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Abstract

The one-to-one relation between the winding number and the number of robust zero-
energy edge states, known as bulk-boundary correspondence, is a celebrated feature of
1d systems with chiral symmetry. Although this property can be explained by the K-
theory, the underlying mechanism remains elusive. Here, we demonstrate that, even
without resorting to advanced mathematical techniques, one can prove this correspon-
dence and clearly illustrate the mechanism using only Cauchy’s integral and elementary
algebra. Furthermore, our approach to proving bulk-boundary correspondence also pro-
vides clear insights into a kind of system that doesn’t respect chiral symmetry but can
have robust left or right zero-energy edge states. In such systems, one can still assign
the winding number to characterize these zero-energy edge states.
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1 Introduction

Topological insulators are among the most exotic materials because they manifest the non-
trivial boundary phenomena associated with topology [1–6]. One renowned class within topo-
logical insulators is that of strong topological insulators. Their non-trivial boundary phenom-
ena are protected by on-site symmetries. More specifically, for a strong topological insulator
with a given on-site symmetry in a non-trivial phase, an adiabatic deformation that preserves
this on-site symmetry cannot break its non-trivial boundary phenomena without closing the
bulk gap (i.e., without undergoing a phase transition). From this perspective, the strong topo-
logical insulators are in the family of symmetry-protected topological (SPT) phases [7,8]. The
classification of SPT phases of strong topological insulators can be accomplished through the
K-theory [9–11], with topological invariants that can detect these phases (see [12] and refer-
ences therein). In this work, we focus on 1d free fermion systems with chiral symmetry, recog-
nized as strong topological insulators classified by Z, with the SPT phases detectable through
the winding number. A well-known example is the Su-Schrieffer-Heeger (SSH) model, which
describes a 1d chain of polyacetylene [13].

The one-to-one relation between the bulk topological invariants and the non-trivial bound-
ary phenomena is known as bulk-boundary correspondence [1–6,14–22]. Although this prop-
erty has been numerically and experimentally confirmed in various studies, we don’t have
general proof of bulk-boundary correspondence. For our focus, 1d free fermion systems with
chiral symmetry, bulk-boundary correspondence in these systems asserts that the number of
robust zero-energy edge states is characterized by the winding number [12]. Despite the bulk-
boundary correspondence here can be elucidated through certain advanced approaches, such
as the K-theory [23] and connecting topological invariants to Green’s functions [24], a trans-
parent method to comprehend the underlying mechanism is still absent. This work aims to
provide a legible and rudimentary proof of this correspondence. Specifically, we will show
that the bulk-boundary correspondence can be proved by applying Cauchy’s integral and el-
ementary algebra. While several studies have utilized similar ideas to illustrate the relation
between the winding number and zero-energy edge states [25–28], only bulk-boundary cor-
respondence in two-band systems was rigorously proved through this method [28]. Here, by
introducing the matrix pencils and matrix difference equations, we demonstrate that this ap-
proach can strictly and effectively prove bulk-boundary correspondence in systems with chiral
symmetry, including multi-band cases. On the other hand, this transparent proof also specifies
that if, by choosing a basis, the Bloch Hamiltonian of a given system can be brought into the
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following forms

H (k) =
�

DX (k) D(k)
D†(k) 0

�

, or H (k) =
�

0 D(k)
D†(k) DY (k)

�

,

where DX (k) and DY (k) can be any Hermitian matrix, the system has robust left or right zero-
energy edge states characterized by the winding number v(D†).

2 Chiral symmetry and the winding number

Conventionally, free fermion systems can be described in the single-particle basis set, yielding
single-particle Hamiltonians H. Assuming translation symmetry, we can transform the single-
particle Hamiltonian H into the Bloch Hamiltonian H (k) through Fourier transformation. A
system is said to respect chiral symmetry if there exists a unitary operator S, where

SH (k)S−1 = −H (k) . (1)

In the presence of chiral symmetry, the Hamiltonian can be brought into block-off diagonal
form in the chiral basis, such as

H (k) =
�

0 D(k)
D†(k) 0

�

, with S =

�

1 0
0 −1

�

, (2)

where D(k) has the dimension n×n and 1 is the n×n identity matrix. For 1d gapped systems
with chiral symmetry, the winding number is defined as

v(D†) =
1

2πi

∫

BZ
dk Tr[(D†)−1∂kD†]

=
1

2πi

∫

BZ
dk ∂klog(det[D†]) ,

(3)

where BZ denotes the first Brillouin zone, the notation Tr is trace, and det represents the
determinant.

3 Systems with half nearest-neighbor hopping

Let’s start with the simplest cases, the systems with half nearest-neighbor hopping, which
means, in the chiral basis, the matrix D†(k) of these systems has only the constant terms and
eik terms or the constant terms and e−ik terms. Here, we first focus on the previous one, that
is,

D†(k) = A+ Beik , (4)

where A and B are n× n matrices. Note that A and B can be singular matrices, but D(k) must
be a non-singular matrix because the winding number (3) requires that D(k) is invertible over
Brillouin zone.

3.1 Winding number of systems with D†(k) = A+ Be ik

By rewriting z = eik, we have D†(z) = A+ Bz, and det[D†] can be written as

det[D†] = det[A+ Bz] =
n′r
∑

n′=0

an′z
n′ , (5)

3

https://scipost.org
https://scipost.org/SciPostPhysCore.7.1.003


SciPost Phys. Core 7, 003 (2024)

where n′r ∈ Z
0+ and an′ is a complex coefficient. As shown in eq. (5), det[D†] can be read as

a complex polynomial, so we can further factorize it as

det[A+ Bz] = f (z) = an′r

∏

p

(z −ηp)
mp . (6)

Here, ηp are the roots of det[D†], and mp ∈ Z0+ are the corresponding multiplicities. By
replacing det[D†] in the winding number (3) with det[D†] shown in eq. (6), we have

v(A+ Bz) =
1

2πi

�
|z|=1

dz
f ′(z)
f (z)

=
∑

p

1
2πi

�
|z|=1

dz
mp

z −ηp
. (7)

In the above equation, we use the integration by substitution, z = eik and dz = ieikdk. With
the help of Cauchy’s integral, the winding number can be simplified as

v(A+ Bz) =
∑

p,|ηp|<1

mp . (8)

Therefore, the winding number v can be interpreted as the count of multiplicities for all roots
with an absolute value less than 1. Also, the above equation implies v ≥ 0 here. It is worth
noting that, as a prerequisite for the winding number (3), requiring D† to be invertible over
k ∈ BZ , ensures that |ηp| ̸= 1 holds for all the roots in eq. (6).

3.2 Analytical calculation of robust zero-energy edge states of systems with
D†(k) = A+ Be ik

To investigate the zero-energy edge states, we employ the inverse Fourier transformation and
truncate the system without breaking the unit cells, which converts the Bloch Hamiltonian
with D†(k) = A+ Beik into the following real space Hamiltonian

H =
Nc−1
∑

j=0

[B |SX , j + 1〉 〈SY , j|+ A |SX , j〉 〈SY , j|+ h.c.] , (9)

where j is the cell index and Nc is the number of unit cells. |SX 〉 and |SY 〉 denote the basis
states of the chiral operator S shown in eq. (2) with eigenvalue +1 and with eigenvalue −1
respectively, and |SX/SY , j〉= |SX/SY 〉 ⊗ | j〉. To be more intuitive, let us write H in the matrix
form

H =



































0 A 0 0 0 0 · · · · · · · · · 0
A† 0 B† 0 0 0 · · · · · · · · · 0
0 B 0 A 0 0 · · · · · · · · · 0
0 0 A† 0 B† 0 · · · · · · · · · 0

...
. . .

