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Abstract

We study entanglement negativity for evaporating black hole based on the holographic
model with defect brane. We introduce a defect extremal surface formula for entan-
glement negativity. Based on partial reduction, we show the equivalence between defect
extremal surface formula and island formula for entanglement negativity in AdS3/BCFT2.
Extending the study to the model of eternal black hole plus CFT bath, we find that black
hole-black hole negativity decreases until vanishing, left black hole-left radiation neg-
ativity is always a constant, radiation-radiation negativity increases and then saturates
at a time later than Page time. In all the time dependent cases, defect extremal surface
formula agrees with island formula.
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1 Introduction

Significant progress has been made in recent understanding of black hole information para-
dox [1–3]. In particular the island formula for the radiation gives Page curve [28–30] and
therefore maintains unitarity. The development relies on the quantum extremal surface for-
mula (QES formula) for the fine grained entropy, which was inspired from the quantum
corrected Ryu-Takayanagi formula (RT formula) in computing holographic entanglement en-
tropy [33–35]. While most of the recent studies have been centered on the von Neumann
entropy, we need more detailed information about the quantum state, such as more general
entanglement structures, to fully understand the black hole information problem. von Neu-
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mann entropy is a unique measure characterizing entanglement between two subsystems A
and B for a pure state ψAB. In this paper we want to study the entanglement between two
subsystems in a mixed state. In particular we study entanglement negativity in an evaporat-
ing black hole with its Hawking radiation. There are several motivations to do so: First, the
entire state of black hole and radiation is not always pure. Second, understanding the rich
entanglement structures between subsystems of radiation is probably the key to understand
how information escapes from the black hole.

As the analogy of von Neumann entropy for pure states, entanglement negativity is an
important measure of entanglement in generally mixed states [4, 5]. The calculation of en-
tanglement negativity in conformal field theories has been developed via the replica trick
in [6–9]. The behavior of entanglement negativity was analysed in quantum many body sys-
tems [10–20, 55, 56] and in topological field theories [21–25]. The entanglement negativity
in large central charge limit (large c limit) was explored in [51]. Several attempts have been
made to understand the holographic dual of entanglement negativity. In AdS3/CFT2, the les-
son is that for two adjacent intervals, the holographic dual of entanglement negativity is given
by the entanglement wedge cross section (times a constant factor).1 Based on this, the quan-
tum corrected holographic entanglement negativity and the island formula can be conjectured
straightforwardly following the generalizations of holographic entanglement entropy [38,40].

In this paper we propose defect extremal surface formula (DES formula) for entanglement
negativity in holographic models with defects. Defect extremal surface is defined by extrem-
izing the RT formula corrected by the quantum defect theory [46]. This is interesting when
the AdS bulk contains a defect brane or string. The DES formula for entanglement negativity
is a mixed state generalization of that for entanglement entropy. Based on a decomposition
procedure of an AdS bulk with a brane, we demonstrate in this paper the equivalence between
DES formula and island formula for negativity in AdS3/BCFT2. We also compute the evolution
of entanglement negativity in evaporating black hole model and find that DES formula agrees
with island formula.

Note added. While this paper is in completion, we get to know the preprint [72] in arXiv,
which has some overlap with this paper.

2 Review of entanglement negativity in CFT2

Entanglement negativity, or more precisely logarithmic negativity, is a mixed state entangle-
ment measure derived from the positive partial transpose criterion for the separability of mixed
states. It can be defined as taking the trace norm of the partial transposed density matrix.

For a bipartite system, the partial transpose ρT
AB of a density matrix ρAB is defined by

transposing only one part of the system, namely
D

iA, jB
�

�

�ρ
TB
AB

�

�

� kA, lB
E

= 〈iA, lB |ρAB| kA, jB〉 , (1)

where iA, jB, kA, lB are bases of HA,B (the Hilbert space of subsystems A, B), and the entangle-
ment negativity is then defined as

E (A : B) = E (ρAB)≡ log
�

�

�ρ
TB
AB

�

�

�

1
, (2)

where |O|1 = Tr
p
OO† is the trace norm.

1There is also an alternative proposal given by mutual information times a constant factor [62].
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2.1 Replica trick for entanglement negativity

It is possible to calculate entanglement negativity in (1+1)d quantum field theories in analogy
with the entanglement entropy by the replica trick.

The trace norm of partial transposed density matrix can be written in terms of its eigen-
values

Tr
�

�ρTB
�

�= 1+ 2
∑

λi<0

|λi| . (3)

Thus the integer power of the partial transposed density matrix

Tr
�

ρTB
�n
=
∑

i

λn
i , (4)

depends on the parity of n. Denoting ne = 2m and no = 2m+1 for some integer m, the analytic
continuation with ne and no will lead to different results. If we take ne→ 1, we get our desired
result of Tr
�

�ρTB
�

�. If we take no→ 1, it only recovers the normalization TrρTB = 1. This means
that the correct way to perform analytic continuation is to consider the even sequence ne→ 1,
i.e.

E = lim
ne→1

logTr
�

ρTB
�ne . (5)

To compute (5), we can use the replica trick introduced in [6]. Consider the system
AB = A∪ B made of two disjoint intervals [u1, v1] ∪ [u2, v2]. Sewing n copies of the origi-
nal system along the branch cut representing subsystems A and B forms a n-sheet Riemann
surface. The trace of the n-th power of the density matrix Trρn

AB is the partition function
Zn/(Z1)n on this n-sheet Riemann surface, with Z1 the partition function of one copy of the
original system.

The trace of the n-th power of the density matrix can also be written in terms of branch
point twist fields as

Trρn
AB =



Tn (u1) T̄n (v1)Tn (u2) T̄n (v2)
�

, (6)

where Tn and T̄n are branch point twist fields with different boundary conditions.
Taking partial transpose of the density matrix ρAB with respect to the second interval B

corresponds to the exchange of row and column indices in B. In the path integral representa-
tion, this is equivalent to interchanging the upper and lower edges of the second branch cut in
ρAB. This interchange can be regarded as reversing the order of the column and row indices
in the subsystem B.

Therefore, Tr(ρTB
AB)

n is the partition function on the n-sheeted surface obtained by joining
cyclically n copies of subsystem A and anti-cyclically of subsystem B. And the n-th power of
the partial transposed density matrix can be written as

Tr
�

ρ
TB
AB

�n
=



Tn (u1) T̄n (v1) T̄n (u2)Tn (v2)
�

. (7)

We note here that throughout this paper, any n appearing in the calculation of entangle-
ment negativity using replica trick shall be automatically regarded as ne.

2.2 Examples of entanglement negativity in CFT2

In this subsection we review the results of some examples in CFT. It is known that the conformal
weight of twist fields is

hTn
= hT̄n

≡ hn =
c

24

�

n−
1
n

�

, (8)

where c is the central charge of the CFT.
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Single interval. We start with the four-point function in (7). Let v1 → u2 and v2 → u1, we
have

Tr
�

ρ
TB
AB

�n
=



T 2
n (u2) T̄ 2

n (v2)
�

. (9)

Setting n= ne, we get

Tr
�

ρ
TB
AB

�ne
=
�


Tne/2 (u2) T̄ne/2 (v2)
��2
= d2

ne/2

�u2 − u1

ε

�− c
3

�

ne
2 −

2
ne

�

, (10)

with ε a UV regulator. dn is the OPE constant for the two-point function. And finally taking
analytic continuation ne→ 1 leads to

�

�

�ρ
TB
AB

�

�

�

1
= lim

ne→1
Tr
�

ρ
TB
AB

�ne
= d2

1/2

�

ℓ

ε

�c/2

⇒ E = c
2

log
�

ℓ

ε

�

+ 2 log d1/2 , (11)

where ℓ = u2 − u1 denotes the length of the interval. From [6] we know that for pure state,
entanglement negativity equals to Rényi entanglement entropy S(n) of order 1/2. The latter is
given by

S(n) =
c
6

�

1+
1
n

�

log
�

ℓ

ε

�

. (12)

With n→ 1/2,

S(1/2) =
c
2

log
�

ℓ

ε

�

. (13)

Seen from holography [52], the minimal entanglement wedge cross section in this case is the
RT surface. We can check that

E = 3
2

EW . (14)

Two adjacent intervals. Let v1→ u2 in (7), we have

Tr
�

ρ
TB
AB

�n
=



Tn (u1) T̄ 2
n (u2)Tn (v2)
�

. (15)

To keep it simple, set u1 = −ℓ1, u2 = 0 and v2 = ℓ2 and all length are measured in the unit
of ε. The conformal dimension of the double twist operator T 2

n and T̄ 2
n is

hT 2
n
= hT̄ 2

n
≡ h′n =

c
12

�

n
2
−

2
n

�

. (16)

Taking n= ne in (15), we get

¬

Tne
(−ℓ1) T̄ 2

ne
(0)Tne

(ℓ2)
¶

= d2
ne

CTne T̄ 2
ne
Tne

ℓ
2h′ne
1 ℓ

2h′ne
2 (ℓ1 + ℓ2)

4hne−2h′ne

. (17)

The OPE structure constant CTne T̄ 2
ne
Tne

is universal. We can actually fix this constant to be

lim
ne→1

CTne T̄ 2
ne
Tne
= 2c/4 , (18)

by comparing the Rényi reflected entropy and the entanglement negativity, see appendix A.2

Taking ne→ 1 and choose the normalization d1 = 1, we have

�

�

�ρ
TB
A

�

�

�

1
∝
�

ℓ1ℓ2

ℓ1 + ℓ2

�c/4

· 2c/4⇒ E = c
4

log
ℓ1ℓ2

(ℓ1 + ℓ2)ε
+

c
4

log 2 . (19)

2This is an assumption that the entanglement negativity and half the n = 1/2 Rényi entropy coincide in the
large c limit, which is also the starting point of this paper. We will discuss this in detail in sec.3.1.
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Recall the entanglement wedge cross section [41]

EW =

¨

c
6 log 1+

p
x

1−
p

x , 1
2 ≤ x ≤ 1 ,

0 , 0≤ x ≤ 1
2 ,

(20)

with x the cross-ratio

x =
ℓ1ℓ2

(ℓ1 + d) (ℓ2 + d)
, (21)

in which d is the distance between two intervals. To recover adjacent interval limit, one can
take d = 2ε→ 0,

EW →
c
6

log
�

2
ε

ℓ1ℓ2

(ℓ1 + ℓ2)

�

. (22)

This again supports the relation

E = 3
2

EW . (23)

For the more general two disjoint intervals the entanglement negativity depends on four-
point function of a CFT, and it is challenging to compute and in most cases non-universal.
Numerical methods are required. In [6], the asymptotic behavior of entanglement negativity
of two disjoint intervals is studied. In the limit of x → 1, the entanglement negativity is
E ≃ − c

4 log(1− x). Following the monodromy method of Hartman [39], the authors of [51]
recovers this result in the large c limit.

