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Abstract

The unfolding of detector effects is crucial for the comparison of data to theory predic-
tions. While traditional methods are limited to representing the data in a low number
of dimensions, machine learning has enabled new unfolding techniques while retain-
ing the full dimensionality. Generative networks like invertible neural networks (INN)
enable a probabilistic unfolding, which map individual data events to their correspond-
ing unfolded probability distribution. The accuracy of such methods is however limited
by how well simulated training samples model the actual data that is unfolded. We in-
troduce the iterative conditional INN (IcINN) for unfolding that adjusts for deviations
between simulated training samples and data. The IcINN unfolding is first validated on
toy data and then applied to pseudo-data for the pp — Zyy process.
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1 Introduction

To test various theories of physics, we either have to include detector effects in simulations
or correct for these effects in experimental data. This procedure of correcting or "unfolding’
the data for imperfect detection efficiencies and resolutions (in the sense of an expected dis-
tribution) involves a precise knowledge of the detector’s response to the phenomena being
measured. To further complicate matters, with classical unfolding methods, this inversion
problem is only tangible if the data is represented in a reduced number of dimensions, for
example, the energy distribution of all interacting particles entering the detector. Therefore
the method can not take into account the dependencies of the response function on hidden
variables (i.e. that are not unfolded), which may induce a bias in the unfolding result.

In particle physics, where we enjoy the benefits of excellent first-principle Lagrangian-
based event generators and extensive simulations of the detector, multiple unfolding methods
have been developed to minimize any dependence of the unfolded data on an imperfect model
of the truth distributions. These traditional unfolding techniques employ binned data distri-
butions and simulation-based transfer matrices to describe the connection between the truth-
and the reconstructed-level quantities.! However, a direct inversion of the transfer matrix can
induce large variances in the unfolded distributions (see e.g. Ref. [3]). Alternative methods
based on a Singular Value Decomposition (SVD) of the transfer matrix [4] or on a least square
fit in TUnfold [5], together with a Tikhonov regularization, aim to reduce this statistical vari-
ance at the price of inducing some amount of bias in the unfolded distribution.

To overcome these issues, some unfolding methods employ iterations to reduce the bias
caused by differences between data and the simulation for the distributions of the observ-
able(s) of interest. Early methods in this direction (see Ref. [6] and references therein)
were typically exemplified for some analytic folding functions, but the methodology described
therein can be readily interpreted in the discrete matrix-based unfolding case. Such iterative
matrix-based methods are discussed in Refs. [7-16] and references therein.

During the last decades, the need for binning-free unfolding became apparent in several
applications [17]. Various methods based on e.g. an iterative weighting of the Monte Carlo
events [ 18], or the migrations of the true quantity, using the concept of energy (i.e. minimizing
a test statistics in a series of random migration steps) [19,20] have been developed. Further
tremendous improvements in the areas of binned and unbinned unfolding have been achieved
using genetic algorithms [21,22]; approaches to unfolding problems involving machine learn-
ing concepts, including a training sample, a validation procedure and boosting [23]; Neural
Networks [24-26], also in conjunction with modified Least Square methods [27], perform-
ing a hyperparameter space scan to find the best network geometry [28], employing itera-
tions [29-32]; as well as fcGAN and cINN techniques [33-35,37]. In this paper we present
the implementation of a new event-by-event iterative cINN-based unfolding approach.

2 Iterative cINN unfolding
Let fiue(x) be the true underlying function that we want to measure. Instead of measuring

furue(x) directly, we can only observe a measured distribution of events g(y), which is the
result of convoluting the true function with a response function r(y|x).

g(y)= J r( 1) frrue(x) dx . D

Many of these methods are readily available in tools like RooUnfold [1] or RooFitUnfold [2].
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Figure 1: Structure of the conditional INN. Random numbers {z} are mapped to
particle-level events {x} under the condition of a detector-level event {y}. The loss
L follows Eq. (9), a tilde indicates a cINN-generated event.