... 0 B 0 A 0 0

... 0 0 A† 0 B† 0

... 0 0 0 B 0 A
0 0 0 · · · 0 0 0 0 A† 0



































. (10)

H is a (2n·Nc)×(2n·Nc)matrix, where n is the dimension of matrix D†. We should suppose the
system is in the thermodynamic limit Nc →∞, implying a consideration of the semi-infinite
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system. Otherwise, exact zero-energy edge states may not exist due to finite-size effects. Let’s
start with the right semi-infinite chain. By introducing

ψ=
∑

a, j

ca, j
X

�

�Sa
X , j
�

+ ca, j
Y

�

�Sa
Y , j
�

= (|X , 0〉 , |Y, 0〉 , ..., |X , Nc − 1〉 , |Y, Nc − 1〉)T ,

where ca, j
X and ca, j

Y are complex coefficients, |SX/SY , j〉 =
⊗

a

�

�Sa
X/S

a
Y , j
�

, and

|X/Y, j〉 = (c1, j
X/Y , c2, j

X/Y , ..., cn, j
X/Y )

T is the vector composed of the coefficients according to the
basis |SX/SY , j〉, the eigenvalue problem Hψ= εψ can be written as two series

B |Y, j − 1〉+ A |Y, j〉= ε |X , j〉 , with |Y,−1〉= 0 ,

A† |X , j〉+ B† |X , j + 1〉= ε |Y, j〉 .
(11)

Since we only focus on the zero-energy edge states, we can impose ε = 0 on the above equa-
tion, which leads to

B |Y, j〉+ A |Y, j + 1〉= 0 , with |Y,−1〉= 0 ,

A† |X , j〉+ B† |X , j + 1〉= 0 .
(12)

We will have a discussion on equations including boundary conditions in the next section, so
let’s temporarily ignore the first equation in eq. (12). To proceed, let us introduce an operator
∆ defined as ∆ |X , j〉= |X , j + 1〉, and then we have

(A† +∆B†) |X , j〉= 0 . (13)

Without loss of generality, to find the edge states, we can employ the standard ansatz, ∆ = ζ
and |X , j〉= |X 〉ζ j where ζ is a complex number, which turns eq. (13) into

(A† + ζB†) |X 〉= 0 . (14)

The above equation is also called the generalized eigenvalue problem. For the non-trivial
solutions where |X 〉 is not a zero vector, we have

det[A† + ζB†] = det[A† +η∗B†] = (det[A+ηB])∗ = [ f (η)]∗ = 0 . (15)

Here we assume ζ= η∗, where the symbol ∗ denotes the complex conjugate. Also, for a matrix
M , there is a relation det[M†] = (det[M])∗. Now, the connection between the winding number
and the zero-energy edge states becomes apparent. All the roots ηp in eq. (6) can contribute
the solutions ζ= η∗p to eq. (15), implying that the zero-energy edge states are given by

|X , j〉= |X 〉 (η∗p)
j , |η∗p|< 1 . (16)

The condition |η∗p| < 1 is necessary (i.e., only the left zero-energy edge states are valid),
otherwise |X , j〉will diverge when considering the thermodynamic limit. The above discussion
already indicated bulk-boundary correspondence in the systems that possess only non-zero ηp
with multiplicity 1.1 Now, let’s dive into the cases with ηp = 0 and degenerated roots, starting
with the definition of matrix pencils (see [29] for more information)

(A, B) = A−λB , with A, B ∈ Cm×n , (17)

where λ is indeterminate. A matrix pencil (A, B) is said to be regular if n = m and there is
λ ∈ C such that (A, B) is invertible. In this sense, since we require D†(k) over k ∈ BZ to be

1The same argument was made in [25]. They used a similar approach to prove bulk-boundary correspondence
in systems with a more relaxed assumption. They supposed all roots are non-degenerate based on a pragmatic
route. Also, they didn’t discuss the cases with zero roots.
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invertible, we can regard (A†+ζB†) = (A†− (−ζ)B†) = (A†, B†) as a regular matrix pencil. For
a regular matrix pencil, the eigenvalues are defined as

1. The roots of p(λ) = det[A−λB] ,

2.∞ with multiplicity n− deg[p(λ)] ,
(18)

where A and B are n×n matrix, and deg[p(λ)] denotes the degree of polynomial p(λ). Weier-
strass (1867) laid a foundation for studying regular matrix pencils. He proved that, for a given
regular matrix pencil, there are two non-singular matrices, P and Q, such that

P(A−λB)Q = diag{Lλ1
, . . . , Lλa

, Nλ∞} , (19)

where
Lλi
= −λ1ni×ni

+ Jni
(λi) ,

Nλ∞ = −λJn∞(0) +1n∞×n∞ .
(20)

Here, Jni
(λi) is a ni×ni Jordan block with eigenvalue λi , and n∞ is the multiplicity of λi =∞.

In some literature (e.g., [30]), the diagonal form in eq. (19) is called Weierstrass canonical
form. Note that, except for λi =∞, ni is not determined by the multiplicity of λi . Depending
on the situation, an eigenvalue with multiplicity mi may contribute 1 ∼ mi Jordan blocks to
eq. (19), where the direct sum of these Jordan blocks forms a mi × mi matrix. We now go
back to our topic. Because (A†, B†) is a regular matrix pencil, where the finite eigenvalues and
their algebraic multiplicities are given by the negative of the complex conjugate of the roots
in eq. (6) and their multiplicities, we can turn eq. (14) into

P(A† +η∗B†)QQ−1 |X 〉= diag{L−η∗1 , . . . , L−η∗a , N−η∗∞}
�

�X ′
�

= 0 , (21)

where ζ= η∗ and
�

�X ′
�

=Q−1 |X 〉. The technique used in the above equation is fairly common
when addressing differential-algebraic systems of equations (see [31] for more information).
Obviously, eq. (21) can be separated into two parts. One part dominated by Nη∗∞ just tells
us some elements in

�

�X ′
�

are zero. The other part regarding Lηi
forms a matrix difference

equation
diag{L−η∗1 , . . . , L−η∗a}

�

�X ′L
�

= 0→
�

�X ′L , j + 1
�

= MJ

�

�X ′L , j
�

, (22)

where MJ = diag{Jn1
(−η∗1) . . . , Jna

(−η∗a)} is a deg[p(η∗)] × deg[p(η∗)] matrix and
�

�X ′L
�

is
defined by
�

�X ′
�

= {
�

�X ′L
�

,
�

�X ′N
�

}T . Here,
�

�X ′N
�

is a n∞ × 1 zero vector, which is determined by
Nη∗∞ . In the above equation, we turn the ansatz back to

�

�X ′
�

(η∗) j =
�

�X ′, j
�

. Now, the answer
to why η∗p with multiplicity mp represents mp linearly independent edge states is clear. Let’s
consider the systems without η∗p = 0 first. Recall that, for the difference equation u j+1 = Mu j ,
where M is a n× n matrix, there are n linearly independent solutions, such as

u j = M ju0 = PM J j
M P−1

M u0 , (23)

where JM is the Jordan normal form of M , and PM denotes the corresponding generalized
modal matrix that consists of the eigenvectors and generalized eigenvectors. As a case in point,
consider a 3×3 matrix M with two distinct eigenvalues λ1 and λ2, where λ1 has an algebraic
multiplicity of 2 but a geometric multiplicity of 1. Assuming the corresponding eigenvectors
are v and w for λ1 and λ2, and the generalized eigenvector is defined as (M −λ11)v′ = v, we
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have
u j = M ju0

= {v,v′,w}





λ1 1 0
0 λ1 0
0 0 λ2





j

{v,v′,w}−1u0

= {v,v′,w}





λ
j
1 jλ j−1

1 0
0 λ

j
1 0

0 0 λ
j
2









c1
c2
c3





= c1λ
j
1v+ c2( jλ

j−1
1 v+λ j

1v′) + c3λ
j
2w ,

(24)

where {v,v′,w}−1u0 = {c1, c2, c3}T . It’s clear that there are three linearly independent solu-
tions. Therefore, for the matrix difference equation (22), we have the following comment:

If η∗p ̸= 0 is an eigenvalue of MJ and its algebraic multiplicity is m∗p, we

have m∗p linearly independent solutions that behave as
�

�X ′L
�

(η∗) j , where
�

�X ′L
�

are composed of the corresponding eigenvectors and generalized
eigenvectors.

