error bars in all the figures presented are
negligible for small lattices. The relevant absolute error comes from the learning process or
limitations of the NQS used. The state with the lowest energy (evaluated more precisely after
training) of all independent runs was kept as the final result in the following discussion. Due
to the stochastic fluctuations in the learned parameters, it was for some cases advantageous to
refine the results by fine-tuning the final state multiple times with a high number of MC samples
but a small number (5-10) of iterations and a small learning rate (η ≤ 0.001) keeping the
result with the lowest energy. Moreover, transfer learning was employed in some problematic
regimes, as described below.

4.2.1 Ground-state orderings

As already discussed, good agreement of the variational energy with the exact one does not
guarantee that the variational state correctly captures the character of the exact ground state,
i.e., that it reflects the correct phase. To examine this and with the aim to see if RBM NQS can
correctly describe the transitions between the phases, we calculate the order parameters for
the three main expected orderings. They are constructed to be large (close to one) whenever
the state is in the respective phase and small in other domains.

In particular, we define the order parameter for the DS phase as

PDS = −
4

3N

∑

〈i, j〉′




Ŝi · Ŝ j

�

, (14)

which reflects the fact that operator Ŝ1 · Ŝ2 has for isolated dimer the expectation value −3
4

(singlet state). Therefore, PDS is one in the DS phase and strictly lower in other phases.
For the PS order parameter, we use a definition based on order parameter from Ref. [38]

PPS =
1
N̄

�

�

�

�

�

®

∑

r∈A

Q̂r −
∑

r∈B

Q̂r

¸

�

�

�

�

�

, (15)

where the order parameter is given by the difference Q̂r =
1
2

�

P̂r + P̂−1
r

�

, with P̂r being the
permutation operator. This operator performs a cyclic permutation of four spins on a plaquette
(a square on the lattice without the diagonal bond J ′) at position r . Here, the first sum in
Eq. (15) runs over the subset of squares A (see Fig. 1) and the second sum runs over the subset
B. The meaning of this construction can be understood by looking at Fig. 2. Note that in the
investigation of the plaquete ordering we utilized in addition to periodic boundary conditions
(torus geometry) also a lattice with mixed ones. For periodic boundary conditions, we have
N̄ = N/4 as all squares are used. For mixed ones, we followed Ref. [38] and use regular
lattices with open boundary conditions in the x-direction with Lx = 2L and periodic in the
y-direction with L y = L so that N = 2L2. However, the order parameter is calculated only in
the central L × L square to mitigate the boundary effects. Hence, N̄ = L2/4. The operator Q̂r
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gives a large mean value in the plaquette singlet (gray square) and a value close to zero in the
empty square between four plaquette singlets. For periodic lattices, we do not know which
set of squares will become singlets, as the state is degenerate, therefore, we use the absolute
value.

For the AF phase we employ the standard structure factor

PAF =
1

N2

∑

i j

eiq ·ri j



Ŝi · Ŝ j

�

, (16)

where ri j denotes the difference in discrete coordinates of spin i and j, and we take q = (π,π)
which measures the antiferromagnetic checkerboard ordering. Finally, in the case of finite
magnetic field we use the normalized magnetization in the z-direction

M=
2
N

∑

i




Ŝz
i

�

(17)

to identify the expected plateaus in the magnetization. These expectation values are calculated
using VMC for trained RBM NQS.

4.2.2 Zero magnetic field

We first investigate the phases of SSM in a zero magnetic field. Unlike the procedure used to
compare different network architectures, here we restrict the Hilbert space by the condition
M= 0. Before moving to larger lattices, we test the RBM for N = 20 in a wide range of J/J ′.
We use the irregular lattice N = 20 because it shows an onset of the PS ordering (see the black
dashed line in Fig. 4(a)) not present for smaller regular lattices. We also readdress the role
of the parameter α within the new learning protocol, but start our discussion with the case
α= 2.

As is clear from the comparison of the ground-state energies in panels Fig. 4(b) and
Fig. 4(c), the RBM variational energy agrees very well with the ED. The updated learning
protocol ensures that the relative error in the J/J ′ < 0.68 region, i.e., for the DS phase, is
on the order of the numerical precision already for α = 2 despite not using any symmetries
except for the condition M = 0. The largest error is in the vicinity of the expected first-order
phase transition from the DS to PS phases, but only from the side of the expected PS phase.
Nevertheless, even here, the largest observed relative error in energy was approximately 1%
for α= 2.

