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Abstract

We demonstrate that in Weyl semimetals, the momentum-space helical spin texture can
couple to the chirality of the Weyl node to generate a frequency-independent optical
spin injection. This frequency-independence is rooted in the topology of the Weyl node.
Since the helicity and the chirality are always locked for Weyl nodes, the injected spin
from a pair of Weyl nodes always add up, implying no symmetry requirements for Weyl
semimetals. Finally, we show that such frequency-independent spin injection is robust
against multiband corrections and lattice-regularization effect and capable of realizing
all-optical magnetization switching in the THz regime.
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1 Introduction

Weyl semimetals, which host topologically protected Weyl nodes with linear dispersion, have
been the focus of condensed matter physics in recent years [1]. One of the most celebrated
features of Weyl semimetals is that each Weyl node acts as a magnetic monopole in the mo-
mentum space, emitting the Berry curvature as the effective magnetic field and possessing a
quantized chirality given by the monopole charge. This chiral feature leads to many intriguing
experimental consequences [1–8]. In addition to the chirality, the strong spin-orbital coupling
in Weyl semimetals also gives rise to the spin-momentum locking around each Weyl node,
making the Weyl semimetal a promising candidate in spintronics. For example, it has been
proposed theoretically [9] and confirmed experimentally [10, 11] that such spin-momentum
locking leads to large spin Hall angle in Weyl semimetals.

In this work, we focus on another feature of the spin-momentum locking, i.e., the helical
spin texture around each Weyl node. We show that it plays an essential role in the optical spin
injection. The spin injection is a basic tool in opto-spintronics and widely used to generate
spin polarized carriers by absorbing light [12,13]. Especially, the circular optical spin injection
further binds the spin polarization of the photoinduced carrier with the circular polarization of
light, manifesting as a linearly increasing spin magnetization M that switches with the circular
polarization of light [14], i.e.,

dMi

d t
= βi j(ω)[iE(ω)× E⋆(ω)] j , (1)

where [iE(ω)×E⋆(ω)] j = ±|E(ω)|2 for right- and left-circularly polarized light. Such circular
optical spin injection was mainly studied in bulk semiconductors [12–18] and two-dimensional
topological insulators [19,20], and is generally very sensitive to light frequency.

Interestingly, in Weyl semimetals, the helical spin texture leads to a constant spin injection
coefficient, independent of light frequency. We focus on the diagonal part of the coefficient,
and show that Trβ is proportional to the product of the chirality and the helicity (see Eq. (4)).
It is then found that in addtion to the chirality, the helicity is also a constant around each
Weyl node (see Eq. (6)), characterizing the helical spin texture. Moreover, the helicity is
proportional to the chirality, and hence the injected spin from a pair of Weyl nodes always
add up. Therefore, the injected spin and its frequency-independent feature have no symmetry
requirements. Finally, using a tight-binding model of the Weyl semimetal, we demonstrate
that such frequency-independence is also robust against the lattice regularization.

An important application of the spin injection is the magnetization reversal by circularly
polarized light. The frequency-independence of the injected spin in Weyl semimetals is a highly
desirable feature as it eliminates the need to fine tune the light frequency close to resonance.
For magnetic Weyl semimetals with realistic experimental setup [21,22], we estimate that the
injected spin can realize optical magnetization switching in the THz regime, highlighting the
potential of Weyl semimetals in opto-spintronic applications.