(25)

Now, let’s go into the details of the zero roots. The zero root with multiplicity m0 in eq. (6)
means that MJ has zero eigenvalue with algebraic multiplicity m0. If the geometric multiplicity
of η∗i = 0 is also m0, we have m0 linearly independent eigenvectors where

MJ

�

�X ′L , j
�

=
�

�X ′L , j + 1
�

= 0 , for j ≥ 0 . (26)

The above equation implies that
�

�X ′L , j
�

are suddenly truncated for j ≥ 1, but we still have
non-zero
�

�X ′L , 0
�

that comprises of m0 linearly independent eigenvectors, such as

�

�X ′L , 0
�

=
m0
∑

i=1

ciu0,i , (27)

where u0,i represent the eigenvectors with η∗i = 0. It will be more tricky if the geometric
multiplicity of η∗i = 0 is not m0. For simplicity, we start the discussion with an example where
m0 = 2 and the corresponding geometric multiplicity is 1. Suppose the eigenvector withη∗i = 0
of this example is u0,1, then the generalized eigenvector u0,2 is given by

MJu0,2 = u0,1 , (28)

where u0,1 and u0,2 are linearly independent. Given that u0,1 is the eigenvector with η∗i = 0,
we have (MJ )2u0,2 = MJu0,1 = 0. Also, combined with the fact that MJ

�

�X ′L , j
�

=
�

�X ′L , j + 1
�

,
the above equation actually means that, when

�

�X ′L , 0
�

= u0,2, we have
�

�X ′L , 1
�

= u0,1 and
�

�X ′L , j
�

= 0 for j ≥ 2. Therefore, this case contains two linearly independent solutions,

c1(
�

�X ′L , 0
�

= u0,1) + c2(
�

�X ′L , 0
�

= u0,2 +
�

�X ′L , 1
�

= u0,1) . (29)

That is to say, there is a solution that has both
�

�X ′L , 0
�

and
�

�X ′L , 1
�

non-zero. To better illustrate
this, we provide an example in Appendix. A. By extending the idea used in this example, we
can make the following statement:

If η∗p = 0 with algebraic multiplicity m∗p is the eigenvalue of MJ , it con-
tributes m∗p linearly independent solutions to eq. (22). These solutions,
consisting of the corresponding eigenvectors and generalized eigenvec-
tors, are suddenly truncated somewhere, with the upper limit of trun-
cated cell indices set at j = m∗p − 1.

(30)
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Therefore, all the eigenvectors and generalized eigenvectors of MJ serve as the composition
of the solutions to eq. (22).

Taking statements (25) and (30) into account, the number of non-trivial linearly indepen-
dent solutions of the matrix difference equation (22) is

∑

p m∗p, where m∗p is the multiplicity of
the root η∗p. The number of non-trivial linearly independent solutions of eq. (13) is also

∑

p m∗p
because the invertible transformation

�

�X ′
�

=Q−1 |X 〉 doesn’t break linear independence.2 Ad-
ditionally, as stated before, we should exclude the solutions with η∗p > 1 because they are
divergent as j →∞. Therefore, combining with the fact that each converged non-trivial lin-
early independent solution of eq. (13) represents a robust left zero-energy edge state situated
on |SX , j〉, we can conclude that

For right semi-infinite chains, the number of robust left zero-energy
edge states located on |SX , j〉 is

∑

p,|η∗p|<1 m∗p.
(31)

Note that we have m∗p = mp, which comes from eq. (15), and |η∗p| = |ηp|. Finally, comparing
with the winding number (8), we can see the bulk-boundary correspondence is established.

Although the above discussion is for right semi-infinite chains, we can adopt the same idea
for left semi-infinite chains. First, we relabel the cell indices from the right-hand side, leading
to the eigenvectors of H expressed as (|X , Nc − 1〉 , |Y, Nc − 1〉 , . . . , |X , 0〉 , |Y, 0〉)T . Then, the
eigenvalue problem of H can be written as two series

B† |X , j − 1〉+ A† |X , j〉= ε |Y, j〉 , with |X ,−1〉= 0 ,

A |Y, j〉+ B |Y, j + 1〉= ε |X , j〉 .
(32)

The above equations can be readily obtained by observing eq. (10). By adopting the ansatz
|Y, j〉= |Y 〉ζ j , the corresponding robust zero-energy edge states can be given by solving

(A+ ζB) |Y 〉= 0 , (33)

where ζ is a complex number. By going through the same process as discussed right semi-
infinite chains, we can connect the non-trivial solutions of eq. (33) to the roots in eq. (6) as
ζ= ηp and then make the following statement:

For left semi-infinite chains, the number of robust right zero-energy
edge states located on |SY , j〉 is

∑

p,|ηp|<1 mp.
(34)

In short, for the cases with D†(k) = A+Beik, the winding number v is identical to the number
of robust left (right) zero-energy edge states situated on |SX , j〉 (|SY , j〉) when considering right
(left) semi-infinite chains.

3.3 Discussion on systems with D†(k) = A+ Ce−ik

Now, let’s move to the other type of systems with half nearest-neighbor hopping, where the
matrix D†(k) is read as

D†(k) = A+ Ce−ik . (35)

2With the invertible transformation |X ′〉 = Q−1 |X 〉, the zero-energy edge states located on |SX , j〉 can be deter-
mined by (|X , 0〉 , |Y, 0〉 , . . . , |X , Nc − 1〉 , |Y, Nc − 1〉)T = (Q |X ′, 0〉 , |Y, 0〉 , . . . ,Q |X ′, Nc − 1〉 , |Y, Nc − 1〉)T , where all
|Y, j〉 are zero vectors because the zero-energy edge states located on |SX , j〉 and |SY , j〉 are separately determined
by two equations as shown in eq. (12).
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Unlike the substitution we used before, here we utilize z = e−ik, which leads to

det[D†] = det[A+ Cz] =
nr
∑

n=0

anzn . (36)

By factorizing the above complex polynomial, we have

det[A+ Cz] = f (z) = anr

∏

p

(z −ηp)
mp . (37)

With the substitution z = e−ik and dz = −ie−ikdk, the corresponding winding number is given
by

v(A+ Cz) =
1

2πi

�
|z|=1

dz
f ′(z)
f (z)

=
∑

j

1
2πi

�
|z|=1

dz
mp

z −ηp
. (38)

Simplifying the above equation by Cauchy’s integral, we can get

v(A+ Cz) = −
∑

p,|ηp|<1

mp . (39)

The above equation implies v ≤ 0.
For studying the zero-energy edge states, we convert the Bloch Hamiltonian into the fol-

lowing real space Hamiltonian

H =
Nc−1
∑

j=0

[A |SX , j〉 〈SY , j|+ C |SX , j〉 〈SY , j + 1|+ h.c.] , (40)

or

H =



































0 A 0 C 0 0 · · · · · · · · · 0
A† 0 0 0 0 0 · · · · · · · · · 0
0 0 0 A 0 C · · · · · · · · · 0
C† 0 A† 0 0 0 · · · · · · · · · 0

...
. . .

