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Abstract

We study the ground state properties of the S =
1
2 staggered Heisenberg-Γ honeycomb

model under a magnetic field based on analytical and numerical methods. Our calcu-
lations show that the conventional zigzag and stripy phases are favored because of the
staggered Heisenberg interaction away from the pure Γ limit. In our classical analysis,
we find that the field induces a series of competing magnetic phases with relatively large
unit cells in the region sandwiched between the two magnetic phases with long-range
ordering. In the quantum treatment, these large magnetic unit cells are destabilized by
strong quantum fluctuations that result in the stabilization of a gapless quantum spin
liquid behavior. In a honeycomb Γ magnet, we disclose an intermediate-field gapless
quantum spin liquid phase driven by a tilted field away from the out-of-plane direc-
tion only for a narrow region between the low-field zigzag and high-field fully polarized
phases.
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1 Introduction

Searching for exotic states of matter, such as quantum spin liquid (QSL), in which frustra-
tions and quantum fluctuations prohibit spin arrangements with long-range order, has been
a subject of extensive research in condensed matter physics [1, 2]. The QSL state possesses
special features such as entanglement between spins over long distances and the absence of
spontaneous symmetry breaking in spin and crystal lattice degrees of freedom [2]. The decon-
fined fractionalized spin excitations, i.e., spinons, provide strong evidence of the long-range
entanglement pattern in QSL [3,4]. Kitaev QSL is a topological magnetic quantum state char-
acterized by fractionalizing the spin excitations into itinerant Majorana fermions coupled to a
Z2 gauge field in Kitaev’s compass model on a honeycomb lattice [5].

Recently, the search for realizing the Kitaev honeycomb model with Ising-like nearest-
neighbor anisotropic Kitaev interactions was focused on 5d [6,7] and 4d [8–13]Mott insulators
in which their Mott behavior arises from the interplay between correlation and strong spin-
orbit coupling (SOC) [14]. At the forefront of the Mott insulators with strong SOC are the
perovskite-related Ir oxides in which 5d orbitals are partially filled. Due to the large atomic
number and the extended nature of 5d element, the Ir compounds feature strong SOCs and
reduced electron-electron interaction compared to those of their 3d-electron counterparts.
SOC has been demonstrated to be responsible for the Mott insulating behavior of the 5d-
transition metal materials owing to the SOC splits the sixfold degenerate Ir t2g states into a
ground state quartet with Jeff = 3/2 is fully filled and an excited doublet Jeff = 1/2 forms a
half-filled energy band. Therefore, the bandwidth of this half-filled band is much narrower
than the original one in the absence of SOC. As a result, an intermediate interaction strength
on the 5d Ir atom is sufficient for opening an insulating Mott gap [15].

Significantly, the 4d spin-orbit Mott insulator α-RuCl3 has extensively emerged as a prime
candidate material for realizing Kitaev’s spin liquid state [8,9,16–20]. At zero field, the local
Jeff = 1/2 pseudospins in α-RuCl3 have coplanar configurations with long-range antiferro-
magnetic (AFM) zigzag order within the honeycomb lattice below the transition temperature
TN ≈ 7K [8,9,18]. This compound exhibits the zigzag order at sufficiently low temperatures
due to different magnetic interactions of non-Kitaev terms, such as the conventional Heisen-
berg interactions J and two types of off-diagonal exchange interactions (Γ , Γ ′) [9, 10, 18],
to drive the candidate material α-RuCl3 away from the QSL state. According to ab initio
studies, the off-diagonal Γ and Γ ′ interactions originated from SOC [21] and trigonal dis-
tortion [22–24], respectively. It is worth noting that the symmetric off-diagonal exchange in-
teraction Γ plays a critical role in determining the long-range AFM zigzag order for the Kitaev
material at low temperatures [21,25].