The response function captures the resolution and efficiency of the detector, implying that
it is normalized to one if and only if the detection efficiency is perfect. In this work, we
define the truth function (so-called particle level) to include effects from parton showering
and hadronization effects. Therefore, r(y|x) describes exclusively resolution effects and can
hence be understood as the likelihood function p(y|x) with

1= J p(ylx)dy . 2

Starting from this setting, the goal of unfolding is to obtain the best estimate for f,,,.. Formally
the true distribution can be obtained from the measured distribution via a pseudo-inversion

firue(x) = J p(x|y)g(y)dy , (3)

where p(x|y) is the posterior, i.e. the conditional probability density at truth level given a

measured event y. In practice, likelihood and posterior are linked to each other via Bayes’

Theorem

p(y|x)p(x)
p(¥)

given the normalized distribution over data p(y), commonly referred to as evidence, and the
prior distribution p(x) of the underlying events. The dilemma of inverse problems arises in that
to obtain the posterior, we need to insert the true underlying distribution p(x) in the first place.
Several methods, such as iterative Bayesian unfolding have been developed to overcome this
limitation. More recently the focus has been on machine learning based unbinned approaches
which are scalable to higher dimensions, using either classifier based reweighting techniques
or generative models, which can learn the posterior directly. In this work we present a method
to combine the advantages of iterative methods with unbinned generative networks.

p(xly) = , 4

2.1 cINN unfolding

Unfolding methods based on generative networks learn the probability distribution of events
at particle level conditioned on detector-level information. The heart of the method consists
of a generative network that encodes the posterior p(x|y). It is implemented as a normalizing
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flow which have been established for the use of bijective mappings in the machine learning
landscape. These networks induce a bijective mapping between a simple, tractable distribution
p,(2) - the latent distribution - and a complex target distribution p,.(x). This property enables
the computation of the Jacobian of the mapping for every point of the latent space.

Px(x) = p,(2)

oz
Ix ‘ =p.(2) NN - (5)
x

Invertible Neural Networks (INN) are normalizing flows for which the computation of the
inverse direction is computationally cheap, i.e. it encodes both mapping directions simulta-
neously into its network parameters. Studies have demonstrated that invertible networks are
particularly well suited to learn the event distributions [36] and hence posterior [37].

A graphical representation of the conditional INN (cINN) [35] used for this result can be
found in Fig. 1. In this set-up, an n-dimensional random noise, z, is mapped onto a distribu-
tion of particle-level events, x, which also has n inner degrees of freedom. This mapping is
bidirectional, thereby a particle-level event, X, can be generated by the cINN and afterwards
mapped back to the latent space variable, r. Detector-level events, y, act as a condition for
the INN mapping, i.e. the random noise z is linked to particle-level events x under the con-
dition y. The bidirectional nature of the mapping is also kept in the conditional approach,
which is essential for the evaluation of the loss function [37]. During training, paired sam-
ples of detector- and particle-level events are passed through the network to the latent space.
Once the training has converged we can sample from the latent space under the condition
of a specific detector-level event to generate a distribution of particle-level events, preserving
the statistical nature of the unfolding. Without the conditionality the trained network would
simply become an event generator which would reproduce the underlying full distribution of
particle-level events in the training data set.

The correct calibration of the particle-level distributions is guaranteed through the maxi-
mization of the likelihood of the network parameters p(6|x, y). The loss function of the cINN
encodes therefore the negative log likelihood

L=—(logp(0|x,¥))x~f y~g (6)
= _(IOgP(XW: y))x~f,y~g - <logp(9|.y)>y~g + <10gp(x|y)>x~f,y~g (7)
=—(log p(x]0, ¥)) xnf.y~g — AO? + const. (8)

dz
= _(1ng(z(x)|9>.y)>x~f,y~g - (IOg a >x~f,y~g -2 02 + const. (9)

In the first line we apply Bayes’ theorem to express the posterior on the network parameters
in terms of the likelihood of the training data, a prior on the network parameters, and the evi-
dence of the data, which is independent of the trainable network weights and hence irrelevant
for the training. Under the assumption of a Gaussian distribution of the network parameters,
the prior is equivalent to an L, regularization and becomes 102 where A encodes the width of
the Gaussian prior or the strength of the regularization. In the last line we apply the change
of variable formula for a bijective mapping from Eq. (5). The assumption of Gaussian latent
space only enters in the definition of p(z(x)). [37]

2.2 Iterative approach

While the cINN is able to learn a posterior distribution p(x|y), the learned expression will
depend on the prior p(x) encoded in the training data. To reduce any biases due to the simu-
lation used in the training, we propose an iterative cINN unfolding. The algorithm is sketched
in Fig. 2.
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Figure 2: Illustration of the iterative cINN unfolding algorithm. In a first step the
regular training of the cINN on the current Monte Carlo Data is performed. As a
second step the cINN unfolds the experimentally measured distribution. In a third
step the Monte Carlo simulation is reweighted to match the unfolded distribution
on Particle Level. This procedure is iterated, always with a modified Monte Carlo
Simulation.

