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Abstract

Conformal interfaces separating two conformal field theories (CFTs) provide maps be-
tween different CFTs, and naturally exist in nature as domain walls between different
phases. One particularly interesting construction of a conformal interface is the renor-
malization group (RG) domain wall between CFTs. For a given Virasoro minimal model
Mk+3,k+2, an RG domain wall can be generated by a specific deformation which triggers
an RG flow towards its adjacent Virasoro minimal model Mk+2,k+1 with the deformation
turned on over part of the space. An algebraic construction of this domain wall was
proposed by Gaiotto in [1]. In this paper, we will provide a study of this RG domain wall
for the minimal case k = 2, which can be thought of as a nonperturbative check of the
construction. In this case the wall is separating the Tricritical Ising Model (TIM) CFT
and the Ising Model (IM) CFT. We will check the analytical results of correlation func-
tions from the RG brane construction with the numerical density matrix renormalization
group (DMRG) calculation using a lattice model proposed in [2, 3], and find a perfect
agreement. We comment on possible experimental realizations of this RG domain wall.
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1 Introduction and summary

A useful concept in the study of Quantum Field Theory (QFT) is the idea of a ‘space of QFTs’ [4].
If we view QFTs as Renormalization Group (RG) flows between Conformal Field Theory (CFT)
fixed points, then the space of QFTs can be envisioned as a network of CFT points connected to
each other by paths along which a family of quantum field theories are defined interpolating
between an ultraviolet (UV) CFT and an infrared (IR) CFT. These QFTs are parameterized by
the energy scale along the RG flow. In general, the dynamics along such flows is complicated
and does not benefit from the relative rigidity of its CFT endpoints. Instead of studying the full
RG flows themselves, an appealing construction is that of ‘RG branes’ (aka RG Domain Walls),
which capture much of the information of an RG flow but in a simpler setting. RG branes are
constructed by taking a relevant deformation that triggers the RG flow from the UV CFT to the
IR CFT and turning it on over only part of space, so that in the infrared regime one obtains the
‘IR CFT’ in one spatial region and the ‘UV CFT’ everywhere else. The boundary between these
two regions is the RG brane, which thereby collapses the entire RG flow to the geometric action
of moving across this boundary. Moreover, symmetric choices of the boundary can preserve a
subset of the conformal symmetries of the CFT endpoints.

Another advantage of RG branes is that they are relatively easy to engineer in practice. In
the context of numerical simulations, for instance with a computation on a lattice, one simply
has to choose parameters in the underlying theory to pick out the UV CFT on half of the space
and the IR CFT on the rest of the space. In fact, this approach will be one of our main tools
for studying RG branes in this paper. Moreover, this technique translates into a well-defined
protocol for creating an RG brane experimentally, assuming one has the flexibility to tune to
a critical point over only part of space.
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Our main goal in this paper will be to compute physical observables in an interesting class
of RG branes. We will focus on two-point correlation functions, partly for simplicity but also
partly with an eye towards the potential connection to experimental measurements in the
future. In CFTs, two-point functions in the presence of a boundary are comparable in com-
plexity to four-point functions in its absence, so the theoretical calculation of them provides
the opportunity to predict a fairly complicated set of observables that might be measurable in
practice.

We will focus on a specific RG brane scenario that brings together two remarkable pieces
of work, one from a CFT perspective and one from an underlying microscopic perspective.
The first of these is a recent proposal [2, 3] for an experimental realization, as well as an
explicit lattice Hamiltonian describing it, of a supersymmetric quantum critical point that can
be obtained by tuning only a single parameter. The specific instance of this proposal that we
will use produces a phase diagram with two distinct phases, one gapped and one gapless,
separated by a critical point. Moreover, the gapless phase is described in the IR by the 2d Ising
Model CFT, and the critical point between the phases is decribed by the Tricritical Ising Model
CFT. This lattice Hamiltonian can therefore be used to construct an RG brane separating the
2d Ising Model (IM) CFT from the Tricritical Ising Model (TIM) CFT, and will give us the first
numeric handle for computing observables numerically.

The second result we will use [1] as a proposal for the RG brane between consecutive
Virasoro minimal models, directly within the CFT description.1 The first two Virasoro mini-
mal models are exactly the Ising Model CFT and the Tricritical Ising Model CFT, with central
charges c = 1

2 and c = 7
10 respectively. This proposal will give us a second handle for com-

puting observables, this time directly in the IR limit. In particular, we will compute two-point
functions of operators in the presence of the RG brane using the CFT proposal of [1], and
compare to computations using a DRMG analysis of the lattice Hamiltonian from [3]. We will
find remarkably good agreement.

We emphasize that the proposal [1] has been checked perturbatively for RG branes between
Virasoro minimal models Mk+3,k+2 and Mk+2,k+1 in the large k limit for one-point functions
[1]. Our aim is to check this proposal nonperturbatively in k for k = 1, i.e. for the RG brane
between the first two Virasoro minimal models, for various two-point functions. This provides
a nonperturbative check of the proposal [1].

The paper is organized as follows. In section 2 we spell out how the RG brane in our paper
in constructed on the lattice. In section 3, we compute several energy-energy correlators near
the RG domain wall between the Tricritical Ising Model CFT and the Ising Model CFT. In section
4, we compare our analytical results in 3 with the numerical results obtained from the lattice
construction in 2. In section 5, we discuss potential experimental consequences and other
future directions. We review many technical details of the RG brane proposal in [1] in a series
of appendices: in section A we review the coset (Sugawara) construction of minimal Virasoro
models, and in section B, we review the construction of the RG brane itself. In section C we
review some useful properties of topological superconductors relevant to our experimental
proposal.

2 RG brane lattice construction

2.1 General strategy

We are interested in RG branes connecting a “UV” CFT on one side to an “IR” CFT on the
other side. To construct such an RG brane in a lattice model, we need to be able to dial the

1See [5–8] for the extension of the construction to other 2d CFTs and [9] for an interesting construction of a
domain wall between different symmetry-protected topological (SPT) phases in the same spirit.
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Figure 1: Phase diagram required for the construction of the RG brane. At a critical
value h∗ of the coupling, the low-energy limit is described by the “UV” CFT, whereas
for h> h∗ it is described by the “IR” CFT. The RG brane is constructed by tuning h to
h∗ on half of the space, and taking h slightly greater than h∗ on the other half of the
space. The specific behavior at h< h∗ is irrelevant for our discussion.

parameters of the lattice Hamiltonian such that for some parameters, the low energy limit of
the lattice model is described by the UV CFT, and for other parameters the low energy limit is
described by the IR CFT. The “UV” and “IR” labels of the two CFTs in this context are solely
relative to each other, as both of them describe the physics at infrared scales compared to the
underlying lattice spacing. In order for the UV CFT to be able to have an RG flow to the IR
CFT, there must exist a relevant deformation of the UV CFT that triggers this RG flow. In the
space of lattice parameters, this means that points describing the UV CFT require tuning (at
least) one parameter to a critical point (or surface). Moreover, it is then possible to detune
away from this point in some direction such that the low energy limit is described by the IR
CFT. We can choose to parameterize this direction as a coupling h in our Hamiltonian:

H = H1 + hH2 , (1)

such that h = h∗ is the critical value that produces the UV CFT at low energies, and h > h∗
produces the IR CFT at low energies. This setup is depicted in Fig. 1.

Given a Hamiltonian with these properties, it is then straightforward to construct the RG
brane in terms of the lattice theory: One simply has to tune h = h∗ on part of the space, and
take h> h∗ on the rest of the space,2 and the RG brane lies on the boundary separating these
two regions.

2.2 Lattice model for tricritical Ising to Ising RG brane

Although the general setup described in the previous subsection should be possible to be re-
alized in many different examples, in this work we will focus mostly on the specific lattice
system proposed in [2,3]. Following their notation, the Hamiltonian is H = H1 + hH2 with

H1 =
∑

i

�

σz
iσ

z
i+1 +σ

x
i +J

�

µz
i,aµ

z
i,b +µ

z
i,bµ

z
i+1,a

�

+ g
�

σx
i µ

z
i,a −σ

z
iσ

z
i+1µ

z
i,b

��

,

hH2 = −h
∑

i

(µx
i,a +µ

x
i,b) ,

(2)

2One should not choose h to be too close to or too far from h∗. If h− h∗ is too small, then this corresponds to
setting a very tiny coefficient in front of the relevant deformation of the UV CFT, so that the IR CFT is only reached
at very long distances. For an infinite sized lattice, this would not present any problem, but in a finite-sized system
it would prevent one from reaching the IR CFT. On the other hand, if h− h∗ is taken to be too large, then it is no
longer clear that detuning h away from h∗ can be described as a local relevant deformation of the UV CFT.
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where µi,a,µi,b and σi are all Pauli matrices for spin-1/2 spins, the µmatrices sit on the bonds
of the σ-lattice and µi,a and µi,b denote the µ matrices sitting on the bonds on the left and
right of the ith site of the σ-lattice. The virtue of this model is that, due to an underlying
symmetry of the theory, only one tuning is necessary in order to reach the (supersymmetric)
Tricritical Ising Model fixed point.

To roughly understand why, as explained in [3], first note that if we neglect the terms
proportional to J , g, and h, the Hamiltonian is just that of the critical Ising Model,

H∗ =
∑

i

σz
iσ

z
i+1 +σ

x
i , (3)

which describes a gapless free fermion. The coupling between σ and µ in general could gap
out the system, but does not as long as h is sufficiently large. The reason is that at large
(positive) h, the µ spins do not order along the z direction, in which case the vanishing mass
gap is protected by an unbroken Z2 symmetry that flips the sign of µz (µz

i,a → −µ
z
i,b and

µz
i,b → −µ

z
i+1,a) and acts nontrivially (essentially, as the high-temperature/low-temperature

duality map) on σi (σz
iσ

z
i+1↔ σx

i ). As h is decreased, eventually there is a phase transition
to the ordered phase where 〈µz〉 ≠ 0. At this critical point, the order parameter behaves as
a massless scalar degree of freedom, allowing for a supersymmetric spectrum. For smaller
values of h, the theory is gapped.

The upshot is that for any value of model parameters J and g, there is a critical value of
h where the low-energy limit is described by the Tricritical Ising Model, and for larger values
of h the low energy limit is described by the critical Ising Model CFT. The authors of [2] found
that for the specific choice of J = 1, g = 1

2 , this critical value is approximately h∗ = 1.62.3

In field theory language, the theory can be described as a single chiral superfield Φ with a
superpotential given by

W (Φ) = κΦ+ rΦ3 . (4)

Supersymmetry is broken spontaneously if W ′(Φ) ̸= 0. Semiclassically, at r
κ < 0 the vacuum

has 〈Φ〉 ̸= 0 and W ′(Φ) = 0, so supersymmetry is preserved but a Z2 symmetry under which Φ
changes sign is spontaneously broken and the theory is gapped; by contrast, at r

κ > 0, 〈Φ〉= 0
and W ′(Φ) ̸= 0, so the supersymmetry of the theory is broken spontaneously, producing a
massless fermionic Goldstino, which is the massless Majorana fermion of the c = 1/2 critical
Ising Model. This semiclassical picture continues to hold at the quantum level (see e.g. [12]),
and the critical point between the two phases is again described by the Tricritical Ising Model
CFT.

We numerically solve for the RG brane using a Density Matrix Renormalization Group
(DMRG) method based on the iTensor library [13,14]. This DMRG algorithm is controlled by
a few key parameters, as explained in the documentation. For our simulations we found the
parameter values of nsweeps= 15, maxdim= [10,20, 100,175, 250], and |cutoff|= 1E -12
were sufficient for even large (eg. N = 300) lattices. In setting up the lattice, periodic boundary
conditions are enforced. Therefore the spacetime geometry is such that we have a tube, the
boundary of which is a circle. On this circle the RG brane is placed at 0 and 180 degrees, with
the Ising model (h= 2) on one side and the Tricritical Ising Model (h= 1.62) on the other.

Discretizing a system on a lattice inherently introduces lattice spacing and finite volume
effects. In Sec. 4.2 we expand the µ lattice operator in terms of the CFT operators, the coeffi-
cients of which are found by computing the finite volume two-point function when the lattice
is entirely in either the Ising CFT phase or Tricritical Ising CFT phase. These coefficients pre-
cisely determine the overall normalization between the numerical lattice calculation and the
analytic CFT calculation, the result of which is shown in Sec. 4.3.

3We notice that the O’Brien-Fendley lattice model [10, 11] provides another example where we can drive a
system from the Ising fixed point to the Tricritical Ising fixed point by tuning a single parameter.
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3 The computation of correlators in the presence of the RG brane

In this section, we extend the study of the RG domain wall in [1] to the computation of specific
four-point functions (in the unfolded picture4). These four-point functions reduce to two-point
functions of composite operators in the folded description. We firstly spell out our general
strategy in computing the relevant four-point functions using Gaiotto’s construction of the RG
domain wall. We then explicitly consider the case of the RG domain wall of the Tricitical Ising
Model. We compute two such four-point functions following our strategy, compare the results
with numerical calculation by DMRG and find precise agreement.