Intense theoretical research over the recent years has focused on studying the general
Kitaev-Heisenberg-Γ model for describing the potential QSL in α-RuCl3 [26–34]. In Refs. [20,
35], they indicated that the general model with ferromagnetic (FM) K and AFM Γ of similar
magnitude for α-RuCl3 could explain the appearance of both the large magnetic anisotropy [8,
9, 20, 36, 37] and the broad magnetic continuum excitation around the zone center [10, 18].
Despite the zigzag order of α-RuCl3 at low temperatures, several experimental results have
revealed evidence for a field-induced QSL in this compound with an in-plane critical magnetic
field of HC ≈ 7 T [8,9,17,26,36,38–42]. This intermediate QSL phase can be realized between
the low- and high-field phases only for a finite range of magnetic fields. However, the precise
nature of the intermediate phase [43, 44] and either gapless or gapped [26, 39, 41, 45, 46] is
unclear to require further studies. In recent experimental observations [16,18,26], signatures
of fractionalized excitations, in line with those found in the QSL ground state of the Kiatev
model, have emerged in Kitaev candidates, such as α-RuCl3. Meanwhile, the half-integer
thermal Hall conductance in α-RuCl3 under the intermediate magnetic field demonstrates the
fractionalization of spins into itinerant Majorana fermions and Z2 fluxes [42,47–49].
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Figure 1: (a) Schematic illustration of the honeycomb lattice with the lattice basis
vectors a1,2 = (±1/2,

p
3/2). Bond directions γ ∈ {x , y, z} are labeled by different

colors. The three distinct nearest-neighbors on a honeycomb lattice links are indi-
cated by δx =

1
3(−2a1+a2), δy =

1
3(a1−2a2), and δz =

1
3(a1+a2). (b) The magnetic

field angle θ is measured from the out-of-plane [111] axis.

It has been predicted theoretically that the exchange interactions in α-RuCl3 can be ma-
nipulated experimentally via octahedral distortion and layer stacking. For example, the off-
diagonal anisotropic exchange coupling Γ can become unusually large by applying compres-
sion [50]. The strength of the Heisenberg interaction in α-RuCl3 compared to the anisotropic
exchange interactions K and Γ can be made small enough using the circularly-polarized light
[51]. Meanwhile, leveraging coherent light-matter interaction with proper amplitude and fre-
quency is a promising new direction toward controlling the Kitaev interaction [52,53]. Hence,
all the spin interactions can be tuned in situ by these methods, providing a route to have a
honeycomb Γ magnet with dominated Γ interaction [54].

In this present paper, we study the ground state of the staggered Heisenberg-Γ model [55]
under both in-plane and out-of-plane magnetic fields. However, this model is not proposed to
describe a special compound, but the scientific model enables us to make predictions on the
possible existence of field-induced QSL phase in the honeycomb Γ magnet. Based on the iter-
ative minimization method, we first try to find the classical ground state phase diagram of the
staggered Heisenberg-Γ model. The classical phase diagram hosts exotic magnetic phases with
large unit cells close to the Γ -dominant region implying the existence of competition between
the frustrated Γ exchange interaction and the external field. These classical phase diagrams
would provide valuable insights into phases that suffer from finite-size effects in the quan-
tum limit. Then, we study the effects of quantum fluctuations on the stability of the classical
ground state using a theoretical method such as linear spin-wave theory (LSWT), and the den-
sity renormalization group (DMRG) is a numerical method. Based on the DMRG calculation,
our results reveal that the magnetic phases with relatively large unit cells are unstable to a
gapless QSL state under strong spin fluctuations. Meanwhile, the spin excitations in the QSL
phase remain gapless even under an external magnetic field. This result is independent of the
field direction.