* The first two steps are identical to the standard cINN setup: we first train the cINN on
our simulated data and apply it then to our measured data, i.e. we sample 2 in the latent
space under the condition of a measured event y to obtain unfolded distribution f;, ;(x)
starting with i = O for the first iteration.

* In a third step we train a classifier to learn the ratio between the phase space densities
of the unfolded distribution and the truth-level prior distribution. We then reweight
the simulation on particle-level to match the unfolded distribution f, ;(x). Since each
event of the simulation on particle-level is connected to one event of the simulation on
detector-level the event weights can be transferred from particle to detector level.

* We then repeat all steps of training-unfolding-reweighting with the new reweighted sim-
ulation until the algorithm has converged.

The effect of this iterative procedure is that we include more and more information of the
measured data into our simulation and thereby improve our unfolding result.

On the technical side we find that it is computationally more efficient, if the cINN of the
previous iteration is used as a new starting point. To train the cINN on the weighted Monte
Carlo, we modify the loss function of the cINN (see Eq. (9)) to be trainable on events with
weight w(x) [38,42]

ﬁ=_<W(x)108P(9|x:J’)>x~f,y~g~ (10)

The number of iterations is set to obtain a good balance between the bias towards the Monte
Carlo and the statistical uncertainties of the unfolded distribution.

This iterative algorithm allows to minimize potential biases caused by data - Monte Carlo
shape differences, while maintaining the advantage of performing a probabilistic unfolding
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of all objects for each individual data event. The combination of these features offers an
important potential for better interpretability of the unfolded results.

3 1D toy example

We start by constructing a analytically solvable Gaussian toy model in order to demonstrate
the algorithm. To illustrate the limitations of the cINN unfolding, we construct a challenging
scenario, that highlights the prior dependence of non-iterative methods. This means we im-
plement a large difference between the Gaussian truth-level distributions in data and Monte
Carlo. In addition, we include significant detector response effects corresponding to a system-
atic coherent shift and a Gaussian smearing.

Large data to MC differences can be implemented by choosing significantly different mean
values for data truth and MC truth distribution. In this example we choose the Monte Carlo
distribution at truth-level to be a Gaussian with fyc(x) = G(x;upyc = 4,0yc = 4). The
truth-level data distribution is parameterized as fp,,(X) = G(x; Upatar = 10, Opagar = 3.8).

The detector response function is given by the analytic expression

exp -2 Hamear))’ )

2
2 Osmear

p(ylx) = G(y§ (X + ‘U'smear), Osmear) = (11)

1
V 27[ O-szmear
With Usmear = —6, Tsmear = 3.

The respective detector level distributions can be calculated using Eq. (1). The resulting
convolution of two Gaussian functions is also a Gaussian function with a mean value and
variance equal to the sum of the means and variances of the convoluted Gaussians. We refer to
the Gaussian parameters of the distribution gyc() after the convolution (i.e. at reconstructed-
level) in Monte Carlo as uyc, and oyc,, while the corresponding distribution of measured
data gp,e,(y) is described by the parameters p,e, ; and Op,, - The complete set of binned
distributions is shown on the left side of Fig. 3.

We can now calculate the analytic expectation for an unfolding result after each iteration
to compare it to the iterative cINN algorithm. For this we use Bayes theorem (Eq. (4)) to

x10* x10*

—— Data Truth —— MC Truth
””” Data Reco 4 cINN It.0
—— MC Truth —— Data Truth
***** MC Reco

w
w

)

Number of Entries
Number of Entries

Reco

Truth

—20 -10 0 10 20

Figure 3: Gaussian toy example used to demonstrate the IcINN algorithm. The left
image shows all relevant distributions of the model: the data truth (red, solid) the
data reco (red, dashed), the MC truth (blue, solid) and the MC reco (blue, dashed),
each with 10® sampled events. On the right the cINN unfolding is applied to the
model; the resulting unfolded distribution (purple, solid) is biased towards the MC
Truth.
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calculate the pseudo-inverted function p(x|y). We start by assuming the Monte Carlo truth
fumc,t(x) as a prior for the unfolded distribution