... 0 0 0 A 0 C

... C† 0 A† 0 0 0

... 0 0 0 0 0 A
0 0 0 · · · 0 0 C† 0 A† 0



































. (41)

If we consider the right semi-infinite chains, the eigenvalue problem is read as

A |Y, j〉+ C |Y, j + 1〉= ε |X , j〉 ,

C† |X , j − 1〉+ A† |X , j〉= ε |Y, j〉 , with |X ,−1〉= 0 .
(42)

For the left semi-infinite chains, we have

A† |X , j〉+ C† |X , j + 1〉= ε |Y, j〉 ,

C |Y, j − 1〉+ A |Y, j〉= ε |X , j〉 , with |Y,−1〉= 0 .
(43)

Let’s still ignore the equations with boundary conditions. In the next section, we’ll elaborate
on why the equations with boundary conditions here don’t contribute any robust zero-energy
edge states. As stated before, the robust zero-energy edge states can be given by solving

(A+ ζC) |Y 〉= 0 , for right semi-infinite chains,

(A† + ζC†) |X 〉= 0 , for left semi-infinite chains.
(44)
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The bulk-boundary correspondence here can be investigated by the same method when dis-
cussing D†(k) = A+Beik, which leads to the following statement: for the cases with D†(k) = A+
Ce−ik, the absolute value of winding number |v| is identical to the number of robust left (right)
zero-energy edge states situated on |SY , j〉 (|SX , j〉) when considering right (left) semi-infinite
chains.

4 Systems with nearest-neighbor hopping

In the chiral basis, the general form of the matrix D†(k) for systems with nearest-neighbor
hopping can be written as

D†(k) = Ce−ik + A+ Beik , (45)

where A, B, and C are n×n matrices and can be singular matrices, but D(k)must be invertible.

4.1 Winding number of systems with nearest-neighbor hopping

We have two choices of substitution, z+ = eik and z− = e−ik. With z+ = eik, det[D†] can be
written as

det[D†] = det[Cz−1
+ + A+ Bz+] = z−n

+ det[C + Az+ + Bz2
+] = z−n

+

n′+,r
∑

n′=0

an′z
n′
+ , (46)

where n′+,r ∈ Z
0+ and an′ is a complex coefficient. The above equation can be further factorized

as
det[Cz−1

+ + A+ Bz+] = z−n
+ f1(z+) , (47)

where
f1(z+) = det[C + Az+ + Bz2

+] = an′+,r

∏

p

(z+ −η+,p)
m+p . (48)

Here, η+,p are the roots of f1(z+), and m+p are the corresponding multiplicities. By using this

substitution and dz+ = ieikdk, the winding number can be read as

v(Cz−1
+ + A+ Bz+) = −n+

∑

p

1
2πi

�
|z+|=1

dz+
m+p

z+ −η+,p
. (49)

Utilizing Cauchy’s integral can simplify the winding number as

v(Cz−1
+ + A+ Bz+) = −n+

∑

p,|η+,p|<1

m+p . (50)

For the other choice z− = e−ik, we have

det[D†] = det[Cz− + A+ Bz−1
− ] = z−n

− det[B + Az− + Cz2
−] = z−n

−

n′−,r
∑

n′=0

bn′z
n′
− , (51)

where n′−,r ∈ Z
0+ and bn′ is a complex coefficient. After factorizing, the above equation be-

comes
det[Cz− + A+ Bz−1

− ] = z−n
− g1(z−) , (52)
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where
g1(z−) = det[B + Az− + Cz2

−] = bn′−,r

∏

p

(z− −η−,p)
m−p . (53)

η−,p are the roots of g1(z−), and m−p are the corresponding multiplicities. With dz− = −ieikdk
and the help of Cauchy’s integral, we have

v(Cz− + A+ Bz−1
− ) = n−
∑

p,|η−,p|<1

m−p . (54)

Note that we just employ different substitutions to rewrite D†(k) = Ce−ik + A+ Beik, so the
winding numbers in eq. (48) and eq. (53) must be the same, which leads to

∑

p,|η+,p|<1

m+p +
∑

p,|η−,p|<1

m−p = 2n . (55)

The above equation implies a connection between f1(z+) and g1(z−), which will play a crucial
role in the following discussion.

4.2 Analytical calculation of robust zero-energy edge states for systems with
nearest-neighbor hopping

By truncating systems without breaking unit cells after inverse Fourier transformation, the
systems with zero-energy edge states can be described as

H =
Nc−1
∑

j=0

[B |SX , j + 1〉 〈SY , j|+ A |SX , j〉 〈SY , j|+ C |SX , j〉 〈SY , j + 1|+ h.c.] , (56)

or

H =



































0 A 0 C 0 0 · · · · · · · · · 0
A† 0 B† 0 0 0 · · · · · · · · · 0
0 B 0 A 0 C · · · · · · · · · 0
C† 0 A† 0 B† 0 · · · · · · · · · 0

...
. . .

... 0 B 0 A 0 C

... C† 0 A† 0 B† 0

... 0 0 0 B 0 A
0 0 0 · · · 0 0 C† 0 A† 0



































. (57)

For right semi-infinite chains, the eigenvalue problem of the above systems can be read as

B |Y, j − 1〉+ A |Y, j〉+ C |Y, j + 1〉= ε |X , j〉 , with |Y,−1〉= 0 ,

C† |X , j − 1〉+ A† |X , j〉+ B† |X , j + 1〉= ε |Y, j〉 , with |X ,−1〉= 0 .
(58)

The corresponding zero-energy edge states can be given by solving

B |Y, j − 1〉+ A |Y, j〉+ C |Y, j + 1〉= 0 , with |Y,−1〉= 0 ,

C† |X , j − 1〉+ A† |X , j〉+ B† |X , j + 1〉= 0 , with |X ,−1〉= 0 ,
(59)

or, equivalently
�

A B
1 0

�

LY, j =

�

−C 0
0 1

�

LY, j+1 , with |Y,−1〉= 0 ,

�

A† C†

1 0

�

LX , j =

�

−B† 0
0 1

�

LX , j+1 , with |X ,−1〉= 0 ,

(60)
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where LX , j = {|X , j〉 , |X , j − 1〉}T , LY, j = {|Y, j〉 , |Y, j − 1〉}T , and 1 is the n×n identity matrix.
With the assumptions, LX , j = LXζ

j and LY, j = LYζ
j , we can turn the above equations into

matrix pencils, where the finite eigenvalues are determined by

det

��

A B
1 0

�

−
�

−Cζ 0
0 1ζ

��

= (−1)ndet[B + Aζ+ Cζ2] = (−1)n g1(ζ) = 0 ,

det

��

A† C†

1 0

�

−
�

−B†ζ 0
0 1ζ

��

= (−1)ndet[C† + A†ζ+ B†ζ2] = (−1)n[ f1(ζ
∗)]∗ = 0 .