3 Holographic results and island formula

3.1 Holographic computation of entanglement negativity

Kudler-Flam and Ryu proposed that the holographic dual of CFT logarithmic negativity E(A : B)
is proportional to the entanglement wedge cross section in the classical gravity limit of
AdS/CFT [52, 53]. They provided a derivation of the holographic dual of logarithmic neg-
ativity based on the observation that n = 1/2 Rényi reflected entropy3 and entanglement
negativity may coincide in the large c limit of CFT2

E = 1
2

S(1/2)R , (24)

where S(n)R is the Rényi reflected entropy of index n. It is therefore conjectured that the nega-
tivity has a holographic dual which is proportional to the area of the wedge cross section Γ in
the dual AdS space

E = 3
2

EW =
3
2

Area[Γ ]
4GN

. (25)

Several checks have been done to support the conjectured formula (25):

• In [52], the results from holographic calculations agree with the CFT results derived by
monodromy method in [51] near x ∼ 1.

• In [53], the four-point function of twist operators are calculated using the Zamolod-
chikov recursion relation numerically and the authors find that the negativity matches
the entanglement wedge cross section with a high precision.

3In a recent paper [75], the authors found counterexample (given by a special quantum state) where the re-
flected entropy is not a correlation measure. However, reflected entropy is still a valid correlation measure for
holographic states [76]. See also [77] for the monotonicity property of reflected entropy in free fields.
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Figure 1: Schematic picture of quantum corrections to entanglement negativity (26).
The quantum corrections come from bulk matters.

However, as pointed out by Dong, Qi and Walter in [54], the above derivation assumes the
dominance of replica symmetric saddle. In general the replica non-symmetric saddle could
dominate, which may take the holographic dual of logarithmic negativity for two disjoint in-
tervals away from the wedge cross section. In this paper we will restrict ourselves to adjacent
two intervals.

Kudler-Flam and Ryu also conjectured the quantum corrected logarithmic negativity for-
mula

E(A : B) =
3
2

〈A[∂ a ∩ ∂ b]〉ρ̃ab

4GN
+ Ebulk(a : b) +O(GN ) , (26)

where the entanglement wedge of AB is divided into two regions a,b by the cross section
∂ a ∩ ∂ b, and A is the area operator.4 Ebulk(a : b) is the logarithmic negativity for the density
matrix ρ̃ab of the bulk field theory, as shown in fig.1.

The quantum corrected logarithmic negativity formula (26) is similar to the Faulkner,
Lewkowycz and Maldacena (FLM) formula of entanglement entropy [37]. Notice that FLM
formula only computes the first two orders as an approximation. Engelhardt and Wall pro-
posed that holographic entanglement entropy can be calculated exactly [38] in bulk Plank
constant using the so called QES formula which extremizes the generalized entropy (which
coincides with FLM if evaluated on the classical minimal surface).5 In the same spirit, it is
tempting to conjecture a quantum extremal cross section which can provide exact result for
logarithmic negativity. This leads us to the QES formula for logarithmic negativity

E(A : B) = extQ′
§

3
2

Area(Q′ = ∂ a ∩ ∂ b)
4GN

+ Ebulk(a : b)
ª

, (27)

where the quantum extremal cross section is denoted by Q′. We emphasize that A and B are
adjacent intervals.

3.2 Island formula for entanglement negativity

It has been found recently that QES formula can be generalized to island formula for von
Neumann entropy. See [32] for a review. Given that there is a QES formula for logarithmic
negativity, it is tempting to generalize it to gravitational system. In later sections we will dis-
cuss explicitly the two-dimensional eternal black hole + CFT model of black hole evaporation,
where the generalizations of QES formula for logarithmic negativity can be justified. There a
black hole version of the generalized QES formula can be easily written down

E(BL : BR) =minextQ′
§

3
2

Area(Q′ = ∂ bL ∩ ∂ bR)
4GN

+ E(ρ̃bL
: ρ̃bR

)
ª

, (28)

4Here we focus on the static case and employ quantum extremal surface (instead of RT surface of AB) to define
the entanglement wedge of AB.

5See [43] for further discussions.
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where bL and bR are the entanglement wedges for left black hole and right black hole respec-
tively. Accordingly the island formula of logarithmic negativity for radiation is6

E(A : B) =minextQ′

¨

3
2

Area
�

Q′ = ∂ Is(A)∩ ∂ Is(B)
�

4GN
+ E (A∪ Is(A) : B ∪ Is(B))

«

. (29)

We emphasize again that A and B are adjacent intervals. In the remaining text, we refer to the
first term in {· · · } of (28) or (29) as “area term” and the second term as “matter term”. We
call the entirety in {· · · } “the generalized (entanglement) negativity”. We leave more detail
discussions about island formula of logarithmic negativity to sec.6 and sec.7. We also note
that in [71], the island formula is obtained by considering the Rényi reflected entropy in large
c limit through (24).7

4 Holographic BCFT model with bulk defect

In [42], Takayanagi proposed a holographic dual for BCFT2 by considering a classical AdS3
bulk truncated by a boundary codimension-one brane Q with Neumann boundary condition
imposed on it. The bulk action can be written as

I =
1

16πGN

∫

B

p

−g(R− 2Λ) +
1

8πGN

∫

Q

p

−h(K − T ) , (30)

where B and Q stand for the bulk and the brane respectively, and T is the constant brane
tension. By variation of the bulk action, we get the Neumann boundary condition on the
brane

Kab = (K − T )hab , (31)

where hab is the induced metric and Kab the extrinsic curvature of the brane. The AdS3 bulk
metric can be written as

ds2 = dρ2 + l2 cosh2 ρ

l
·
−dt2 + dy2

y2

=
l2

z2

�

−dt2 + dx2 + dz2
�

,

(32)

with l the AdS3 radius, and the relation between the coordinates (ρ, y) and (x , z) is as follow

z = −y/ cosh
ρ

l
, x = y tanh

ρ

l
. (33)

Assume that the brane Q is stationary at a constant position ρ = ρ0 > 0, where the constant
ρ0 is related to T by [46–48]

T =
tanh
�ρ0

l

�

l
. (34)

In the remaining part of this paper, we also use the polar coordinate θ , which is related to ρ
via 1

cosθ = cosh
�ρ

l

�

, thus the brane is located at

θ0 = arccos
h

cosh
�ρ0

l

�i−1
> 0 . (35)

6In the context of AdS/CFT [52, 53], the prefactor 3/2 in (25) is true only for 3-dimensional bulk geometry.
We will see that the coefficient is still preserved in the 2d effective theory description following partial Randall-
Sundrum reduction. The detail will be discussed in sec.4.

7See also related works [59–70,72–74].
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EOW brane

CFT + gravity

3d-Gravity 2d-Gravity QM

AdS bulk

Figure 2: Three different descriptions of the holographic BCFT model.

The boundary entropy can be evaluated from the disk partition function. The difference of the
partition function between ρ = 0 and ρ = ρ0 is given by IE (ρ0) − IE(0) = −

ρ0
4GN

. Then we
obtain the boundary entropy

Sbdy =
ρ0

4GN
. (36)

Now we introduce the Holographic BCFT model with conformal matter on the brane. This
model is inspired by the work of Almheiri, Mahajan, Maldacena and Zhao [29] but we treat
the theory on the brane differently. Instead of replacing the brane matter by a part of AdS
wedge, we treat the conformal matter as defect theory on the brane embedded in the bulk.
Moreover, we obtain the 2d gravity on the brane from the partial Randall-Sundrum (R-S)
reduction of the bulk.

Similiar to [29], our model has three alternative descriptions as illustrated in fig.2:

• 3d-Gravity: 3d gravity theory in AdS3 with an End-Of-the-World (EOW) brane as a bulk
defect on part of the space (x < 0), and with a rigid AdS boundary on the rest (x > 0).
There is conformal matter on the EOW brane.

• 2d-Gravity: 2d CFT + gravity theory living on x < 0 coupled to a 2d CFT living on x > 0.
The gravity is obtained by partial R-S reduction.

• QM: A two-dimensional CFT on the half-line x > 0 with particular boundary degrees of
freedom at x = 0. This description should be viewed as the fundamental one.

Now we describe how to change from the 3d-gravity description to the 2d-gravity descrip-
tion via partial R-S reduction and AdS/CFT correspondence.8 As illustrated in fig.3, starting
with the 3d-gravity description, we first decompose the AdS3 bulk into W1 and W2, where W2
is half the entire AdS3 space. For W1, we perform the brane world reduction, or the Randall-
Sundrum reduction [45], along the extra dimension ρ to obtain a 2d gravity theory on the
EOW brane Q. For W2, we replace it with the half-space CFT according to AdS/CFT correspon-
dence. Finally we get the 2d effective theory which is a brane gravity theory with CFT on it
glued to a flat half-space CFT. Note that during this process, as shown in fig.3, the part of the
geodesic in W1 (i.e. the red arc in fig.3), whose length is arctanh(sinθ0), is reduced to the
area term in the island formula (29) of the 2d effective theory description, and this explains
the 3/2 coefficient of the area term in the island formula (29).

The effective Newton constant on the EOW brane is

1

4G(2)N

=
ρ0

4GN
=

c
6

arctanh(sinθ0) . (37)

This is interpreted as boundary entropy (36) in the original AdS/BCFT proposal [42].

8Details of this reduction can be found in [46].
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CFT +
 gr

av
ity

R-S reduction + AdS/CFT

EOW
 br

an
e flat CFT

area term

Figure 3: (Modified from [46]) The reduction procedure, during which W1 is reduced
to the gravity on the EOW brane and W2 is dual to a flat half-space CFT. The part of
the geodesic in W1 (the red arc) is reduced to the area term in the 2d effective theory
description.

Discussion: Karch-Randall brane world model. Here we add the discussion on the rela-
tionship between our model and the model proposed in [78,79], where the AdS bulk bounded
by Karch-Randall brane is expected to be dual to two CFTs and the one on the brane may be
called as an inherent CFT. This is not our perspective in this paper. By partial reduction we
perform explicit dimension reduction (which may not be applicable in higher dimensions) for
the AdS3 gravity action between Karch-Randall brane and the tensionless brane. The resulting
2d gravity is therefore equivalent to 3d gravity in that region, which means that we do not
need additional duality to translate this part AdS gravity to some inherent CFT. In our set up
we treat the brane CFT as a bulk defect representing some bulk degrees of freedom from the
beginning. Our perspective has received a bunch of tests [46–48].

5 Entanglement negativity on bulk defect

Now we return to the 3d-gravity description and calculate the entanglement negativity on bulk
defect. If the tension of the EOW brane Q is zero, the EOW brane will be orthogonal to the
asymptotic boundary. By adding matter or turn on the tension in the viewpoint of [42], the
EOW brane can move to a position with constant angle θ0. According to [30], the CFT on
AdS2 can be mapped to a BCFT in flat space via a Weyl transformation. The Weyl factor can
be read from the induced metric on the brane ds2

brane = Ω
−2(y)ds2

flat, i.e.