A priori, it is not at all obvious that one should be able to do analytic computations of
correlation functions in the presence of the RG brane. In general, even if the UV and IR CFTs
are rational, so that all their correlators can be computed analytically, it will not necessarily
be the case that the RG brane between them is also rational, and one might have to accept
that the resulting correlators cannot be computed based on the symmetry algebra alone. A
class of interfaces that do preserve the individual algebras of the UV and IR CFTs are called
rational interfaces. From this point of view, what is special about rational interfaces is that they
satisfy boundary conditions that glue the chiral sector of the algebra of the theory T L × TR to
the anti-chiral sector by an automorphism (i.e. the map preserves the commutation relations
between the symmetry generators). With the automorphism specified the rational interfaces
can be classified by Cardy’s algebraic description. However, there is an inherent tension be-
tween preserving the UV and IR CFT algebras and simultaneously coupling them together in a
nontrivial way. The reason is that the UV and IR CFT algebras strongly constrain the allowed
form of the correlators of the theory, and in fact the reason why rational CFTs are analytically
tractable is that the algebra almost completely determines their correlators. Consequently, if
the algebra completely factorizes into the UV and IR CFT algebras, then their correlators also
factorize into UV and IR CFT correlators. In more technical terms, the automorphism that
maps the chiral and anti-chiral algebras into each other across the RG brane usually doesn’t
mix the L and R sectors of the algebra. In order to mix them in a nontrivial way, there must be
a hidden symmetry that relates the L and R sectors. Naively, our setup has no hidden symme-
try and therefore one might expect that the RG brane is not related to any rational interface.
Fortunately, this expectation is too pessimistic, and Gaiotto [1] has proposed a remarkably
elegant construction of RG interfaces between consecutive 2d Virasoro minimal model CFTs
using rational interfaces by identifying the RG branes as the rational interfaces of a different
2d CFT than T L ×TR which contains a larger symmetry algebra. This construction is based on
the observation that the larger symmetry algebra is eB (that we review in detail in Sec. A.2) and
it extensively uses results reviewed in App. A. The basic observation that leads to the realiza-
tion of eB as the proper algebra is from the considerations of topological defects [16] and the
perturbative results of the RG flow [17, 18]. We also review Gaiotto’s algebraic proposal for
the RG brane in detail in App. B. The proposal can be roughly summarized as the statement
that the RG brane is simply the product of a conformal interface that maps operators from
the tensor product theory to the ‘B’ theory with the enhanced eB chiral algebra, with a Cardy
boundary condition with respect to this enhanced algebra.

3.1 The general strategy

Our main goal is to compute correlation functions of local operators in the presence of the RG
brane between nearest neighbor minimal models, Mk+3,k+2 and Mk+2,k+1. We will mostly

4Folding is a useful technique in the study of interface conformal field theories [1]. In the appearance of a
conformal interface between two CFT’s TL and TR, we can fold the spacetime manifold with respect to this interface
and end up with a Cardy boundary [15] of a CFT T L×TR. In this paper, we will call the situation before we perform
this folding the unfolded picture and the situation after we perform such a folding the folded picture.
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focus on the case of the RG brane between TIM and Ising (i.e. k = 2), though the generaliza-
tion to other minimal models is conceptually straightforward. The simplest kind of two-point
function one might try to consider is that of two operators in, say, Mk+2,k+1:5

〈φ(k+1)
r,s (x1, x1)φ

(k+1)
r,s (x2, x2)〉RG . (6)

However, it will be useful to instead start with correlators where each local operator is a prod-
uct of one operator from Mk+2,k+1 and one from Mk+3,k+2:

〈(φ(k+1)
r,s φ

(k+2)
s,t )(x1, x1)(φ

(k+1)
r,s φ

(k+2)
s,t )(x2, x2)〉RG . (7)

When (s, t) = (1,1), this reduces to the former type of two-point function (and similarly if
(r, s) = (1, 1)). However, our strategy for computing correlators will be first to map operators
from the tensor product, or “A”, theory Mk+2,k+1 ×Mk+3,k+2 (which arises from the folded
description) into operators in the “ eB” theory, which can be described in terms of the Ising model
times the (k− 1)-th supersymmetric minimal model SMk+1,k+3. For k = 2, both descriptions
are (loosely speaking) TIM × Ising, but the mapping of operators is still nontrivial.

We will work out in detail the two-point function of ε from Ising and the two-point function
of ε from TIM. These operators are represented in the eB theory as follows [19]:

(εT I M )A∝ (σI MσT I M )B , (εI M )A∝ (σI Mσ′T I M )B . (8)

More generally, the strategy of computing such two-point function is the following:

1. Use the branching rule to map the composite operator (φ(k+1)
r,s φ

(k+2)
s,t )(x1, x1) from the

Mk+2,k+1 ×Mk+3,k+2 description to [r, d ′; t]⊗ [d, ed; d ′] in the SMk+3,k+1 ×M4,3 de-
scription.6

2. Do the bulk OPE expansion for SMk+3,k+1 and M4,3 separately to have
[r, d ′; t]× [r, d ′; t]→ [r, d ′; t] and [d, ed; d ′]⊗ [d, ed; d ′]→ [d, ed; d ′] with known confor-
mal block and OPE coefficients.

3. Project out the [r, d ′; t]⊗[d, ed; d ′]’s which can not be mapped back to the OPE spectrum
of φ(k+1)

r,s φ
(k+2)
s,t with itself in the Mk+2,k+1 ×Mk+3,k+2 description.

4. Look for the boundary operator expansion (BOE) coefficient of [r, d ′; t]⊗[d, ed; d ′] from
the exact Cardy state Equ. (B.7).

5. Multiply the BOE coefficients with the corresponding bulk conformal blocks and bulk
OPE coefficients, and sum over all possible r, d, d ′, t and ed.

This procedure fixes the final correlator up to an overall proportionality constant. This constant
comes from the mapping in the first step, and can be fixed by the one-point function calculated
using the method in Sec. B.5.7 Alternatively, the overall coefficient can be determined simply
by fixing the leading OPE singularity of the two-point function.

5The individual operators in TIM and Ising sit in the Kac table as follows:

1I M = φ I M
(1,1) = φ

I M
(2,3) , εI M = φ I M

(2,1) = φ
I M
(1,3) , 1T I M = φT I M

(1,1) = φ
T I M
(3,4) ,

εT I M = φT I M
(1,2) = φ

T I M
(3,3) , ε′T I M = φT I M

(1,3) = φ
T I M
(3,2) , ε′′T I M = φT I M

(1,4) = φ
T I M
(3,1) .

(5)

6This mapping, though nontrivial, is constrained by preserving total conformal weight and the fact that r + t
even lives in the NS sector of the SMk+3,k+1 and odd in the R sector; in subsection 3.4 we demonstrate how to use
this constraint to work out the branching map for ε′T I M .

7Note that there are operators for which the overall constant cannot be fixed by the last step. These are operators
φ(k+1)

r,s φ
(k+2)
s,t whose one-point function is zero (for example r + t is odd).
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×
O(x1)

×
O(x2)

Figure 2: An illustration of the calculation where O(x)≡ 1I M×εT I M (x) and we do the
bulk OPE first then compute the resulting one point function due to the appearance
of the Cardy boundary.

In general, the prediction for the correlators in the presence of the RG brane will take the
form

〈(φ(k+1)
r,s φ

(k+2)
s,t )(x1, x1)(φ

(k+1)
r,s φ

(k+2)
s,t )(x2, x2)〉RG

=
′
∑

i, j

〈(φ(k+1)
i φ

(k+2)
j )B|RG〉C (k+1)

(r,s),(r,s),iC
(k+2)
(s,t),(s,t), jG

(k+1)
(r,s),(r,s),i(z)G

(k+2)
(s,t),(s,t), j(z) , (9)

where the Cs and Gs are OPE coefficients and conformal blocks in the ‘B’ theory, respectively,
the conformal cross ratio z is defined below, and the prime on the sum indicates that certain
terms in the sum are discarded. The origin of each factor here can be understood intuitively
as follows. The OPE coefficients C (k+1) and C (k+2) come from doing the OPE of the operators
φ(k+1)

r,s ×φ(k+1)
r,s ⊃ φ(k+1)

i and φ(k+2)
s,t ×φ(k+2)

s,t ⊃ φ(k+2)
j , respectively. The one-point function

〈(φ(k+1)
i φ

(k+2)
j )B|RG〉 is just the overlap of these two operators from the respective OPEs across

the RG domain wall. Finally, the conformal blocks G are the blocks from the ‘B’ theory since
this is the theory that contains the full chiral algebra preserved by the RG domain wall, and it
is this algebra under which there are only a finite number of representations. The reason this
explanation is intuitive rather than exact is that, in order to use the finite set of representations
in the ‘B’ theory it is necessary to perform the OPE in this theory, and as we discuss below this
gives rise to the projections indicated in the sum. The fact that such a projection is necessary is
easy to see from the fact that without it, the product of the two OPEs would contain operators
that do not have integer spin and are not present in the theory.

3.2 〈εT IMεT IM〉RG

First, we will calculate the two-point function of the TIM ε operator in the presence of the
RG brane, using the branching rule we have (1I MεT I M )A∝ (σI MσT I M )B from the A to the eB
theory. Therefore, using the folded description, our task is to compute the following correlator
in the eB-theory8

〈(σI MσT I M )(x1, x1)(σ
I MσT I M )(x2, x2)〉RG

= 〈(σI MσT I M )(x1)(σ
I MσT I M )(x1)(σ

I MσT I M )(x2)(σ
I MσT I M )(x2)〉 .

(10)

The correlator in the unfolded description is a sum over four-point conformal blocks, where the
four external operators are (σI MσT I M ) as written above. These conformal blocks are simply

8In this expression for the correlator, we have used the standard ‘mirroring’ trick for factorizing the operators
into their holomorphic and anti-holomorphic components (see e.g. [20] chapter 11). In more precise language,
this factorization should be understood as a statement solely about the behavior of the correlation function, which
is that an n-point correlator in holomorphic z1, . . . , zn variables and anti-holomorphic variables z1, . . . , zn in the
presence of the boundary obeys the same differential equations as a 2n-point function in terms of its dependence
purely on holomorphic variables z1, . . . , z2n (with the 2n anti-holomorphic variables held fixed) in the absence of
the boundary. The reason for this equivalence is that the diagonal subgroup of the chiral algebra that is preserved
by the boundary is isomorphic to the holomorphic half of the full chiral algebra.
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products of the conformal blocks of σI M and σT I M in the Ising model and TIM, respectively,
which are known in closed form (see below). To compute the coefficient of each conformal
block, we first perform the operator production expansion (OPE) in the bulk, which is inherited
from the individual Ising and TIM factors:

[σI M ]× [σI M ] = [1I M ] + [εI M ] , [σT I M ]× [σT I M ] = [1T I M ] + [εT I M ] + [ε′T I M ] + [ε′′T I M ] .
(11)

The OPE of the products of chiral components of the fields in the B theory is, roughly speaking,
a sort of “square root” of the products of OPE of the non-chiral fields from the Ising Model and
the Tricritical Ising Model, as explained in [19] and described in more detail below. Finally,
to obtain the coefficient of the conformal block, we perform the bulk-to-boundary expansion
of each operator in the bulk OPE, which simply contributes an additional factor of the bulk
operator’s one-point function. This OPE,

〈O(x)×O(y)〉RG =
∑

i

COOi(x , y)〈Oi(y)〉RG , (12)

is depicted in Fig. 2. In principle, we could evaluate the above expression by doing a brute-
force numerical sum over all operators Oi in the bulk OPE of εT I M×εT I M in the tensor product
theory. The advantage of using the full chiral algebra of the eB theory is that there are only a
finite number of primary operators, and so by computing the full conformal blocks we reduce
the sum to a finite number of terms. A useful consistency check that we will perform of our
method is that it reproduces the prediction we get for these terms purely from using the stan-
dard bulk OPE for εT I M in TIM, times the RG brane one-point functions, and in fact we will
check enough terms this way to independently fix all the coefficients of the eB theory conformal
blocks.

To evaluate the correlator (10), we need to use the OPE of the chiral components (σI MσT I M)
in the eB theory, in order to sum over the corresponding conformal blocks. As explained
in [19],9 this OPE is not just a simple product of the OPEs of the scalar σI M × σI M and
σT I M × σT I M OPEs in the IM and TIM theories, but instead involves both a projecting-out
of certain cross-products between the two OPEs as well as taking a square root of the non-
holomorphic OPE coefficients. Of the eight operators one would naively get in the product of

9See for instance, their equation (3.6) and surrounding text. There are two steps to the argu-
ment. The first is that the schematic operator product of the holomorphically factorized operators, i.e.,
φ1(z1)φ1(z1) × φ2(z2)φ2(z2) = (

∑

k c12k(z12)φk(z2))(
∑

k c12kφk(z2)) should be more precisely understood as a
bookkeeping device where each term in the sum stands for a conformal blocks that could contribute to the cor-
relator, consistent with the differential equations that it satisfies due to the chiral algebra. Whether or not this
block contributes, and what its coefficient is, depends on additional information. The first additional piece of
information is the operator spectrum of the bulk theory, and the projection involved simply says that a confor-
mal block does not contribute if the corresponding operator is not present in the bulk theory. The second step
determines the coefficients of the operators that do exist. The argument from [19] is that the correlators must
be single-valued which implies that monodromies must be trivial when the location of one operator is taken in a
circle around another operator location. The monodromy condition for the two-point function in the presence of
the boundary takes the same form as the four-point function in the absence of the boundary, with the important
difference that in the two-point function only a single holomorphic factor for each block appears, whereas in the
four-point function each block has a holomorphic and anti-holomorphic factor. However, a remarkable property
of minimal models is that certain pairs of operators in nearest neighbor minimal models have the same braiding
matrices, even though they come from different theories and the blocks are different. Since we consider operators
that are constructed from a product of such pairs of operators, the braiding condition for the two-point function
in the presence of a boundary again involves a product of braiding matrices, just like the monodromy condition
arising from the four-point function. The detailed analysis in [19] demonstrates that while the coefficients of the
blocks in the four-point function are OPE coefficients-squared, the coefficients of the blocks in the two-point func-
tion are just a single factor of the OPE coefficients, so that a square root has been taken (essentially because the
leading term in the OPE limit of a holomorphic block is the square root of the leading term in the OPE limit of a
holomorphic-times-antiholomorphic block, but otherwise the monodromy conditions are the same).
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the two OPEs in (11), four get projected out. A convenient way to infer this is that the OPE
must be consistent with the A theory OPE εT I M × εT I M ∼ 1T I M + ε′T I M + descendants, and
therefore only products of operators where the total dimension of the product is equal that
of 1T I M or ε′T I M plus integers can appear. As a result, only conformal blocks corresponding
to the appearance of 1I M 1T I M , 1I Mε′T I M ,εI MεT I M and εI Mε′′T I M in the σI MσT I M ×σI MσT I M