(61)

If we don’t consider the boundary conditions, by using the same fashion as in the previous
section, we’ll find that every unique eigenvalue ζ j of the matrix pencils in eq. (61) contributes
m j , which is the algebraic multiplicity of ζ j , non-trivial linearly independent solutions to the
corresponding equations in eq. (60). Moreover, the eigenvalues of the first matrix pencil in
eq. (61) are identical to η−,p, and for the other matrix pencil, the eigenvalues are given by
η∗+,p. Therefore, with the restriction |ζ j|< 1, we have

Without the boundary conditions:

the number of the linearly independent solutions LY, j is
∑

p,|η−,p|<1

m−p ,

the number of the linearly independent solutions LX , j is
∑

p,|η+,p|<1

m+p .

(62)

Now, let’s discuss the role of boundary conditions. After inserting these linearly independent
solutions into eq. (60), the boundary condition can be written as

LY,0 =

�

|Y, 0〉
0

�

=
∑

n′
cn′vn′( j = 0) ,

LX ,0 =

�

|X , 0〉
0

�

=
∑

m′
cm′vm′( j = 0) ,

(63)

where {vn′( j)} and {vm′( j)} represent the set of linearly independent non-trivial solutions
with cell indices j for LY, j and LX , j , respectively. Obviously, given that the 0 parts in the above
equations are n× 1 zero vectors, they will eliminate n linear independence of these solutions
at most. Also, considering the fact that every non-trivial linearly independent solution in
eq. (60) means a zero-energy edge state located on the corresponding basis, here we draw the
following conclusion first and will explain more.

1. If n <
∑

p,|η−,p|<1 m−p , there are |v| = −n+
∑

p,|η−,p|<1 m−p robust left
zero-energy edge states located on |SY , j〉.

2. If n <
∑

p,|η+,p|<1 m+p , there are v = −n+
∑

p,|η+,p|<1 m+p robust left
zero-energy edge states located on |SX , j〉.

(64)

To be more specific, because the boundary conditions don’t always provide n restrictions (of
the coefficients), it is possible that a system has zero-energy edge states not characterized
by the winding number. However, these zero-energy edge states are not robust, and we call
them trivial zero-energy edge states here. We provide an example of a system with trivial
zero-energy edge states in Appendix. B. Trivial zero-energy edge states can be destroyed by
turning on other hopping terms, which can be regarded as perturbations, without breaking
chiral symmetry and closing the bulk gap (i.e., without changing topology). But note that,
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no matter how we turn on hopping terms, the maximum number of restrictions given by
boundary conditions here is always n. Therefore, the number of robust zero-energy edge
states is determined by supposing that there are n restrictions. Finally, by considering the
relation between the roots of g1(z−) and f1(z+) as expressed in eq. (55), we can make the
following statement

For right semi-infinite chains, if v ≥ 0, there are v robust left zero-
energy edge states located on |SX , j〉, and if v ≤ 0, there are |v| robust
left zero-energy edge states located on |SY , j〉.

(65)

By using the same method as discussed above, for left semi-infinite chains, we have

For left semi-infinite chains, if v ≥ 0, there are v robust right zero-
energy edge states located on |SY , j〉, and if v ≤ 0, there are |v| robust
right zero-energy edge states located on |SX , j〉.

(66)

5 Systems with arbitrary long-range hopping

Although we can choose a non-primitive unit cell that makes all hopping nearest-neighbor,
which doesn’t change the value of the winding number, the corresponding chiral symmetry is
different from that of the primitive unit cell. Hence, choosing a non-primitive unit cell will lead
to different SPT phases from selecting the primitive one. Taking this into account, discussion
on systems with long-range hopping is necessary. Let’s start with the following D†(k) matrix

D†(k) = A+
nC
∑

n′=1

Cn′e
−in′k +

nB
∑

m′=1

Bm′e
im′k , (67)

where nC , nB ∈ Z0+. The above n× n matrix D†(k) can represent systems with arbitrary long-
range hopping in the chiral basis. As the same requirement before, A, Bm′ , and Cn′ can be
singular, but D†(k) must be invertible.

5.1 Winding number of systems with arbitrary long-range hopping

For the substitution z+ = eik, we have

det[D†] = z−n·nC
+ det

�

AznC
+ +

nC
∑

n′=1

Cn′z
nC−n′

+ +
nB
∑

m′=1

Bm′z
m′+nC
+

�

= z−n·nC
+ f2(z+) , (68)

where the factorized part f2(z+) can be written as

f2(z+) = det

�

AznC
+ +

nC
∑

n′=1

Cn′z
nC−n′

+ +
nB
∑

m′=1

Bm′z
m′+nC
+

�

= c+
∏

p

(z+ −η+,p)
m+p . (69)

c+ is a complex number. With this substitution and Cauchy’s integral, the winding number is
given by

v(D†) = −(n · nC) +
∑

p,|η+,p|<1

m+p . (70)

We also can use the substitution z− = e−ik, which leads to

det[D†] = z−n·nB
− det

�

AznB
− +

nB
∑

m′=1

Bm′z
nB−m′

− +
nC
∑

n′=1

Cn′z
n′+nB
−

�

= z−n·nB
− g2(z−) , (71)
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where

g2(z−) = det

�

AznB
− +

nB
∑

m′=1

Bm′z
nB−m′

− +
nC
∑

n′=1

Cn′z
n′+nB
−

�

= c−
∏

p

(z− −η−,p)
m−p . (72)

c− is a complex number. The corresponding winding number is

v(D†) = (n · nB)−
∑

p,|η−,p|<1

m−p . (73)

Since different substitutions do not change the value of the winding number, there is a relation
between the roots of f2(z+) and g2(z−)

∑

p,|η+,p|<1

m+p +
∑

p,|η−,p|<1

m−p = n · (nB + nC) . (74)

5.2 Analytical calculation of robust zero-energy edge states for systems with
arbitrary long-range hopping

As the method used in the previous discussion, after inverse Fourier transformation, we can
equip systems with zero-energy edge states by truncating them without breaking unit cells,
such as

H =
Nc−1
∑

j=0

�

A |SX , j〉 〈SY , j|+
nB
∑

m′=1

Bm′
�

�SX , j +m′
�

〈SY , j|+
nC
∑

n′=1

Cn′ |SX , j〉



SY , j + n′
�

�+ h.c.

�

.

(75)
For right semi-infinite chains, the corresponding eigenvalue problem can be written as

A |Y, j〉+
nB
∑

m′=1

Bm′
�

�Y, j −m′
�

+
nC
∑

n′=1

Cn′
�

�Y, j + n′
�

= ε |X , j〉 ,

with |Y,−1〉= |Y,−2〉 . . . |Y,−nB〉= 0 ,

(76)

and

A† |X , j〉+
nC
∑

n′=1

C†
n′

�

�X , j − n′
�

+
nB
∑

m′=1

B†
m′

�

�X , j +m′
�

= ε |Y, j〉 ,

with |X ,−1〉= |X ,−2〉 . . . |X ,−nC〉= 0 .

(77)

The zero-energy edge states can be given by solving the above two equations with ε= 0, which
can be equivalently written as the following generalized eigenvalue problems

MY LY, j = DY LY, j+1 , with |Y,−1〉= |Y,−2〉 . . . |Y,−nB〉= 0 ,

MX LX , j = DX LY, j+1 , with |X ,−1〉= |X ,−2〉 . . . |X ,−nC〉= 0 ,
(78)
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where

MY =



































CnC−1 CnC−2 · · · C1 A B1 · · · BnB−1 BnB

1 0 · · · · · · · · · · · · · · · · · · 0
0 1 0 · · · · · · · · · · · · · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · · · · · · · · · · · · · 0 1 0



































,

MX =





































B†
nB−1 B†

nB−2 · · · B†
1 A† C†

1 · · · C†
nC−1 C†

nC

1 0 · · · · · · · · · · · · · · · · · · 0
0 1 0 · · · · · · · · · · · · · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · · · · · · · · · · · · · 0 1 0





































,

(79)

DY =















−CnC
0 · · · · · · 0

0 1 0 · · · 0
...