2 The circular optical spin injection

We first revisit the general theory of the circular optical spin injection. Under the irradia-
tion of circularly polarized light, a spin injection can be induced acording to Eq. (1). The
resulting magnetization grows linearly in time, similar to the current injection in the circular
photogalvanic effect (CPGE) [8, 23–26]. It has been proposed previously that the CPGE is
frequency-independent and quantized for non-centrosymmetric Weyl semimetals due to the
quantized chirality [8]. Here we will show that the topology of the Weyl nodes also leads to
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Figure 1: Schematic diagram of the circular optical spin injection for a pair of Weyl
nodes connected by inversion symmetry (a) and momentum-space spin texture (b).
In (a), the coupling to the circular polarizaiton of light is determined by the Berry
curvature in the conduction band, which is parallel (for χ = +1) and antiparallel (for
χ = −1) to the velocity v. The dashed green arrow in (a) shows the angular momen-
tum of light, which is transferred to the Weyl Fermions, accounting for the difference
between the green arrows in the conduction and valence band. When the chirality is
flipped from +1 to −1, the projection of spin on v is also flipped, suggesting a locked
helicity and chirality, which collaborate constructively to yield a nontrivial induced
magnetization from chiral light. For (b), the three plots show the spin texture for
helicity in the conduction (hc) and valence band (hv), and their difference (h).

a frequency-independent spin injection coefficient βi j , albeit with distinct features from the
CPGE.

We will focus on the diagonal part of βi j . Since both M and E × E⋆ transform as axial
vectors, βii does not exert any symmetry constraint and hence exists in a wide variety of mate-
rials. Specifically, the trace Trβi j simply transforms as a scalar under point group operations.
This is in sharp contrast to the CPGE, which requires inversion-symmetry breaking.

The general expression of optical spin injection for any light polarization is derived in
Ref. [14], and we also sketch the derivation in Appendix C. By taking the antisymmetrization
of the electric field components, we extract the part that is sensitive to the circular polarization
of light. The resulting coefficient βii reads (we set e = ħh= µB = 1 hereafter for simplicity)

βii(ω) =
∑

ℓ,n

∫

gSdk
8π2

(Ωi)nℓ(∆si)nℓ∆ fℓnδ(ωℓn −ω) , (2)

where gS is the g-factor, (Ωi)nℓ = −εi j j′ Im[〈un|i∂k j
|uℓ〉〈uℓ|i∂k j′

|un〉] is the band-resolved Berry
curvature [27], (∆si)nℓ = 〈un|si|un〉−〈uℓ|si|uℓ〉,ωℓn = ϵℓ−ϵn, and∆ fℓn = fℓ− fn with fℓ being
the Fermi function of band ℓ. We note that by replacing gS(∆s)i with the velocity difference
〈un|v̂i|un〉−〈uℓ|v̂i|uℓ〉 in (2), one can obtain the current injection coefficient in the CPGE [8,23].

Equation (2) can be easily understood based on Fermi’s golden rule. The coupling be-
tween light and matter is described by Ĥ ′ = (i/ω)v · E following the Peierls substitution.
Fermi’s Golden rule dictates that the oscillator strength of the light absorption has the follow-
ing feature: Γn→ℓ ∝ |〈n|Ĥ ′|ℓ〉|2. We then take the antisymmetrization of the electric field
components, and obtain the oscillator strength specifically tied to the circular polarization of
light [28]: Γ cir

n→ℓ∝ (Ωi)nℓi(E×E⋆)i . After the light absorption, the spin will change by (∆si)nℓ.
The rate of the change of the spin magnetization is thus given by Eq. (2). Such a process can
be heuristically described as in Fig. 1(a).
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3 Spin injection and the helicity of the Weyl node

The circular optical spin injection in Weyl semimetals is closely tied to the helical spin texture
of the Weyl node. To see this, we consider a generic Weyl Hamiltonian as follows

Ĥ = χvk ·σ , (3)

where χ = ±1 is the chirality of the Weyl node, v is the Fermi velocity, and σ are the Pauli
matrices for the pseudospin indexing the two bands. For such Weyl Hamiltonian, (Ωi)nℓ in
Eq. (2) reduces to the Berry curvature, which takes a particularly simple form: Ω= χk/(2k3).
Assuming that the Fermi energy falls on the Weyl point, we obtain the following spin injection
coefficient

Trβi j = gS

∫

dk
8π2

χv3

2ϵ3
(k ·∆s)δ(2ϵ −ω)

=
gS

8πv
χh(ω) , (4)

where h(ω) is given by

h(ω) =

∮

2ϵ=ω

1
g(ϵ)

v
v
·∆s

dk
8π3

. (5)

Here v is the velocity in the conduction band with ϵ being the band energy, g(ϵ) = ϵ2/(2π2v3)
is the density of states at ϵ, and ∆s = 〈uc|s |uc〉 − 〈uv|s |uv〉 is the k-resolved spin difference
between the conduction (c) and the valence (v) band.