OPE survive. The correlator is given by the following formula

〈(σI MσT I M )(x1, x1)(σ
I MσT I M )(x2, x2)〉RG =

1
|x1 − x2|2/5

GT I M
εε

�
�

�

�

�

x1 − x2

x1 − x2

�

�

�

�

2
�

,

GT I M
εε (z)≡ z1/5

′
∑

φi=1,ε
φ j=1,ε,ε′ ,ε′′

〈(φ I M
i φT I M

j )B|RG〉C I M
σσφi

C T I M
σσφ j

G I M
σσφi

(z)GT I M
σσφ j

(z) ,
(13)

where the prime on the sum indicates that only the products of conformal blocks described
above are included. The Ising model conformal blocks G I M

σσφi
(z) are

G I M
σσ1(z) =

1
p

2(z(1− z))1/8

Æ

1+
p

1− z , G I M
σσε(z) =

p
2

(z(1− z))1/8

Æ

1−
p

1− z , (14)

and the TIM conformal blocks GT I M
σσφi

(z) are [21]

GT I M
σσ1 (z) =

1
z3/40

 pp
1− z + 1 2F1

�

−2
5 , 1

5 ; 2
5 ; z

�

p
2(1− z)3/40

+
z(1− z)1/40

2F1

�1
5 , 4

5 ; 7
5 ; z

�

2
p

2
pp

1− z + 1

!

,

GT I M
σσε (z) = z

1
40

 pp
1− z + 1(1− z)1/40

2F1

�

−1
5 , 2

5 ; 3
5 ; z

�

p
2

+

p
2z(1− z)21/40

2F1

�4
5 , 7

5 ; 8
5 ; z

�

3
pp

1− z + 1

!

,

GT I M
σσε′(z) = z

21
40

�

2
p

2
Æp

1− z + 1(1− z)21/40
2F1

�

4
5

,
7
5

;
8
5

; z
�

−
3
p

2(1− z)1/40
2F1

�

−1
5 , 2

5 ; 3
5 ; z

�

pp
1− z + 1

�

,

GT I M
σσε′′(z) = z17/40

�

28
p

2 2F1

�

−2
5 , 1

5 ; 2
5 ; z

�

pp
1− z + 1(1− z)3/40

− 14
p

2
Æp

1− z + 1(1− z)1/40
2F1

�

1
5

,
4
5

;
7
5

; z
�

�

.

(15)
The relevant OPE coefficients are [22–24]

C I M
σσ1 = 1 ,

C I M
σσε =

1
2

,

C T I M
σσ1 = 1 ,

C T I M
σσε =

5
q

21Γ
�

−7
4

�

Γ
�3

4

�2
Γ
�6

5

�

�

Γ( 7
10)Γ( 5

4)
Γ( 3

10)

�3/2

23/10π2Γ
�4

5

� ,

C T I M
σσε′ =

5
6

�

Γ
�2

5

�

Γ
�1

5

�

Γ
�3

5

�

�3/2√
√

Γ

�

4
5

�

Γ

�

6
5

�

,

C T I M
σσε′′ =

r

Γ(− 7
4)

21 Γ
�3

4

�

Γ
�5

4

�3/2
Γ
�7

4

�

2π2
,

(16)

and the relevant one-point functions (or the boundary operator expansion coefficients) can be
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tE

Figure 3: An illustration of the finite volume configuration with the RG brane. The
RG interfaces are located at θ = 0,π. The yellow-shaded region (0 < θ < π) is the
TIM part and the green-shaded region (π < θ < 2π) is the Ising part.

found in Equ. (B.7) and Equ. (B.8):

〈(1I M 1T I M )B|RG〉〉=
1
2

r

S(1)0,0S(3)0,0 =ω− , 〈(1I Mε′T I M )B|RG〉〉=
1
2

r

S(1)0,0S(3)0,2 =ω+ ,

〈(εI MεT I M )B|RG〉〉= −
1
2

r

S(1)0,0S(3)0,2 = −ω+ , 〈(εI Mε′′T I M )B|RG〉〉= −
1
2

r

S(1)0,0S(3)0,0 = −ω− ,

where ω± =
1
2

�

5±
p

5
40

�
1
4

, and S(k)r,s =

√

√ 2
k+ 2

sin
�

π(r + 1)(s+ 1)
k+ 2

�

. (17)

As mentioned above, a fully independent calculation of the coefficients of the conformal blocks in (13) can
be obtained by instead matching its short-distance expansion to a calculation of (12) using the standard TIM bulk
OPE coefficients together with the RG brane one-point functions. There are four independent coefficients to be
fixed, one for each conformal block appearing in the sum. One of these is simply a normalization which we can
factor out. The small z expansion of GT I M (z) is

GT I M (z)∝ z−1/5



1−

p
2(11+ 5

p
5)

1
10π

3
4 Γ
�

2
5

�
3
2

3
q

Γ
�

1
5

�

Γ
�

3
10

�
3
2 Γ
�

4
5

�

z3/5(1+
3z
10
) +

3
280

z2 + . . .



 . (18)

The coefficient of z3/5 should be exactly Cεεε′ times 〈(ε
′T I M )A〉RG
〈(1)A〉RG

. The OPE coefficient Cεεε′ is given in equation (34).

The one-point functions 〈(ε′T I M )A〉RG and 〈(1)A〉RG are in [1] equation (2.56), giving 〈(ε
′T I M )A〉RG
〈(1)A〉RG

= − 1
2

�

5
8+
p

5
8

5
8−
p

5
8

�1/4

,

in agreement with the coefficient of z3/5 above. The coefficient of z2 follows from the OPE coefficient and one-
point function for the stress tensor. It can easily be calculated using the usual Virasoro conformal blocks, where
the coefficient of z2 is 2h2

c . In this case, there is an additional suppression for the one-point function of T in the
presence of the RG brane, and this suppression can be read off from (A.19) where we see that T T I M s overlap with
itself reflected across the RG brane picks up a factor of 3

k(k+2) =
3
8 . Therefore, the prediction for the coefficient of z2

is 3
8

2h2

c =
3

280 since h= hT I M
ε
= 1

10 and c = cT I M = 7
10 . Again this agrees with the coefficient of z2 above. Finally, we

can fix one more coefficient by using the long-distance limit 〈ε(x1, x1)ε(x2, x2)〉RG ∼ 〈ε(x1, x1)〉RG〈ε(x2, x2)〉RG = 0
at x1 − x2 →∞. And indeed, there is a nontrivial cancellation among the four conformal blocks in GT I M so that
the leading large z term vanishes. This condition completes the independent derivation of all the coefficients in
GT I M .

To get the correlator at finite volume, we can conformally map the correlator from the
upper half plane (UHP) to the strip. Without loss of generality, we can choose units where the
volume is 2π, and reintroduce an arbitrary volume later by scaling. The conformal mapping
from the UHP to the strip is (tE being Euclidean time)

x = etE+iθ , (19)

11

https://scipost.org
https://scipost.org/SciPostPhysCore.7.2.021


SciPost Phys. Core 7, 021 (2024)

so that the RG brane located at Im(x) = 0 gets mapped to θ = 0,π (see Fig. 3). In the folded
description, both TIM and Ising are in the UHP, and get mapped to the range 0 < θ < π,
whereas in the unfolded description, TIM is in, say, the UHP whereas Ising is in the lower half-
plane (LHP), so that they get mapped to 0 < θ < π and π < θ < 2π, respectively. When we
set up our DMRG calculation, we will choose periodic boundary conditions, in order to match
the unfolded description in finite volume. It is straightforward to evaluate the CFT expression
for the correlator at arbitrary times, but we will focus on the case of equal-time correlators
and set tE = 0. Then, in terms of the function GT I M

εε (z) from (13), the finite-volume two-point
function of εT I M in the presence of the RG brane is

〈εT I M (θ1)ε
T I M (θ2)〉RG∝





1

sin2
�

θ1−θ2
2

�





1
5

GT I M
εε





sin2
�

θ1−θ2
2

�

sin2
�

θ1+θ2
2

�



 . (20)

The proportionality constant in the above equation depends on the normalization of εT I M and
can easily be fixed by matching the OPE singularity at θ1 ∼ θ2.

3.3 〈εIMεIM〉RG

The calculation of the two-point function of the ε operator on the Ising model side of the RG
brane closely follows the derivation of that on the TIM side in the previous subsection. The
difference is that εI M maps in the eB theory to the operator (σI Mσ′T I M )B, and so we need to
use the TIM σ′ OPE coefficients and conformal blocks. The TIM σ′ × σ′ OPE only contains
two primary operators, 1 and ε′′. Because σ′ has a null descendant at level 2, its conformal
blocks can easily be calculated by standard methods. They are

GT I M
σ′σ′1(z) =

(1− z)5/8 2F1

�

−1
4 , 5

4 ;−1
2 ; z

�

z7/8
, GT I M

σ′σ′ε′′(z) = (1− z)5/8z5/8
2F1

�

5
4

,
11
4

;
5
2

; z
�

.

(21)
The corresponding OPE coefficients are

C T I M
σ′σ′1 = 1 , C T I M

σ′σ′ε′′ =
7
8

. (22)

As before, the full correlator is a sum over these conformal blocks with coefficients given by
the bulk OPE coefficients times the RG brane one-point functions:

〈(σI Mσ′T I M )(x1, x1)(σ
I Mσ′T I M )(x2, x2)〉RG =

1
|x1 − x2|2

G I M
εε

�
�

�

�

�

x1 − x2

x1 − x2

�

�

�

�

2
�

,

G I M
εε (z)≡ z

′
∑

φi=1,ε
φ j=1,ε′′

〈(φ I M
i φT I M

j )B|RG〉C I M
σσφi

C T I M
σ′σ′φ j

G I M
σσφi

(z)GT I M
σ′σ′φ j

(z) .
(23)

The sum on φi ,φ j includes only two terms in total, the combination (φi = 1,φ j = 1) and
(φi = ε,φ j = ε′′). The one-point functions were given explicitly in (17). The finite-volume,
equal-time correlator is

〈εI M (θ1)ε
I M (θ2)〉RG∝

1

sin2
�

θ1−θ2
2

�G I M
εε





sin2
�

θ1−θ2
2

�

sin2
�

θ1+θ2
2

�



 . (24)
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3.4 Branching rule and two-point function for ε′T IM

Finally, let us work out the CFT prediction for a slightly more complicated example,
that of the RG brane two-point function of ε′T I M . Now, the operator maps to a lin-
ear combination of primaries in the eB theory, which we can work out using the ac-
tion of the chiral algebra in the A and eB descriptions. The branching rule tells us that
1I Mε′T I M (x)A = 1I Mε′T I M (x)B ⊕ εI MεT I M (x)B + 1I Mε′T I M (x)B ⊕ εI MεT I M (x)B. Our task now
is to determine the precise decomposition coefficients a and b for

1I Mε′T I M (x)A = a1I Mε′T I M (x)B + bεI MεT I M (x)B . (25)

This can be done by using the first equation in Equ. (A.19), which tells us that

L I M
0;A =

5
8

LT I M
0;B +

p
15
8
(Gψ)0 +

1
8

L I M
0;B , (26)

together with
L I M

0;A1I Mε′(x)A = 0 . (27)

We have

0=

�

3a+
p

15b
p

2hεT I M

8
1I M ⊗ ε′T I M +

5
p

15
p

2hεT I M a+ 5b
40

εI M ⊗ εT I M

�

, (28)

and so p
3a+ b = 0 . (29)

Hence we have the decomposition up to an overall constant.
Translating to the B-theory, the correlator that we are interested in is

¬�

1I M (x1)ε
′T I M (x1)−

p
3εI M (x1)ε

T I M (x1)
��

1I M (x2)ε
′T I M (x2)−

p
3εI M (x2)ε

T I M (x2)
�¶

= 〈1I M (x1)ε
′T I M (x1)1

I M (x2)ε
′T I M (x2)〉+ 3〈εI M (x1)ε

T I M (x1)ε
I M (x2)ε

T I M (x2)〉

−
p

3〈1I M (x1)ε
′T I M (x1)ε

I M (x2)ε
T I M (x2)〉 −

p
3〈εI M (x1)ε

T I M (x1)1
I M (x2)ε

′T I M (x2)〉 ,
(30)

and we will compute the resulting four correlators separately.
To compute these correlators, we follow the same procedure as for Equ. (10) doing the

operator production expansion (OPE) in the bulk first and computing the resulting one-point
functions (as indicated in Fig. 2). The OPE is given by the (tensor product of the) OPE from the
Ising model and the Tricritical Ising Model. The conformal blocks we get are those for chiral
four point functions in the Ising model and tricitical Ising model. These bulk OPE expansions
can be read from

[εI M ]× [εI M ] = [1I M ] , [εT I M ]× [εT I M ] = [1T I M ] + [εT I M ] ,

[ε′T I M ]× [ε′T I M ] = [1T I M ] + [ε′T I M ] , [εT I M ]× [ε′T I M ] = [εT I M ] + [ε′′T I M ] .
(31)
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The results are given by