This paper is structured as follows: In Sec. 2, we describe the staggered Heisenberg-Γ
model on a honeycomb lattice under a uniform magnetic field, and its classical and semiclassi-
cal phase diagrams are presented in Sec. 3. We also discuss quantum ground state properties
in Sec. 4 using the numerical results from the DMRG method. Finally, in Sec. 5, we summarize
our main conclusions.
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2 Model Hamiltonian

We study the staggered Heisenberg-Γ model with bond-dependent interactions in the honey-
comb Γ magnet is given by:

H =HSJ +HΓ +Hh ,

HSJ = J
∑

〈i j〉||γ

ηγSi · S j ,

HΓ = Γ
∑

〈i j〉||γ

�

Sαi Sβj + Sβi Sαj
�

,

Hh = −
∑

i

h · Si ,

(1)

where Sγi is the γ-component of the spin-1/2 operator at site i, which γ ∈ {x , y, z} labels the
type of the three nearest-neighbor bonds 〈i j〉 on a honeycomb lattice, as shown in Fig. 1(a).
On the z-bonds, (α,β ,γ) = (x , y, z) and for the x- and y-bonds obtain with cyclic permutation.
Here, HSJ is the staggered Heisenberg exchange interaction between the nearest-neighbor sites
in which ηγ = −1 for the bonds along the zigzag spin chains (x- and y-bonds) and equals +1
for the bonds between the zigzag spin chain (z-bonds). Depending on the sign J , the staggered
Heisenberg model favors either the zigzag magnetic state (J > 0) or the stripy magnetic state
(J < 0). Here, we consider an isotropic staggered Heisenberg interaction. While the spin-1/2
Heisenberg model on honeycomb lattice with mixing FM and AFM interactions along zigzag
and armchair directions, respectively, may initially appear counterintuitive, recent theoreti-
cal studies of two-dimensional magnetic systems, such as Cr-trihalides, demonstrate that ex-
change interactions can switch sign from FM to AFM coupling even with minimal variations in
bond distances and angles [56]. This finding aligns with the Kanamori-Anderson-Goodenough
rules, which highlight the critical role of bond angles at the anion site mediating interactions
between cations [57–59]. Theoretical calculations on iron phosphorus trisulfide (FePS3) un-
veil a remarkable consequence of orbital ordering. Despite inducing a subtle variation of only
0.1 angstrom in Fe-Fe distances, these lattice distortions trigger a differentiation in exchange
interactions. Consequently, the ground state exhibits FM order along zigzag chains and AFM
order along armchair chains [60]. In addition, HΓ is the symmetric off-diagonal interaction
to exhibit a macroscopic ground state degeneracy in the classical limit, so-called classical spin
liquid (CSL) [61, 62]. The last term in (1) illustrates a uniform external magnetic field that
can be applied in various directions to the honeycomb Γ magnet. Meanwhile, the couplings
are parameterized as J = cosφ and Γ = sinφ with φ/π ∈ [0, 1].

3 Classical and semiclassical study

3.1 Iterative minimization

In this section, the classical phase diagram of the staggered Heisenberg-Γ model is mapped
out in the presence of an external magnetic field. The iterative minimization method [63,64]
has been used for the calculations. Here, we start with a random configuration of the spins on
a honeycomb lattice. Then in each step of the iterative process, a spin is selected randomly,
and its orientation is adjusted to minimize its energy. This process is achieved by aligning the
selected spin with the local field produced by its neighbors while keeping its length unity. For
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Figure 2: (a) Classical phase diagram for the staggered Heisenberg-Γ model under
an external magnetic field in the direction of [111] obtained from the iterative min-
imization method. The phase diagram includes the canted zigzag, canted mixed,
canted NCP, CSL, 6-site, canted stripy, and polarized phases. (b) Ground state en-
ergy per site, eg , and its second derivative with respect to φ/π, χφ = −d2eg/dφ

2,
for a constant external field of h/S = 0.25. The four singular behaviors in the sec-
ond derivative represent phase transition points. (c-e) Static spin structure factors
of different phases on the high symmetry lines of the FBZ. (f) The real-space spin
configuration of the 6-site magnetic ordering is denoted on a finite segment of the
honeycomb lattice.
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Figure 3: The evolution of the zigzag magnetic ordering under an external magnetic
field in the direction of [111] projected on the ac plane for given φ/π = 0.35 and
some values of the field strength: (a) h/S = 0, (b) h/S = 1.25, (c) h/S = 1.75, (d)
h/S = 2.5.

the staggered Heisenberg-Γ model, the local field in the position of spin Si is given by:

Mi =

 

J
∑

j:〈i j〉

ηi jS
x
j + Γ

∑

j:〈i j〉||y

Sz
j + Γ

∑

j:〈i j〉||z

S y
j

!

x̂

+

 

J
∑

j:〈i j〉

ηi jS
y
j + Γ

∑

j:〈i j〉||z

S x
j + Γ

∑

j:〈i j〉||x

Sz
j

!