Ω(y) =

�

�

�

�

y cosθ0

l

�

�

�

�

. (38)

5.1 Single interval [0, y] on the brane

From [8], the calculation of a single interval [0, y] including the boundary point means con-
sidering the one-point function of the double twist operator T 2

n inserted at y . The conformal
invariance fixes the form of one-point function on a flat BCFT and by the analysis of twist
operators in [8,44],9




T 2
n (y)
�

flat =



Tn/2(y)
�2

flat =
gn

|2y/εy |2h′n
, (39)

with εy the UV cut-off on the brane.
From Weyl transformation (38), the one-point function on the brane is




T 2
n (y)
�

Q =

�

�

�

�

y cosθ0

l

�

�

�

�

2h
′
n



T 2
n (y)
�

flat = gn

�

�

�

�

εy cosθ0

2l

�

�

�

�

2h
′
n

. (40)

9From now on we will use 〈· · · 〉flat for correlation function on flat BCFT, 〈· · · 〉Q for correlation function on brane,
and 〈· · · 〉 for correlation function on flat CFT.

10

https://scipost.org
https://scipost.org/SciPostPhysCore.7.2.027


SciPost Phys. Core 7, 027 (2024)

Finally, the entanglement negativity on the brane is obtained by taking n → 1 of the brane
one-point function

Edefect = lim
n→1

log



T 2
n (y)
�

Q

=
c
4

log
2l

εy cosθ0
+ log g .

(41)

In our model, the boundary do not admit physical degrees of freedom, so we can pick log g = 0.
Notice that in this case the entanglement negativity on the brane is a constant and does not
depend on the length of the interval.

5.2 Single interval [y1, y2] on the brane

Now we derive the the entanglement negativity on the brane for a single interval [y1, y2]. Fol-
lowing [8] we insert two double twist operators T 2

n and T̄ 2
n at y = y1 and y = y2 respectively.

Applying Weyl transformation, the two-point function is given by




T 2
n (y1)T̄ 2

n (y2)
�

Q =

�

�

�

�

y1 cosθ0

l

�

�

�

�

2h
′
n
�

�

�

�

y2 cosθ0

l

�

�

�

�

2h
′
n



T 2
n (y1)T̄ 2

n (y2)
�

flat . (42)

Using the doubling trick, this BCFT two-point function can be seen as a four-point function in
the full plane. Employing the same trick developed in [44] for BCFT entanglement entropy,
one can find analytical results in the large c limit.

Inspired by the holographic calculation [39, 40, 44], we expect that the BCFT two-point
function has two possible dominate channels: the operator product expansion channel (OPE)
and the boundary operator expansion channel (BOE). This corresponds to different way of doing
operator product expansion, see [44]. The dominant channel can be determined by the cross-
ratio

η(y1, y2) =
4y1 y2

(y1 − y2)2
. (43)

From the holographic side, this two channel endures a phase transition due to the change of
RT surface from the connected phase to the disconnected phase.

OPE channel. If η→∞, the OPE channel dominates. The corresponding two point function
is




T 2
n (y1)T̄ 2

n (y2)
�

flat =
ε

4h
′
n

y

(y1 − y2)4h′n
. (44)

The entanglement negativity is derived from (42):

Edefect =
c
4

log
l2(y1 − y2)2

y1 y2ε2
y cos2 θ0

. (45)

BOE channel. If η→ 0, the BOE channel dominates. The corresponding two point function
is




T 2
n (y1)T̄ 2

n (y2)
�

flat =
g4(1−n/2)

b ε
4h
′
n

y

(4y1 y2)2h′n
. (46)

The entanglement negativity is then:

Edefect =
c
2

log
2l

εy cosθ0
. (47)
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OPE

BOE

RT

OPE

Figure 4: (Modified from [48]) Left: The holographic dual of possible channels. The
boundary point of the brane BCFT is dual to an EOW brane denoted by the dashed
vertical line. The RT surface for A ∪ B is denoted by the red arc. From the field
theory point of view, the BOE channel corresponds to a product of two one-point
BCFT correlators. Right: The OPE channel corresponds to a four-point function on a
whole CFT, and the four-point function duals to the cross section (blue dashed arcs).

By the same analysis in [46], in the large c limit, OPE channel dominates when η→∞,
otherwise the BOE channel dominates. Equating these two results, we have the phase transi-
tion point at η= 1.

5.3 Adjacent intervals [y1, y2] and [y2,∞] on the brane

For adjacent intervals on brane, we need to consider a different boundary two-point function.
We insert Tn and T̄ 2

n at y = y1 and y = y2 respectively. The two-point function would be




Tn(y1)T̄ 2
n (y2)
�

Q =

�

�

�

�

y1 cosθ0

l

�

�

�

�

2hn
�

�

�

�

y2 cosθ0

l

�

�

�

�

2h
′
n



Tn(y1)T̄ 2
n (y2)
�

flat . (48)

BOE channel. By the same analysis as above (also see fig.4) we break the two-point function
into product of two one-point function, so the method in [44] still works. The result reads




Tn(y1)T̄ 2
n (y2)
�

flat =
g(3−2n)

b ε
2hn+2h′n
y

(2y1)2hn(2y2)2h′n
, (49)

thus the entanglement negativity is

Edefect =
c
4

log
2l

εy cosθ0
. (50)

OPE channel. For the simple case in which there is no degree of freedom on the boundary,
we can evaluate the analytic results by making use of the doubling trick. The doubling trick
maps a BCFT to a chiral CFT on the flat plane. The BCFT two-point function is now mapped
to a four-point function in the chiral CFT, which is in general hard to compute. However, if we
assume large c limit and vacuum block dominance, this four-point function can be calculated
numerically and one can check that the dominate channels are indeed the ones corresponding
to the holographic configurations, as illustrated in fig.4. In Appendix B we give a numerical
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check and show that10

lim
n→1




Tn(y1)T̄ 2
n (y2)
�

flat = lim
n→1




T ′2n (−y2)T̄ ′n (−y1)T ′n (y1)T̄ ′2n (y2)
�

= 2(c/2)/2
�

(y2 + y1)(y2 − y1)
(2y1)εy

�c/4

.
(51)

The entanglement negativity on bulk defect is then obtained,

Edefect =
c
4

log
2l

ξεy cosθ0
, (52)

with

ξ=
2y2 y1

y2
2 − y2

1

. (53)

Note that the ξ defined here is slightly different from the ordinary cross-ratio. At large c limit,
the OPE channel dominates in the case of ξ > 1, while the BOE channel dominates in the case
of ξ < 1. The critical value ξc = 1 is given by equating (50) and (52).

5.4 Adjacent intervals [0, y2] and [y2, y3] on the brane

Following the previous twist operator calculation, we insert T̄ 2
n and Tn at y = y2 and y = y3

respectively. The two-point function would be:




T̄ 2
n (y2)Tn(y3)
�

Q =

�

�

�

�

y2 cosθ0

l

�

�

�

�

2h
′
n
�

�

�

�

y3 cosθ0

l

�

�

�

�

2hn



T̄ 2
n (y2)Tn(y3)
�

flat . (54)

BOE channel. The two-point function is given by




T̄ 2
n (y2)Tn(y3)
�

flat =
g(3−2n)

b ε
2h
′
n+2hn

y

(2y2)2h′n(2y3)2hn

, (55)

as above, thus the entanglement negativity for BOE channel is

Edefect =
c
4

log
2l

εy cosθ0
. (56)

OPE channel. In this channel the entanglement negativity is

Edefect =
c
4

log
2l

ξεy cosθ0
, (57)

with

ξ=
2y3 y2

y2
3 − y2

2

, (58)

and the phase transition point is also at ξc = 1.

6 Defect extremal surface for entanglement negativity

In this section, we will propose the defect extremal surface formula for entanglement negativity
and compare the results from DES and island formula in single interval and adjacent intervals.

10In (51) we use T ′ and T̄ ′ to represent the chiral operators, which have half the conformal weight of the original
operators.
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Figure 5: The case of a single interval [0, u]. The blue area denotes the entanglement
wedge of this single interval.

6.1 DES: The proposal

In the 3d-gravity description, we consider a quantum theory living on the defect which is re-
garded as a part of the full bulk theory since it is coupled to the bulk. When the classical
RT surface terminates on the defect, the defect theory should contribute to the entanglement
negativity. Following the idea of [46] we propose the defect extremal surface formula for en-
tanglement negativity including defect contribution11

EDES =min
Γ ,X

§

extΓ ,X

�

3
2

Area(Γ )
4GN

+ Edefect[D]
�ª

, X = Γ ∩ D , (59)

where Γ is a 1d curve in AdS3, D denotes the defect, and X is the 0d entangling surface
given by the intersection of Γ and D. Edefect is the entanglement negativity on bulk defect,
which is derived in the previous section. We will call the [· · · ] part of (59) “the generalized
negativity”,12 with its first term “the area term” and the second term “the defect term”.

6.2 Single interval [0, u]

6.2.1 DES result

In this case we consider a single interval which contains the boundary point. The curve Γ can
only end on the brane, as shown in fig.5. Assuming that the intersection point X is located at
y , then the length of Γ can be derived from the same geometric analysis in [46]. We denote

u′ =
y2 + u2 + 2yu sinθ0

2(u+ y sinθ0)
, (60)

θ ′0 = arcsin
u2 + 2yu sinθ0 − y2 cos 2θ0

u2 + 2yu sinθ0 + y2
. (61)

The generalized negativity is given by considering both contributions in (59)

Egen(y) = Earea + Edefect =
c
4

log
2u′

εu
+

c
4

arctanh(sinθ ′0) +
c′

4
log

2l
εy cosθ0

, (62)

where c′ denotes the central charge of the defect CFT, and we use the single interval bulk
defect result (41).

11Our proposal eq.(59) only works for matter localized at EOW brane, and should be improved for the cases that
the bulk matter is distributed in a more general fashion. In the DES formula, both extremizations over the local
shape of RT surface and the location of the end point are involved. The geodesic connecting two given points is
unique.

12Since we will always distinguish the calculation from DES and island formula, the generalized negativity here
will not be confused with the generalized negativity in (28) or (29), and the same is true for the area term below.
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In order to extremize Egen(y), let ∂yEgen(y) = 0, the intersection point of defect extremal
surface and the brane is located at

y = u , (63)

which means that the extremal surface is the same as the RT surface. This is expected because
Edefect coming from brane matter is a constant. The resulting entanglement negativity from
DES is

EDES =
c
4

log
2u
εu
+

c
4

arctanh(sinθ0) +
c′

4
log

2l
εy cosθ0

. (64)

6.2.2 Island result

Here we switch to the 2d-gravity description. Since we have already proposed the island
formula of the entanglement negativity, i.e. (28) and (29), we will calculate it explicitly below.