〈1I M (x1)ε
′T I M (x1)1

I M (x2)ε
′T I M (x2)〉

=
z

2
5 (1− z)

2
5

�

H I
11(z) +H I

1ε′(z)
�

(x1 − x2)
1

15 (x1 − x1)
1

15 (x1 − x1)
1

15 (x2 − x1)
1

15 (x1 − x2)
1

15 (x2 − x2)
1

15 (x2 − x1)
1

15 (x1 − x2)
1
15

,

× 〈εI M (x1)ε
T I M (x1)ε

I M (x2)ε
T I M (x2)〉

=
z

2
5 (1− z)

2
5

�

H I I
11(z) +H I I

1ε′(z)
�

(x1 − x2)
1

15 (x1 − x1)
1

15 (x1 − x1)
1

15 (x2 − x1)
1

15 (x1 − x2)
1

15 (x2 − x2)
1

15 (x2 − x1)
1

15 (x1 − x2)
1
15

,

× 〈1I M (x1)ε
′T I M (x1)ε

I M (x2)ε
T I M (x2)〉

=
z

2
5 (1− z)

2
5

�

H I I I
εε (z) +H I I I

εε′′(z)
�

(x1 − x2)
1

15 (x1 − x1)
1

15 (x1 − x1)
1

15 (x2 − x1)
1

15 (x1 − x2)
1

15 (x2 − x2)
1

15 (x2 − x1)
1

15 (x1 − x2)
1
15

,

× 〈εI M (x1)ε
T I M (x1)1

I M (x2)ε
′T I M (x2)〉

=
z

2
5 (1− z)

2
5

�

H IV
εε (z) +H IV

εε′′(z)
�

(x1 − x2)
1

15 (x1 − x1)
1

15 (x1 − x1)
1

15 (x2 − x1)
1

15 (x1 − x2)
1

15 (x2 − x2)
1

15 (x2 − x1)
1

15 (x1 − x2)
1
15

,

(32)

where the relevant conformal blocks are

H I
11(z) = 〈(1

I M 1T I M )B|RG〉〉C T I M
ε′ε′1

�

z2 − z + 1
�

2F1

�

−2
5 , 1

5 ; 2
5 ; z

�

z6/5(1− z)6/5
,

H I
1ε′(z) = 〈(1

I Mε′T I M )B|RG〉〉C T I M
ε′ε′ε′

�

z2 − z + 1
�

2F1

�1
5 , 4

5 ; 8
5 ; z

�

z3/5(1− z)6/5
,

H I I
11(z) = 〈(1

I M 1T I M )B|RG〉〉C I M
εε1C T I M

εε1
1− z + z2

z(1− z)
2F1

�

−2
5 , 1

5 ; 2
5 ; z

�

5pz 5p1− z
,

H I I
1ε′(z) = 〈(1

I Mε′T I M )B|RG〉〉C I M
εε1C T I M

εεε′
1− z + z2

z(1− z)
2F1

�1
5 , 4

5 ; 8
5 ; z

�

z−
2
5

5p1− z
,

H I I I
εε (z) = 〈(ε

I MεT I M )B|RG〉〉C T I M
ε′εε

1
1− z

2F1

�

−6
5 , 1

5 ;−2
5 ; z

�

5p1− zz3/5
,

H I I I
εε′′(z) = 〈(ε

I Mε′′T I M )B|RG〉〉C T I M
ε′εε′′

1
1− z

z4/5
2F1

�1
5 , 8

5 ; 12
5 ; z

�

5p1− z
,

H IV
εε (z) = 〈(ε

I MεT I M )B|RG〉〉C T I M
ε′εε

1
1− z

2F1

�

−6
5 , 1

5 ;−2
5 ; z

�

5p1− zz3/5
,

H IV
εε′′(z) = 〈(ε

I Mε′′T I M )B|RG〉〉C T I M
ε′εε′′

1
1− z

z4/5
2F1

�1
5 , 8

5 ; 12
5 ; z

�

5p1− z
.

(33)
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The OPE coefficients are

C I M
εε1 = 1 ,

C T I M
ε′ε′1 = 1 ,

C T I M
ε′ε′ε′ =

π5/4Γ
�2

5

�

Γ
�11

5

�

5p2Γ
� 9

10

� �

Γ
�1

5

�

Γ
�13

10

��3/2q
3Γ
�7

5

�

,

C T I M
εε1 = 1 ,

C T I M
εεε′ =

s

Γ(− 3
10)Γ( 2

5)Γ( 7
5)

Γ(− 2
5)Γ( 3

10)Γ( 8
5)

23/5
,

C T I M
ε′εε =

s

Γ(− 3
10)Γ( 2

5)Γ( 7
5)

Γ(− 2
5)Γ( 3

10)Γ( 8
5)

23/5
,

C T I M
ε′εε′′ =

3
7

,

(34)

and the boundary operator expansion coefficients are

〈(1I M 1T I M )B|RG〉〉=
1
2

r

S(1)0,0S(3)0,0 ,

〈(1I Mε′T I M )B|RG〉〉=
1
2

r

S(1)0,0S(3)0,2 ,

〈(εI MεT I M )B|RG〉〉= −
1
2

r

S(1)0,0S(3)0,2 ,

〈(εI Mε′′T I M )B|RG〉〉= −
1
2

r

S(1)0,0S(3)0,0 .

(35)

4 Comparison of lattice and CFT calculations

In this section, we numerically study the RG brane system using a DMRG analysis. Following
[3], we apply DMRG to the Hamiltonian (2). Recall that for (2) when h = 2 the system is in
the IM phase whereas for h= 1.62 the system is in the TIM phase, and the RG brane system is
realized on the lattice by tuning h = 2 on half the lattice sites and h = 1.62 on the other half,
with periodic boundary conditions taken at the endpoints.

As mentioned in Sec. 2.2, the DMRG algorithm is controlled by a few key parameters.
For the results below we use a lattice with N = 180 distinct sites (540 total sites, since each
physical site requires a separate site for µi,a,µi,b and σi) unless otherwise noted. First we
verify that in our setup with periodic boundary conditions (PBCs) the DMRG algorithm has
found the ground state. Then we find the map between lattice operators and CFT operators.
Finally, we numerically compute one-point and two-point functions in DMRG, and compare
them with the analytic CFT predictions from Sec. 3.

4.1 Check of periodic boundary conditions

The density matrix renormalization group (DMRG) is an adaptive, variational algorithm used
to optimize a matrix product state (MPS) tensor network such that the MPS is (approximately)
the dominant eigenvector of some large matrix H. In our case H is the Hamiltonian for a many-
body quantum system (spin chain) and the MPS is the wavefunction |Ψ〉. Therefore the goal
of the DMRG in this context is to find the ground state wavefunction |Ψ0〉 for the H such that
observables can be computed:

〈O〉 ≡ 〈Ψ0|O|Ψ0〉 . (36)
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Figure 4: For a lattice with N = 180 sites, a plot of all 180 two-point functions for the
IM and TIM phases showing the translation invariance of the two-point correlators
in the ground state. Therefore, PBCs have been obtained numerically.

The original DMRG algorithm was formulated in [25].
In our case, PBCs are automatically implemented through choosing a Hamiltonian that is

invariant under translation around the circle. Therefore the ground state must necessarily have
PBCs and the only question is whether our numeric implementation has accurately converged
to the ground state. A check of this is that all two-point correlators in the ground state only
depend on |i − j| mod N , where i, j are lattice points and N is the number of lattices sites.
Fig. 4 shows the translation invariance of the two-point correlators for both the IM and TIM
phases. We note the point of maximum difference between any two of the 180 correlators is
less than 8% and 4%, for IM and TIM, respectively, with the majority agreeing to a significantly
greater precision.

4.2 Mapping of operators

Because the lattice is a microscopic structure versus the continuum field theory that we aim to
compare it to, we need to verify what lattice operators correspond to what CFT operators. We
do this by expanding the lattice operators in terms of the CFT operators and then determining
the expansion coefficients. In our case, the µ lattice operator (i.e. µz

i,b and µz
i,a) in the Ising

domain can be expanded as
µz = A(I)ε ε+ A(I)

∂ 2ε
∂ 2ε+ · · · , (37)

where ε is the Ising CFT energy density operator, the As are the expansion coefficients and the
dots are higher decedent operators. In the tricritical Ising domain the expansion is,

µz = A(T )ε ε+ A(T )
ε′
ε′ + A(T )

∂ 2ε
∂ 2ε+ · · · , (38)

where ε, ε′, etc., are the tricritical CFT energy density operators. The fact that the lattice
µ operator expands to energy operators can be understood as follows. Adding

∑

i µ
z
i,b (or

∑

i µ
z
i,a) to the Hamiltonian Equ. (2) breaks the Z2 symmetry which acts on the µ-sector as

sending µz
i,a to −µz

i,b and µz
i,b to −µz

i+1,a and on the σ-sector as the high-temperature/low-
temperature duality transform σz

iσ
z
i+1 ↔ σx

i . Hence when we are in the Ising phase this
deformation breaks the high-temperature/low-temperature duality symmetry10 which maps
ε to −ε so this is equivalent at leading order to an ε deformation. On the other hand, when
we are at the critical point (h = h∗) the low-energy theory is TIM and such a deformation
would gap out the system. Hence this is a relevant deformation. However, in the TIM case a

10In the free fermion representation this is the time-reversal symmetry which prevents the system from being
gapped.
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Z2 symmetry we have is

εT I M →−εT I M , ε′T I M → ε′T I M , and ε′′T I M →−ε′′T I M , (39)

which suggests that the expansion of the lattice µ operator is given by the εT I M ,ε′′T I M and
their descendants.

To determine the coefficients we use DMRG to calculate finite-volume two-point functions
on the lattice in the IM and TIM phases. In this section we will use the coordinates on the
cylinder θ ∈ (0,2π] and tE ∈ (−∞,∞) and we define a new coordinate

u= L
θ

2π
, (40)

for convenience where L is the circumference of the cylinder’s cross section. The equal-time
finite-volume two-point function of a primary operator O is given by

〈O(u1)O(u2)〉=
(πL )

2∆O

sin
�πu12

L

�2∆O
∼

1

u2∆O
12

, (41)

where we have chosen the canonical normalization of O so that its short-distance OPE singu-
larity is u−2∆O

12 , as shown. Therefore, for the case of (37), we fit numeric data to a function of
the form

〈µ(u1)µ(u2)〉TIM ≈ (A(T )ε )
2 (πL )

2∆ε

sin
�πu12

L

�2∆ε
, (42)

with ∆ε =
1
5 , and similarly with the Ising case using ∆ε = 1. Doing this we find, using a

N = 180 site lattice,

A(I)ε = 0.81 , A(T )ε = 0.61 . (43)

In Fig. 5, we show a comparison of the form (42) to the result of our DMRG computation for
the 〈µiµ j〉 two-point function on the TIM and Ising side, verifying a similar comparison in [3].

Another method to determine the coefficients is to use the state-operator correspondence
in conjunction with DMRG [26]. This is because the CFT operators are identified by their
energy on the circle in DMRG. For example, to extract the coefficient Aε of the operator ε(x)
in the expansion of the lattice operator µz , we calculate

|〈0|µz|ε〉|= Aε

�

2π
N

�2∆ε
. (44)

This method is particularly useful for computing the coefficients for subleading operators.
Doing this for the same N = 180 site lattice we obtain11

A(I)ε = 0.81 , A(I)
∂ 2ε
= 1.8 , A(T )ε = 0.60 , A(T )

ε′
≤ 10−2 . (45)

It is more difficult to obtain very precise results for the coefficients of the subleading oper-
ators in (37) and (38). However, such contributions should be parameterically suppressed by
|i − j|2 compared to the leading contribution at long distances. Empirically, we find that this
suppression is roughly a factor of

b
|i − j|2

(46)

11The notation A(I)
∂ 2ε

indicates the overlap with the lowest excited state with dimension ∼ 3.
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Figure 5: DMRG computation of the 〈µiµ j〉 two-point function for the lattice model
Equ. (2) in the Tricritical Ising (h= 1.62) and Ising (h= 2) phases.

(relative to the leading contribution), with b ∼ 20 for Ising and b ∼ 1 for TIM.12 So we see
that the lattice µ operators flow to a linear combination of the energy density operators, with
the dominant CFT operator being the ε energy density in the respective phase, as expected.
Moreover, lattice corrections from subleading operators in (37) and (38) should be small for
|i − j| ≳ 5 for Ising and |i − j| ≳ 1 for TIM. Indeed this is consistent with what we will see in
Fig. 6 when we compare the CFT and lattice calculations of the µi two-point function in the
presence of the RG brane.

4.3 Numeric comparisons

We start by using DMRG to compute one-point functions. In [1] one-point functions were
verified using conformal perturbation theory for large k Virasoro minimal CFTs; using DMRG
allows us to check these formulas at finite k (in our case k = 1).