The factor h(ω) in Eq. (4) is the helicity of the Weyl node. From Eq. (5), we find that h(ω)
contains the projection of the spin difference onto the band velocity. Since the band velocity is
porportional to k, h(ω) is then the projection of the spin on momentum, i.e., it is the helicity,
following the definition in particle physics. Note that the helicity h(ω) here is different from
that in two-dimensional systems [29,30].

Importantly, we find that h(ω) is an inherent property of the Weyl node, independent
of the frequency, which eventually leads to a frequency-independent βii . To start with, we
consider the simplest scenario where σ in the Weyl Hamiltonian operates in the real spin
space, and has a basis of | ↑〉 and | ↓〉, as proposed for the Kramers-Weyl Hamiltonian [31]. It
is straightforward to show that the helicity coincides with the chirality: h(ω) = χ, i.e. it is
frequency-independent.

Generally speaking, σ operates in a mixed spin-orbital space. Its basis, labeled by |+〉 and
|−〉, is determined by projecting the full crystal Hamiltonian with the spin-orbital coupling
onto the two-band Weyl Hamiltonian. In this case, the helicity reads (see Appendix A)

h(ω) =
χ

3
[〈+|sz|+〉 − 〈−|sz|−〉+ (〈+|s+|−〉+ c.c.)]

def
= h0 , (6)

where s+ = sx + isy . One immediately finds that the frequency-independence is preserved.
The helicity quantifies the spin texture near a Weyl node: it varies in the range (−χ/3,χ)

for different textures (see Appendix. B). We find that the helicity is generally nonzero, unless
under stringent algebraic conditions. To illustrate the helicity, we define the conduction and
valence band helicity hα by replacing ∆s in Eq. (5) with 〈uα|s |uα〉, where α = c, v for the
conduction and valence band, respectively. Then h can be written as h= hc − hv . An example
of the spin texture around a Weyl node with a nonzero helicity is shown in Fig. 1(b) (this spin
texture is obtained using the effective model in Sect. 4). We also note that by identifying the
basis |+〉 and |−〉 as different spin states, the pattern of the spin-momentum locking changes,
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Table 1: Basis with different spin flavor, the Weyl Hamiltonian in the spin space, the helicity,
and the spin injection coefficient.

Basis Hamiltonian in the spin space h0 Trβi j

|+〉= | ↑〉
|−〉= | ↓〉 Ĥ = vkx sx + vkysy + vkzsz

1 1 gS
8πv

|+〉= eiπ/4| ↑〉
|−〉= e−iπ/4| ↓〉 Ĥ = vkysx − vkx sy + vkzsz

2 1
3

gS
24πv

|+〉= 1
2 | ↑〉+

p
3

2 i| ↓〉
|−〉=

p
3

2 i| ↑〉+ 1
2 | ↓〉

Ĥ = vkx sx − v
�

1
2 ky −

p
3

2 kz

�

sy − v
�

1
2 kz +

p
3

2 ky

�

sz 0 0

|+〉= −i| ↓〉
|−〉= i| ↑〉 Ĥ = −vkx sx − vkysy − vkzsz −1

3 − gS
24πv

1 The Kramers-Weyl Hamiltonian [31].
2 The three-dimensional Rashba spin-orbital coupling [30].

which can also manifest as different Weyl Hamiltonians in the real spin space. In Table. 1,
we show several examples of the basis, with the corresponding average helicity and the spin
injection coefficient.