Given the focus of our study, even more important than the energy error is the nature of
optimized variational states. Panel (a) in Fig. 4 shows that a shallow network, i.e., RBM with
complex parameters and α= 2 is expressive enough to correctly capture the formation of the
distinct DS (blue diamonds) and AF ordering (red crosses), as well as the onset of the PS phase
(black circles). The agreement is far from perfect, though. Consistent with the results for the
energy, the largest differences in order parameter values between RBM and ED are in the right
vicinity of the expected phase transition. Here an error of 1% and less in the estimation of the
ground-state energy translates into an error of tens of percents in the order parameters. Still,
even here the RBM gives a correct qualitative picture. The position of the abrupt change of
phase matches the exact result and there is a clear onset of the PS ordering. With increasing
J/J ′, the RBM results align again with the exact ones.

This benchmark shows that RBM with α= 2 can easily capture the correct state in the DS
phase, but gives worse results above the critical J/J ′ ≈ 0.68. What is not clear is if the relative
errors in panel (c) represent some inherent limitation of the RBM with small α, e.g., a difficulty
to set the correct sign structure of the frustrated state, or are related to the learning process.
Gradually increasing α from 2 (blue circles) to 4 (red pluses), 8 (green pluses) and 16 (black
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Figure 4: Comparison of exact (lines) and various RBM variational results (symbols)
at irregular lattice N = 20. (a) Evolution of the order parameters. Here blue solid
line (ED), pure blue diamonds (RBM with α = 2) and blue diamonds with red edge
(RBM with α = 16) show the DS order parameter; black dashed line (ED), black
circles (RBM with α= 2) and black circles with yellow edge (RBM with α= 16) show
the PS order parameter; and red dot-dashed line (ED), red crosses (RBM with α= 2)
and red crosses with blue edge (RBM with α = 16) show the AF order parameter.
The results of symmetric variants of RBM are not shown, as they were comparable to
the results presented for J/J ′ > 0.68 and well off the exact results for J/J ′ ≤ 0.68.
(b) The exact (red line) and RBM α= 2,16 ground-state energies. (c) Relative error
in ground-state energy for the RBM with α= 2 (blue circles), 4 (red pluses), 8 (green
crosses) and 16 (black-yellow diamonds). Note that the relative error in the DS phase
for RBM α= 2 is at the level of numerical precision.

diamonds with yellow cores) in the problematic region lowers the relative error in energy.
However, this significant improvement in energy leads only to a small improvement for the
order parameters near the critical point. This is shown in panel (a) where the results calculated
with RBM with α = 16 are marked with the same symbols as for α = 2 but highlighted via
differently colored edges.

Using symmetric NQS symmetries did not significantly improve the results. We have tested
the sRBM architecture with α = 4 in direct as well as MSR basis using the same protocol as
for RBM. The sRBM results have been comparable to RBM for J/J ′ > 0.68 and much worse
than the RBM results below this critical value. This suggests that the issue is not entirely due
to insufficient learning. On the other hand, the learning was the most difficult in the vicinity
of the observed discontinuity. A significant fraction (often more than half) of the independent
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Figure 5: Evolution of order parameters for DS (a), PS (b), AF (c) and variational
energy (d) as a function of J/J ′ for h= 0 and various lattice sizes. All results in panels
(a)-(d) have been obtained using RBM NQS with α = 2 and VMC with exchange
updates (simultaneous flip of two opposite spins in the basis state) for the Hilbert
subspace restricted to M= 0. The black dashed lines in panels (d) and (e) show the
asymptotic energies for the DS (horizontal) and AF phase (tilted). The black crosses
represent the results with N = 64 for which we have utilized transfer learning. The
inset (e) shows the details of the variational energy for N = 64 in the vicinity of
the phase transition calculated using RBM (green diamonds), sRBM in direct base
(blue stars), sRBM with MSR (red empty diamonds) and three points calculated with
RBM utilizing transfer learning (black crosses). The empty purple squares show the
RBM results for N = 100, and the orange triangles are infinite DMRG results taken
graphically from Ref. [37].

runs for 0.69 ≤ J/J ′ ≤ 0.72 ended either in the wrong phase (DS) or even in a state with
an energy much higher than the real ground state. This was not true for the rest of the J/J ′

interval, where most of the independent runs with the same α showed very similar variational
energies. Furthermore, the relative errors for all investigated RBM variants (including those
not presented here) follow the same pattern. They are maximal just above the critical point
and then, if we neglect some noise, they monotonically decrease with increasing J/J ′. Yet,
increasing α significantly lowers the variational energy even for J/J ′ > 0.74. This again
suggests that the problem is indeed small α. Ultimately, both statements seem to be correct.
Significantly larger α than α = 16 is needed to capture the critical region together with high-
precision learning, that is, many independent runs.