To compute the one-point function, we fit the DMRG data of the two-point function
〈µ j∗+uµ j∗−u〉RG , where j∗ is the location of the RG brane, to the form

〈µ j∗−xµ j∗+x〉RG = A(I)ε A(T )ε 〈ε
T I M (u)εI M (−u)〉RG = A(I)ε A(T )ε B

�

π
L

sin
�2uπ

L

�

�∆

, (47)

where ∆ = ∆I M
ε +∆T I M

ε = 1.2 and Aεs are taken from the fits in the previous subsection.
As usual, we have performed a conformal map to take into account finite volume effects. We
obtain the result

B = 0.64± 0.01 , (48)

where we have estimated the error by performing the fit over different ranges of lattice points.
Now we want to compare this numerical result with the prediction from the RG brane

construction. The A-theory operator εI M (u)εT I M (u) can be written as φ(k+1)
r,s φ

(k+2)
s,t where

k = 2, r = 2, s = 1 and t = 2. This tells us that d = 2, ed = 2 and d ′ = 1 or 3. Hence this
A-theory operator translates into the eB-theory as the linearly combination of the operators
[2,1; 2]⊗ [2,2; 1]=εT I MεI M (x) and [2, 3;2]⊗ [2,2; 3]=G− 1

2
G− 1

2
εT I M 1I M (x)=ε′T I M 1I M (x).13

12A possible explanation for the smallness of this value of b in TIM is as follows. We expect that the coefficient
Aε′ actually vanishes (A(T )

ε′ in (45) is consistent with zero given the resolution of our calculation) due to the gen-
eralization of Kramers-Wannier symmetry to TIM (i.e., the ÒN Verlinde line [27]), so the only contribution to b
comes from ∂ 2ε in both Ising and in TIM. Then, the cross-terms 〈ε∂ 2ε〉 are parametrically suppressed relative to
the leading terms 〈εε〉 by 〈ε∂

2ε〉
〈εε〉 ∼∆

2
ε
, which is 1 in Ising and 1/25 in TIM.

13Here we used the fact that the eB-theory is the supersymmetric representation of the Tricritical Ising Model for
our case k = 2. G− 1

2
and G− 1

2
are the first creation operators of the supersymmetry generators G and G in the NS

sector.
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Figure 6: Comparison of 〈µiµ j〉 in the RG brane lattice description (dots) vs. the
equivalent CFT theory result from Equ. (13) (solid curves). Top: The IM side. Bottom:
The TIM side.

Let’s write
εI MεT I M (u)A = αε

T I MεI M (u)B + βG− 1
2
εT I M 1I M (u) , (49)

where we only focus on the holomorphic part and the normalization of the operator gives the
constraint

1= α2 + 2β2hεT I M = α2 +
1
5
β2 . (50)

We can find the coefficients α and β as in Equ. (25) using the following relation

L I M
0;A =

5
8

LT I M
0;B +

p
15
8
(Gψ)0 +

1
8

L I M
0;B , (51)

which tells us that p
15

40
β =

3
8
α ,

1
8
β =
p

15
8

C I M
εε1α . (52)

The fact that C I M
εε1 = 1 tells us that this two equations are consistent. Then combining with

Equ. (50) we have

α=

√

√5
8

, β = 5

√

√3
8

. (53)

As a result, we have

〈〈(εI MεT I M )A|RG〉〉= (−α2 + 2hεT I Mβ2)

r

S(1)0,1S(3)0,1

S(2)0,0

=
1
2

r

S(1)0,1S(3)0,1

S(2)0,0

, (54)

where the minus sign in the first step comes from the fact that the RG brane maps ψ (i.e.
the homolorphic part of εI M

B ) to −ψ (i.e. the antiholomorphic part of εI M
B ). Moreover, there

is one more step before we can match the numerical result Equ. (48). We have to take into
account of the fact that in numerics the identity operator is normalized to one and so we have
to consider instead

〈〈(εI MεT I M )A|RG〉〉
〈〈(1I M 1T I M )A|RG〉〉

=
1
2

r

S(1)0,1S(3)0,1

S(2)0,0

S(2)0,0
r

S(1)0,0S(2)0,0

=
1
2

�

5+
p

5

5−
p

5

�
1
4

∼ 0.63601 , (55)

which perfectly matches the numerical result Equ. (48).
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Finally, we can compare our CFT result Equ. (13) for 〈εε〉RG in the presence of the RG
brane to the DMRG calculation. Before doing so we emphasize that the reflection symmetry
x →−x is an emergent symmetry in the continuum limit, and not present in the lattice model
(2). In particular, the final term with coupling coefficient g that couples the two Ising models
can easily be seen explicitly by inspection to be the source of this lack of symmetry. Fig. 6
shows the result of this comparison for the computing 〈µiµ j〉 on the Ising and Tricritical Ising
sides of the RG brane, respectively, and shows remarkably good agreement between the CFT
and DMRG calculations. This is one of the main results of the paper, and provides a highly
nontrivial check of our methods for computing correlators in RG brane backgrounds.

5 Experimental realizations

In this section, we comment on potential experimental realizations of the RG domain wall we
studied in this paper, based on some experimental proposals in the literature for obtaining
the Tricritical Ising Model fixed point. The material in this section is not original to us, but
we have included it in a attempt to summarize some of these ideas for the interested reader.
There are two types of systems that we will focus on and they each have their own pros and
cons. The first type of systems we will consider is (2+1)-dimensional Type IIID topological
superconductors [2, 3, ] and the second type of systems we are interested in is the (1+1)-
dimensional Rydberg chain [29].

5.1 Engineering the RG domain wall on the boundary of a topological super-
conductor

Let’s consider the edge of a (2+1)-dimensional Type III D topological superconductor with
the bulk in the gapped topological phase (a discussion of the physics in a toy model for such
systems is given in Appendix.C).14 For such a system we have two Majorana modes χL and χR
on the edge whose gap is protected by a time-reversal symmetry. The Lagrangian is given by

L =
i
2

∫

d x
�

χR(x , t)(∂t + ∂x)χR(x , t) +χL(x , t)(∂t − ∂x)χL(x , t)
�

, (56)

which is the (1+1)-d Ising Model conformal field theory. The two Majorana fermionsχR and χL
are respectively of spin down and spin up and the time-reversal symmetry exchanges these two
Majorana fermions and meanwhile it protects the system from being gapped (see Appendix.C).
Hence the spontaneous breaking of the time-reversal symmetry (or the magnetic ordering)
provides a portal to realize a different phase (the trivial gapped phase) and the critical point
of the phase transition between this new gapped phase the gapless phase Equ. (56) provides
a chance to realize a different CFT. Such a phase transition can be characterized by an order
parameter φ(x , t) which transforms under the time-reversal symmetry by a minus sign. The
dynamics of such an order parameter is universally controlled by the usual φ4-model. The full
Lagrangian of the system is given by

Ltot =
i
2

∫

d x
�

χR(x , t)(∂t + ∂x)χR(x , t) +χL(x , t)(∂t − ∂x)χL(x , t)
�

+
1
2

∫

d x
�

(∂tφ)
2(x , t)− (∂xφ)

2(x , t) +m2φ2(x , t)

− uφ4(x , t) + i gφ(x , t)χR(x , t)χL(x ,−t)
�

. (57)

14We thank Tarun Grover for discussions of this approach, and suggestions for how to implement the RG brane
in this context.
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uuc
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Gapless PhaseGapped Phase

Figure 7: The phase diagram of the system Equ. (57) for a fixed value of g. At large
positive u we enter a gapless phase of two Majorana fermions which is described by
the Ising Model CFT. At large negative u the system is trivially gapped. Thus there is
a critical value uc at which the second order phase transition happens and the physics
is described by the Tricritical Ising Model CFT.

For large positive u the order parameter φ has a zero vev and the time-reversal symmetry
is not spontaneously broken so the low energy dynamics is controlled by the free massless
Majorana fermions which is the Ising Model. By contrast, for sufficiently small u the order
parameter would have a nonzero vev which signals the spontaneous breaking of the time-
reversal symmetry and the Majorana fermions are gapped by the Yukawa term (the last term
in Equ. (57)) and the low energy dynamics is trivial with a nonvanishing gap. Hence for a
fixed value of g there is a critical value uc for u where the phase transition happens and the
physics is captured by a different CFT (see Fig. 7 for the phase diagram). It is shown in [3] that
this CFT is the Tricritical Ising Model whose central charge is c = 7

10 . As a result, we can use
this system to engineer the RG brane that we studied in this paper. We can tune the parameter
u to uc first and then tune it above uc on half of the space. In practice, one could try to tune
u by putting the material between two plates of a capacitor in order to turn on a background
electric field, which preserves the time-reversal symmetry and so should still be described by
the same phase diagram.

In real materials the time-reversal symmetry breaking is achieved by magnetic ordering
which sets a preferred direction of the electron spin. In the Ising Model language, this can be
realized by taking into account the fermion interactions, for example dipole-dipole interactions
between Cooper paired fermions. The orientation of the dipole moments can be driven by
an external electric field which could potentially be used to tune to or away from the point
of magnetic ordering. The advantage of this approach is that we just have to tune a single
parameter to reach the TIM critical point. However, at the moment there are no clear (1+1)-
d candidate experimentally accessible systems. For example the usual systems that realize a
topological superconductor of our interest are (2 + 1)-d boundaries of (3 + 1)-d systms, but
because they sit at the extremely low temperature regime (for example superfluid He3-B) it is
likely to be quite challenging to use them to create (1+1)-d boundaries of, say, (2+1)-d films.
And, despite various proposals, there are currently no known intrinsically (2+ 1)-d materials
that are widely accepted to be Type DIII topological superconductors. For more details of the
experimental viability and difficulties we refer the readers to [3].

5.2 Engineering the RG domain wall in a Rydberg chain

Another system that one might use to engineer the RG domain wall is the Rydberg atoms
chain [29, 30]. This system consists of a one-dimensional chain of bosons (neutral atoms)
with each boson as a two-level quantum mechanical system and the two energy levels are
coupled to each other by a resonant laser field with a Rabi frequency Ω. Nevertheless the
interesting part of system is that the Rydberg atoms are interacting if they are in the excited
state and the interaction is from the dipole-dipole interaction for neaby excited atoms. Hence
the whole Hamiltonian of the chain can be written as (we will follow the notations in [29])

H =
∑

j

�

Ω

2
(b j + b†

j )−∆n j + V1n jn j+1 + V2n jn j+2

�

, (58)
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where Ω is the Rabi frequency of the external resonant laser field that couples the ground state
and the excited state of each atom, b†

j (b j) is the creation (annihilation) operator for the atom

at site j to go from the ground (excited) state to the excited (ground) state,15 n j = b†
j b j is

the number operator at site j which can be either zero or one, ∆ describes the detuning from
the Rydberg state, V1 denotes the nearest neighbour dipole-dipole interaction and V2 denotes
the next-nearest neighbour dipole-dipole interaction and we have ignored higher neighbour
dipole-dipole interactions which are suppressed. As [30] pointed out this system has a nice
phase diagram when V1 =∞. The phase diagram is nicely plotted in [29] (see Fig.1 in [29]).
Depending on the values of V2

Ω and ∆
Ω there are two phases of the system– a disordered phase

〈n j〉 = 0 and a Z2 ordered phase with 〈n j〉 and 〈n j+1〉 alternatively zero and one. There is
a critical line separating the two phases which describes the phase transition between them.
The interesting aspect of this critical line is that it has a tri-critical point separating the second
order phase transition and the first order phase transition. This tri-critical point is described
by the Tricritical Ising Model and the second order phase transition is described by the Critical
Ising Model. Hence we can construct the RG domain wall in this paper by firstly tune the
Rydberg chain to the tricritical point and then tune half of them away from the tricritical
point to a nearby critical point for the second order phase transition between the ordered and
disordered phases.

The Rydberg chain has been proposed to be a reliable platform to simulate exotic many-
body spin quantum systems due to its stability and the precise tunability of the parameters
[31,32] and some of these Rydberg chains have been realized experimentally [33]. Hence the
advantage of this construction is that the tuning can be done very precisely in real experimental
systems of Rydberg chain and a slight disadvantage is that we have to tune multiple parameters
to locate the tricritical point and then tune multiple parameters simultaneously to drive half
of the space away from it to a nearby critical point for the second phase transition.
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A Algebraic construction for minimal models and their tensor
product

In this section, we review relevant results in the coset construction of unitary minimal models
and their tensor product. This provides the relevant background to understand the construc-
tion of RG brane by [1] which we review in Sec. B.