From Eq. (6), we see that h0 is always proportional to χ. As a result, the spin injection co-
efficient Trβ is quadratic in χ [cf. Eq. (4)]. Therefore, contributions from a pair of Weyl nodes
with opposite chiralities always add up, as illustrated in Fig. 1(a). This is in sharp contrast to
the injection current, which is linear in χ [8]. This microscopic difference manifests as their
different requirements of symmetries: the injection current requires the Weyl semimetals to
possess structural chirality [8], while the spin injection does not.

If there are N > 1 pairs of Weyl nodes, the resulting frequency-independent spin injection
is simply the summation of that for each pair of Weyl nodes. If different pairs of Weyl nodes
are further connected by symmetries, the signal is simply N times contribution from a single
pair, as the diagonal part of the spin injection is insensitive to any symmetry operation.

When the Fermi energy µ is away from the Weyl point, optical transition is forbidden for
light frequency lower than 2|µ| and hence Trβ vanishes. The frequency-independent spin
injection is recovered once the frequency is above 2|µ|.

In Weyl semimetals, the Weyl node may be anisotropic, due to either different Fermi veloc-
ities along different directions or tilting. For the former case, the frequency-independence still
persists, but the expression for βii is slightly modified (see Appendix. A). For the latter case,
the frequency independence is perserved as long as the Weyl node is not of type-II.

4 Lattice model

The above discussion is for perfect Weyl nodes. However, the Weyl cone is generally subject
to lattice regularization, leading to the deviation from linear dispersion as well as multiband
structures. To test their effects on the frequency-independence of the spin injection, we con-
sider a Weyl semimetal regularized on a cubic lattice, with the Hamiltonian given by [32]

Ĥ = λτo
x(τ

s
x sin kx +τ

s
y sin ky +τ

s
z sin kz) + ετ

o
z + bτs

z , (7)

where the Pauli matrices τo and τs operate in orbital and real-spin space, with the basis given
by (|A〉, |B〉) and (| ↑〉, | ↓〉), respectively, ε= m+ r(3−cos kx −cos ky−cos kz), b is the Zeeman
field, λ is the strength of the spin-orbital coupling, and k is the dimensionless momentum (i.e.,
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Figure 2: The circular optical spin injection coefficient in a tight-binding model. Panel
(a) is the spectrum showing two Weyl nodes. Panel (b)-(d) contain the spin injection
for the effective two-band Weyl Hamiltonian (black lines), the spin injection for the
full lattice model (blue lines), and the total spin magnetization (red lines). Energy
in (a) and frequency in (b-d) are in units of the model parameter r. β is in units of
e2τ0µB/(2ħhra).

we set the lattice constant a = 1). Such a model can host two Weyl nodes located on the kz
axis, as shown in Fig. 2(a).

By projecting the four-band Hamiltonian onto the Weyl cone, we find that the basis indeed
possesses a nontrivial spin flavor, inherited from the spin-orbit coupling (first term in Ĥ) and
the Zeeman coupling (last term in Ĥ). Specifically, for the Weyl node on the positive kz axis,
the Weyl Hamiltonian reads Ĥ = vx kxσx − vy kyσy + vzkzσz and the basis for σ reads

|+〉= 0.343|A ↑〉 − 0.939|B ↑〉 ,
|−〉= −0.939|A ↓〉+ 0.343|B ↓〉 .

(8)

Such a spin structure indeed endows a nonzero helicity h(ω) = 0.1 for this Weyl node.
We then calculate βii within the effective two-band k · p model as well as the full four-

band lattice model. As shown in Fig. 2(b)-(d), up to about ω = 1.7r, the latter (blue lines)
only deviates slightly from the former (dotted black lines), and both of them are nearly flat,
suggesting a robust frequency-independence feature against lattice regularization. When the
light frequency is close to 2r, the optical transition occurs in the region where the two Weyl
nodes start to intercept each other, and the frequency-independence is gradually destroyed by
the lattice effect.