In this case, it can be viewed as a single interval with length u+ y . From the calculation
in [46], we can see that

Eeff (x1, x2) =
c
4

log

�

|x1 − x2|
2

ε1ε2Ω (x1, x̄1)Ω (x2, x̄2)

�

, (65)

where ε1,2 are the UV cut-offs and Ω comes from the Weyl factor of the metric ds2 = Ω−2dxd x̄ .
Thus we derive the matter term

Eeff =
c
4

log
(u+ y)2l
εuεy y cosθ0

. (66)

The generalized negativity is obtained by adding the area term

Egen(y) = Eeff([−y, u]) + Earea(y)

=
c
4

log
(u+ y)2l
εuεy y cosθ0

+
c
4

arctanh(sinθ0) .
(67)

Extremizing (67) gives the location of the quantum extremal surface

y = u , (68)

which is the same as the end point of the defect extremal surface. The entanglement negativity
is

EQES =
c
4

log
4ul

εuεy cosθ0
+

c
4

arctanh(sinθ0)

=
c
4

log
2u
εu
+

c
4

arctanh(sinθ0) +
c
4

log
2l

εy cosθ0
.

(69)

If we consider the simple case that c′ = c, this result would recover our previous result
(64). The bulk DES result agrees with the QES result from island formula.

6.3 Single interval [u1, u2]

6.3.1 DES result

Here we consider a general single interval which does not contain the boundary point. In this
case the entanglement negativity has a phase transition due to the variation of the cross-ratio
between the operators. Note that the “phase” below always refers to the phase of the BCFT on
the rigid AdS boundary.
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Figure 6: The disconnected phase of a single interval [u1, u2]. Disconnected phase
means that the RT surface intersects with the brane.

Phase-I: Connected phase. In this phase, the extremal surface does not intersect with the
brane. Thus the defect term Edefect vanishes and the generalized entanglement negativity is
given by the boundary contribution only, i.e.

Egen =
c
2

log
(u2 − u1)
εu

, (70)

which is a trivial single-interval result. See [8] for exact calculation.

Phase-II: Disconnected phase. The defect extremal surface terminates on the brane as
shown in fig.6 and the entanglement negativity of an interval [−y1,−y2] on the brane con-
tributes. When the cross-ratio on the brane η→∞, the generalized negativity is given by.

Egen(y1, y2) = EΓ1 + EΓ2 + Edefect

=
c
4

�

log
y2

1 + u2
1 + 2y1u1 sinθ0

(u1 + y1 sinθ0)εu
+ arctanh

u2
1 + 2y1u1 sinθ0 − y2

1 cos2θ0

u2
1 + 2y1u1 sinθ0 + y2

1

+ log
y2

2 + u2
2 + 2y2u2 sinθ0

(u2 + y2 sinθ0)εu
+ arctanh

u2
2 + 2y2u2 sinθ0 − y2

2 cos 2θ0

u2
2 + 2y2u2 sinθ0 + y2

2

+ log
l2(y1 − y2)2

y1 y2ε2
y cos2 θ0

�

. (71)

By extremizing Egen(y1, y2) with respect to y1 and y2, we find that ∂yEgen(y1, y2)< 0 for any
y1 and y2 thus there is no extremal surface. When η→ 0,

Egen(y1, y2) = EΓ1 + EΓ2 + Edefect

=
c
4

�

log
y2

1 + u2
1 + 2y1u1 sinθ0

(u1 + y1 sinθ0)εu
+ arctanh

u2
1 + 2y1u1 sinθ0 − y2

1 cos2θ0

u2
1 + 2y1u1 sinθ0 + y2

1

+ log
y2

2 + u2
2 + 2y2u2 sinθ0

(u2 + y2 sinθ0)εu
+ arctanh

u2
2 + 2y2u2 sinθ0 − y2

2 cos 2θ0

u2
2 + 2y2u2 sinθ0 + y2

2

+ 2 log
2l

εy cosθ0

�

. (72)

By extremizing Egen(y1, y2)with respect to y1 and y2, i.e. ∂y1
Egen(y1, y2)=∂y2

Egen(y1, y2) = 0,
we get the location of the intersection of defect extremal surface and the EOW brane

y1 = u1 , y2 = u2 , (73)

which means that Γ is the same as the RT surface. Following DES proposal we obtain

EDES =
c
4

�

log
2u1

εu
+ log

2u2

εu
+ 2arctanh(sinθ0) + 2 log

2l
εy cosθ0

�

. (74)

16

https://scipost.org
https://scipost.org/SciPostPhysCore.7.2.027


SciPost Phys. Core 7, 027 (2024)

To summarize, the final results are

EDES =

(

c
2 log (u1−u2)

εu
, η→∞ ,

c
4

�

log 4u1u2
ε2

u
+ 2arctanh(sinθ0) + 2 log 2l

εy cosθ0

�

, η→ 0 .
(75)

6.3.2 Island result

Phase-I: Connected phase. In this case, the negativity only includes the matter term.

EQES =
c
2

log
(u2 − u1)

ε
. (76)

Phase-II: Disconnected phase. Since the brane CFT is coupled to gravity, we should consider
the contribution of the interval [−y1,−y2] on the brane. The end points of the interval have
corresponding area term which is given by

Earea = 2×
1

4G(2)N

=
c
2

arctanh(sinθ0) . (77)

Considering the derivation of the negativity of multiple intervals at large c in [39, 51], the
generalized negativity is given by

Egen(a, b) = Earea + Eeff

�

[−y1,−y2]∪ [u1, u2]
�

=
c
2

arctanh(sinθ0)

+min

¨

c
4

log
(y1 − y2)2(u1 − u2)2l2

y1 y2ε2
uε

2
y cos2 θ0

,
c
4

log
(u1 + y1)2(u2 + y2)2l2

y1 y2ε2
uε

2
y cos2 θ0

«

,

(78)

where the two terms in {} correspond to the η → ∞ and η → 0 case respectively, with η
the cross-ratio defined in (43). We note that the general analytic behavior of entanglement
negativity in this case is very different from entanglement entropy [51], the critical point of
η (the phase-transition point) should be determined by numerical calculation, but it will not
affect our current discussion. As we have assumed the large c limit, from holographic side we
can determine the critical point ηc by equating these two results.

In the minimization procedure, we can see for the first term ∂y2
Egen(y1, y2) < 0, which

means that there is no extremal point. Taking extremization of the second term gives

y1 = u1 , y2 = u2 . (79)

Thus the final negativity is given by

EQES =
c
2

arctanh(sinθ0) +
c
4

log
16u1u2l2

ε2
uε

2
y cos2 θ0

. (80)

To summarize,

EQES =

(

c
2 log (u2−u1)

εu
, η > ηc ,

c
4

�

log 4u1u2
ε2

u
+ 2arctanh(sinθ0) + 2 log 2l

εy cosθ0

�

, η < ηc ,
(81)

which is exactly the same as (75).

17

https://scipost.org
https://scipost.org/SciPostPhysCore.7.2.027


SciPost Phys. Core 7, 027 (2024)

Figure 7: The case of adjacent intervals [0, u2] and [u2, v2].

6.4 Adjacent intervals [0, u2] and [u2, v2]

6.4.1 DES result

In this case we consider adjacent intervals on the boundary including the boundary point of
BCFT, as illustrated in fig.7. Let Γ be the minimal surface in AdS3 with two endpoints u2 and
y1, thus the area term is given by

Earea =
3
2

Area(Γ )
4GN

=
3L(y1)

8GN
. (82)

Now we combine the result with the calculation results from sec.5.4. For ξ < 1 the defect
contribution is constant. Extremization of Egen(y1) over y1 gives the location of the intersection
point of defect extremal surface and the brane:

y1 = u2 , (83)

which leads to

EDES = exty1
{Earea + Edefect}=

c
4

log
2u2

εu
+

c
4

arctanh(sinθ0) +
c
4

log
2l

εy cosθ0
. (84)

For ξ > 1, we have

Egen =
3L(y1)

8GN
+

c
4

log
2l

ξεy cosθ0
. (85)

For (85), we found ∂y1
Egen < 0. So there are no extremal surface and brane contributions.

6.4.2 Island result

Note that in large c limit, the four-point function factorizes. The RT surface in the outer side
serves actually as an IR cut-off so it does not contribute to the negativity. When ξ < 1, the
four-point function factorizes as



Tn(y2)T̄ 2
n (y1)T 2

n (u2)T̄n(v2)
�

=



T̄ 2
n (y1)T 2

n (u2)
� 


Tn(y2)T̄n(v2)
�

, (86)

which leads to

Eeff =
c
4

log
(u2 + y1)2l
εuεy y1 cosθ0

. (87)

Adding the area term and doing extremization over y1 gives u2 = y1, as we expected. The
entanglement negativity is

EDES = exty1
{Earea + Eeff}=

c
4

log
2u2

εu
+

c
4

arctanh(sinθ0) +
c
4

log
2l

εy cosθ0
. (88)

We can see precise agreement between (88) and (84).
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Figure 8: (Modified from [47]) (a) The bulk description of the Euclidean BCFT2.
(b) The geometry of our model after the conformal transformation (90), with the
BCFT2’s boundary mapped to a unit circle (91) and the EOW brane mapped to a
spherical cap (92). (c) The Lorentz geometry of the AdS3/BCFT2 model.

7 Time dependent entanglement negativity in 2d eternal black
hole

In this section we investigate the time dependent entanglement negativity in the 2d eternal
black hole emerging from the boundary effective description of the AdS3/BCFT2 setting [47,
48]. In sec.6 we demonstrate the consistency between the entanglement negativity computed
by the bulk DES formula and that computed by the boundary island formula for a static time
slice. Now we further consider the time dependent case and show that this consistency still
holds. We also calculate the time evaluation of the entanglement negativity between different
parts of this black hole system.

7.1 Review of the 2d eternal black hole system

Firstly we look at the emergency of the 2d eternal black hole. In sec.4 we see that the holo-
graphic dual of BCFT2 is an AdS3 bulk bounded by its asymptotic boundary and an EOW brane.
The Euclidean AdS3 metric is given by

ds2 =
l2

z2

�

dτ2 + dx2 + dz2
�

, (89)

and the EOW brane is placed at plane τ = −z tanθ0 as depicted in fig.8(a). To clarify the
physical interpretation, we perform the following conformal transformation

τ=
2(x ′2 +τ′2 + z′2 − 1)
(τ′ + 1)2 + x ′2 + z′2

,

x =
4x ′

(τ′ + 1)2 + x ′2 + z′2
,

z =
4z′

(τ′ + 1)2 + x ′2 + z′2
.