15In the single particle Hilbert space at site j, we have b j = |0〉 〈1| and b†
j = |1〉 〈0| so the single particle Hamil-

tonian H j =
Ω
2 (b j + b†

j ) =
Ω
2 (|0〉 〈1| + |1〉 〈0|) is indeed the two level coupled Hamiltonian driven by an external

electric field in standard quantum mechanics.
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A.1 Coset construction of unitary Virasoro minimal models

Let’s firstly review the coset construction of the Virasoro minimal models. Virasoro minimal
models in 2d are the only unitary conformal field theories in 2d with central charge c less than
one. They are denoted as Mk+3,k+2 with integers k ≥ 1 and for a given k the central charge is

c = 1−
6

(k+ 2)(k+ 3)
, (A.1)

the operator spectrum is finite and can be uniquely determined by solving the bootstrap equa-
tion.16 Their unitarity can be understood as a consequence of existing exact unitary realization
of them using the coset construction of the current algebra (i.e. the gauged Wess-Zumino-
Witten (WZW) model in the Lagrangian description) as

Mk+3,k+2 =
su(2)k × su(2)1

su(2)k+1
. (A.2)

Here su(2)k denotes the su(2) Kac-Moody algebra at level k with which we can construct a
Virasoro algebra using the Sugawara construction whose central charge is

csu(2)k =
3k

k+ 2
. (A.3)

Therefore we can check that the central charge of the coset construction from Equ. (A.2) is
given by

c =
3k

k+ 2
+

3
1+ 2

−
3(k+ 1)

k+ 3
= 1−

6
(k+ 2)(k+ 3)

, (A.4)

which exactly matches that in Equ. (A.1).
Now we will spell out the map between the operator spectrums from the minimal model to

that of its coset construction. A primary representation |h, l〉k of the current algebra su(2)k is
specified by two quantum numbers h and l where h is the conformal weight and l denotes the
spin- l

2 representation of the su(2) algebra. The structure of the su(2)k algebra puts a constraint

0≤ l ≤ k , (A.5)

and the conformal weight h is related to l as

h=
l(l + 2)
4(k+ 2)

, (A.6)

and for later convenience we will denote this representation as (l)k. A primary representation
hr,s(k+2) of the minimal model Mk+3,k+2 is specified by two integer quantum numbers r and
s which satisfies the constriants

1≤ r ≤ k+ 1 , 1≤ s ≤ k+ 2 . (A.7)

A primary representation of the tensor product current algebra su(2)k × su(2)1 is a tensor
product of the primary representations of each of them and it can be decomposed as a direct
sum of the primary representations of the current algebra su(2)k+1 and the minimal model
Mk+3,k+2:

(r − 1)k ⊗ (d − 1)1 = ⊕0≤(s−1)≤k+1
r+s+d=1 mod2

�

(s− 1)k+1 ⊗ hr,s(k+ 2)
�

. (A.8)

16In this paper, we only consider minimal models whose operator spectrum is diagonal modular invariant. We
denote such an operator content of Mk+3,k+2 as Tk+2.
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As a result, we can denote the minimal model representation hr,s(k + 2) using the symbols
from the current algebra as [r, d; s] where 1 ≤ r ≤ k + 1, 1 ≤ s ≤ k + 2, d = 1, 2 and
r + s + d = 1 mod2. The rule Equ. (A.8) is called the branching rule and can be used to
compute the modular S-matrix of the minimal model in terms of those of the current algebra
as

S[r,d;s],[r ′,d ′;s′] = S(k)r−1,r ′−1S(1)d−1,d ′−1S(k+1)
s−1,s′−1 , (A.9)

where S(k)p,p′ =
q

2
k+2 sin

�

π(p+1)(p′+1)
k+2

�

is the modular S-matrix between the primary represen-
tations (p)k and (p′)k of the su(2)k current algebra.

A.2 Hidden symmetry in the tensor product of consecutive minimal models

The folding trick description of the RG brane as a conformal interface necessities the study of
the direct product of two adjacent minimal models Mk+2,k+1 ×Mk+3,k+2.17 Using the coset
construction Equ. (A.2) we are studying the following cosets of the current algebras

Mk+2,k+1 ×Mk+3,k+2 =
su(2)k−1 × su(2)1

su(2)k
×

su(2)k × su(2)1
su(2)k+1

, (A.10)

where cancelling the common su(2)k factors in the denominator and numerator we get

Mk+2,k+1 ×Mk+3,k+2 =
su(2)k−1 × su(2)1 × su(2)1

su(2)k+1
. (A.11)

This is the relation between the apparent symmetry generators. Nevertheless, since we only
consider diagonal modular invariant operator spectrum we have to be careful about whether
the identity of Equ. (A.11) can be established for the operator spectrum. We denote the diag-
onal modular invariant spectrum of su(2)k−1×su(2)1×su(2)1

su(2)k+1
as TB.

Now let’s understand the difference between their spectrum. Using the branching rule
Equ. (A.8) we can study the decomposition of the primary representations of the current al-
gebras to those of the minimal models

(r − 1)k−1 ⊗ (d − 1)1 ⊗ (ed − 1)1 = ⊕0≤(s−1)≤k
r+s+d=1 mod2

�

(s− 1)k ⊗ hr,s(k+ 1)
�

⊗ (ed − 1)1

= ⊕0≤(s−1)≤k
r+s+d=1 mod2
0≤(t−1)≤k+1

s+t+ed=1 mod2

hr,s(k+ 1)⊗ hs,t(k+ 2)⊗ (t − 1)k+1 . (A.12)

Hence we can use the minimal model symbols to denote the primary representations of the
tensor product of the current algebra su(2)k−1×su(2)1×su(2)1

su(2)k+1
:

[r, d, ed; t] = ⊕s,r+s+d=1 mod2
s+t+ed=1 mod2

hr,s(k+ 1)⊗ hs,t(k+ 2) , (A.13)

where we emphasize that d, ed = 1,2. As a result, the diagonal modular invariant spectrum
TB of su(2)k−1×su(2)1×su(2)1

su(2)k+1
is different from the tensor product Tk+1×Tk+2 of the diagonal mod-

ular invariant spectrums of Mk+2,k+1 and Mk+3,k+2. Moreover, Equ. (A.13) tells us that the
(Kac-Moody) primary representations in TB is only a subsector of the (Virasoro) primary rep-
resentations in Tk+1 × Tk+2:

TB = ⊕s=1,2,··· ,k+1
r=1,2··· ,k

t=1,2,··· ,k+2

hr,s(k+ 1)⊗ hs,t(k+ 2) . (A.14)

17A conformal interface between two CFTs can be described as a conformal boundary of the tensor product of
the two CFTs if we fold the spacetime with respect to the interface.
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A.2.1 The hidden symmetry

We have seen that the representation space TB is smaller than Tk+1 × Tk+2 and this usually
means that the symmetry in TB is larger than those of Tk+1 × Tk+2. For a given pair of (r, t)
these additional symmetries will classify hr,s(k + 1)⊗ hs,t(k + 2) into [r, d, ed; t] for all values
of s as in Equ. (A.13). In other words, they have to classify the quantum number s which
takes value in {1,2, · · · , k + 1} into four subsets labeled by d, ed = 1, 2 as r + s + d = 1 mod2
together with s + t + ed = 1 mod2. This can be achieved by including the primary operators
φ
(k+1)
1,l φ

(k+2)
l,1 for ∀ odd l ∈ {1,2, · · · , k + 1} to the current algebra.18 Hence we see that TB

enjoys this enlarged chiral algebra which we denote by B.
Interestingly, the enlarged symmetry we just uncovered for TB can be further enlarged by

assembling the two possible d, ed configurations of [r, d, ed; t] for a given pair of r, t19 into a sin-
gle multiplet [r; t]. This can be done by further including the primary operators φ(k+1)

1,l φ
(k+2)
l,1

∀ even l ∈ {1,2, · · · , k + 1} to the current algebra. Nevertheless, these new current algebra
generators have half-integral conformal weights which means that they are fermionic. Using
the facts that the conformal weight of the primary φ(k+1)

r,s φ
(k+2)
s,t is

(r − s)2

4
+
(s− t)2

4
+

r2 − 1
4(k+ 2)

−
t2 − 1

4(k+ 3)
, (A.16)

and the fermionic currents φ(k+1)
1,l φ

(k+2)
l,1 (i.e. l is even) change the quantum number s by

odd integers, we can see that the change in the conformal weight Equ. (A.16) under such an
action is an integer if r + t is odd and a half-integer if r + t is even. We can conclude that
the representation [r; t] is in the NS sector of this further enlarged algebra if r + t is an even
integer and R sector if r + t is an odd integer. We will denote this new chiral algebra by eB.

Furthermore, we notice that there is an obvious Z2 symmetry in the algebra B which
exchanges the two su(2)1’s in Equ. (A.11). This symmetry will mix the representations of
Mk+2,k+1 and Mk+3,k+2 as it is obvious from Equ. (A.10) and Equ. (A.11).

A.2.2 Another representation of the eB with an explicit supersymmetry

To make the Z2 symmetry manifest, we try to combine the two su(2)1’s together in Equ. (A.10)
by cancelling the common su(2)k factor and introducing an su(2)2 factor and:

Mk+2,k+1 ×Mk+3,k+2 =
su(2)k−1 × su(2)2

su(2)k+1
×

su(2)1 × su(2)1
su(2)2

, (A.17)

which can be seen as the tensor product of an N = 1 supersymmetric minimal model and the
Ising model SMk+3,k+1 ×M4,3. With this it is obvious that the Z2 symmetry exchanging the
two su(2)1’s is the usualZ2 symmetry in the Ising model which maps the free Majorana fermion
ψ to−ψ. This can be seen by realizing that the fermion compositeψψ in the Ising model sector
(remember our operator spectrum is always diagonal modular invariant) isφ(k+1)

1,2 φ
(k+2)
2,1 which

has conformal weight h = h = 1
2 from Equ. (A.16) and is invariant under the transformation

d ↔ ed. This can also be seen from the fusion of two φ(k+1)
1,2 φ

(k+2)
2,1 (the result should be

18It is easy to see this using the fusion rules that s is changed by an even integer under this symmetry algebra
so only representations with the same (d, ed) transform to each other under this symmetry algebra. Moreover
φ
(k+1)
1,l φ

(k+2)
l,1 is a legitimate current algebra as its conformal weight can be calculated

h=
(1− l)2

4
+
(l − 1)2

4
+

12 − 1
4(k+ 2)

−
l2 − 1

4(k+ 3)
+

l2 − 1
4(k+ 3)

−
12 − 1

4(k+ 4)
=
(1− l)2

2
, (A.15)

as an integer for odd l.
19Remember from Equ. (A.13) for a given r, t there are only two possible configurations of d, ed.
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projected to that satisfies the constraint of operators in TB i.e. of the form φ(k+1)
r,s φ

(k+2)
s,t ) which

only contains two primaries φ(k+1)
1,1 φ

(k+2)
1,1 (of conformal weight h = 0) and φ(k+1)

1,3 φ
(k+2)
3,1 (of

conformal weight h= 2).
The representation [r, d, ed; t] is decomposed into the representation [r, d ′; t] in SMk+3,k+1

tensor product [d, ed; d ′] in the Ising model where d ′ = 1,2, 3, d + ed + d ′ = 1 mod2 and
r + d ′ + t = 1 mod2. This tells us that we either have the tensor product between the NS
sector of SMk+3,k+1 with 1,ε in the Ising model or the tensor product between the R sector of
SMk+3,k+1 and σ in the Ising model for representations in TB (remember from the Sec. A.2.1
that r + t even is the NS sector and odd is the R sector).

Moreover, it is easier to use the stress-energy tensor to figure out how the representations
in one description is transformed to those in another. We are more interested in the trans-
formation from Mk+2,k+1 ×Mk+3,k+2 to SMk+3,k+1 ×M4,3. For this purpose, we give the
relations between all their chiral currents of conformal weight two:

T (k+1) =
k+ 3

2k+ 4
TSM +

p

(k+ 1)(k+ 3)
2k+ 4

Gψ+
k− 1

2k+ 4
Tψ ,

T (k+2) =
k+ 1

2k+ 4
TSM −

p

(k+ 1)(k+ 3)
2k+ 4

Gψ+
k+ 5

2k+ 4
Tψ ,

φ
(k+1)
1,3 φ

(k+2)
3,1 = (k+ 1)(k+ 3)TSM − 3

Æ

(k+ 1)(k+ 3)Gψ− 3(k− 1)(k+ 5)Tψ ,

(A.18)

where TSM is the holomorphic stress-energy tensor of SMk+3,k+1, Tψ is the holomorphic
stress-energy tensor of the Ising model, G is the superconformal current of SMk+3,k+1. From
here we can see that the total stress-energy tensor T (k+1)+ T (k+2) in the Mk+2,k+1×Mk+3,k+2
equals to the total stress-energy tensor TSM + Tψ in SMk+3,k+1 ×M4,3.

For later convenience, we give the Z2 (ψ→−ψ) transform of the two stress-energy tensors
of Mk+2,k+1 ×Mk+3,k+2:

T (k+1)→
3

(k+ 2)(k+ 4)
T (k+1) +

(k− 1)(k+ 3)
k(k+ 2)

T (k+2) +
1

k(k+ 2)(k+ 4)
φ
(k+1)
1,3 φ

(k+2)
3,1 ,

T (k+2)→
(k+ 1)(k+ 5)
(k+ 2)(k+ 4)

T (k+1) +
3

k(k+ 2)
T (k+2) −

1
k(k+ 2)(k+ 4)

φ
(k+1)
1,3 φ

(k+2)
3,1 .

(A.19)

B Review of Gaiotto’s proposal for RG brane

B.1 Useful properties of topological defects

Toplogical defects in a CFT are totally transmissive interfaces to the symmetry currents which
can hence be arbitrarily deformed (without passing through any operators) while they are
inserted into any correlators of the CFT operators. Mathematically, we can denote a topological
defect as an operator D which satisfies

[D,Jn] = 0 , [D,J n] = 0 , (B.1)

where Jn and J n are the holomorphic and anti-holomorphic modes of any symmetry current
of the CFT. Since we only consider diagonal modular invariant CFT’s, the topological defects
allow Cardy’s algebraic classification [34] (see [35] for a different perspective from string
theory).

Hence, in a minimal model Mk+3,k+2 a topological defect can be denoted as D(k+2)
r,s asso-

ciated to a Cardy’s state |r, s〉〉Cardy and acts as map

D(k+2)
r,s =

∑

r ′,s′

S[r;s],[r ′;s′]

S[1;1],[r ′;s′]

∑

n

�

�r ′, s′; n
� 


r ′, s′; n
�

� , (B.2)
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Dr,s

Or ′,s′ φr ′,s′
Dp,q

Dr,s

Figure 8: The demonstration of crossing the topological defect Dr,s through a spinless
primary operator Or ′,s′ . This operation transforms Or ′,s′ to a twist field φr ′,s′ with a
topological defect Dp,q connecting it to Dr,s.

in the diagonal modular invariant Hilbert space and where S[r;s],[r ′;s′] is the modular S-matrix of
primary representations in Mk+3,k+2.20 This description is useful for closed topological defect
on a plane or a topological defect which wraps around a nontrivial cycle of a cylinder or a torus.
In the former case, we get a map between operators of the (diagonal modular invariant) CFT
Mk+3,k+2 which maps the spinless primary operator O(r ′,s′) to itself with a factor

S[r;s],[r′;s′]
S[1;1],[r′;s′]

multiplied. In the later case, it provides a specific cutting and gluing prescription along the
cycle in the computation of the partition function.