Finally, we comment that in addition to the spin injection, the photoinduced spin mag-
netization also contains a static part, similar to the static photocurrent in the circular photo-
galvanic effect [24–26]. Using the density-matrix perturbation theory one can obtain the full
expression for the photo-induced spin magnetizaiton (see Appendix. C), which has the form:
β tot

i j = τ0βi j + γi j with τ0 being the relaxation time and γi j being the contribution from the
static photoinduced spin magnetization. However, using the previous tight-binding model,
we find that the spin injection generally dominates over the static spin magnetization. Com-
pared to the inherent energy scale of the electronic structure, which is on the order of eV, the

6
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relaxation process generally involves a much smaller energy scale. To reflect this, in the tight-
binding model, we take 1/τ0 = 0.02r, and calculate τ0βii as well as the β tot

ii in Eq. (C.11). As
shown in Fig. 2 (b)-(d), the latter (red lines) almost coincide with the former (blue lines) over
the whole frequency range, confirming the dominance of the injection contribution to the spin
magnetization. As a result, the total photoinduced magnetization approximately preserves the
frequency-indepent feature up to ω= 1.7r.

5 THz optical switching

In practice, the photoinduced spin magnetization can be used for swithcing the inherent mag-
netic order of ferromagnetic materials [12, 13, 21, 33, 34]. For this purpose, the frequency-
independence is a valuable feature: usually the photoinduced magnetization is very sensitive
to frequency, and becomes strong only close to resonance. The frequency-independence over
a wide range can thus remove the need to find monochrome light with fine tuned frequency.

Magnetic Weyl semimetal phase can exist in several materials [35–39]. Their magnetic
orders can then be manipulated by the large spin injection in the THz regime. We assume a
laser fluence 0.2 mJ/cm2 with a duration of 100 fs [21,22], a lattice constant 2 Å, and a spin
injection coefficient 10−10 V−2m−1J. This translates to a photoinduced spin magnetization
around 0.025µB per unit cell. This induced magnetization affects the inherent magnetic order
through the following exchange coupling

Ĥ = JSloc · sel , (9)

where J is the exchange coupling strength, Sloc is the local angular momentum, and sel is the
electronic angular momentum. Based on this coupling, the induced magnetization amounts to
an effective field Be f f = Jm el/(2µB) for the switching of Sloc through a field-like or damping-
like torque. Assuming a typical exchange coupling strength of 150 meV, we find that the
angular frequency of the magnetization precession is J |m el |/(2µBħh) = 3 THz.

6 Conclusion

In conclusion, we demonstrate that the spin-momentum locking in Weyl semimetals yields a
helical spin texture around each Weyl node, and recognize the helicity as an inherent property
that quantifies such spin texture. We show that the circular optical spin injection in Weyl
semimetals is proportional to the helicity, and hence frequency-independent. Such frequency-
independence is robust against lattice effect and dominates over other contributions to the
photoinduced spin magnetization. The spin injection is also large enough to realize all-optical
magnetization switching in the THz regime.
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A Evaluation of the helicity and spin injection for the Weyl Hamil-
tonian

To evaluate the average helicity, we note that the basis for the Weyl Hamiltonian contains spin
flavor. We can then project the spin operator on the basis of σ:

s =

�

〈+|s |+〉 〈+|s |−〉
〈−|s |+〉 〈−|s |−〉

�

. (A.1)

The eigen wave function in the conduction and valence band reads

ψc =
1
ξ
(a, b)T , ψv =

1
ξ
(−b, a⋆)T , (A.2)

where a = χv(kx − iky), b = ϵ −χvkz , ϵ = vk and ξ=
p

2ϵ(ϵ −χvkz).
With the help of the analytic expression of the wave function, we can obtain the spin

expectation value in conduction and valence band, i.e.,

(si)c =
1
ξ2
[|a|2〈+|si|+〉+ |b|2〈−|si|−〉+ (a⋆b〈+|si|−〉+ c.c.)] ,

(si)v =
1
ξ2
[|a|2〈−|si|−〉+ |b|2〈+|si|+〉 − (ba⋆〈+|si|−〉+ c.c.)] . (A.3)