. . .
...

...
. . . 0

0 · · · · · · 0 1















, DX =















−B†
nB

0 · · · · · · 0
0 1 0 · · · 0
...

. . .
...

...
. . . 0

0 · · · · · · 0 1















, (80)

and
LY, j = {|Y, j + nC − 1〉 , · · · , |Y, j + 1〉 , |Y, j〉 , |Y, j − 1〉 · · · |Y, j − nB〉}T ,

LX , j = {|X , j + nB − 1〉 , · · · , |X , j + 1〉 , |X , j〉 , |X , j − 1〉 · · · |X , j − nC〉}T .
(81)

Here, 1 is the n×n identity matrix, so MX , MY , DX , and DY are [n · (nC +nB)]× [n · (nC +nB)]
matrices. With the ansatz LX , j = LXζ

j and LY, j = LYζ
j , the equations in eq. (81) become

matrix pencils, and the corresponding finite eigenvalues are determined by

det(MY − ζDY ) = (−1)[n·(nC+nB−1)]g2(ζ) = 0 ,

det(MX − ζDX ) = (−1)[n·(nC+nB−1)][ f2(ζ
∗)]∗ = 0 .

(82)

The derivation of eq. (82) is provided in Appendix. C. Therefore, we have

Without the boundary conditions:

The number of the linearly independent solutions LY, j is
∑

p,|η−,p|<1

m−p ,

the number of the linearly independent solutions LX , j is
∑

p,|η+,p|<1

m+p .

(83)
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By imposing the boundary conditions in eq. (78) on LY,0 (LX ,0), which gives n · nB (n · nC)
equations of boundary conditions at most, we can make the following statement:

1. If n · nB <
∑

p,|η−,p|<1 m−p , there are |v| = −n · nB +
∑

p,|η−,p|<1 m−p
robust left zero-energy edge states located on |SY , j〉.

2. If n·nC <
∑

p,|η+,p|<1 m+p , there are v = −n·nC+
∑

p,|η+,p|<1 m+p robust
left zero-energy edge states located on |SX , j〉.

(84)

Note that, although the boundary conditions also impose certain restrictions on LY, j>0 (LX , j>0),
by definition, the restricted components of LY, j>0 (LX , j>0) must be the components of LY,0
(LX ,0), so there is no new equation of boundary conditions given by LY, j>0 (LX , j>0). Lastly,
combined with eq. (74), we can see bulk-boundary correspondence established as eq. (65).
Also, utilizing the above approach to discussing left semi-infinite chains will lead to the bulk-
boundary correspondence described in eq. (66).

6 Robust zero-energy edge states in the systems without chiral
symmetry

In the previous sections, we proved that all robust zero-energy edge states have non-zero
amplitude only on one of |X , j〉 and |Y, j〉. This property supports a sort of system that doesn’t
respect chiral symmetry but can have robust zero-energy edge states characterized by the
winding number v(D†), which is described by

H (k) =
�

DX (k) D(k)
D†(k) 0

�

, or H (k) =
�

0 D(k)
D†(k) DY (k)

�

. (85)

The only requirement here is DX (k) = D†
X (k) and DY (k) = D†

Y (k), which guarantees the system
is Hermitian. Let’s focus on systems with DX (k) first, which can be decomposed into

H (k) =HC(k)+HX (k) , with HC(k) =

�

0 D(k)
D†(k) 0

�

, and HX (k) =

�

DX (k) 0
0 0

�

.

(86)
The corresponding real space Hamiltonian can be written as

H = HC +HX , (87)

where HC comes from the inverse Fourier transformation of HC(k) with suitable truncation
(i.e., truncation without breaking unit cells) and can be described as H in eq. (75). HX corre-
sponds toHX (k) and can be read as

HX =
Nc−1
∑

j=0

� nT
∑

n′=0

Tn′
�

�SX , j + n′
�

〈SX , j|+ h.c.

�

. (88)

Because HC respects chiral symmetry, it possesses robust zero-energy edge states characterized
by the winding number. Depending on the right or left semi-infinite limit we consider and the
value of the winding number, the robust zero-energy edge states of HC can be ψe

X or ψe
Y ,

where ψe
X and ψe

Y represent the robust zero-energy edge states located on |SX , j〉 and |SY , j〉,
respectively. For all the zero-energy edge states ψe

Y , we have

Hψe
Y = HCψ

e
Y +HXψ

e
Y = 0 . (89)
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Therefore, all the robust zero-energy edge states of HC located on |SY , j〉 are also robust zero-
energy edge states of H. The above equation is established because of HCψ

e
Y = 0 and HXψ

e
Y

= 0. The fact that ψe
Y are “zero-energy” edge states of HC leads to HCψ

e
Y = 0. The other

relation HXψ
e
Y = 0 is given by




SX , j|SY , j′
�

= 0. Lastly, combined with eq. (65) and (66), we
can establish bulk-boundary correspondence in the systems with non-zero DX (k), such as

For the Bloch Hamiltonian of a given system that can be written as
H (k) =HC(k)+HX (k) in a certain basis, we can still assign the wind-
ing number v defined in eq. (3) to this system. If v ≥ 0, it has v robust
right zero-energy edge states located on |SY , j〉 when considering left
semi-infinite chains. If v ≤ 0, it has |v| robust left zero-energy edge
states located on |SY , j〉 when considering right semi-infinite chains.

(90)

This correspondence can be intuitively grasped. Given that these robust zero-energy edge
states live only on the SY sublattice, any alteration limited to the SX sublattice sites, even if it
breaks chiral symmetry, will not affect them.

Also, we can employ the same idea to study

H (k) =HC(k)+HY (k) , with HC(k) =

�

0 D(k)
D†(k) 0

�

, and HY (k) =

�

0 0
0 DY (k)

�

,

(91)
which leads to the following bulk-boundary correspondence

For the Bloch Hamiltonian of a given system that can be written as
H (k) =HC(k)+HY (k) in a certain basis, we can still assign the wind-
ing number v defined in eq. (3) to this system. If v ≥ 0, it has v robust
left zero-energy edge states located on |SX , j〉 when considering right
semi-infinite chains. If v ≤ 0, it has |v| robust right zero-energy edge
states located on |SX , j〉 when considering left semi-infinite chains.

(92)

6.1 Example: A two-band model

As a concrete example, we consider a two-band system where its Bloch Hamiltonian is given
by

H2b(k) =

�

t0 + t1(eik + e−ik) u+we−ik

u+weik 0

�

. (93)

Since we want to show that DX (k) doesn’t affect the existence of robust zero-energy edge
states, we deliberately introduce the nearest-neighbor hopping t1. The winding number of
H2b(k) can be read as

v(u+weik) =

�

1 , w> u ,

0 , w< u .
(94)

After utilizing inverse Fourier transformation and then truncating the real space Hamiltonian
without breaking unit cells, we obtain

H2b =
Nc−1
∑

j=0

[u |SX , j〉 〈SY , j|+w |SX , j + 1〉 〈SY , j|+ t0 |SX , j〉 〈SX , j|+ t1 |SX , j + 1〉 〈SX , j|+ h.c.] .