The most useful property to us is that topological defects can end on certain fields called
disorder fields [16] or twist fields [1]. These fields are representations of the symmetry algebra
of the CFT and can in general have nonzero spin [16]. The rule is that the topological defect
D(k+2)

r,s can end on such an operator O(p,q),(m,n) if hr,s(k + 2) appears in the fusion between

hp,q(k+2) and hm,n(k+2). For example, D(k+2)
r,s can end on a chiral disorder operator φ(k+2)

r,s .

Moreover, this tells us that we can move a topological defect D(k+2)
r,s across a spinless primary

field O(r ′,s′) and end up with a spinless disorder operator φ(k+2)
r ′,s′ connected to the topological

defect D(k+2)
r,s by a tail D(k+2)

p,q such that hp,q(k + 2) appears in the fusion between hr,s(k + 2)
and itself and also in the fusion between hr ′,s′(k+ 2) and itself (see. Fig. 8).

As we will see this last property is useful for extracting important nonperturbative results
from perturbative calculations and constraining the RG follow.

B.2 RG flow of the topological defect D(k+2)
r,1

The RG flow we are interested in is triggered by the spinless primary operator φ(k+2)
1,3 . The

transformation of the topological defect D(k+2)
r,1 under this RG flow can be first understood by

the fact that moving D(k+2)
r,1 across the spinless primary operator φ(k+2)

1,3 is a trivial operation
as the only representation which appears in both the fusion between hr,1(k + 2) with itself
and the fusion of h1,3(k+ 2) with itself is the trivial representation h1,1(k+ 2). Hence moving

the the topological defect D(k+2)
r,1 across the spinless primary operator φ(k+2)

1,3 is almost a trivial

operation with at most a scalar factor multiplied. Since moving D(k+2)
r,1 across φ(k+2)

1,3 and back
is equivalent to doing nothing, the scalar factor can only be 1 or −1. The precise value of this
scalar factor can be determined by comparing a small D(k+2)

r,1 loop surrounding φ(k+2)
1,3 and a

20It is easy to see that Equ. (B.2) satisfies Equ. (B.1) as for example Jn = J †
−n.
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Dk+2
r,1

D(k+2)
r,1 D(k+1)

1,r

Figure 9: Moving half of the topological defect D(k+2)
r,1 on the right through the RG

brane is equivalent to performing an RG transform of of it. This gives another half
of the resulting topological defect on the left as D(k+1)

1,r .

small D(k+2)
r,1 loop surrounding nothing. From Equ. (B.2), we are just taking the following ratio

S[r;1],[1;3]

S[1;1],[1;3]
/

S[r;1],[1;1]

S[1;1],[1;1]
= 1 . (B.3)

As a result, D(k+2)
r,1 is invisible to the spinless primary operator φ(k+2)

1,3 and it should be mapped
to another topological defect under the RG flow. The result can be extracted from a perturba-
tive RG flow calculation with large k [18] and it is that D(k+2)

r,1 will flow to D(k+1)
1,r if we assume

that Mk+2,k+3 flows to Mk+1,k+2.21

B.3 Extended symmetry algebra on RG domain wall from topological defect

When we have the RG domain wall between Mk+3,k+2 on the left and Mk+2,k+1 on the right,

we can consider a topological defect D(k+2)
r,1 on the left and deforming half of it through the

RG domain wall to the right (see Fig. 9). The RG domain wall will transform the acrossed half
to D(k+1)

1,r as a result of the RG transform and we end up with a topological defect straddling
between the two CFTs on the two sides of the RG brane. Now applying the folding trick, we
end up with a topological defect which we denote as D(k+2)

r,1 D(k+1)
1,r which end on the Cardy

brane (see Fig. 10). We can put a chiral disorder field φ(k+2)
r,1 φ

(k+1)
1,r at the end of D(k+2)

r,1 D(k+1)
1,r

and push it all the way to the Cardy brane which gives us a boundary operator that doesn’t
change the boundary condition and have integral (for r odd) or half-integeral (for r even)
conformal weight. We can do similar things for antichiral disorder fields so from the results in
Sec. A.2.1 and Sec. A.2.2 we get two copies of the algebra eB on the Cardy brane.

Gaiotto’s suggestion [1] is that the Cardy brane should glue these two copies of eB and the
two copies of Tk+1 × Tk+2 inisde them are mapped to each other by the Z2 twisting described
in Sec. A.2.2. In other words, the two copies of eB’s are glued to each other by the Z2 auto-
morphism. As a result, the boundary operators should be the boundary extrapolation of Z2

invariant operators φ(k+1)
r,s φ

(k+2)
s,t with r+ t even.22 This is consistent with the results from the

perturbative RG calculation [17].

21This is also consistent with the large k RG calculation [18].
22This can be seen by remember the Z2 exchanges the two su(2)1 algebras and so it exchanges d and ed on the

LHS of Equ. (A.13). As a result Z2 invariant operators should have d = ed and so we get r + t even from the RHS.
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D(k+2)
r,1 D(k+1)

1,r D(k+1)
1,r D(k+2)

r,1

Figure 10: From the unfolded picture (left) to the folded picture (right). The red
wall denotes a Cardy brane in the folded picture. In the folded picture we have a
topological defect D(k+1)

1,r D(k+2)
r,1 ending on the Cardy brane.

B.4 Explicit construction of the RG domain wall

With the boundary operator spectrum known, a general boundary state can be written down as
a linear combination of the Ishibashi states corresponding to the boundary operator spectrum
under the constrains that the Verlinde formula should be satisfied by those coefficients. There
are in general many such states but Gaiotto proposed the following one to be the correct one

�

�
eB
�

=
r+t∈2Z
∑

r,t

r

S(k−1)
0,r−1S(k+1)

0,t−1 |r, t; eB〉〉 , (B.4)

where |r, t; eB〉〉 is the Ishibashi state for the algebra eB corresponding to the representation
[r; t]. This state is simple as it satisfies the Verlinde formula such that all the multiplicities in
the modular dual channel is uniformly one. Moreover, we can use the TB language to rewrite
the Ishibashi states as

|r, t; eB〉〉=
r

S(1)0,0|r, 1, 1, t;TB〉〉+
r

S(1)1,1|r, 2, 2, t;TB〉〉 , (B.5)

where |r, d, ed, t;TB〉〉 is the Ishibashi state for the algebra TB associated to the representation
[r, d, ed; t] and we have used the fact that we could assemble the TB representations [r, d, ed; t]
for given r and t into the eB representation [r; t]. Furthermore, using the decomposition
Equ. (A.17) we can write the Ishibashi state |r, d, ed, t;TB〉〉 as a superposition of tensor products
of Ishibashi states in the supersymmetric minimal model and the Ising model. This is associated
with the following decompositions of representations

[r, 1, 1; t] = [r, 1; t]⊗ [1,1; 1] + [r, 3; t]⊗ [1,1; 3] ,

[r, 2, 2; t] = [r, 1; t]⊗ [2,2; 1] + [r, 3; t]⊗ [2,2; 3] .
(B.6)

However, when we translate them into the relationships between Ishibashi states we have to
know the linear superposition coefficients. This can be fixed by observing that the Z2 auto-
morphism we are using is localized purely in the Ising model sector. As a result, the Cardy
state

�

�
eB
�

we get should be a tensor product of the identity Cardy state of the supersymmetric
minimal model SMk+3,k+1 and a nontrivial Cardy state of the Ising model whose Ishibashi
components are |1, 1;1〉〉, |1,1; 3〉〉, |2,2; 1〉〉 and |2,2; 3〉〉 (i.e. |ε〉〉 and |1〉〉 by the branching
rule Equ. (A.8)). This Cardy state is |σ〉 = 1p

2
(|1〉〉 − |ε〉〉) which indeed implements the Z2

transformation ψ→−ψ.23 Hence, the Cardy state Equ. (B.4) can be written as
�

�
eB
�

= |1〉NS ⊗ |σ〉Ising =
1
p

2
|1〉NS ⊗ (|1〉〉 − |ε〉〉) , (B.7)

23This can be seen by using the doubling trick, identifying the Cardy boundary |σ〉 as a topological defect Dσ in
the resulting chiral theory and using the fact that Dσ is a group like defect.
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where the Cardy state |1〉NS can be written in the Ishibashi states as

|1〉NS =
r+t∈2Z
∑

r,t

Æ

S[r;t],[0,0]|r; t〉〉

=
r+t∈2Z
∑

r,t

r

S(k−1)
0,r−1S(k+2)

0,t−1 S(2)0,0|r, 1; t〉〉+
r+t∈2Z
∑

r,t

r

S(k−1)
0,r−1S(k+2)

0,t−1 S(2)0,2|r, 3; t〉〉

=
1
p

2

r+t∈2Z
∑

r,t

r

S(k−1)
0,r−1S(k+2)

0,t−1

�

|r, 1; t〉〉+ |r, 3; t〉〉
�

.

(B.8)

Here we notice that |r, 1; t〉〉 and |r, 3; t〉〉 (for r + t ∈ 2Z) form an NS sector supermultiplet.

B.5 Computation of one-point functions

So far we have constructed the RG brane between two consecutive minimal models Mk+2,k+1
and Mk+3,k+2 as a rational brane by embedding the diagonal modular invariant represen-
tations hr,s(k + 1) ⊗ hs,t(k + 2) = [r, d; s] ⊗ [s, ed; t] of the algebra Mk+2,k+1 ×Mk+3,k+2

into the diagonal modular invariant representations [r, d, ed; t] of an equivalent algebra
su(2)k−1×su(2)1×su(2)1

su(2)k+1
. For simplicity we will called the former theory TA (i.e. Tk+1 × Tk+2) and

the latter theory TB. The precise value of the one-point functions of the operatorsφ(k+1)
r,s φ

(k+2)
s,t

in TA is of important physical relevance as they tell us how the operators φ(k+2)
r,s and φ(k+1)

s,t
are mixed under the RG flow. To find the precise value of these one-point functions we have to
map the rational brane Equ. (B.7) we have constructed in TB back to TA and then the one-point
functions can be easily computed.

However, the map of the rational brane Equ. (B.7) to TA is not trivial. This can be achieved
by firstly constructing a proper TA topological interface (i.e. totally transmissive for symmetry
currents in TA) I1 separating TA and TB and then fusing it with the TB rational brane Equ. (B.7)
(see Fig. 11). A proper I1 should allow the TA topological defects

DA
[r,d;s]⊗[s,ed;t]

=
∑

r ′,d ′,s′,ed ′,t ′

S[r,d;s]⊗[s,ed;t],[r ′,d ′;s′]⊗[s′,ed ′,t ′]

S[1,1;1]⊗[1,1;1],[r ′,d ′;s′]⊗[s′,ed ′,t ′]

∑

n

�

�

�r ′, d ′, s′, ed ′, t ′; n
� 


r ′, d ′, s′, ed ′, t ′; n
�

�

� ,

(B.9)
to end on it.24 This would be ensured if DA

[r,d;s]⊗[s,ed;t]
appears in the fusion of I1 and I1 or in

other words if I1I1 is a direct sum of the topological defects DA
[r,d;s]⊗[s,ed;t]

(see Fig. 12). This

is satisfied by the following construction of I1

I1 =
∑

r,t,s,d,ed

√

√

√

S[1;1],[r;t]

S[1,1;1]⊗[1,1;1],[r,d;s]⊗[s,ed,t]

∑

n

�

�

�r, d, s, ed, t; n
� 


r, d, s, ed, t; n
�

�

� , (B.11)

where the operator



r, d, s, ed, t; n
�

�

� are orthonormal TA descendents of the primary states



r, d, s, ed, t
�

�

�. The operator
∑

n

�

�

�r, d, s, ed, t; n
� 


r, d, s, ed, t; n
�

�

� acts nontrivially only on the

Ishibashi state |r, t; eB〉〉 and maps it to the Ishibashi state |r, d, s, ed, t;A〉〉.25

24We of course have the following constraints

r + d + s = 1 mod 2 , s+ ed + t = 1 mod 2 ,

r ′ + d ′ + s′ = 1 mod 2 , s′ + ed ′ + t ′ = 1 mod 2 .
(B.10)

25This is because [r; t] can be split into A representations [r, d; s] ⊗ [s; ed; t] with multiplicities as one (see
Sec. A.2.1).
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B A

I1|eB〉〉

Figure 11: The picture in the folded description of mapping the TB Cardy state to a
A ⊂ B theory Cardy state by fusing it with a TA topological defect I1 that separate
the A theory and the B theory. The fusion is topologically achieved by pushing I1 all
the way to |eB〉〉.