_ p1x) fwncCx) _ POyIx) GO v, Omic,)

p(xly)
gmc(y) G(Y; Umcrs Omey)

(12)

The unfolded distribution can now be calculated according to Eq. (3). By using the previous
result for p(x|y) and the experimentally measured distribution gp..,(y) we obtain the first
unfolding result, namely

fuo(x)= f P(x]y) gpaa(y) dy (13)
= f p(xl.y) G(y, .U’Data,r: oData,r) dy (14)
= G(x; Hy,0, o-u,O)J (15)

with

2 2
(.U'Data,r — Usmear) Opce T MGt O smear

Mu,0 = P ) (16)
MC,t smear
2 2 2 o 7
OMC,t \/GMC,t O Data,r + Omc,t 9 smear + Osmear 17
O'u,O - 0-2 n O-Z . ( )
MC,t smear

As expected, we observe that the unfolded distribution in Fig. 3 deviates from the data truth,
since it is biased towards the MC truth. In order to mitigate this bias, in the next step we use
the unfolded distribution as an updated prior for the Monte Carlo truth distribution.

This is everything we need for an analytic prediction of the unfolded distribution after each

iteration. To obtain the parameters of the distribution after the second iteration we simply re-
calculate Eq. (17) replacing {uyc , Omc,e} with {u, o, 0,0} If the cINN as well as the classifier
train perfectly, the obtained unfolded distribution and the analytical result should be identical
after each iteration.
Now we are ready to apply the iterative cINN unfolding on this toy example. We employ a
cINN with cubic-spline blocks [39] to learn the posterior. For the classifier we use a standard
fully connected neural network with a sigmoid activation function for the output node. To
improve the classifier training, ADAM [40] and a one-cyclic learning rate scheduler are im-
plemented. In order to build the network structure the framework FrEIA [41] is used. The
hyperparameters of the cINN and the classifier are given in Table 1 in the Appendix A.

Since we have full control over the analytic solution which corresponds to an approximately

perfect training, it is possible to cross-check the unfolding result after each iteration with the
analytic prediction. The result of the IcINN unfolding is displayed on the left in Fig. 4. The
results have been obtained using 1000 unfolding steps for each event. The unfolded distribu-
tion of each iteration (solid lines) is very close to the respective analytic prediction (dashed
line). It is also clearly visible that the bias towards the Monte Carlo simulation is iteratively
reduced.
In order to ensure that the networks are converging, we have performed multiple closure-tests
for classifier and cINN. This includes tests that the reweigthing of the Monte Carlo simulation
reproduces the unfolded distribution and that the unfolding of the MC data reproduces the
MC truth. We can hence conclude, that the algorithm is working as expected.
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Figure 4: Iterative unfolding results for the one-dimensional toy model. On the left
in the upper part we show the MC and data truth as well as the unfolding result in
each iteration (solid lines) together with its analytic prediction (dashed line). In the
lower part we show the ratio of the cINN with the data truth; it is clearly visible that
the bias towards the MC is iteratively reduced. On the right we show the unfolded
distribution for a single event at y,, = 5. Again the result after each iteration (solid
histogram lines) is very close to its analytic prediction (dashed lines).

3.1 Single event distribution

One important feature of the cINN unfolding is the possibility to predict distributions for single
data events, a property preserved in the iterative approach. In the context of our toy model
we can predict analytically how the single event unfolded distribution should look like. The
contribution to the data distribution from a single measured event can be expressed with a
delta distribution

Eveas(Y) =0(y —¥m)- (18)

Plugging the delta distribution into the first part of Eq. (15), we obtain as an unfolded distri-
bution a Gaussian distribution with mean and variance

2 ) . 2 2
u . O smear YMC,t O-Mc’t(nusmear ym) o2 _ GsmearaMC,t
single — 9 P >
Osmear + O-MC,t

L = (19)
single 2

1 Oszmear + OMC,t
This result can also be derived directly from Eq. (17) by modifying tpae r — ¥ and opyes — 0.
In the right side of Fig. 4 we show the single event unfolding result together with its analytic
prediction in each iteration. The event is unfolded 10000 times to obtain a smooth distribu-
tion. Again, the analytical prediction and the IcINN are in excellent agreement. Hence the

IcINN learns correct single event unfolded distributions.