ŷ

+

 

J
∑

j:〈i j〉

ηi jS
z
j + Γ

∑

j:〈i j〉||x

S y
j + Γ

∑

j:〈i j〉||y

S x
j

!

ẑ ,

(2)

where sums are run over js that are the nearest neighbors of the i site. Therefore, the model
Hamiltonian in the presence of an external magnetic field can be rewritten in terms of Mi in
the following form:

H =
Ns
∑

i=1

(Mi − h) · Si , (3)

where h is an external applied magnetic field. From the above Hamiltonian (3), we conclude
that the energy can be minimized when we adjust spin Si as Si = −(Mi − h)/|Mi − h|. The
adjusting of spins is continued until the method converges to some local energy minimum.

We start with a honeycomb lattice with two triangular sub-lattices and with a shape of a
parallelogram with periodic boundary conditions. The sizes of lattices were 8 × 8, 10 × 10,
12 × 12, 16 × 16, and 24 × 24 sites each in total consisting of Ns sites; i.e., Ns is 128, 200,
288, 512, and 1152, respectively. Then, we run a large updating loop for every value for the
coupling constants, and on each iteration of the loop, we pick Ns spins for updating.
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The ground state of this system consists of some highly complex spin configurations in some
regions of its phase diagram. This makes it difficult for this method to find the actual ground
state of the system for some regions of the coupling constants. Our calculations are frequently
stuck in some local minima in these regions. To solve this problem, we applied a collective
iterative method where parallel iterative calculations are started from several different initial
spin configurations, and the state with the lowest energy is selected as the ground state in the
end.

After finding the spin configuration of the ground state, we plot the spin arrangements in
real space and look at the arrangements of the spin components. When the spin configuration
of the ground state is commensurate with the lattice constant, there is a finite number of spins
with a spin structure that repeats through the lattice. The spin structure, which repeats, is
the magnetic unit cell. For such situations, this method typically ends with domains separated
by domain walls. If we restart the program with a random spin configuration close to the
proposed actual ground state, the code rapidly converges to the actual ground state without
any domain wall.

To determine the ordering wave vector of the ground state, we calculate the static
spin structure factor, which is the Fourier transform of the spin-spin correlation as
S(k) = N−1

∑

i j〈Si · S j〉eik·(ri−r j). Therefore, this method would be convenient for the de-
scription of both commensurate and incommensurate structures. After calculating the Fourier
transforms, we plot the distribution of the Fourier magnitudes of the spin-spin correlation
along the high symmetry lines in the first Brillouin zone (FBZ). This static spin structure factor
can be viewed as a fingerprint of different spin configurations. Typically, we observe one or
a few peaks in the high symmetry line, which gives the ordering wave vector of the magnetic
state.

Zero-field phase diagram of the staggered Heisenberg-Γ model obtained from the iterative
method coincides precisely with the Monte Carlo phase diagram in Ref. [55]. The classical
phase diagram for the particular case with h/S = 0 includes four distinct phases: (i) Commen-
surate zigzag-type state for φ/π < 0.5, (ii) Mixed phase for 0.5 ⩽ φ/π ⩽ 0.65, where there
exists a degeneracy between a AFM order and two twining zigzag (twining ZZ) phases. Note
that the twining ZZ phases differ from the conventional zigzag-type phase due to their spin ori-
entations (not shown) [55]. (iii) Noncollinear phase (NCP) with incommensurate wave vector
is stable within a narrow range of about 0.02 beyond the mixed phase. (iv) Commensurate
stripy-type state for 0.67⩽ φ/π⩽ 1.