After testing the RBM on small lattices and understanding its strength and limitations, we
can now approach larger ones. We focus on α = 2 as the increase in the precision of the
variational energy obtained with larger α’s does not significantly improve the estimates of
the order parameters. Although we can not easily compare the VMC results with the exact
diagonalization for larger lattices, we can use the exact asymptotic results for the energy in
DS Eq. (3) and AF phase Eq. (4) to guide us.

Fig. 5 shows the evolution of the order parameters and energy for N = 20, 36, 64 and
N = 100. The results agree very well with the exact result in the assumed DS phase and are
between the exact energy of N = 20 and the asymptotic energy for large N in the supposed
AF phase up to several points in a very narrow region near the discontinuous phase transition
discussed later.
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Fig. 5 illustrates the usability of RBM for larger clusters. The presented results support
the overall picture of the DS and AF phase separated by a narrow PS or at least its indication.
Nevertheless, a much more thorough finite-size analysis would be necessary to assess the phase
boundaries. For example, PAF decreases with increasing system size in the whole relevant
range of J ′ which is in agreement with previous studies, e.g. [38]. Consequently, a careful and
precise extrapolation of PAF to the thermodynamic limit is needed to identify J above which
the AF ordering prevails. However, even in this respect, there is an issue. The point of the
discontinuous phase transition from the DS phase to the PS phase should be J/J ′ ≃ 0.675,
but our results at larger lattices push it to J/J ′ ≃ 0.7. Besides finite-size effects, this could
also be related to two technical problems. The first is the difficulty of training the NQS in
the vicinity of the discontinuous phase transition. The second is the tendency of the direct
base to prefer DS over AF ordering. Both these issues can be seen in panel (e) (inset of panel
(d)) with details of the N = 64 (and N = 100) results. Here, green diamonds show the RBM
data, red empty diamonds are sRBM data with MSR basis, and blue stars are sRBM data for
direct basis, all with α = 2 for N = 64. Clearly, all these networks show (different) problems
around the expected point of the phase transition. For J/J ′ = 0.7 and 0.72 sRBM with MSR
gives energy lower than RBM and even lower than the energy of DS ordering. Therefore, the
sharp transition must be placed below J/J ′ = 0.7. However, sRBM with MSR cannot correctly
capture the onset of DS ordering. The sRBM network with direct basis illustrates the opposite
problem. It overestimates the stability of the DS ordering.

Investigation of sRBM showed that the RBM results at J/J ′ = 0.7 are not yet fully con-
verged. Because we have not been able to solve this problem using the direct approach, we
utilized transfer learning. We used the RBM parameters trained for J/J ′ = 0.74 as a start-
ing point to train the network at J/J ′ = 0.72, then used these results as a starting point for
J/J ′ = 0.70, and finally these results for 0.69. That way we obtained lower variational en-
ergies for J/J ′ = 0.72 and 0.70 than in the direct approach or in the sRBM results, and the
J/J ′ = 0.72 result dropped even below the DS energy. Interestingly, this also leads to an
observable change in the order parameters (black crosses in all panels). In contrast to the
N = 20 case, the PS ordering is especially sensitive to this change, as seen from the compar-
ison of black crosses and green diamonds in panel (d). Even if it is suggested by the order
parameters, the transfer learning technique has not reached the point of the expected phase
transition below J/J ′ = 0.69. The reason is that the energy obtained at this point exceeds
the DS energy already reproduced by the direct approach. This shows that, although useful,
transfer learning has to be used with care. What is confusing is that the variational energies
appear to be stable. They follow almost a straight line, with only small differences between
various versions of the RBM and even lattice size, as illustrated by the N = 100 data. Yet, these
energies are approximately 2% higher than the energy of infinite DMRG (iDMRG) results in
the expected PS phase, which were taken graphically from Ref. [37] and are marked by the
orange triangles. However, the iDMRG results were obtained using a different type of lattice.
Namely, an infinite cylinder with a circumference of 10 lattice points. Therefore, they are not
directly comparable due to the finite-size effects. Nevertheless, the predicted position of the
DS-PS transition point just below J/J ′ = 0.69 is too high and presents a conundrum.