The spin difference is given by

∆si = (si)c − (si)v

=
2ϵ2

v2
Ωz(〈+|si|+〉 − 〈−|si|−〉) +

2ϵ2

v2
[(Ωx + iΩy)〈+|si|−〉+ c.c.] . (A.4)

The average helicity can then be evaluated:

h=
v2

4πϵ2
0

∫

v ·∆sδ(ϵ − ϵ0)dk

=
χ

3
[〈+|sz|+〉 − 〈−|sz|−〉+ (〈+|s+|−〉+ c.c.)] . (A.5)

For an anisotropic Weyl node the above procedure still works but some of the expres-
sions are slightly modified. For example, the z-component of the Berry curvature now reads
Ωz = χvx vy vzkz/(2ϵ3) with ϵ =

q

v2
x k2

x + v2
y k2

y + v2
z k2

z . Then the zz-component of the spin
injection coefficient reads

βzz = gS

∫

dk
8π2

χvx vy vzkz

2ϵ3
(∆s)zδ(2ϵ −ω) . (A.6)

The eigen wave function in the conduction and valence band is still given by Eq. (A.2), but
with a = χ(vx kx − ivy ky) and b = ϵ −χvzkz . The z-th component of the spin difference then
has the following form

∆si =
χvzkz

ϵ
(〈+|si|+〉 − 〈−|si|−〉) +

χ(vx kx + ivy ky)〈+|si|−〉+ c.c.

ϵ
. (A.7)

Therefore,

βzz = gS

∫

dk
8π2

vx vy v2
z k2

z

2ϵ4
(〈+|sz|+〉 − 〈−|sz|−〉)δ(2ϵ −ω)

=
gS

24πvz
(〈+|sz|+〉 − 〈−|sz|−〉) . (A.8)
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Similarly, we can obtain the x x and y y component of the spin injection coefficient as follows

βx x =
gS

24πvx
(〈+|sx |−〉+ c.c.) ,

βy y =
gS

24πvy
(〈+|isy |−〉+ c.c.) .

(A.9)

B Range of the average helicity

In this section, we derive the condition for h = 0. We note that h can be reformulated as
h= χ〈A〉/3 with

〈A〉=
�

〈+| 〈−|
�

�

sz sx + isy
sx − isy −sz

��

|+〉
|−〉

�

. (B.1)

To see when 〈A〉= 0, we first consider the eigenvalue problem:
�

sz sx + isy
sx − isy −sz

��

ψa
ψb

�

= λ

�

ψa
ψb

�

. (B.2)

We then have

s+ψb = (λ− sz)ψa ,

s−ψa = (λ+ sz)ψb . (B.3)

If λ ̸= 1/2, we have
(λ− sz)

−1s+ψb =ψa . (B.4)

Then we have
s−(λ− sz)

−1s+ψb = (λ+ sz)ψb . (B.5)

In the basis of spin-z states (| ↑〉, | ↓〉), we can write ψb = (b1, b2)T and ψa = (a1, a2)T .
We will further label ψ= (a1, a2, b1, b2)T . Then we get two solutions for the equations of ψb.
The first one is

a2 = b1 = 0 , λ=
3
2

. (B.6)

The second one is

b2 = −a1 , λ= −
1
2

. (B.7)

Therefore, λ has two different values. For λ = 3/2, the corresponding helicity is h = χ,
and we have only one eigenstate

|ψ〉1 = (1,0, 0,1)T . (B.8)

In this case, ψa〉 = | ↑〉 and |ψb〉 = | ↓〉. Therefore, the Pauli matrices σ stands for real spin
and the resulting Weyl Hamiltonian describes the Kramers-Weyl node.

For λ = −1/2, the corresponding helicity is h = −χ/3 and we have three different eigen-
states

|ψ〉2 = (1,0, 0,−1)T ,

|ψ〉3 = (0,0, 1,0)T ,

|ψ〉4 = (0,1, 0,0)T . (B.9)
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We will first discuss the solution |ψ〉2. In this case, |ψ〉a = | ↑〉 and |ψ〉b = −| ↓〉. The spin
Pauli matrices s is related to σ by: sx = −σx , sy = −σy , and sz = σz . The corresponding
Weyl Hamiltonian reads: Ĥ = v(k ·σ) = v(−kx sx − kysy + kzsz).