(95)
In accordance with the statement (90), when w> u, the corresponding left semi-infinite chain
has a robust right zero-energy edge state located on |SY , j〉. The existence of this zero-energy
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(a) (b)

(c)

Figure 1: (a) The energy spectrum of H2b with u= 2, w= 5, t0 = 6, and t1 = 4. The
number of unit cells is Nc = 50. (b) The zero-energy edge state of H2b. The green
and blue bars denote the value of wave functions on |SX , j〉 and |SY , j〉, respectively.
(c) The energy spectrum of H2b(u) with w = 5, t0 = 6, and t1 = 4. The number of
unit cells is Nc = 5. The dashed line represents the point u = w, and the red color
targets the deformation of the zero-energy edge state.

edge state can be numerically confirmed as shown in Fig. 1. Note that, due to the finite size
effect, a finite but large enough system usually possesses only edge states with energy slightly
splitting from zero, but the number and behavior of these edge states can be determined by
combining the predictions from its corresponding right and left semi-infinite chains. Addition-
ally, we further impose small spatial disorders on H2b, such as

H̃2b = H2b +δH2b , (96)

where

δH2b =
Nc−1
∑

j=0

[δu( j) |SX , j〉 〈SY , j|+δw( j) |SX , j + 1〉 〈SY , j|+δt0( j) |SX , j〉 〈SX , j|

+δt1( j) |SX , j + 1〉 〈SX , j|+ h.c.] .

(97)

The numerical result in Fig. 2 indicates that the zero-energy edge state of H2b is robust against
spatial disorders.

7 Conclusion

In this work, we commenced with the fact that for any Bloch Hamiltonian that respects chiral
symmetry, its winding number can be linked to a complex polynomial Pc . More specifically,
each root of Pc with an absolute value less than 1 contributes its multiplicity to the winding
number. Subsequently, by truncating the real-space Hamiltonian—derived through the inverse
Fourier transformation of the Bloch Hamiltonian described in the chiral basis—without break-
ing unit cells, we equip the system with zero-energy edge states in the thermodynamic limit.
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(a) (b)

Figure 2: Here we introduce the spatial perturbations δH2b. The perturbations δu( j),
δw( j), δt0( j), and δt1( j) in each cell j are within the range [−1, 1]. (a) The energy
spectrum of H̃2b with u = 2, w = 5, t0 = 6, and t1 = 4. The number of unit cells is
Nc = 50. (b) The zero-energy edge state of H̃2b. The green and blue bars denote the
value of wave functions on |SX , j〉 and |SY , j〉, respectively.

These zero-energy edge states can be given by solving a regular matrix pencil, where the fi-
nite eigenvalues of this regular matrix pencil and their algebraic multiplicities are determined
by the roots of Pc and their multiplicities. After transforming this matrix pencil into Weier-
strass canonical form, a matrix difference equation emerges. Since this transformation is an
invertible linear transformation, each converged non-trivial linear independent solution of the
corresponding matrix difference equation can represent a zero-energy edge state. Finally, by
considering that the boundary conditions generate the largest number of linearly independent
equations, we can see the number of remaining converged linearly independent solutions are
characterized by the winding number as stated in eq. (65) and (66). Therefore, the bulk-
boundary correspondence is established. It’s worth noting that, because boundary conditions
don’t always impose the most restrictions, 1d systems with chiral symmetry may harbor zero-
energy edge states not characterized by the winding number. We refer to these zero-energy
edge states as trivial zero-energy edge states since they can be eliminated by introducing cer-
tain hopping terms without breaking chiral symmetry and closing the bulk gap.

On the other hand, owing to the property that all robust zero-energy edge states of semi-
infinite systems with chiral symmetry are only situated on one of |SX , j〉 and |SY , j〉, if the Bloch
Hamiltonian of a given system that doesn’t respect chiral symmetry can be written as the forms
(85) in a certain basis, we can assign the winding number v(D†) to characterize the robust zero-
energy edge states of this system, which leads to the bulk-boundary correspondence described
in the statements (90) and (92).
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Figure 3: Energy spectrum of the real space Hamiltonian related to D† in eq. (A.1),
which is given by inverse Fourier transformation of the corresponding Bloch Hamil-
tonian and then truncating it without breaking unit cells. The number of unit cells is
Nc = 15.

A Example of a system with zero roots

To show the argument regarding zero roots in eq. (30) holds everywhere, instead of some
simple and obvious systems, we deliberately choose a complex system

D†(eik) =







1/2 1 1/2 1
0 0 0 0

1/2 0 1/2 0
0 0 0 1






+







2 0 1 0
0 1 0 0
1 0 1 0
0 0 0 0






eik . (A.1)

This system cannot be easily constructed in reality. In fact, we establish it by P−1W (eik)Q−1

= D†(eik) with specific W , which is the Weierstrass canonical form, and two casually chosen
invertible matrices, P and Q. After equipping it with zero-energy edge states and going through
the process as discussed in Sec. 3, we obtain the corresponding matrix pencil D†(ζ). With two
invertible matrices P and Q, we can bring this matrix pencil into the Weierstrass canonical
form PD†(ζ)Q =W (ζ), where

P =







1 0 −1 −1
0 1 0 0
0 0 1 0
0 0 0 1






, Q =







1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 1






, (A.2)

and

W =







ζ 0 0 0
0 ζ 0 0
0 0 ζ 0
0 0 0 0






+







0 1 0 0
0 0 0 0
0 0 1/2 0
0 0 0 1






. (A.3)

The above equation implies the eigenvalues of the matrix pencil D(ζ) are 0, 0, 1/2, and∞.
The non-trivial solutions of W

�

�X ′
�

= 0 are determined by




ζ 0 0
0 ζ 0
0 0 ζ





�

�X ′L
�

= −





0 1 0
0 0 0
0 0 1/2





�

�X ′L
�

, (A.4)

with
�

�X ′
�

=
��

�X ′L
�

, 0
	T

. After turning the ansatz back to
�

�X ′
�

(ζ) j =
�

�X ′, j
�

, we have

�

�X ′L , j + 1
�

= MJ

�

�X ′L , j
�

, where MJ = −





0 1 0
0 0 0
0 0 1/2



 . (A.5)
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(a) (b)

(c) (d)

(e) (f)

Figure 4: The (nearly) zero-energy edge states of the system in Fig. 3. The red
lines represent the truncated cell index ( j = 1), which is given by eq. (A.7), and the
green and blue bars denote the value of wave functions on |SX , j〉 and |SY , j〉, respec-
tively. As expected, there are four hybridized suddenly truncated edge states and
two hybridized exponentially decreasing edge states. Note that, for more complex
systems, numerical results may give us edge states hybridizing suddenly truncated
and exponentially decreasing edge states. However, we can “purify” them by linear
superposition.

As stated in Sec. 3, the solutions of the above matrix difference equation are composed of
the eigenvectors and generalized eigenvectors of MJ , so there are three linearly independent
solutions, where one is exponentially decreasing, such as

�

�X ′L , j
�

= c1





0
0
1



 (1/2) j . (A.6)

The other two are suddenly truncated, which is given by

�

�X ′L , j
�

= c2





�

�X ′L , 0
�

=





1
0
0







+ c3





�

�X ′L , 0
�

=





0
1
0



+
�

�X ′L , 1
�

=





1
0
0







 . (A.7)

Therefore, we can assert there are three left (right) zero-energy edge states located on |SX , j〉
(|SY , j〉) for the corresponding right (left) semi-infinite chain, where two of them are suddenly
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(a) (b)

(c) (d)

Figure 5: (a) The schematic picture of Htri(t = 0). (b) The energy spectrum of
Htri(t = 0). The number of unit cells is Nc = 20. (c)(d) The trivial zero-energy edge
states of Htri(t = 0). The green and blue bars denote the value of wave functions on
|SX , j〉 and |SY , j〉, respectively.