Another, but related issue is the plaquette order parameter. Our results for the lattices
with periodic boundary conditions suggest that there might be some fundamental problem
with accessing the PS phase using RBM, because not all lattices show a significant PS order
parameter where expected. However, this might be related to the problem of degeneracy of
plaquette ordering. To shed more light on this problem, we tested other variants of the SSM
lattices. In particular, a version where a perfect PS is expected and SSM with mixed boundary
conditions that break the degeneracy.
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Figure 6: Comparison of finite size scaling of the order parameters for PS (a),(b) and
variational energy (c) for J/J ′ = 0.74 and 0.8 between different methods and lat-
tice boundary conditions. The empty green diamonds show the results for complex-
valued RBM with α = 2 for periodic boundary conditions (L =

p
N). The black

squares and the red circles show the mixed boundary conditions (L =
p

N/2), where
the former have been randomly initialized and the latter in the ideal PS ordering.
Blue stars are DMRG results taken graphically from Ref. [38]. In panel (c), the upper
half shows the J/J ′ = 0.74 results compared with the iDMRG result for an infinite
cylinder with a circumference of L = 10 taken graphically from Ref. [37]. The bottom
half compares our results for J/J ′ = 0.8 with the DMRG results from Ref. [38]. Panel
(d) shows the evolution of the RBM variational energy as a function of J/J ′ when
initialized in a ideal PS and with transfer learning utilized in the learning process.
The horizontal blue line shows the exact DS energy for N = 20× 10. The diagonal
dashed gray line shows the asymptotic (large lattice) energy of AF ordering. Inset
(e) shows the respective order parameter PPS .

PS and mixed boundary conditions: We performed a simple numerical experiment. We
took the SSM lattice from Fig. 1 but set all interactions to zero except around the squares
of type A. That is, we constructed a lattice of interacting spins on otherwise independent
squares A. Starting with random initial conditions, MC with complex RBM and α = 2 was
able to converge and correctly capture the expected plaquette states on all accessible lattices.
This means that there is no fundamental problem with PS ordering, and even a small RBM is
expressive enough to describe this state. We then used these ideal plaquette states as an initial
state for the MC calculations of the full SSM model at the respective lattices. Interestingly, for
periodic boundary conditions, this did not lead to an improvement. PS ordering was strongly
suppressed in the learning process, and we did not reach more favorable variational energies
compared to those already obtained when starting from random initialization.

In accordance with, e.g., the recent work of Yang et al. [38], we decided to break the
twofold degeneracy of expected PS ordering by changing periodic conditions to mixed ones.
Following Ref. [38], we investigated cylinders with open boundary conditions in the x-
direction with Lx = 2L and periodic in the y-direction with L y = L so that N = 2L2. In
this geometry, the SSM has a preferred singlet plaquette pattern, and significant PS ordering
is expected in the PS phase. We show in Appendix D that this ordering can be learned by a
complex RBM with α = 2 even for the lattice N = 20× 10. In addition, using this geometry
also allowed us to compare our result directly with the DMRG results of Ref. [38]. Therefore,
we first focus here on the parameters investigated there, although they are far away from the
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DS-PS boundary and, therefore, show smaller PPS. In particular, we study J/J ′ = 0.8, for
which we used random initial conditions, and J/J ′ = 0.74 where both the random and ideal
plaquette states were used as initial states in the variational MC.

A comparison of the finite-size scaling of the PS order parameter and the variational en-
ergy obtained for periodic and mixed boundary conditions and different RBM strategies with
the results of DMRG [38] (or iDMRG [37]) are shown in panels (a), (b), and (c) of Fig. 6. In
general, periodic boundary conditions lead to lower variational energies, as demonstrated in
Fig. 6(c), where the green diamonds closely follow the finite-size scaling predicted by DMRG
results for J/J ′ = 0.74. RBM for lattices with mixed boundary conditions proved to be more
difficult to train. On the other hand, they show a significant PS ordering. Although the RBM
variational energy is generally larger than that of the DMRG and iDMRG studies, their PS order
parameters are in reasonable agreement. However, here we draw attention to two observa-
tions. For J/J ′ = 0.8, where PPS is low, a strategy with random initial conditions was sufficient
to reproduce the DMRG results, as illustrated in Fig. 6(b). However, for N = 20×10 three in-
dependent learnings lead to almost identical variational energies with difference smaller than
0.2% and therefore imperceptible in Fig. 6(b). Yet these states showed a noticeable difference
in PPS as visible in Fig. 6(b) (three black squares below each other). We attribute this problem
to the combination of the overall low value of PPS and its sensitivity to fluctuation of plaquete
ordering between the squares of the lattice. The situation worsened for weaker coupling J .
For J/J ′ = 0.74, learning with random initial states worked only for small lattices. For larger
ones, the strategy where we initialized the RBM in an ideal PS gave much better results. The
same number of iterations lead to lower energies and the expected PPS. This suggests that
although the RBM with α= 2 is capable of describing plaquette orderings, this state is difficult
to learn without some help. Nevertheless, we utilized the strategy where an ideal plaquette
state is used as an initial state to address another problem opened in the previous section.