However, the other two eigenstates |ψ〉3 and |ψ〉4 are not physical solutions, due to one
of |ψ〉a and |ψ〉b are zero. But their combination is generally physical. To see this, we expand
the basis of the Weyl cone with the above eigenstates

(|+〉, |−〉)T =
∑

i

ci|ψ〉i = (c1 + c2, c4, c3, c1 − c2)
T . (B.10)

Such a state is physical as long as both |+〉 and |−〉 are nonzero, i.e. (1) c4 and c1 + c2 can-
not all be zero; (2) c3 and c1 − c2 cannot all be zero. Moreover, both |+〉 and |−〉 should
be orthonormalized, requiring (3) |c1 + c2|2 + |c4|2 = 1, (4) |c3|2 + |c1 − c2|2 = 1, and
(5) (c1 + c2)⋆c3 + c⋆4(c1 − c2) = 0.

For physical states, 〈A〉= 0 if and only if

3|c1|2 − |c2|2 − |c3|2 − |c4|2 = 0 . (B.11)

If the Weyl cone does not reside at any high-symmetry point, this condition is only met acci-
dentally. We can safely say that generally 〈A〉 ≠ 0 and hence h ̸= 0.

Moreover, the two values of λ gives the maximum values of h, as any combination of
eigenstates will always takes values between them. Therefore, we know that −χ/3≤ h≤ χ.

C Full expression for the spin injection

In this section, we first sketch the derivation of the full contribution to the photoinduced spin
magnetization using the density-matrix perturbation theory. Under the light irradation, the
Hamiltonian is modified according to the Peierls substitubtion: Ĥ(p)→ Ĥ(p + eA). Here we
adopt the velocity gauge for the light electric field, which is equivalent to the length gauge.
We then expand the Hamiltonian Ĥ = Ĥ0+ Ĥ ′, where Ĥ0 is the unperturbed Hamiltonian and
Ĥ ′ is the perturbation which has the following form

Ĥ ′ =
2
∑

i=1

A(ωi) · v̂e−iωi t , (C.1)

where A(ω) is the vector potential from light, v̂ is the velocity operator. Similar to Ref. [23],
we first set ω1 + ω2 = Ω and will set Ω → 0 in the end. We assume that the perturba-
tion is switched adiabatically. In other words, the frequency should have an imaginary part:
±ω → ±ω + iη. This imaginary part is always positive due to the requirement of causality.
Therefore, Ω→ Ω+ i/τ0 with τ0 = 1/(2η).

We have ignored the second order perturbation because it does not respond to the circular
polarization of light. To see this, note that the second order perturbation generally has the
following form

Ĥ ′′ = Γ̂i jAi(ωk)A j(ωℓ)e
−i(ωk+ωℓ)t , (C.2)

where Γ̂i j is the Hessian operator, which is symmetric with respect to i and j. Here and here-
after, repeated indices are always summed unless otherwise specified. However, the circular
polarization requires the antisymmetrization of i and j. As a result, Ĥ ′′ does not respond to
the circular polarization of light.

With the perturbation from light electric field, the density operator ρ̂ evolves according to
the following equation of motion

dρ̂
d t
= −i[Ĥ, ρ̂] . (C.3)
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We expand the density operator with respect to the vector potential: ρ=ρ0+δρ(1)+δρ(2)+· · ·
At the first order, we have

dδρ(1)

d t
= −i[Ĥ0,δρ(1)]− i[Ĥ ′,ρ0] . (C.4)

The solution reads

δρ(1) = −iA j(ωi)e
−iωi t

∫ ∞

0

dτe−iĤ0τ[v̂ j , ρ̂0]e
iĤ0τeiωiτ , (C.5)

where ρ̂0 is the density operator for the unperturbed system with the Hamiltonian Ĥ0. At
second order, we have

dδρ(2)

d t
= −i[Ĥ0,δρ(2)]− i[Ĥ ′,ρ(1)] . (C.6)