(90)

As shown in fig.8(b), the conformal transformation (90) maps the BCFT2’s boundary
(τ= z = 0) to a unit circle

x ′2 +τ′2 = 1 , (91)

and the EOW brane to a spherical cap

(z′ + tanθ0)
2 + x ′2 +τ′2 = sec2 θ0 , (92)
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(a) (b)

Figure 9: (a) The connected phase of the extremal surface for the black hole. (b)
The disconnected phase. In this phase an island (Q′P ′) appearing in the middle
separating the whole black hole into two parts. From now on we will use solid blue
lines to represent the extremal surfaces, light blue regions for entanglement wedges,
dark blue regions for EOW branes, black dashed lines for entanglement cross sections
EW , solid red lines for black hole regions and solid black lines for islands.

while preserving the metric form

ds2 =
l2

z′2
�

dτ′2 + dx ′2 + dz′2
�

. (93)

Employing the decomposition reviewed in sec.4 gives the 2d effective boundary description
in which the EOW brane is a gravitational region and it is surrounded by a bath CFT as depicted
in fig.8(b). To see where is the black hole, one can analytical continue the Euclidean time to
Lorentz time (τ′→ i t ′) as shown in fig.8(c). In Lorentz spacetime, the boundary of the EOW
brane (91) becomes x ′2 − t ′2 = 1. We then introduce the Rindler coordinates (T, X )

x ′ = eX cosh T , t ′ = eX sinh T . (94)

In this coordinate system the metric takes the form as Rindler space thus describes the near-
horizon geometry of a black hole [47].

7.2 The entanglement negativity between black hole interiors

In this section we study the entanglement negativity between black hole interiors, i.e. BL
and BR shown in fig.9. Following the setting in [47, 48], the black hole is identified as the
space-like interval with Q(t ′0,−x ′0) and P(t ′0, x ′0) as its two endpoints. We will first perform
our calculation in Euclidean coordinates (τ, x , z) or (τ′, x ′, z′), then analytically continue to
Lorentz coordinates by τ′→ i t ′ and finally use (94) to get the time evolution.

7.2.1 Bulk description

Phase-I: Connected phase. To calculate E(BL : BR) from the bulk point of view we first need
to determine the entanglement wedge of BL ∪ BR. As shown in fig.9(a), the entanglement
wedge of the whole black hole is the light blue region bounded by a space-like interval QP on
the boundary and the extremal surface which is a geodesic connecting Q and P in the AdS3
bulk. The cross section connects the extremal surface (the blue arc in fig.9(a)) and the EOW
brane (the dark blue region). To employ the DES formula (59), one has to combine the area
term from the cross section with the defect term from the defect contribution and then do
extremization. The defect term in (59) is given by the single interval result (41), i.e.

Edefect(BL : BR) =
c
4

log
2l

εy cosθ0
, (95)
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which is a constant thus the extremization only needs to be performed on the area term. The
calculation of the minimal cross section is similar to eq.(5.20) in [48], which gives

extΓ Area(Γ ) = l



log
x ′20 +τ

′2
0 − 1+
q

4x ′20 + (τ
′2
0 + x ′20 − 1)2

2x ′0
+ log

cosθ0

1− sinθ0



 . (96)

Finally the BH-BH entanglement negativity in the connected phase is given by

Ebulk
conn(BL : BR) =

c
4



log
x ′20 +τ

′2
0 − 1+
q

4x ′20 + (τ
′2
0 + x ′20 − 1)2

2x ′0

+ log
cosθ0

1− sinθ0
+ log

2l
εy cosθ0



 . (97)

Phase-II: Disconnected phase. As shown in fig.9(b), in the disconnected phase the extremal
surfaces intersect the EOW brane at Q′ and P ′ and the region Q′P ′ corresponds to an island.
The island splits the black hole thus the entanglement wedge of BL and BR are separated,
resulting in a vanishing area term. The defect term is given by

Edefect = lim
n→1

logΩ2hn
Q′ Ω

2hn
P ′



T̄n(Q
′)T̄n(P

′)
�

flat

= lim
n→1

�

�

�

�

yQ′ cosθ0

l

�

�

�

�

2hn
�

�

�

�

yP ′ cosθ0

l

�

�

�

�

2hn

log



T̄n(Q
′)T̄n(P

′)
�

flat .
(98)

By using the doubling trick one can express the two-point correlation function on BCFT as a
chiral CFT four-point correlation function on the whole plane




T̄n(Q
′)T̄n(P

′)
�

flat =



T̄ ′n (Q
′)T̄ ′n (P

′)T ′n (P
′′)T ′n (Q

′′)
�

, (99)

where P ′′(y = −τ0, x = x0) and Q′′(−τ0,−x0) are the mirror images of P ′ and Q′ with re-
spect to the plane τ = 0. Assuming the large c limit, then the correlator is factorized into
contractions



T̄ ′n (Q
′)T̄ ′n (P

′)T ′n (P
′′)T ′n (Q

′′)
�

=



T̄ ′n (P
′)T ′n (P

′′)
� 


T̄ ′n (Q
′)T ′n (Q

′′)
�

. (100)

The two-point function is given by (note that the power is halved due to the chiral operators)



T̄ ′n (P
′)T ′n (P

′′)
�

= lim
n→1

dn|P ′P ′′|−4hn/2 = 1 , (101)

thus the defect term vanishes in this case. Finally the BH-BH entanglement negativity in the
disconnected phase is given by

Ebulk
disconn(BL : BR) = 0 . (102)

7.2.2 Boundary description

Phase-I: Connected phase. To employ the boundary island formula we first calculate the
matter term, which is given by the three-point correlator

Eeff(BL : BR) = lim
n→1

logΩ
2h′n
O′



Tn(Q)T̄ 2
n (O

′)Tn(P)
�

= lim
n→1

logΩ
2h′n
O′ Cn

T T̄ 2T |O
′Q|−2h′n |O′P|−2h′n |QP|2h′n−4hnε

2h′n
y .

(103)
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Figure 10: The entanglement negativity between black hole interiors (in the unit of
c
4) with respect to time T for X0 = 1 and θ = π

6 , π4 , π3 . We pick εy = 0.1 and l = 1.
The dash lines refer to 3

4 mutual information, which decreases to zero at the Page
time.

Inserting |O′Q|= |O′P|=
q

(τ0 + y)2 + x2
0 and |QP|= 2x0 into (103) and combining the area

term gives

Ebdy
gen (BL : BR) =

c
4

�

log
l

y cosθ0
+ log 2+ log

x2
0 + (τ0 + y)2

2x0εy
+ arctanh(sinθ0)

�

. (104)

Extremizing (104) over the position y gives y =
q

x2
0 +τ

2
0, thus the final result is

Ebdy
conn(BL : BR) =

c
4



log
τ0 +
q

τ2
0 + x2

0

x0
+ log

2l
εy cosθ0

+ arctanh(sinθ0)



 , (105)

which agrees with (97).

Phase-II: Disconnected phase. In the disconnected phase the two parts of black hole do
not intersect as shown in fig.9(b), thus in the boundary calculation there is no area term
contribution and we only need to consider the matter term, which is given by the four-point
correlation function

Ebdy
gen (BL : BR) = Eeff(BL : BR) = lim

n→1
logΩ2hn

Q′ Ω
2hn
P ′



Tn(Q)T̄n(Q
′)T̄n(P

′)Tn(P)
�

. (106)

As implied by the disconnected extremal surface illustrated in fig.9(b), assuming large c limit,
this four-point correction function factorizes into two two-point functions



Tn(Q)T̄n(Q
′)T̄n(P

′)Tn(P)
�

=



Tn(Q)T̄n(Q
′)
� 


T̄n(P
′)Tn(P)
�

= 1 . (107)

Thus in this phase the boundary result is

Ebdy
disconn(BL : BR) = 0 , (108)

which is consistent with the bulk calculation.
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(a) (b)

RT

Figure 11: The RT surface connects A at infinity and A′ on the brane. (a) The con-
nected phase. (b) The disconnected phase.

7.2.3 Time evolution

Here we rewrite the results of E(BL : BR) in the Rindler coordinates (T, X ) using (94)

E(BL : BR) =







c
4

�

log e2X0−1+
p

4e2X0 cosh2 T+(e2X0−1)2

2eX0 cosh T + log cosθ0
1−sinθ0

+ log 2l
εy cosθ0

�

, T < TP ,

0 , T > TP ,
(109)

where X0 is a fixed constant describing the black hole boundary and TP is the Page time given
in [47]

TP = arccosh

�

sinh X0earctanh(sinθ0) 2l
εy cosθ0

�

. (110)

In fig.10 the time-dependent BH-BH entanglement negativity is plotted under specific param-
eters. The BH-BH entanglement negativity decreases at first and shifts to zero at Page time.
Note that it follows the same curve of the BH-BH reflected entropy (fig.13 in [48]) up to a 3/4
factor.

7.3 The entanglement negativity between left radiation and left black hole

In this section we compute the entanglement negativity between left radiation and left black
hole. Here the left part radiation refers to the interval AQ with its two endpoints A(τ′1,−∞)
and Q(τ′0,−x ′0) in the (τ′, x ′, z′) coordinates as illustrated in fig.11. The boundary of the left
part black hole is Q.

7.3.1 Bulk description

Phase-I: Connected phase. As shown in fig.11(a), the entanglement wedge of RL ∪ BL is
bounded by the boundary and associated extremal surface, which is a geodesic connects A to
the brane. In this phase the entanglement wedge cross section does not intersect with the
brane, thus Edefect vanishes and the generalized entanglement negativity is given by Earea only.
The minimal cross section is given by (D.3) with τ′0 = τ

′
1, τ′1 = τ

′
0, x ′0 = −x ′1 = −∞ and

x ′1 = −x ′0. Finally the entanglement negativity between left radiation and left black hole in
this phase is given by

Ebulk
I (RL : BL)

= lim
x ′1→∞

c
4

log
2
q

�

(τ′1 −τ
′
0)2 + (x

′
1 − x ′0)2
� �

(τ′1τ
′
0 − 1)2 + (x ′1 x ′0 − 1)2 +τ′21 x ′20 +τ

′2
0 x ′21 − 1
�

ε(−1+τ′21 + x ′21 )

=
c
4

log
2
q

x ′20 +τ
′2
0

ε
. (111)
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Phase-II: Disconnected phase. In this phase the cross section intersects with the EOW brane
and an island appears as shown in fig.11(b). To calculate the entanglement negativity in this
case we have to take into account the contribution from the defect, which is given by the
adjacent intervals result (56)

Edefect(IL : BL) =
c
4

log
2l

εy cosθ0
, (112)

at large c limit. The calculation of the minimal cross section is similar to eq.(3.7) in [47]. Add
them together and do extermization, and one gets the entanglement negativity between RL
and BL in this phase

Ebulk
II (RL : BL) =min

Γ ,X

�

extΓ ,X [Earea(RL ∪ IL : RL) + Edefect(IL : BL)]
	

=
c
4

�

log
x ′20 +τ

′2
0 − 1

ε
+ arctanh(sinθ0) + log

2l
εy cosθ0

�

.
(113)

7.3.2 Boundary description

Phase-I: Connected phase. The matter term in the connected phase is given by the entangle-
ment negativity between the intervals AQ and QA′, which can be computed by the three-point
correlation function

Eeff(RL : BL) = lim
n→1

logΩ2hn
A′



Tn(A)T̄ 2
n (Q)Tn(A

′)
�

. (114)

We can calculate the three-point correlator in the (τ, x , z) coordinates, where we have
A(2,0, 0), Q(τ0,−x0, 0) and A′(−2sinθ0, 0, 2 cosθ0). In this phase the cross section does not
terminate on the brane thus there is no area term. Therefore, the negativity between RL and
BL reads

Ebdy
I (RL : BL) = lim

n→1
logΩ2hn

A′ Cn
T T̄ 2T |AQ|−2h′n |QA′|−2h′n |AA′|2h′n−4hn ε̃2h′n

=
c
4



log2+ log

q

(τ0 − 2)2 + x2
0

q

(τ0 + 2)2 + x2
0

4
− log

4ε

(τ′0 + 1)2 + x ′20



 ,

(115)

where ε̃ is the (τ′, x ′)-dependent UV cut-off in the (τ, x , z) coordinates and it corresponds to
the last term in the third line.13 One can check that (115) coincides with the bulk result (111)
exactly.