We tested the position of the DS-PS phase transition point by focusing on N = 20 × 10
with mixed boundary conditions. We started from the ideal plaquette ordering (see Fig. 10 in
Appendix D) at J/J ′ = 0.66, therefore still in the expected DS phase, and then used transfer
learning by sequentially increasing J/J ′ for all points plotted in Fig. 6(d). Here, the blue
horizontal line signals the exact energy of the dimer state. Although still slightly higher than
the iDMRG result J/J ′ = 0.675, this lattice significantly reduced the estimate of J up to which
DS survives to J/J ′ ≈ 0.68 compared to the above results with the periodic lattice J/J ′ ≈ 0.69.
Fig. 6(d) also shows that, in contrast to the periodic lattices, the PS ordering is robust here
(see inset (e)). Actually, when artificially initialized, it can survive the learning process even
for J/J ′ < 0.68 where the DS is the true ground state, although the learning rate plays an
important role in this process. We used η= 0.02 (≈ 300 iterations) followed by η= 0.003 (≈
(1000 iterations) at each step.

During our analysis, we have avoided the discussion of the possible SL and related DQCP
which are compelling scenarios in part of a region here assigned to the PS. The reason is that
due to several difficulties discussed above, e.g., the fact that our RBM results underestimate
the PS order parameter even for N = 20 and large α, a reliable analysis of SL and DQCP
is currently beyond our reach. Nevertheless, here demonstrated expressiveness of a simple
RBM with α= 2 suggests that the problem can be indeed attacked by larger, more expressive,
or specialized networks. A good candidate might be a composed GCNN that would combine
networks for different characters of the symmetry group for particular lattice size and boundary
conditions.

4.2.3 Magnetization plateaus

Historically, the most intriguing property of the SSM is its ability to describe fractional plateaus
in magnetization as a function of an external magnetic field, which are also observed in real
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Figure 7: Comparison of ED (blue solid lines) and RBM with α= 2 (symbols) results
for N = 20 and J/J ′ = 0.45. Panels (a) and (b) show the magnetization and dimer
state order parameter as functions of magnetic field. Panel (c) presents the relative
error of the variational energy with respect to the ED result where blue dotted lines
are just a guide to the eyes. Panel (d) shows the evolution of the normalized energy
on external magnetic field. Blue filled diamonds represent the direct approach, empty
red diamonds were obtained by utilizing the transfer learning discussed in the main
text and the empty red squares by fixing MN to integer values from the vicinity of
the direct approach.

materials. To address this problem through VMC, one has to drop the restriction of fixed
M = 0. In addition to significantly enlarging the Hilbert space, this also makes the optimiza-
tion (learning) process a harder task. Moreover, each plateau represents a different ordering,
and therefore, a challenge for NQS. However, as already demonstrated here, a simple RBM
NQS with α= 2 is sufficiently expressive to capture the main plateaus.

We assume only periodic boundary conditions and focus on the case J/J ′ = 0.45, which is
inside the DS phase (at h = 0), where several broad plateaus are expected to form. The most
stable ones, if allowed by the lattice size, should be the M = 1/2 and 1/3 plateaus [28, 42].
We start the discussion by benchmarking the RBM NQS results (blue filled diamonds in all
panels of Fig. 7) against the ED results for the N = 20 lattice (blue solid lines). Clearly, the
variational energy in panel (d) is in very good agreement with the exact one. The relative
error plotted in panel (c) is much lower than 1% in the whole range of h. In addition, it shows
a structure which can be understood by comparing the profile of the relative error dependence
on h with the normalized magnetization plotted in panel (a) and the DS order parameter in
panel (b). Panel (a) shows that RBM NQS with α = 2 is able to capture all main steps of the
magnetization observed in the ED curve. The most stable are M = 0, 1/2 and 1, followed by
plateaus 1/5 and 3/10 that form in the range 0.7≲ h/J ′ ≲ 1.2.