Figure 6: The energy spectrum of Htri(t) with Nc = 20. The zero-energy edge states
of Htri(t = 0) vanish after turning on t.

truncated. The numerical results in Fig. 3 and Fig. 4 also agree with the above argument. It
should be remarked that, for finite systems, we usually cannot see the exact zero-energy edge
states, and the numerical result gives only edge states with energy slightly deviating from zero.
Moreover, finite systems hybridize the predictions from the right and left semi-infinite chains,
so the finite system related to eq. (A.1) possesses six edge states with energy around zero.

B System with trivial zero-energy edge states

Let’s consider a system described by

D†
tri(k, t) =

�

eik t
1 e−ik

�

. (B.1)
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The corresponding real-space Hamiltonian is given by

Htri(t) =
Nc−1
∑

j=0

��

0 t
1 0

�

|SX , j〉 〈SY , j|+
�

1 0
0 0

�

|SX , j + 1〉 〈SY , j|

+

�

0 0
0 1

�

|SX , j〉 〈SY , j + 1|+ h.c.

�

.

(B.2)

Besides t = 1, where the system becomes gapless, the winding number is always zero. If we
investigate Htri(t = 0), we will see two unbinding fermions at the left boundary as shown
in Fig. 5, which implies the system possesses zero-energy edge states. However, these zero-
energy edge states are trivial because they can be washed off after turning on t, as shown
in Fig. 6. In fact, the existence of trivial zero-energy edge states is nothing too surprising. A
chiral-respecting adiabatic deformation can turn a pair of non-zero-energy edge states, where
one is |ψ1〉 with energy E and the other is (1Nc×Nc

⊗ S) |ψ1〉 with energy −E, into two zero-
energy edge states without undergoing a phase transition [14,20].

To illustrate why boundary conditions don’t always generate the largest number of linearly
independent equations, we apply our approach to this example. For the right semi-infinite
limit, the left zero-energy edge states are determined by eq. (60), such as

�

A B
1 0

�

LY, j =

�

−C 0
0 1

�

LY, j+1 , with |Y,−1〉= 0 ,

�

A† C†

1 0

�

LX , j =

�

−B† 0
0 1

�

LX , j+1 , with |X ,−1〉= 0 ,

(B.3)

where

A=

�

0 t
1 0

�

, B =

�

1 0
0 0

�

, C =

�

0 0
0 1

�

. (B.4)

The solutions of the above equations without boundary conditions are given by

LY, j = c1






LY,0 =







0
0
0
1












+ c2






LY,0 =







0
1
−t
0






+ LY,1 =







0
0
0
1












,

LX , j = c3






LX ,0 =







0
0
1
0












+ c4






LX ,0 =







1
0
0
−t






+ LX ,1 =







0
0
1
0












.

(B.5)

After considering boundary conditions, it’s clear that c1 = c2 = c3 = c4 = 0 for t ̸= 0. However,
if t = 0, we have the non-trivial solutions

LY, j = c2






LY,0 =







0
1
0
0






+ LY,1 =







0
0
0
1












= c2

�

|Y, 0〉=
�

0
1

��

,

LX , j = c4






LX ,0 =







1
0
0
0






+ LX ,1 =







0
0
1
0












= c4

�

|X , 0〉=
�

1
0

��

.

(B.6)

The above discussion indicates that when t ̸= 0, there is no zero-energy edge state, and when
t = 0, there are two left zero-energy edge states, where one is located on |SX , 0〉 and the other
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one is situated on |SY , 0〉, which agrees with the numerical results. Note that we can transform
LX/Y, j into |X/Y, j〉 by the definition LX/Y, j = {|X/Y, j〉 , |X/Y, j − 1〉}T .

For the left semi-infinite limit, the right zero-energy edge states are given by solving
�

A C
1 0

�

LY, j =

�

−B 0
0 1

�

LY, j+1 , with |Y,−1〉= 0 ,

�

A† B†

1 0

�

LX , j =

�

−C† 0
0 1

�

LX , j+1 , with |X ,−1〉= 0 ,

(B.7)

The solutions of the above equations without boundary conditions are

LY, j = c1






LY,0 =







0
0
1
0












+ c2






LY,0 =







1
0
0
−1






+ LY,1 =







0
0
1
0












,

LX , j = c3






LX ,0 =







0
0
0
1












+ c4






LX ,0 =







0
1
−1
0






+ LX ,1 =







0
0
0
1












.

(B.8)

We can see the above solutions are t-independent and after introducing the boundary condi-
tions, there is no non-trivial solution. In other words, no matter how much t is, there is no
right zero-energy edge state. It also aligns with the numerical results.

C Eigenvalues of the matrix pencil MY − ζDY

Let’s start with the following block matrix
�

A1 A2
A3 A4

�

. (C.1)

If A4 is invertible, we have

det

��

A1 A2
A3 A4

��

= det[A4]det[A1 − A2A−1
4 A3] . (C.2)

We can bring MY − ζDY into the above form, such as

MY − ζDY =





































CnC−1 + ζCnC
CnC−2 · · · C1 A B1 · · · BnB−1 BnB

1 −ζ1 · · · · · · · · · · · · · · · · · · 0
0 1 −ζ1 · · · · · · · · · · · · · · · 0
...

. . . . . .
...

...
. . . . . .

...
...

. . . . . .
...

...
. . . . . .

...
...

. . . . . .
...

0 · · · · · · · · · · · · · · · 0 1 −ζ1





































=

�

A1 A2
A3 A4

�

,

(C.3)
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with
A1 = CnC−1 + ζCnC

∈ Cn×n ,

A2 = {CnC−2, . . . , BnB
} ∈ Cn×[n·(NCB−1)] ,

A3 = {1, 0, . . . , 0}T ∈ C[n·(NCB−1)]×n ,

A4 = Tn(1,−ζ1, 0) ∈ C[n·(NCB−1)]×[n·(NCB−1)] ,

(C.4)

where Tn denotes the block tridiagonal Toeplitz matrix and NCB = nC + nB. Because A4 is a
lower triangular matrix, the determinant of A4 is given by the product of the diagonal entries,

det[A4] = (−ζ)[n·(NCB−1)] .

The inverse of A4 is

A−1
4 =













−ζ−1
1 0 0 0 0

−ζ−2
1 −ζ−1

1 0 0 0
−ζ−3

1 −ζ−2
1 −ζ−1

1 0 0
...

...
...

. . . 0
−ζ−(NCB−1)

1 −ζ−(NCB−2)
1 −ζ−(NCB−3)

1 · · · −ζ−1
1













.

With all these in mind, we obtain

det[MY − ζDY ] = det

��

A1 A2
A3 A4

��

= (−ζ)[n·(NCB−1)]det[ζCnC
+ CnC−1 + ζ

−1CnC−2 + · · ·+ ζ2−nC C1

+ζ1−nC A+ ζ−nC B1 + · · ·+ ζ−(NCB−1)BnB
]

= (−1)[n·(NCB−1)]det[ζNCB CnC
+ ζ

(NCB−1)
CnC−1 + ζ

(NCB−2)CnC−2

+ · · ·+ ζnB+1C1 + ζ
nB A+ ζnB−1B1 + · · ·+ BnB

]

= (−1)[n·(NCB−1)]det

�

AζnB +
nB
∑

m′=1

Bm′ζ
nB−m′ +

nC
∑

n′=1

Cn′ζ
n′+nB

�

= (−1)[n·(nC+nB−1)]g2(ζ) .

(C.5)
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