Phase-II: Disconnected phase. In the disconnected phase the left side radiation has an en-
tanglement island IL =Q′A′ as illustrated in fig.11(b), thus the matter term in island formula
is the entanglement negativity between the left side radiation plus its island and the left side
black hole, which reads

Eeff(RL ∪ IL : BL) = lim
n→1

logΩ
2h′n
Q′ Ω

2hn
A′



Tn(A)T̄ 2
n (Q)T

2
n (Q
′)T̄n(A

′)
�

. (116)

At large c limit, the four-point correlator factorizes into two two-point correlators



Tn(A)T̄ 2
n (Q)T

2
n (Q
′)T̄n(A

′)
�

=



Tn(A)T̄n(A
′)
� 


T̄ 2
n (Q)T

2
n (Q
′)
�

. (117)

13In sec.7 we take the UV cut-off of the asymptotic boundary a constant in the (τ′, x ′, z′) coordinates, i.e. z′ = ε.
Thus in the (τ, x , z) coordinates the cut-off is (τ′, x ′)-depentent.
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We assume that in the (τ, x , z) coordinates Q′ is located at (−y sinθ0, x , y cosθ0), then using
(44) one obtain

Ebdy
gen (RL : BL) =

c
4

arctanh(sinθ0) +
c
4

log
l

y cosθ0

+
c
4

�

log

p

(τ0 + y)2 + (x0 − x)2
2

εy
− log

4ε

(τ′0 + 1)2 + x ′20

�

. (118)

Extremizing the generalized entanglement negativity over x and y gives the position of
Q′ : y = τ0, x = x0. Finally the Rad-BH entanglement negativity in the disconnected phase is
given by

Ebdy
II (RL : BL) =

c
4

�

arctanh(sinθ0) + log
l

τ0 cosθ0
+ log

4τ2
0

εy
− log

4ε

(τ′0 + 1)2 + x ′20

�

=
c
4

�

arctanh(sinθ0) + log
2l

εy cosθ0
+ log

x ′20 +τ
′2
0 − 1

ε

�

,

(119)

which agrees with (113) exactly.

7.3.3 Time evolution

Combining (111) and (113), one can rewrite the entanglement negativity between radiation
and black hole in Rindler coordinates (T, X ) using (94)

EI(RL : BL) =
c
4

log
2eX0

ε
,

EII(RL : BL) =
c
4

�

log
e2X0 − 1
ε

+ arctanh(sinθ0) + log
2l

εy cosθ0

�

.
(120)

Note that in both phases the negativity is a constant, thus the final result is given by

E(RL : BL) =min{EI(RL : BL),EII(RL : BL)} . (121)

7.4 The entanglement negativity between radiation and radiation

In this section we consider the entanglement negativity between two adjacent regions of ra-
diation, i.e. the nearby radiation RN and distant radiation RD as illustrated in fig.12 and
fig.13. The nearby part radiation RN refers to the interval MQ ∪ PN with its four endpoints
M(−T + iπ, X1), Q(−T + iπ, X0), P(T, X0) and N(T, X1) in the Rindler coordinates. While the
distant part RD refers to EM ∪N F with its four endpoints E(−T + iπ, X2), M , N and F(T, X2).
The (τ′, x ′, z′) coordinates of the endpoints are shown in fig.12(a) and they can be mapped
from the (T, X ) coordinates via

x ′0 = eX0 cosh T , τ′0 = ieX0 sinh T ,

x ′1 = eX1 cosh T , τ′1 = ieX1 sinh T ,

x ′2 = eX2 cosh T , τ′2 = ieX2 sinh T .

(122)

7.4.1 Bulk description

Phase-I. As shown in fig.12(a), in phase-I there is no defect term contribution so we only
need to compute the cross section separating RN and RD (the dashed curve in fig.12(a)), thus
we get

Ebulk
I (RN : RD) =

c
2

log
2x ′1
ε

. (123)
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(a) Phase-I (b)Phase-II

Figure 12: Possible configurations of the connected phase. (a) The cross section does
not terminate on the extremal surface öQP. (b) The cross sections terminate on öQP.
In this paper we do not consider the phases in which the cross section terminates on
the outer extremal surface öEF and the phases in which Q is connected to E as one
can make these phases never appear by taking the value of X2 to be large enough.

Phase-II. In phase-II the defect term vanishes and we only need to calculate EW (RN : RD)
in fig.12(b). The length of the geodesic connecting N(τ′1, x ′1) and the extremal surface
öQP : x ′2 + z′2 = x ′20 & τ′ = τ′0 is given in appendix C and we denote this length by L2

L2 = log

Ç

�

(τ′0 −τ
′
1)2 + x ′20 + x ′21
�2 − 4x ′20 x ′21

εx ′0
. (124)

Then the Rad-Rad entanglement negativity in phase-II from the bulk description is given by

Ebulk
II (RN : RD) =

c
2

log

Ç

�

(τ′0 −τ
′
1)2 + x ′20 + x ′21
�2 − 4x ′20 x ′21

εx ′0
. (125)

Phase-III. As shown in fig.13(a), in phase-III an island appears. However, the entire island
belongs to RN therefore the defect term still vanishes and we just need to compute the cross
section, which is obviously the same as that in phase-I so we just get the same result

Ebulk
III (RN : RD) =

c
2

log
2x ′1
ε

. (126)

Phase-IV. In this phase the cross sections intersect with the brane at two points M ′ and N ′ as
shown in fig.13(b). By the symmetry with respect to the x ′ = 0 plane, the locations of M ′ and

(a) Phase-III (b) Phase-IV (c) Phase-V

Figure 13: Possible configurations of the disconnected phase. (a) The cross section
dose not terminate on the extremal surfaceøQQ′ ∪÷P ′P or on the brane. (b)The cross
sections terminate on the brane. (c) The cross sections terminate on the extremal
surfaceøQQ′ ∪÷P ′P.
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N ′ can be denoted as (τ′1′ ,∓x ′1′ , z′1′), or (−z1′ tanθ ,∓x1′ , z1′) in the coordinate system (τ, x , z).
The calculation of the extremal surface is similar to eq.(3.7) in [47], which gives

úM M ′/l =ùNN ′/l

= log
(τ1 + z1′ tanθ0)2 + (x1 − x1′)2 + z2

1′
p

(τ1 + z1′ tanθ0)2 + (x1 − x1′)2

+ arctanh
(τ1 + z1′ tanθ0)2 + (x1 − x1′)2 − z2

1′

(τ1 + z1′ tanθ0)2 + (x1 − x1′)2 + z2
1′
− log

4ε

(τ′1 + 1)2 + x ′21
. (127)

The defect contribution from the negativity between Q′M ′ ∪ P ′N ′ and M ′N ′ is given by

Edefect(Q
′M ′ ∪ P ′N ′ : M ′N ′)

= lim
n→1

logΩ2hn
Q′ Ω

2h′n
M ′ Ω

2h′n
N ′ Ω

2hn
P ′



Tn(Q
′)T̄ 2

n (M
′)T 2

n (N
′)T̄n(P

′)
�

flat

= lim
n→1

logΩ
2h′n
M ′ Ω

2h′n
N ′



T ′n (Q
′)T̄ ′n (Q

′′)T̄ ′2n (M
′)T ′2n (M

′′)T ′2n (N
′)T̄ ′2n (N

′′)T̄ ′n (P
′)T ′n (P

′′)
�

= lim
n→1

logΩ
2h′n
M ′ Ω

2h′n
N ′



T ′n (Q
′)T̄ ′n (Q

′′)
� 


T̄ ′2n (M
′)T ′2n (M

′′)
� 


T ′2n (N
′)T̄ ′2n (N

′′)
� 


T̄ ′n (P
′)T ′n (P

′′)
�

= lim
n→1

logΩ
2h′n
M ′ Ω

2h′n
N ′



T̄ 2
n (M

′)
�

flat




T 2
n (N

′)
�

flat . (128)

In the third line, we use doubling trick. In the fourth line, the eight-point correlator is factor-
ized into contractions assuming the large c limit. In the last line we reverse the doubling trick.
Using (41) we get the defect term

Edefect(Q
′M ′ ∪ P ′N ′ : M ′N ′) =

c
2

log
2l

εy cosθ0
. (129)

Add the area term and the defect term, do extremization and we find the extremal solution
is at (−z1′ tanθ0,∓x1′ , z1′) = (−τ1 sinθ ,∓x1,τ1 cosθ0). Finally the Rad-Rad entanglement
negativity in phase-IV turns out to be

Ebulk
IV (RN : RD) =

c
2

�

log
x ′21 +τ

′2
1 − 1

ε
+ arctanh(sinθ0) + log

2l
εy cosθ0

�

. (130)

Phase-V. In phase-V there is no defect term. As illustrated in fig.13(c), EW (RN : RD) is the
geodesic connecting N(τ′1, x ′1) and the extremal surface÷PP ′, the length of which is given in
appendix D and denoted by L5

L5 = l log
2
q

�

(τ′0 −τ
′
1)2 + (x

′
0 − x ′1)2
� �

(τ′0τ
′
1 − 1)2 + (x ′0 x ′1 − 1)2 +τ′20 x ′21 +τ

′2
1 x ′20 − 1
�

ε(−1+τ′20 + x ′20 )
.

(131)
Then the Rad-Rad entanglement negativity in phase-V is given by

Ebulk
V (RN : RD)

=
c
2

log
2
q

�

(τ′0 −τ
′
1)2 + (x

′
0 − x ′1)2
� �

(τ′0τ
′
1 − 1)2 + (x ′0 x ′1 − 1)2 +τ′20 x ′21 +τ

′2
1 x ′20 − 1
�

ε(−1+τ′20 + x ′20 )
.