The stability of these plateaus is also reflected in the relative error. Although we do not
use any restriction on M, the relative error for h/J ′ < 0.7, where M = 0, is negligible. In
this region, the system stays in the DS ordering as revealed by panel (b). A similar situation
exists for h/J ′ ≥ 2.1. Here, the state is fully polarized (M = 1) and, therefore, easy to
reproduce with variational techniques. Other regions with very small errors in the variational
energy are the central parts of the stable plateaus discussed above, as best illustrated by the
1/2 one. Here RBM NQS gives a relative error below 0.1%. Consequently, the regions with
the highest errors are related to the transitions between the stable plateaus. Here we also
observe the largest deviations of the NQS magnetization (and PDS) from the ED results. These
problematic regions can be divided into two types. The first one includes the step edges, i.e.,
the abrupt changes of the magnetization for M ≤ 1/2. The related convergence problems
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Figure 8: Comparison of the exact (red solid line) magnetization (a) and variational
energy (b) results with VMC calculations utilizing RBM NQS with α = 2 for lattices
N = 20,36 and N = 64 as functions of external magnetic field.

are similar to the difficulties of correctly capturing the precise position of the discontinuous
phase transition discussed for h= 0 and J/J ′ ≈ 0.69. As such, they can be also treated by the
transfer learning. The red hollow diamonds in Fig. 7 were obtained by approaching the step
edges from left and right using the RBM parameters learned in the centers of the neighboring
plateaus as the initial input. Transfer learning clearly suppresses errors and gives the correct
value of M even very close to discontinuities.

The second problematic region is at large magnetic field where the M = 1/2 plateau
transits into saturation M = 1. It was shown only recently that this region can host exotic
quantum states including several spin-supersolid phases [65]. Only one additional step-like
rise of M from 1/2 is expected here in the thermodynamic limit, which is followed by a
continuous increase of magnetisation to M= 1 as h get larger. Nevertheless, the finite N = 20
lattice shows a number of very narrow transient steps in this region. This makes this region
unsuitable for transfer learning, unless a much more refined grid of h’s is applied. On the other
hand, the small lattice allowed us to test the actual expressiveness of RBM by fixing MN to
integer values taken from the vicinity of the direct RBM results for MN . The results with the
lowest energies are depicted by the empty red squares, and they reproduce both M and the DS
of the exact study. This proves that with correct learning strategy, RBM with α= 2 is sufficient
for the description of this rather complex evolution of the SSM ground state in the increasing
magnetic field.

The stability of the magnetization plateaus must be confirmed on large lattices because the
magnetization could be always discrete on finite clusters, yet continuous in the thermodynamic
limit. Moreover, the lattice N = 20 is not divisible by three, so it cannot hold the important
1/3 plateau. To show that RBM NQS can really capture these features, we address larger
clusters. Fig. 8 presents, in addition to the exact (solid red line) and RBM (red diamonds)
results for N = 20, the RBM results for N = 36 (blue squares) and N = 64 (yellow triangles).
We stress here that these results were obtained with the direct approach. We have not used
the transfer learning and fixed M to avoid the possibility that in this way we introduce a
bias towards seemingly stable plateaus. Still, the results for N = 36 show stable flat steps in
the magnetization which holds both the 1/2 and the 1/3 plateaus. Although the results for
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N = 64 are less stable, they confirm the 1/2 plateau and clearly signal the formation of two
additional plateaus for h/J ′ < 1.2. These are very encouraging results, as they again show
that a simple RBM with small number of parameters is expressive enough to correctly capture
the complicated magnetization dependence reflecting the underlying complex ordering of the
quantum spins.

5 Conclusion

We have investigated the ground-state properties of the Shastry-Sutherland model via varia-
tional Monte Carlo with NQS variational functions. Our main goal was to show that a single
and relatively simple NQS architecture can be used to approximate a wide range of regimes of
this model. We have first tested and benchmarked several NQS architectures that are known
from the literature to be suitable for different variations of the Heisenberg model. We discuss
the role, advantages, and drawbacks of the NQSs that incorporate lattice symmetries and bi-
ases on the visible layer. We conclude that when precision, generality and computational costs
are taken into account, a good choice for addressing larger SSM lattices without as well as with
external magnetic field is a restricted Boltzmann machine NQS with complex parameters.