The classical phase diagram for the staggered Heisenberg-Γ model under an external mag-
netic field in the [111] direction obtained from the iterative minimization method is shown

Figure 4: Color map of the static spin structure factor S(k)within the FBZ for the CSL
phase averaged over 30 different random runs for given φ/π= 0.5 and h/S = 0.51.
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Figure 5: (a) Same as Fig. 2(a), but for the external magnetic field in the direction
of [001]. The phase diagram includes the canted zigzag, CSL, canted mixed, canted
NCP, canted stripy, and polarized phases. (b) Ground state energy per site, eg , and
its second derivative with respect to φ/π, χφ = −d2eg/dφ

2, for a constant external
field of h/S = 0.35. The three singular behaviors in the second derivative represent
phase transition points.

in Fig. 2(a). Fig. 2(b) shows the classical ground state energy per site, eg , and its second
derivative with respect to φ/π, χφ = −d2eg/dφ

2 for given h/S = 0.25. The anomalies in the
second derivative match very well with the phase transition points in the phase diagram.

Details of the magnetic orders can be determined by the real spin configuration and the
developments in the static spin structure factor. To clarify the evolution of any magnetic or-
dering in the presence of a magnetic field, we parameterize the spin Si at site i in terms of ϑi
and ϕi where are the spherical angles in the local reference frame as defined in (5):

Si/S = sinϑi cosϕi ẽx + sinϑi sinϕi ẽy + cosϑi ẽz , (4)

the (ẽx , ẽy , ẽz) basis are aligned along the crystallographic a,b,c directions, whose directions
in the basis of the spin axes are given by [112̄], [1̄10], and [111], respectively [Fig. 1(b)].
For the field in the [111] direction, a canted spin state is defined with ϑi > 0, while we have
ϑi = 0 for the fully polarized state. Fig. 3 shows canted magnetic moments in the zigzag state
smoothly connected to the high-field polarized state by increasing the field. In the stability
region associated with the zigzag and stripy states, the structure factor peaks at the M2 point
for given h/S = 0 (not shown). Turning on the field, the zero-field phases are canted towards
the field direction, and therefore a different peak appears at the Γ point as expected [Fig. 2(d)].
By increasing the field, even further, the anomaly at the M2 point decreases, and the one Bragg
peak at the Γ point simultaneously increases. For a critical field at which the system goes to
the polarized phase, the structure factor would have a single peak at the Γ point (not shown).
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Figure 6: (a) Same as Fig. 2(a), but for the external magnetic field in the direction
of [112̄]. The phase diagram includes the canted zigzag, CSL, canted mixed, canted
NCP, canted stripy, and polarized phases. (b) Ground state energy per site, eg , and
its second derivative with respect to φ/π, χφ = −d2eg/dφ

2, for a constant external
field of h/S = 0.25. The four singular behaviors in the second derivative represent
phase transition points.

Structure factors for the one associated with the canted mixed phase with the triple degeneracy
is indicated in Fig. 2(c), and three points in the canted NCP, canted stripy, and canted zigzag
phases are shown in Fig. 2(d) as well.

As shown in Fig. 2(a), beyond the canted-mixed and -NCP phases before entering the
high-field polarized state, for a wide range of the field strengths, the model exhibits an in-
termediate region including a CSL state, and a 6-site order with six sublattices per unit cell
[Fig. 2(f)]. For high fields before the polarized phase, there is a new phase with a 6-site order
for 0.46 < φ/π < 0.64. For this phase, there are peaks in the structure factor S(k) near K
and K′ points [Fig. 2(e)]. The CSL phase, which appears at intermediate-field strengths, is
characterized by a macroscopically-degenerate ground state at the classical level. In Fig. 4,
an average of the structure factor over 30 different realizations of the CSL phase for given
φ/π= 0.5 and h/S = 0.51 is shown. The existence of the CSL phase is verified by the lack of
magnetic ordering, with only the Γ point intensity (i.e., the magnetization). The absence of
any sharp peak in the rather featureless structure factor of the intermediate phase is indica-
tive of the CSL phase. It is worth mentioning that for other field directions along [001] and
[112̄], in contrast, the canted mixed phase is found to cover a remarkably larger parameter
region until the critical field at which the system goes to the polarized phase. In addition to,
an intermediate CSL phase emerges between the canted zigzag and polarized phases close to
the Γ -dominant region, as shown in Figs. 5 and 6.
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Figure 7: (a) Semiclassical ground state phase diagram for the staggered Heisenberg-
Γ model under an external magnetic field in the direction of [111] obtained from
the LSWT. The phase diagram includes the polarized magnetic phase at the higher
fields, and the canted zigzag, spiral, and canted stripy phases in the lower fields. The
obtained magnon spectra, along high symmetry lines in the FBZ (see inset), in going
from the polarized phase to its neighbor phases: (b) the canted zigzag phase, (c) the
spiral phase, and (d) the canted stripy phase.