3.2 Uncertainties and correlations

In view of a further use of the unfolded distributions in physics studies, the information on the
nominal unfolding result has to be complemented with the corresponding statistical uncertain-
ties and their correlations between different phase-space regions. Indeed, such uncertainties
have multiple components originating from the finite size of the input data and MC samples, as
well as from the cINN training process.? These statistical uncertainties and their correlations
are visualized here by projecting the unfolding result into a histogram with ad-hoc binning

2Note that the following procedure does not include systematic uncertainties that can be induced for instance
by insufficient expressivity of networks.
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and evaluating the corresponding covariance and correlation matrices. This evaluation is per-
formed using a bootstrap method [43], which employs a series of pseudo-experiments where
the weight of each data and/or MC event is fluctuated according to a Poisson distribution of
mean one. Before we can apply the bootstrap method we have to evaluate the underlying

10° 10°

— No fluctuations — No fluctuations
""" Data fluctuations

MC fluctuations

""""" Data fluctuations
MC fluctuations

—— Full uncertainty

—— Full uncertainty

1074 107!

1072

Relative Uncertainties It. ¢ = 0
Relative Uncertainties It. 1 = 2

L T 510 1 20 Yo 50 510 15 20

Figure 5: Relative statistical uncertainties of the IcCINN before any reweighting, i.e.
for iteration i = 0 (left), and with two reweightings, i.e. for iteration i = 2 (right),
evaluated with no fluctuations for the input distributions (green histogram), with
fluctuations from data (blue dashed line), MC (black dotted line) and total (red his-
togram). When deriving these uncertainties, each event is unfolded 30 times and a
number of N, = 400 bootstrap replicas is used.

noise level that originates simply from training and evaluating the IcINN multiple times. This
involves different initializations of the network, while using exactly the same MC and data
inputs. As we can see in Fig. 5, these fluctuations lead to relatively small variances. The
corresponding correlations can be either positive or negative (see Fig. 6, first row).

Next we consider the uncertainties originating from statistical fluctuations in data and MC,
which are dominant in our example. It is worth noting that all these statistical uncertainties
of the cINN-based methods are amplified with the increasing number of iterations (see Fig. 5),
similarly to what one observes for matrix-based methods.

For iterative (matrix- or cINN-based) unfolding procedures, the data component of the
statistical covariance matrix has only positive correlations at the first iteration (see Fig. 6, 2nd
row left).

This can be easily understood in the binned approaches: if e.g. one bin at the reconstructed-
level fluctuates up (down) statistically, this will induce upward (downward) fluctuations in all
the bins of the unfolded distribution. That’s because the migration probabilities towards every
bin are positive. A statistical fluctuation has a similar effect in the unbinned approaches,
since the unfolded distribution for each unfolded event is positive-defined. This feature is
indeed true up to the statistical fluctuations originating from the training and evaluation of
the cINN, which can also be negative, as described above. One starts observing significant anti-
correlations between nearby bins when using at least one reweighting of the Monte Carlo (see
e.g. Fig. 6, 2nd row right). Indeed, this reweighting impacts the amount of migrations that
the unfolding correction induces between different phase-space regions.

The MC component of the statistical covariance matrix does have anti-correlations, because
the number of events in the unfolded distribution is preserved (i.e. equal to the one in the
reconstructed-level data) when unfolding with any transfer matrix (e.g. with some statistical
realization of the transfer matrix from a statistical fluctuation). Indeed, fluctuations of the
transfer matrix effectively change the amount of migrations between the reconstructed-level
bins, and hence the amplitude of the unfolding correction. In the unbinned approach, for
each data event, the integral of the distribution unfolded for migration effects is equal to one,

9
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Figure 6: Correlation matrices of the IcINN unfolding results before reweighting
(left) and after two reweightings (right), i.e. with i = 0 and i = 2 respectively,
following the notations of Section 2.2. These correspond to the statistical uncer-
tainties with no fluctuations for the input distributions (1st row), with fluctuations
from data (2nd row), MC (3rd row) and total (4th row). When deriving these cor-
relations, each event is unfolded 30 times and a number of Ny, = 400 bootstrap
replicas is used.
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while its shape is modified when fluctuating the weights of the input MC events. Therefore,
these fluctuations induce anti-correlations between different phase-space regions covered by
the unfolding result (see Fig. 6, 3rd row).