Focusing on RBM NQS allowed us to refine the learning strategy. We discovered that if
a more precise MC sampling is used, then it is advantageous to run several (tens) short in-
dependent optimizations instead of a few long learnings. Using this strategy for the lattice
N = 20 with periodic boundary conditions, we have demonstrated that already an RBM NQS
with α = 2 can accurately approximate the DS and AF phases and shows the onset of the
PS ordering. It also gives a correct point of the discontinuous change of the DS regime to
PS/AF. However, in its vicinity, there are the largest deviations from the exact results. Here,
the variational energy can be significantly reduced by increasing α, but this leads only to a
small improvement in the estimation of the order parameters. Consequently, we used RBM
NQS with α = 2 to address larger lattices. Although reliable in the DS and AF phases in all
lattices up to N = 100, PS proved to be more difficult to reach. However, this is partially a
consequence of the degeneracy of the PS order. When broken by the usage of mixed boundary
conditions, we were able to reproduce the DMRG result of Ref. [38] for the order DS parame-
ter. Furthermore, we showed that the RBM NQS with α = 2 is expressive enough to hold the
PS order, although it might be difficult to train from a random initial state. To overcome this
limitation, we introduced a strategy in which the RBM NQS is first trained on a lattice that en-
forces PS ordering and then this state is used as an initial state for the network in the relevant
regime of SSM. This strategy allowed us to estimate the position of DS-PS phase transition to
be J/J ′ ≈ 0.68 for N = 20× 10, which is, taking into account the finite-size effects, in good
accordance with the iDMRG result J/J ′ = 0.675. However, even when this strategy was used
together with transfer learning, the training of RBM NQS for lattices with mixed boundary
conditions proved to be more challenging than for periodic ones. For example, the finite-size
scaling of the variational energy at J/J ′ = 0.74 closely follows the DMRG result; however, for
mixed boundary conditions and N = 20× 10 the variational energy is still approximately 4%
above the DMRG result [38].

A gradual increase of the magnetic field in SSM leads to formation of stable plateaus in
the magnetization, each reflecting a different ground-state ordering. We have shown that
RBM with α= 2 can capture the relevant plateaus that form for the lattice sizes studied here.
Transfer learning can then be utilized to refine the results.

To wrap it up, we have demonstrated that SSM is a good system for benchmarking NQSs
and that a simple RBM NQS can be used to address its ground state in a broad range of regimes.
This opens the possibility for NQSs to be used to address some unresolved questions related to
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Figure 9: Shapes of tilted tiles of sizes N = 4, 8,16, 20 used with periodic boundary
conditions.

the SSM, e.g., the existence of the spin-liquid phase, DQCP and other exotic quantum phases
expected in a finite magnetic field, or to precisely capture the size and character of additional
steps in the magnetization for larger lattices. We, however, leave this for future more focused
studies.
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A Lattice tiles

To benchmark various architectures we utilize ED. We use the Lanczos algorithm implemented
in the SciPy library [66]. The only square (regular) systems tractable by this implementation,
without extensive utilization of expected state symmetries, are of size 2×2 and 4×4. Therefore,
we also constructed the so-called tilted regular-square clusters. They are depicted in figure 9
and each of them can be thought of as a single repeating building block of the infinite lattice.
Clusters of sizes N = 4,8, 16,20 are accessible through ED and used to benchmark our NQS
implementations (in the text we discuss only the results for N ≥ 16).
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B Visible biases in sRBM and pRBM

Here we show by contradiction that allowing uneven biases for sRBM is equivalent to constant
biases when we enforce enough symmetries. Let us suppose that visible biases are kept non-
constant

�

a f → a f
i

�

in the Eq. (9). We further assume the condition that ∀i, j ∃g : gσi = σ j .
This condition holds for every SSM tile.

It follows that
∑

g∈G
Tg(σz)i = C

N
∑

i=1
σz

i = Cmz , where C is the number of unique g that

fulfill the condition above. The first term in Eq. (9), after the generalization a f → a f
i , can be

rewritten as
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∑
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∑
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∑

i=1

a f
i

∑

g∈G
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∑
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Thus, non-constant biases can be replaced by a constant value without loss of generality. There-
fore, visible biases cannot be built into the sRBM as independent variational parameters.

On the other hand, pRBM is not limited in this way. This can be clearly seen after rewriting
both ansätze into similar forms. First, the sRBM

logψθ (σ
z) = log

∏

g∈G

exp
F
∑
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(

a f
N
∑

i=1

Tg(σ
z)i + log
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� N
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w f
i Tg(σ

z)i + b f

��

)

,

and then pRBM

logψG
θ (σ

z) = log
∑

g∈G

χg−1 exp

(

N
∑

i=1

ai Tg(σ
z)i +

M
∑
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log

�

2cosh

� N
∑

i=1

Wi j Tg(σ
z)i + b j

��

)

.

The sum (rather than the product) of exponentials makes it impossible to use an analogous
reduction of visible biases as in Eq. (B.1). Note that the usage of visible biases does not typically
lead to a significant increase of parameters (+N). Yet, they usually improve the convergence of
the learning process for frustrated systems because they help to set the correct sign structure
of the approximated state. Therefore, it is beneficial to include visible biases in the NQS
parameters whenever possible.