(132)
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7.4.2 Boundary description

Phase-I. For phase-I shown in fig.12(a), the island is an empty set so we only need to compute
the negativity between two adjacent intervals on a flat CFT, which can be calculated by

Ebdy
I (RN : RD) = Eeff(RN : RD)

= lim
n→1

log



Tn(E)T̄ 2
n (M)Tn(Q)T̄n(P)T 2

n (N)T̄n(F)
�

= lim
n→1

log



Tn(E)T̄n(F)
� 


T̄ 2
n (M)T

2
n (N)
� 


Tn(Q)T̄n(P)
�

,

(133)

where in the second line we assume large c limit and factorizes the correlator [39].14 Using
(44) one gets

Ebdy
I (RN : RD) =

c
2

log
2x ′1
ε

, (134)

which agrees with (123) exactly.

Phase-II. In phase-II the island is an empty set so we only need to compute the matter term

Ebdy
II (RN : RD) = Eeff(RN : RD)

= lim
n→1

log



Tn(E)T̄ 2
n (M)Tn(Q)T̄n(P)T 2

n (N)T̄n(F)
�

= lim
n→1

log



Tn(E)T̄n(F)
� 


T̄ 2
n (M)Tn(Q)T̄n(P)T 2

n (N)
�

.

(135)

The four-point function is given by (51)15

lim
n→1




T̄ 2
n (M)Tn(Q)T̄n(P)T 2

n (N)
�

= 2c/2|N P|c/2|NQ|c/2|PQ|−c/2ε−c/2 , (136)

thus we have

Ebdy
II (RN : RD) =

c
2

log

q

�

(τ′0 −τ
′
1)2 + (x

′
0 − x ′1)2
� �

(τ′0 −τ
′
1)2 + (−x ′0 − x ′1)2

�

εx ′0
, (137)

which exactly equals (125).

Phase-III. In phase-III there is no area term therefore the entanglement negativity is just
given by the matter term

Ebdy
III (RN : RD) = Eeff(RN : RD)

= lim
n→1

logΩ2hn
Q′ Ω

2hn
P ′



Tn(E)T̄ 2
n (M)Tn(Q)T̄n(Q

′)Tn(P
′)T̄n(P)T 2

n (N)T̄n(F)
�

= lim
n→1

log



Tn(E)T̄n(F)
� 


T̄ 2
n (M)T

2
n (N)
� 


Tn(Q)T̄n(Q
′)
� 


Tn(P
′)T̄n(P)
�

=
c
2

log
2x ′1
ε

,

(138)

which is the same as (126).

14The contractions can be justified by the holographic extremal surfaces shown in fig.12(a).
15Note that (51) is correlator of chiral operators thus in (136) all powers double.
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Phase-IV. The matter term of phase-IV is given by

Eeff(RN : RD)

= lim
n→1

logΩ2hn
Q′ Ω

2h′n
M ′ Ω

2h′n
N ′ Ω

2hn
P ′



Tn(E)T̄ 2
n (M)Tn(Q)T̄n(Q

′)T 2
n (M

′)T̄ 2
n (N

′)Tn(P
′)T̄n(P)T 2

n (N)T̄n(F)
�

= lim
n→1

logΩ
2h′n
M ′ Ω

2h′n
N ′



Tn(E)T̄n(F)
� 


T̄ 2
n (M)T

2
n (M

′)
� 


Tn(Q)T̄n(Q
′)
� 


T̄ 2
n (N

′)T 2
n (N)
� 


Tn(P
′)T̄n(P)
�

= lim
n→1

logΩ
2h′n
M ′ Ω

2h′n
N ′



T̄ 2
n (M)T

2
n (M

′)
� 


T̄ 2
n (N

′)T 2
n (N)
�

. (139)

Assuming that in the (τ, x , z) coordinates we have M ′(−yM ′ sinθ , xM ′ , yM ′ sinθ ) and
N ′(−yN ′ sinθ , xN ′ , yN ′ sinθ ), then two-point correlators reads

lim
n→1

logΩ
2h′n
M ′ Ω

2h′n
N ′



T̄ 2
n (M)T

2
n (M

′)
� 


T̄ 2
n (N

′)T 2
n (N)
�

=
c
4

log
l

yM ′ cosθ0
+

c
4

log
l

yN ′ cosθ0

+
c
4

�

log

p

(τ1 + yM ′)2 + (−x1 − xM ′)2
2

εy
− log

4ε

(τ′1 + 1)2 + x ′21

�

+
c
4

�

log

p

(τ1 + yN ′)2 + (x1 − xN ′)2
2

εy
− log

4ε

(τ′1 + 1)2 + x ′21

�

.

(140)

Extremizing (140) over yM ′ , xM ′ , yN ′ and xN ′ gives

yM ′ = τ1 , xM ′ = −x1 , yN ′ = τ1 , xN ′ = x1 . (141)

Add the area term and finally we obtain the Rad-Rad entanglement negativity

Ebdy
IV (RN : RD) =

c
2

�

log
x ′21 +τ

′2
1 − 1

ε
+ arctanh(sinθ0) + log

2l
εy cosθ0

�

, (142)

which agrees with (130) precisely.

Phase-V. As illustrated in fig.13(c), there is no island cross section on the brane, so the Rad-
Rad entanglement negativity in the boundary description reduces to Eeff(RN : RD ∪ ID), which
is given by

Eeff(RN : RD ∪ ID) = lim
n→1

logΩ2hn
Q′ Ω

2hn
P ′



Tn(E)T̄ 2
n (M)Tn(Q)Tn(Q

′)T̄n(P
′)T̄n(P)T 2

n (N)T̄n(F)
�

= lim
n→1

log



Tn(E)T̄n(F)
� 


T̄ 2
n (M)Tn(Q)Tn(Q

′)
� 


T̄n(P
′)T̄n(P)T 2

n (N)
�

.

(143)

By employing (17) one gets



T̄ 2
n (M)Tn(Q)Tn(Q

′)
�

= 2c/4|MQ|−2h′n |MQ′|−2h′n |QQ′|−4hn+2h′n ε̃4h′n , (144)

where ε̃ is the UV cut-off of (τ1, x1, 0) in (τ, x , z) coordinates. We also have

|MQ|=
Æ

(τ0 −τ1)2 + (x0 − x1)2 ,

|MQ′|=
Æ

(τ0 +τ1)2 + (x0 − x1)2 ,

|QQ′|= 2τ0 .

(145)

One can compute



T̄n(P ′)T̄n(P)T 2
n (N)
�

using the same method. Insert (144), (145) into (143),
we get

Ebdy
V (RN : RD) =

c
2

log

p

[(τ0 −τ1)2 + (x0 − x1)2] [(τ0 +τ1)2 + (x0 − x1)2]
ε̃τ0

, (146)

which agrees with (132) after transforming to the (τ′, x ′, z′) coordinates.
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7.4.3 Time evolution

Here we summarize our results by transforming to the Rindler coordinate via (122) and we
get the time evolution. Note that we also assume that X0 < X1 < X2.

Phase-I.

EI(RN : RD) =
c
2

log
2eX1 cosh T

ε
. (147)

Phase-II.

EII(RN : RD) =
c
2

log
(eX1 − eX0)

p
e2X0 + e2X1 + 2eX0+X1 cosh2T
εeX0 cosh T

. (148)

Phase-III. (Note that phase-III is the same as phase-I)

EIII(RN : RD) =
c
2

log
2eX1 cosh T

ε
. (149)

Phase-IV.

EIV(RN : RD) =
c
2

�

log
e2X1 − 1
ε

+ arctanh(sinθ ) + log
2l

εy cosθ

�

. (150)

Phase-V.

EV(RN : RD) =
c
2

log
2(eX1 − eX0)(eX0+X1 − 1)

ε(e2X0 − 1)
. (151)

The entanglement negativity between nearby radiation and distant radiation experiences two
phases. The early time phase corresponds to the connected extremal surface, where the en-
tanglement negativity is given by the minimum value in EI and EII. The late time phase corre-
sponds to the disconnected extremal surface and the negativity is the minimum value in EIII,
EIV and EV. In summary, the entanglement negativity between nearby radiation and distant
radiation is given by

E(RN : RD) =

¨

min {EI,EII} , T < TP ,

min {EIII,EIV,EV} , T > TP .
(152)

The result under specific parameters is plotted in fig.14. One can see that before Page time,
phase-I and phase-II dominant. At the beginning after Page time, phase-III dominants, which
gives the same result as phase-I and later it shifts to phase-V which is a constant all the time.

8 Conclusions and discussions

In this paper we have studied entanglement negativity for evaporating black hole based on
the holographic model with defect brane. We start from the holographic dual of entangle-
ment negativity for adjacent intervals in AdS3/CFT2 and generalize it to the island formula.
To test this formula, we work in AdS3 with an EOW brane as a bulk defect. Including the
contribution from the defect theory on the brane, we propose the defect extremal surface for-
mula for negativity. On the other hand, this model is tightly related to a lower dimensional
gravity system glued to a quantum bath. In fact there is a concrete procedure, including both
Randall-Sundrum and Maldacena duality, to give a lower dimensional effective description for
the same system. We demonstrate the equivalence between defect extremal surface formula
and island formula for negativity in AdS3/BCFT2. Extending the study to the model of eternal
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Figure 14: Time evolution of the entanglement negativity between nearby radiation
and distant radiation (in the unit of c

2) with respect to time T . We set X0 = 1, X1 = 6,
l = 1, θ = π

6 , ε = 0.01, and εy = 0.1 but note that in such a setting the final result
does not rely on εy . The black dash line shows the evolution of 3

4 I(RN : RD).

black hole plus CFT bath, we find that left black hole-left radiation negativity is always a con-
stant, black hole-black hole negativity decreases until vanishing, radiation-radiation negativity
increases and then saturates at a time later than Page time. In all the time dependent cases,
defect extremal surface formula agrees with island formula.

Note that there is an alternative holographic proposal for entanglement negativity in ad-
jacent intervals, given by mutual information multiplied by 3/4. One might naively promote
3/4 mutual information to its island formula, which is nothing but a linear combination of
three island formulas for von Neumann entropy. We plotted the curves computed from the
naively promoted formula, for black hole-black hole negativity and radiation-radiation neg-
ativity. We admit that so far we can not prove either one, but just remark that for general
quantum system (coupled to gravity), mutual information also measures classical correlation,
which is quite different from negativity. So it is unlikely that the island of mutual information
can be the final formula. We leave further study on these two different proposals to future.