Moreover, it is easy to check that we have

I1I1 =
∑

r,t,s,d,ed

S[1;1],[r;t]

S[1,1;1]⊗[1,1;1],[r,d;s]⊗[s,ed,t]

∑

n

�

�

�r, d, s, ed, t; n
� 


r, d, s, ed, t; n
�

�

�

=
∑

s′,d ′, ed ′

DA
[1,d ′;s′]⊗[s′, ed ′;1]

,
(B.12)

where the last step comes from the fact that
∑

s′,d ′, ed ′

S[1,d ′;s′]⊗[s′, ed ′;1],[r,d;s]⊗[s,ed;t] = S[1;1],[r;t] . (B.13)

This relation can be obtained from the following considerations. Let’s consider the modular
character χ[r;t](τ) of the eB representation [r; t]. Since we know that [r; t] can be split into A
representations [r, d; s]⊗ [s; ed; t] with multiplicities as one (see Sec. A.2.1) so we have

χ[r;t](τ) =
∑

s,d,ed

χ[r,d;s]⊗[s,ed;t](τ) . (B.14)

Now we consider r = 1, t = 1, do a modular transform

S : τ−→−
1
τ

, (B.15)

and we will have

χ[1;1](τ) =
∑

r,t

S[1;1],[r;t]χ[r;t]

�

−
1
τ

�

=
∑

r,t,s,d,ed

S[1;1],[r;t]χ[r,d;s]⊗[s,ed;t]

�

−
1
τ

�

=
∑

s′,d ′, ed ′

χ[1,d ′;s′]⊗[s′, ed ′;1](τ) =
∑

s′,d ′, ed ′

∑

r,t,s,d,ed

S[1,d ′;s′]⊗[s′, ed ′;1],[r,d;s]⊗[s,ed;t]χ[r,d;s]⊗[s,ed;t]

�

−
1
τ

�

,

(B.16)

which gives us Equ. (B.13) if we compare the end of the first line and the end of the second
line. Furthermore, Equ. (B.12) tells us that the TA defects DA

[1,d,r]⊗[r,ed,1]
= D(k+2)

r,1 D(k+1)
1,r can

end on the defect I1 and hence could end on the Cardy boundary I1|eB〉〉 after we fuse I1 with
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B A

I1I1

A

Figure 12: The picture in of fusing I1 with I1. The fusion is achieved topologically
by pushing I1 all the way to be coincident with I1. The result is a TA topological
defect.

|eB〉〉 getting a Cardy state for TA. This is precisely what we used in the construction of the RG
domain wall as we discussed in Sec. B.3 (see Fig. 13).

Now we can use the map Equ. (B.11) to map the boundary state Equ. (B.4) to a boundary
state in the TA theory (see Fig. 11)

|A〉〉= I1|eB〉〉=
r+t∈2Z
∑

r,t,s,d,ed,d ′

αr,d,s,ed,t,d ′

È

S(k−1)
0,r−1S(k+1)

0,t−1 S(1)0,d−1S(1)
0,ed−1

×

√

√

√

S[1;1],[r;t]

S[1,1;1]⊗[1,1;1],[r,d;s]⊗[s,ed,t]
|r, d, s, ed, t〉〉 , (B.17)

where |r, d, s, ed, t〉〉 is the TA Ishibashi state associated with the representation [r, d; s]⊗[s, ed; t]
and here we emphasize that the constrains r + d + s = 1 mod2, s + ed + t = 1 mod2 and
d + ed + d ′ = 1 mod2 should be satisfied. The coefficient αr,d,s,ed,t,d ′ can be figured out by

normalization of the state and the decomposition Equ. (A.18). For the (r, s, t, d, ed) such that
d ′ can be uniquely determined this factor is just one. This tells us that in these cases the
one-point function of the operator φ(k+1)

r,s φ
(k+2)
s,t is given by

È

S(k−1)
0,r−1S(k+1)

0,t−1 S(1)0,d−1S(1)
0,ed−1

√

√

√

S[1;1],[r;t]

S[1,1;1]⊗[1,1;1],[r,d;s]⊗[s,ed,t]
=

r

S(k−1)
0,r−1S(k+1)

0,t−1

S(k)0,s−1

δd,ed . (B.18)

Examples of more general cases that d ′ is not uniquely fixed can be found in Equ. (25) and
Equ. (49).

C Topological superconductors and Majorana fermions

In this appendix we will illustrate the gist of topological superconductors for readers with high-
energy physics background. We will consider a toy Hamiltonian for the Type IIID topological
superconductor which we will use to illustrate the relevant physical background of Sec. 5.1.

C.1 A toy Hamiltonian and its topological properties

Let’s consider a two-dimensional electronic system which hosts electrons and holes. A typical
such system is described by a lattice Hamiltonian where we have a fermionic degree of freedom
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D(k+1)
1,r D(k+2)

r,1

I1| eB〉〉

B A

Figure 13: The demonstration in the folded picture that how we could have TA
topological defects D(k+1)

1,r D(k+2)
r,1 ending on the RG brane which is the fusion of I1

with | eB〉〉. The fusion is achieved topological by pushing I1 all the way to the TB
Cardy boundary |eB〉〉.

on each lattice site. The feromions can be of spin-up and spin-down. We consider such a system
in momentum space with a p-wave superconducting pairing

H =
1
2

∑

p⃗∈BZ

H p⃗

=
1
2

∑

p⃗∈BZ

�

ψ†
p⃗,↑

�

p2

2m
−µ

�

ψp⃗,↑ +∆ψ−p⃗,↑(px + ipy)ψp⃗,↑ +ψ
†
p⃗,↓

�

p2

2m
−µ

�

ψp⃗,↓

+∆ψ−p⃗,↓(px − ipy)ψp⃗,↓ +H.C .
�

,

(C.1)

where ψ†
p⃗,s is a creation operator for electron with momentum p⃗ and spin s (s =↑,↓), ψp⃗,s

is the corresponding creation operator for a hole, µ is the chemical potential, ∆ is the p-
wave pairing parameter and the momentum p⃗ lives in the Brillouin zone. This is called the
Bogolubov-de Genes Hamiltonian in condensed matter literature and the way the property of
an electronic material is analyzed is to firstly write down the Bogolubov-de Genes Hamilto-
nian for that material and then solve for the eigenenergy and eigenmodes. These eigenmodes
are called quasi-particles. We don’t intend to solve for the eigenmodes and eigenenergy of
the Hamiltonian Equ. (C.1) but we will analyze some important properties of it that tells us
nontrivial information of the spectrum and phases for the electronic system that is described
by this Hamiltonian.

Firstly, this Hamiltonian transforms under the particle-hole symmetry

P :ψp⃗,s→ψ
†
−p⃗,−s , ψ†

p⃗,s→ψ−p⃗,−s , (C.2)

as
PH p⃗P = −H−p⃗ , PHP = −H . (C.3)

Hence, the spectrum of this Hamiltonian is paired into pairs of opposite values

H =
∑

E≥0

�

Eγ†
EγE − Eγ†

−Eγ−E

�

, (C.4)

where γ†
E and γE are the creation and annihilation operators for the quasi-particles. Moreover,

the spin-up and spin down degress of freedom don’t mixed in the Hamiltonian. We can analyze
spectrum of H p⃗. This can be down by defining

Ψ†
p⃗,↑ =

�

ψ†
p⃗,↑,ψ−p⃗,↑

�

, Ψ†
p⃗,↓ =

�

ψ†
p⃗,↓,ψ−p⃗,↓

�

. (C.5)
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We can see that in both the spin-up and spin-down sector we have eigenvalues

E±(p⃗) = ±
È

�

p2

2m −µ
�2
+∆2p2. Hence, there is a degeneracy of each eigenvalue E and this

degeneracy is due to the spin quantum number. As a result, we can see that when µ= 0 there
is a gapless zero mode sector for p⃗ = 0 and close to this zero mode sector there is an emergent
time-reversal symmetry:

T :ψp⃗,s→ψ−p⃗,−s , ψ†
p⃗,s→ψ

†
−p⃗,−s , p⃗→−p⃗ , i→−i , (C.6)

which can be seen from Equ. (C.1) by taking µ = 0 and ignoring p2 terms and this symmetry
protects the gap.

Secondly, when µ ̸= 0, there is no zero modes and there is always a gap in the spectrum. We
want to understand the difference between µ > 0 and µ < 0 cases. Since the two spin sectors
don’t couple, we can focus on the spin-up sector for which we can write the Hamiltonian as
(for simplicity we will take ∆= 1 hereafter)

H p⃗,↑ +H−p⃗,↑ = Ψ
†
p⃗,↑

 

p2

2m −µ px + ipy

px − ipy −
�

p2

2m −µ
�

!

Ψp⃗,↑ = Ψ
†
p⃗,↑h⃗(p⃗) · σ⃗Ψp⃗,↑ , (C.7)

where we have h⃗(p⃗) = (px ,−py , p2

2m − µ). As long as µ ̸= 0, the vector h⃗(p⃗) is never zero, so
we can normalize it and define

bh(p⃗) =
h⃗(p⃗)

|h⃗(p⃗)|
, (C.8)

and consider the Chern-number of the map bh(p⃗) (notice that bh(p⃗)→ (0, 0,1) as p⃗→∞)

C =

∫

d2 p⃗
4π

�

bh(p⃗) ·
�

∂px
bh(p⃗)× ∂py

bh(p⃗)
��

, (C.9)

which determines the winding number of the map bh(p⃗). We can see that hz(p⃗) behaves rather
differently when µ > 0 and µ < 0. As a result, in the former case as p⃗ goes from 0 to∞ bh(p⃗)
starts with pointing to the South pole and ends up with pointing to the North pole and in the
later case bhz(p⃗) never takes a negative value so it always points to a point on the Northern
hemisphere. That is that in the µ > 0 case the winding number C = 1 and in the µ < 0 case
C = 0.

In summary, the two gapped phases µ > 0 and µ < 0 are different topologically and their
boundary µ = 0 has gapless zero modes degenerate in spin and enjoy an emergent time-
reversal symmetry in the low energy regime. Moreover, we can see that the µ < 0 phase is a
trivially gapped phase (this can be seen by taking µ → −∞) and µ > 0 is a weakly gapped
phase which is topological as it has a nontrivial topological number C = 1.

C.2 Localized Majorana modes on the boundary – The Ising model

Now we want to consider, the system described by the Hamiltonian Equ. (C.1) on a manifold
with boundary. For example a finite piece of the electronic material whose physics is described
by Equ. (C.1). We are interested in the physics of its boundary when we tune its bulk to the
topologically nontrivial phase µ > 0. This can be done in experiment by electron doping.

At a fine-grained level we have to specify the precise boundary conditions and solve for
the energy spectrum of the Hamiltonian under this boundary conditions. Nevertheless, we
can grasp the gist using a slightly coarse-grained model for the boundary. We can think of the
environment as in the trivial phase µ < 0 of the Hamiltonian Equ. (C.1). Since the bulk of
the system has been tuned to the topologically nontrivial phase µ > 0, the boundary can be
thought of as a thin buffer zone between these two phases where µ= 0. For simplicity we will
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take the y−direction to be the direction normal to the boundary of the material i.e. the buffer
zone is thin in the y−direction. We are interested in the low energy physics in the buffer zone.
In the low energy regime where the spin-up sector Hamiltonian can be written as

H p⃗,↑ +H−p⃗,↑ = Ψ
†
p⃗,↑

�

0 px + ipy
px − ipy 0

�

Ψp⃗,↑ . (C.10)

The buffer zoom is extremely thin in the y−direction so we can set py to zero in the low energy
regime. Expanding the matrix representation, this gives us the Hamiltonian

H↑ =
∑

px≥0

px

�

ψ†
px ,↑ψ

†
−px ,↑ +ψ−px ,↑ψpx ,↑

�

. (C.11)

Let’s do the following redefinition

ψpx ,↑ =
1
p

2

�

χ†
px ,↑ +χ−px ,↑

�

, (C.12)

where χpx ,↑ is a fermionic annihilation operator satisfies the standard algebra with the creation
operator. This gives us

H↑ =
∑

px≥0

px

�

χpx ,↑χ−px ,↑ +χpx ,↑χ
†
px ,↑ +χ

†
−px ,↑χ−px ,↑ +χ

†
−px ,↑χ

†
px ,↑

�

=
1
2

∑

px

px

�

−χ−px ,↑χpx ,↑ +χpx ,↑χ
†
px ,↑ −χ

†
px ,↑χpx ,↑ +χ

†
−px ,↑χ

†
px ,↑

�

+ const.

=
1
2

∫

d xχ↑(x , t)i∂xχ↑(x , t) ,

(C.13)

where we have a Majorana field

χ↑(x , t) =
∑

px

�

χpx ,↑e
ipx (x+t) +χ†

px ,↑e
−ipx (x+t)

�

. (C.14)

The Majorana field satisfies χ↑(x , t) = χ†
↑ (x , t). So we have the Lagrangian

L↑ =
i
2

∫

d xχ↑(x , t)(∂t − ∂x)χ↑(x , t) , (C.15)

which is chiral. Similarly, in the spin-down sector we have the Lagrangian

L↓ =
i
2

∫

d xχ↓(x , t)(∂t + ∂x)χ↓(x , t) , (C.16)

where

ψpx ,↓ =
i
p

2

�

χ†
px ,↓ +χ−px ,↓

�

. (C.17)

In total we have the Lagrangian

L =
i
2

∫

d x
�

χ↓(x , t)(∂t + ∂x)χ↓(x , t) +χ↑(x , t)(∂t − ∂x)χ↑(x , t)
�

, (C.18)

which describes two chiral Majorona fermions and the time-reversal symmetry Equ. (C.6)
translates to

T : χ↑(x , t)→−iχ↓(x ,−t) , χ↓(x , t)→ iχ↑(x ,−t) , i→−i . (C.19)
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Hence we have
T 2 = −1 . (C.20)

This time reversal symmetry prevents the Majorana ferimons to have Majorana mass term
imχ↓(x , t)χ↑(x , t). As a result, we have a gapless Majorana fermion whose mass is protected
by the time-reversal symmetry Equ. (C.19) and this theory is localized in the thin buffer zone
or equivalent on the boundary of the bulk topological material. This theory is nothing but the
1+1-dimensional Ising Model. We emphasized that Equ. (C.20) is an important character of
the Type IIID topological superconductor which ensure the boundary of the nontrivial topo-
logical phase to host two anti-propagating Majorana fermions and hence gives us the Ising
Model.
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