C Symmetries

An infinite Shastry-Sutherland lattice has a p4g wallpaper group symmetry whose point group
is C4v [67]. The character table of C4v is shown in Table 2. Each eigenstate of the SSM at
infinite lattice must transform following one of the rows in the character table which, however,
do not include the translations or glide reflections.

For finite lattices investigated in the paper, the table and the number of additional trans-
lations depend on the system size and shape (note that we are also using irregular lattices).
Different small clusters can have different character tables with varying numbers of irreducible
representations (irreps) [68, 69]. A detailed analysis of each lattice goes beyond the scope
of our paper. In practical implementations, we used the automorphisms of the graph using
routines implemented in NetKet [9, 56] and a particular line from its character table. For il-
lustrative purposes, it is still useful to discuss the irreps of individual phases of the SSM on the
infinite lattice.
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Table 2: Character table of the C4v point group describing symmetries of Shastry-
Sutherland lattice.

E 2C4 C2 2σv 2σd

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0

DS, described by Eq. (2), changes sign when we swap the spins in a dimer. More generally,
the parity of the permutation determines the sign change. Consider a L × L square lattice,
where L is even, and a reflection symmetry along its diagonal axis (σv) within the squares
containing the J ′-bonds. The number of J ′-bonds intersected by the axis is L/2 (considering
the toroidal periodicity). For each of these bonds, a sign change occurs during the reflection
while the sign of other dimers does not change. A similar argument can be constructed for
the C4 rotation. This has an important implication even for finite lattices. Namely, for regular
lattices, the ground state of DS transforms under the trivial irrep A1 if L is divisible by 4,
and under the antisymmetric irrep (corresponding to B2) otherwise. This has some important
consequences for the use of symmetries of some finite lattices, as discussed in the main text.

PS is twofold degenerate. Leaving out the translations, this means that it transforms under
irrep E, which is the only irrep of dimension 2.

AF state analysis for finite lattices is rather complicated [68, 69]. If needed, we have
assumed that AF transforms under trivial irrep A1 (with and without the application of MSR).

D DS and PS in the RBM

DS: In principle, the complex-valued RBM is capable of representing a DS. For example,
it can take advantage of visible biases (first term in Eq. (7)) and set them to reproduce the
correct sign structure according to MSR. Since all nonzero weight coefficients have the same
absolute value, the dense layer (second term in Eq. (7)) then needs only to identify these zero
configurations and return a constant otherwise. An example of such construction is b j = 0
and

Wi j =

¨

iπ2 , spin i ∈ dimer j ,

0 , otherwise .
(D.1)

We number the dimers by index j and cosh
�∑

i Wi jσ
z
i + b j

�

is then one if the spins in
dimer j are antiparallel and zero otherwise. The size of the hidden layer corresponds to the
number of dimers, specifically N/2, in this construction. By substituting Eq. (D.1) into Eq. (7),
the DS state from Eq. (2) is reproduced. Notably, Wi j nullifies all basis states that are not
present in the DS state, while ai ensures the correct sign and b j can be adjusted to give a
correct normalization. This shows that the RBM is, in theory, able to represent the DS state
exactly. Whether, however, such a state can be learned, is in principle a different question.
Nevertheless, the results in Fig. 8 clearly show that it can.

PS: A complex RBM with α= 2 is expressive enough to encompass plaquette ordering even
for large lattices. We demonstrate this for the N = 20 × 10 lattice with mixed boundary
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Figure 10: Plaquette ordering Qr in the central part of the SSM lattice N = 20× 10
with mixed boundary conditions. Here Qr =




Q̂r

�

where Q̂r =
1
2

�

P̂r + P̂−1
r

�

, with P̂r
being the cyclic permutation operator in square r . The left panel shows a toy model
with JA = 1 and JB = J ′ = 0 where JA (JB) is the coupling strength at the edges
surrounding the squares of type A (B). The center and right panels show Qr for SSM
with J = 0.68 (just below the DS-PS transition) and J = 0.8. The values of Qr for
squares with diagonal bonds are not shown.

conditions (open in the x direction and periodic in y). We start with a toy model, namely an
SSM lattice with JA = 1 and JB = J ′ = 0, where JA (JB) is the coupling strength at the edges
surrounding the squares of type A (B), see Fig. 1. Starting from random initial state, the VMC
converged to the plaquette ordering illustrated in the left panel of Fig. 10. We then use this
state as an initial condition in the learning process for finite J = JA = JB and J ′ = 1 in the
range of values where plaquette ordering is expected. These results are shown in Fig. 6 and
are discussed in the main text. In the central and right panels of Fig. 10 we show how the
increase in J suppresses the ordering of plaquettes in SSM.
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