There are a few future questions listed in order: First, a general holographic dual for
negativity. In this paper we mainly focus on the adjacent intervals and the precise holographic
dual for negativity of two disjoint intervals is still open. As pointed out by Dong, Qi and
Walter [54], there could be dominate contributions from replica non-symmetric saddles. How
to find the general holographic dual is essentially the key to find a general island formula.
Second, a CFT calculation to justify replica non-symmetric saddles. Inspired from [54], for
n= 2m replicas one can take Zm quotient and there are eight-point functions left over for two
disjoint intervals. Developing the CFT techniques to incorporate the replica non-symmetric
saddles is crucial to understand negativity in QFT. See also [57] for related discussion. Last,
compare our negativity curve to those in other models. For instance, there are recent studies
of negativity in JT+EOW models of evaporating black holes [58]. It would be interesting to
compare these results. We leave these to future work.
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A The OPE coefficient

We fix the OPE coefficient by comparing the order 1/2 Rényi reflected entropy and the entan-
glement negativity between two adjacent intervals A = [−ℓ1, 0] and B = [0,ℓ2]. The Rényi
reflected entropy is given by

S(1/2)R /2= lim
m→1

lim
n→1/2

log
¬

σgA
(−ℓ1)σg−1

A gB
(0)σg−1

B
(ℓ2)
¶

= lim
m→1

lim
n→1/2

log
Cn,m

ℓ
4hn
1 ℓ

4hn
2 (ℓ1 + ℓ2)4nhm−4hn

,
(A.1)

with [76]

Cn,m = (2m)−4hn , hn =
c

24

�

n−
1
n

�

. (A.2)

The entanglement negativity between A and B is (17)

E = lim
ne→1

log
¬

Tne
(−ℓ1) T̄ 2

ne
(0)Tne

(ℓ2)
¶

= lim
ne→1

log
CTne T̄ 2

ne
Tne

ℓ
2h′ne
1 ℓ

2h′ne
2 (ℓ1 + ℓ2)

4hne−2h′ne

. (A.3)

Comparing (A.1) and (A.3), we end up with

lim
ne→1

CTne T̄ 2
ne
Tne
= lim

m→1
lim

n→1/2
Cn,m = 2c/4 . (A.4)

B Four-point (six-point) function at large c limit

In this appendix we give a calculation of the four-point function in (51) at large c limit using the
method in [39,51]. Instead of four-point function, here we first consider a six-point function
as illustrated in fig.15, which gives the entanglement negativity between A (the red intervals
in fig.15) and B (blue). These six points are parameterized to

x1 = −a− r , x2 = −a+ r , x3 = −b , x4 = b , x5 = a− r , x6 = a+ r .
(B.1)

In the limit r = ε→ 0 the six-point function reduces to the four-point function in (51) with UV
cut-off ε. After a conformal transformation, we can map {x1, x3, x4} to {z1, z3, z4}= {0, 1,∞}
while sending

x2,5,6→ z2,5,6 =
(x2,5,6 − x1)(x4 − x3)

(x1 − x3)(x2,5,6 − x4)
, (B.2)
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conformal

transformation

Figure 15: Six point function (B.3) and the holographic dual of its OPE channel.
Three points {x1, x3, x4} are mapped to {z1, z3, z4}= {0, 1,∞} by a conformal trans-
formation. γp,q,r are contours chosen to determine the monodromies (B.9).

as shown in fig.15. At the large c limit with hi=1,...,6/c and ha=p,q,r/c fixed,16 the six point
function




T (z1)T (z2)T̄ (z3)T (z4)T̄ (z5)T̄ (z6)
�

, (B.3)

can be approximated by



T (z1)T (z2)T̄ (z3)T (z4)T̄ (z5)T̄ (z6)
�

≈ cp
12cq

p3cr
56cr

q4F(zi)F(z̄i) , (B.4)

where p, q, r label the leading order primaries in the OPE as shown in fig.16, ck
i j are the OPE

coefficients, and F is the six-point Virasoro block, which exponentiates at large c limit [39]

F ∼ exp
�

−
c
6

f
�

ha

c
,
hi

c
, zi

��

, (B.5)

with f the semiclassical block which can be computed by solving a monodromy problem.
Consider the following differential equation

ψ′′(z) + T (z)ψ(z) = 0 , (B.6)

where T (z) is given by

T (z) =
6
∑

i=1

�

6hi/c
(z − zi)2

−
ci

z − zi

�

, (B.7)

with ci the accessory parameters satisfying

6
∑

i=1

ci = 0 ,
6
∑

i=1

�

cizi −
6hi

c

�

= 0 ,
6
∑

i=1

�

ciz
2
i −

12hi

c
zi

�

= 0 , (B.8)

which guarantee that T (z) vanishes as z−4 at infinity. The differential equation (B.6) has two
solutions ψ1 and ψ2. If we take these solutions on a closed contour around some singular

16Here hi denotes the conformal weight of the external operator and ha the weight of the internal operator. In
this appendix we simply take the limit ne → 1 since we are going to calculate entanglement negativity ultimately,
thus we have hi = 0.
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Figure 16: Dominant fusion channel of the six-point function (B.3).

point, as illustrated in fig.15, they will undergo some monodromy
�

ψ1
ψ2

�

→ M

�

ψ1
ψ2

�

. (B.9)

The accessory parameters ci can be determined by (B.8) and the following three equations

TrMa = −2cos

�

π

√

√

1−
24
c

ha

�

, a = p, q, r, (B.10)

where Ma=p denotes the 2 × 2 monodromy matrix for the cycle γp enclosing z1 and z2 as
shown in fig.15, and the same is true for a = q, r; hp is the conformal dimension of the leading
operator in the OPE contraction of T (z1) and T (z2) as shown in fig.16, same for a = q, r.
From (16) we know that hp = hr = h′n=1 = −c/8 and we also have hq = hn=1 = 0 [53].

Now we can solve ci , and they are the partial derivative of f with respect to zi , i.e.,
∂ f /∂ zi = ci . Therefore, we can calculate the partial derivative of E with respect to the coor-
dinate parameters y = a, b, r in (B.1). From (B.4) we obtain

∂ E
∂ y
= −

c
3

6
∑

i=1

∂ f
∂ zi

∂ zi

∂ y
= −

c
3

6
∑

i=1

ci
∂ zi

∂ y
. (B.11)

On the other hand, the entanglement wedge cross section (dashed arc in fig.15) is given
by (see appendix A of [80])

EW =
Area[Γ ]

4GN
=

c
6
× 2 log

√

√

√(a− r)(a+ r)− b2 +
p

((a− r)2 − b2) ((a+ r)2 − b2)

(a− r)(a+ r)− b2 −
p

((a− r)2 − b2) ((a+ r)2 − b2)
. (B.12)

In the limit r = ε→ 0, we have

3
2

EW =
c
2

log
a2 − b2

bε
, (B.13)

which is the result in (51).17 The partial derivatives of E with respect to a, b, r are numerically
plotted in fig.17 - 19 and compared with that of 3EW/2. The two results match well.

C The length formula of L2

The computation of L2 in the coordinates (τ′, x ′, z′) is as follow. First we derive a general
expression of the length of geodesic shown in fig.20.

17The difference of a factor two is because (51) is the result after doubling trick.
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Figure 17: The partial derivatives of E and 3EW/2 (divided by c/3) with respect to a.
We take b = 10, r = 0.01 and a ranging from 10.2 to 15, in which region the OPE
channel dominates.

The radius of the geodesic Rg can be determined by |AC |= |BC |

|C D|=
d2 − h2

2d
, Rg = |CA|= |CB|=

d2 + h2

2d
. (C.1)

According to the metric given by (93), we can compute the length of geodesic

L0(d, h) =

∫ φB

φ=φε

l
Rg dφ

Rg sinφ
=
�

l log tan
φ

2

�φB

φ=φε
, (C.2)

where φB is the angle between CA and CB, φε comes from the the UV cut-off z′ = ε of the
asymptotic boundary. Using (d, h,ε) to express (φε,φB) and we get

L0(d, h) = l log
d2 + h2

εh
. (C.3)

Then we calculate L2. As shown in fig.12(b), N ′ can move on the extremal surface so we
introduce α to parameterize the position of N ′. The coordinate of N ′ can be represented by

Figure 18: The partial derivatives of E and 3EW/2 (divided by c/3) with respect to b.
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Figure 19: The partial derivatives of E and 3EW/2 (divided by c/3) with respect to r.

Figure 20: A slice perpendicular to the τ′−x ′ plane. The solid red line is the geodesic
with C its center. A and B are the ending points of the geodesic, with A on the τ′− x ′

plane and h the z′ coordinate of B. d is the distance between the projections of A and
B on τ′ − x ′ plane.

(τ′, x ′, z′) = (τ′0, x ′0 sinα, x ′0 cosα) with α ∈ (−π,π). So the length of geodesic connecting
N(τ′1, x ′1, 0) and N ′ is given by

L0(
q

(τ′0 −τ
′
1)2 + (x

′
0 sinα− x ′1)2, x ′0 cosα) = l log

(τ′0 −τ
′
1)

2 + (x ′0 sinα− x ′1)
2 + x ′20 cos2α

εx ′0 cosα
,

(C.4)
which is a function of α. By extremizing (C.4) with respect to α, we get (124) with

sinα=
2x ′0 x ′1

(τ′0−τ
′
1)

2+x ′20 +x ′21
.

D The length formula of L5

We calculate L5 (i.e. the length of the red curveùNN ′ in fig.21) in the coordinates (τ, x , z).
Since the expression of the matric is the same in (τ, x , z) and (τ′, x ′, z′), we can use (C.3) to
write the the length ofùNN ′

L0(
Æ

(τ0 sinγ−τ1)2 + (x0 − x1)2,τ0 cosγ) = l log
(τ0 sinγ−τ1)2 + (x0 − x1)2 +τ2

0 cos2 γ

ε̃τ0 cosγ
,

(D.1)
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EOW brane BCFT

Figure 21: This figure is fig.13(c) viewed in (τ, x , z) coordinates. The RT surfaces
(blue solid lines) are arcs centered on the x-axis. The entanglement wedge cross
section is drawn with a solid red line.

where γ is introduced to parameterize the position of N ′, ε̃ is the position-dependent cut-off in
(τ, x , z) coordinates which is given by ε̃= 4ε

(τ′1+1)2+x ′21
. Extremizing (D.1) leads to the extremal

solution

L5 = l log

Ç

�

τ2
0 +τ

2
1 + (x0 − x1)2
�2 − 4τ2

0τ
2
1

ε̃τ0
. (D.2)

We return to (τ′, x ′, z′) by coordinate transformation (90)

L5 = l log
2
q

�

(τ′0 −τ
′
1)2 + (x

′
0 − x ′1)2
� �

(τ′0τ
′
1 − 1)2 + (x ′0 x ′1 − 1)2 +τ′20 x ′21 +τ

′2
1 x ′20 − 1
�

ε(−1+τ′20 + x ′20 )
.

(D.3)
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