For some further use of the unfolded data, e.g. in re-interpretation studies, it is also relevant
to derive the total statistical covariance matrix and the corresponding correlation matrix (see
Fig. 6, 4th row), which naturally mixes the features of the data and MC components.

4 Unfolding pp — Zy7y events

After the successful test on a toy model, we are now ready to apply the IcINN unfolding in
a more realistic scenario, i.e. a process receiving significant contributions from the Standard
Model (SM), while being also sensitive to potential contributions from beyond SM (BSM)
physics. It is then possible to use the pure SM prediction as the Monte Carlo simulation on
which we train our IcINN, while the (pseudo-)data that we unfold, receives a significant con-
tribution from BSM physics. This means that the IcINN needs to unfold structures which are
not part of the Monte Carlo simulation. While the presented example is low-dimensional, the
approach expands naturally to higher dimensions as most network-based methods. The main
training time is allocated for the initial training of the generative network, while subsequent
trainings profit from the pre-trained model. The scaling behavior is hence expected to follow
the same as standard generative network problems.

We use the Effective Field Theory (EFT) approach to parametrized the BSM contributions.
The basic idea of EFT is to include additional terms into the SM Lagrangian which contain
six- or eight-dimensional combinations of SM operators. The additional terms in the SMEFT
Lagrangian implement new physics either via a characteristic change to a current interaction
vertex or by introducing completely new interaction vertices. These operators are suppressed
by a factor A, which is the scale where we expect new physics. For this study we choose the
following process

pp—Zyy, Z-oupu'. (20)

A leading order Feynman diagram for the SM contribution is shown in Fig. 7, left. For this
process the anomalous triple gauge couplings (aTGC) introduced by the dimension-6 operators
do not contribute. In addition, the anomalous quartic gauge couplings (aQGC) introduced via
the dimension-6 operators do not contribute to this process as well, since they do not give rise
to purely neutral aQGCs. A significant EFT contribution can hence be implemented using the
dimension-8 extension

C
Lrg= ﬁBwBWBaﬂB“ﬁ, 1)

where we defined the Wilson coefficient Crg as well as
B*Y=9¥B”—9"B*, (22)

with the generator B* associated with the U(1)y gauge group of the weak hypercharge Y.
L7 g introduces aQGCs of the neutral electroweak gauge bosons: ZZZZ, ZZZy, ZZyy, Zyyy
and yyyy [44]. The last three aQGCs enable additional Feynman diagrams at leading order,
an example is displayed on the right in Fig. 7. We use MadGraph5 [45] and Pythia8.3 [46] for
the event generation and DELPHES [47] to simulate detector effects. The MC events to train
the IcINN are obtained using the regular SM simulation, for the pseudo-data we add the EFT
contribution described above using the Eboli package [44]. The Wilson coefficient Cr g as well
as the scale for new physics A are collectively set to

Crg 2

s _ < 23
A% Tev?t (23)
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q—»— Y q Y
4 _ u
M g Z/y* 7z
+
u
q —e— Y q 14

Figure 7: Feynman diagrams for the process qq — Zyy with Z decaying into muons.
On the left the Standard Model leading order process is shown, on the right additional
contributions that appear after including the EFT operator enabling the anomalous
quartic gauge couplings ZZyy and Zyyy.

This value has the same order of magnitude as current exclusion limits [48], the considered
example being in this sense realistic. The observables that we are going to unfold are the
transverse momenta of the muons, p; and p}L for the negative and positive charge respectively,
i.e. we are now performing an effective unfolding in two dimensions.

For the detector simulation we used the standard ATLAS-card provided by DELPHES in
which, for simplicity we removed the rapidity-dependence of the muon momentum smearing.>
The explicit momentum smearing is given as

Apr=pr- \J 0.0252+3.5-10-8 (%)2. (24)
In order to avoid covering too many orders of magnitude in our training data, we additionally
implemented a high-p; cut at 250 GeV for the reconstructed muons. An alternative solution
would consist in training several cINN’s for various different p; ranges. The resulting distri-
butions of p7 and p7, for the MC simulation and the pseudo-data, at both the truth and the
reconstructed level, as well as their ratios, are shown in Fig. 8.