The solution reads

δρ(2) = −Ak(ωi)Aℓ(ω j)e
−i(ωi+ω j)t

∫ ∞

0

d t1d t2e−iĤ0 t1[v̂k, [v̂ℓ(−t2), ρ̂0]]e
iĤ0 t1 ei(ωi+ω j)t1 eiω j t2 ,

(C.7)
where v̂k(t) = eiĤ0 t v̂ke−iĤ0 t .

The spin magnetization is obtained as follows: Ma = Tr(gS ŝaρ). At second order, we have

Ma = gSTr(δρ(2)ŝa) . (C.8)

Here gS is the g-factor for spin. We will keep terms that oscillates at the frequency Ω.
An explicit expression can be obtained by inserting the resolution of identity appropriately.

For example, we consider the following term in Ma (we use the shorthand |n〉 for |un〉)

− gSAk(ωi)Aℓ(ω j)e
−i(ωi+ω j)tTr

∫ ∞

0

d t1d t2ŝae−iĤ0 t1 v̂k v̂ℓ(−t2)ρ̂0eiĤ0 t1 ei(ωi+ω j)t1 eiω j t2

= −gSAk(ωi)Aℓ(ω j)e
−i(ωi+ω j)t

∫ ∞

0

d t1d t2〈n1|ŝa|n2〉〈n2|e−iĤ0 t1 v̂k|n3〉

× 〈n3|v̂ℓ(−t2)ρ̂0eiĤ0τ1 |n1〉ei(ωi+ω j)t1 eiω j t2

= −gS

∑

i ̸= j

Ak(ωi)Aℓ(ω j)e
−iΩt

∫ ∞

0

d t1d t2(sa)n1n2
(vk)n2n3

(vℓ)n3n1
fn1

ei(Ω+ωn1n2
)t1 ei(ω j+ωn1n3

)t2

= gS

∑

i ̸= j

Ak(ωi)Aℓ(ω j)e
−iΩt(sa)n1n2

(vk)n2n3
(vℓ)n3n1

fn1

1
Ω+ωn1n2

1
ω j +ωn1n3

, (C.9)

where ωn1n3
= ϵn1

− ϵn3
. Here and hereafter, the integration over the Brillouin zone is tem-

porarily dropped unless otherwise specified.
Using the similar treatment for the remaining terms in Ma, finally we have

Ma = gS

∑

i ̸= j

Ak(ωi)Aℓ(ω j)e
−iΩt(sa)n1n2

(vk)n2n3
(vℓ)n3n1

1
Ω+ωn1n2

fn1
− fn3

ω j +ωn1n3

− gS

∑

i ̸= j

Ak(ωi)Aℓ(ω j)e
−iΩt(sa)n1n2

(vℓ)n2n3
(vk)n3n1

1
Ω+ωn1n2

fn3
− fn2

ω j +ωn3n2

. (C.10)

From this, we can define a coefficient γi j: Mi = β tot
i j [iE(ω)× E⋆(ω)] j . The diagonal part

of β tot
i j reads

β tot
ii =
−i gSεi jk

ω2

∑

ℓ,m,n

∫

dk
16π3

(v j)mℓ(vk)ℓn
ωnm + i/τ0

× (Gℓn + Gmℓ)(sz)nm , (C.11)
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where (vi)mℓ and (sz)nm are the velocity and spin matrix element, respectively, τ0 is the relax-
ation time, and Gℓn =∆ fℓn/(ωℓn −ω− i/τ0)− (ω→−ω).

Equation. (C.11) yields the spin injection at saturation by taking n= m: β tot
ii |n=m = τ0βii .

This is similar to the saturated current from the injection current in the CPGE. Term with n ̸= m
corresponds to a static photoinduced spin magnetization and is generally nonzero.
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