10-2 —— Data Truth 10-2 —— Data Truth
""" Data Reco < 250 GeV --=-== Data Reco < 250 GeV
= 10-3 —— MC Truth = 0 —— MC Truth
\L) """ MC Reco < 250 GeV \i> """" MC Reco < 250 GeV/
) - ©
o w0y T e o wy oL T T
s\ < I
ST 107 Zig 107
10- 1 108
=|ol.1 =lol.1
51210 21210
&g E1=0.9
2510 <10
=<2 =
al= 5 p——— i A= 5 ————
0 0 50 100 150 200 250 300 0 0 50 100 150 200 250 300
pr [GeV] i [GeV]

Figure 8: Simulated distributions of p; (left) and p;. (right). The blue histograms are
pure SM simulations and are used as the MC training events, while the red histograms
contain additionally an EFT contribution and are used as pseudo-data. The continu-
ous (dashed) lines indicate truth-level (reconstructed) quantities. In the lower parts
of the plots the True/Reco and Data/MC ratios for the corresponding distributions
are displayed.

3This modification is done in order to avoid hidden observables that have an impact on the detector smearing,
while not being explicitly used in the IcINN. In an application of this algorithm to real data, the ultimate goal is to
simultaneously unfold all observables measured by the detector, which will also avoid this kind of problems.

12


https://scipost.org
https://scipost.org/SciPostPhysCore.7.1.007

SCIl SciPost Phys. Core 7, 007 (2024)

Following the same procedure as detailed in Section 2.2 we now perform the iterative
trainings of the cINN and the classifier. Since we no longer have analytic predictions, we
perform multiple closure tests to ensure the convergence of each training (see Appendix B).
The hyperparameters of the corresponding cINN and the classifier architectures and training
are given in Table 2 in the Appendix A.

Having validated the closure of the models, we can now consider the results of the unfold-
ing obtained for various numbers of iterations, as displayed in Fig. 9. We notice that already
before the first reweighting step, the cINN unfolded distribution shows a very good agreement
with Data truth over a broad range of the phase space. The main deviations can be observed
in the tail of the distribution, where the EFT contributions are largest. The comparison of the
results obtained in the subsequent iterations shows a systematic improvement in these regions,
progressively reducing the bias induced by the data-MC shape differences.

o L —— Data Truth — Data Truth
10 — jLL —— MC Truth —— MC Truth
. L CINN Tt =0 CINN It. i=0
T T NN =1 Tl CINN It. i=1
% CINN It. =2 cINN It. i=2
< w0
s|'S&
~I& 107
107°
f:l.Z
1=170 ’—‘.—g‘m—'—gﬁ_\ﬁ ’—ﬂ—ﬁh—'_\—'—‘—'_‘—\_;\ﬁ
=150.8
—1=1.2
HEN) ]—\W_'_‘_"__\_ﬁﬁ ’————'—m_%
=150.8
=12
< E1.0
=150.8

0 50 100 150 200 250 300 100 150 200 250 300
7 [GeV] Py [GeV]

Figure 9: Unfolding results at iteration i = 0 (purple), iteration i = 1 (black) and
iteration i = 2 (orange), compared with the truth distributions in data (red) and in
MC (black), for jo (left) and p}L (right). The bottom panels show the ratio between
the unfolded results and the truth data distributions.

When unfolding multiple observables simultaneously, it is crucial to reproduce the correct
correlations among them. The upper plot of Fig. 10 displays the result of the two-dimensional
unfolding of p7. and p7. In the lower row we show the relative deviation when comparing this
two-dimensional distribution with the detector- and the truth-level data ones. While the proce-
dure preserves the correlations between the two unfolded quantities, the residual differences
w.r.t. the desired result are typically smaller than the unfolding corrections themselves.

Finally, Fig. 11 shows the impact of the iterative unfolding on a single data event, for both
the p;. and p}L, over three iterations. While at low-p; the unfolding result is stable when
increasing the number of iterations, in the high-p; region a clear downscaling (upscaling) of
the lower (higher) bins is observed. This dependence of the per-event unfolding result on the
number of iterations is coherent with the one displayed for the full distributions in Fig. 9.

5 Conclusion

In this paper we have presented the new iterative cINN-based unfolding algorithm IcINN.
Starting from the cINN based unfolding, it progressively reduces the data-MC distribution
shape differences, minimizing the impact of the MC simulations for the unfolded quantities.
At the same time the IcINN preserves the ability of the cINN to unfold reconstructed quantities
from individual data events to a (multidimensional) probability distribution at truth level. This
enables the possibility of performing an event-by-event unfolding of experimental data for
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Figure 10: The upper row shows the matrix of the unfolded distribution after itera-
tion i = 2 of p7. and p7. The lower row shows the ratios of this unfolded distribution
w.r.t. the detector-level (left) and truth-level (right) data.
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Figure 11: Single-event unfolding exemplified for an event with p;, = 45 GeV (left)
and pT = 185 GeV respectively. The reconstructed value and the unfolded distribu-
tions over three iterations are displayed. In the left plot the bin size is decreased with
respect to the standard binning used in this example to visualize the distribution.

numerous observables simultaneously, which is an important advantage compared to matrix-
based methods, while also mitigating possible biases related to data-MC distribution shape
differences.

We have demonstrated the reliability of the algorithm on a fully controllable toy model and
tested it on a representative example for applications with real data. Finally we studied the
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induced statistical uncertainties and the corresponding correlations among different phase-
space regions. These represent a crucial aspect for real data measurements and subsequent
phenomenological applications.

In order to enable the use of IcCINN in the future, the python code as well as an instruc-
tive toy example have been prepared in a repository which can be made available upon re-
quest [49].
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A IcINN parameters

The Table 1 provides the list of parameters choosen for the cINN and the classifier, when ap-
plied for the toy example, while Table 2 provides the similar information for the Zyy study.

The training of the classifier is performed on the MC truth and the unfolded data reco dis-
tribution. We unfold each event one single time. In a more involved analysis it is possible to
unfold each data reco event multiple times. In this case we can either take into account the
multiplication factor as an additional weight in the loss function of the classifier or compensate
the imbalance of MC truth vs unfolded events by generating more MC events.

Table 1: Parameter choice for the cINN and the classifier for the toy example. We used
a one cyclic learning rate as well as the ADAM optimizer with a standard parametriza-
tion in both networks. The unfolded events of the cINN which were used to train the
classifier were obtained by unfolding 3 times each of the 400000 events (generated
through a random sampling of the truth Gaussian distribution, followed by a random
smearing according to the resolution function to obtain the reconstructed quantity).

Parameter cINN Classifier
Conditional coupling blocks 5 -
Layers (per block) 2 3
Units (per layer) 32 8
Epochs 100 100
Learning rate 107* 1073
Maximum learning rate 3-107% 3-1073
Weight decay 0.01 -
Batch size 4096 4096
Number of training events 500000 1200000
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Table 2: Parameter choice for the cINN and the classifier for the Zyy dataset. We used
a one cyclic learning rate as well as the ADAM optimizer with a standard parametriza-
tion in both networks. The unfolded events of the cINN which were used to train the
classifier were obtained by unfolding 1 500000 events once.

Parameter cINN Classifier
Conditional coupling blocks 5 -
Layers (per block) 4 6
Units (per layer) 64 32
Epochs 100 100
Learning rate 1074 1072
Maximum learning rate 3-107* 3-1073
Weight decay 0.01 -
Batch size 4096 4096
Number of training events 1500000 1500000

B Closure checks for the iterative unfolding algorithms

Fig. 12 shows a sanity closure check, comparing the result of unfolding the reweighted recon-
structed MC with the reweighted truth MC, at the various iteration steps. Good agreement is
observed at all the iteration steps, indicating a reliable training of the cINN. The closure check
for data, i.e. the comparison between the unfolded data and the corresponding truth distri-
bution, also indicates an improvement with the increasing number of iterations. The closure
check for MC shows much smaller deviations than the one performed for data, as expected,
since only the latter is impacted by data-MC differences. Fig. 13 shows a check of the classifier,
comparing the reweighted truth MC and the unfolded data distributions, at various iteration
steps. Here also, good agreement is observed.
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Figure 12: Result of the unfolding of the reweighted reconstructed MC (dashed blue)
compared with the reweighted truth MC (blue line) at the first (top), second (mid-
dle) and third (bottom) iterations, i.e. after 0, 1 or respectively 2 reweightings, for
py (eft) and pJTr (right). The data truth shape (red line) and the result of its unfold-
ing (dashed red), at various iteration steps, are also indicated. The bottom pannels
indicate the ratios of the unfolding results and truth distributions, for data and MC
respectively.
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Figure 13: Classifier check, comparing the reweighted truth MC (blue) and the un-
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