3.2 Instability of the polarized state from spin-wave theory

As shown in the classical phase diagrams of the staggered Heisenberg-Γ model [Figs. 2, 5,
and 6] all the spins are aligned along the applied field direction in the ultra-high-fields limit,
which is called a polarized phase. To get further insight into the effects of quantum fluctuations
on the fully polarized phase, we use the LSWT within the semiclassical approximation. The
spin-wave theory is a convenient approach to describe quantum fluctuations in the ordered
states [65]. The quantum fluctuations modify the phase boundaries in the classical phase
diagrams. The shift of the phase boundaries between classical states due to quantum effects
can be quantitatively computed using the spin-wave theory.

Here, we analyze the transition from the polarized phase in the high-field to low-field
phases in terms of magnon excitations. Note that the magnetic phase transition is character-
ized by the closing of the low-energy magnon gap in the wave vector of the FBZ at some critical
field hc . The spin configuration of the low-field phases is determined by the wave vector in
which the magnon gap closes. This results a Bragg peak in the static structure factor with this
special wave vector.

To understand the magnetic phases in the lower fields, we take the high-field phase as
a reference state. All spins in the fully polarized state are ferromagnetically aligned in the
external magnetic field direction. Therefore, we have to rotate the original cubic axes basis
(ex ,ey ,ez) into the local bases (ẽx , ẽy , ẽz) such that the spin-quantization axis is aligned along
the external field direction (ẽz||h). The unit vectors within the new reference frame (ẽx , ẽy , ẽz)
are given by:

ẽx =
(ez × h)× h
|(ez × h)× h|

, ẽy =
ez × h
|ez × h|

, ẽz =
h
|h|

. (5)

Then, we express the spin Hamiltonian (1) in the new spin-S̃ coordinate system. To access
the magnon excitation spectrum, we now rewrite the new spin operators in terms of bosonic
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modes using the linearized Holstein-Primakoff transformations, which for the FM case are
given by:

S̃i,A =
p

2Sai , S̃z
i,A = S − a†

i ai ,

S̃i,B =
p

2Sb†
i , S̃z

i,B = S − b†
i bi ,

(6)

where ai/bi (a
†
i /b

†
i ) stand for the annihilation (creation) operators of the A/B sublattices

magnons of the honeycomb lattice. After the Fourier representation of the Holstein-Primakoff
bosonic operators, we can obtain the LSWT Hamiltonian in momentum space as follows:

HLSW = S
∑

k

�

Λ0(a
†
kak + b†

kbk) +Akakb†
k +A

∗
ka†

kbk +Bkakb−k +B
∗
ka†

kb†
−k

�

. (7)

in which Λ0 = (J − 2Γ + h/S) for h||[111] and Λ0 = (J + Γ + h/S) for h||[112̄], while for
h||[001] is given by Λ0 = (J + h/S). Meanwhile,

Ak =











−(J + Γ3 )
�

eik·δx + eik·δy
�

+ (J − Γ3 )e
ik·δz , for h ∥ [111] ,

−(J − Γ3 )
�

eik·δx + eik·δy
�

+ (J − Γ6 )e
ik·δz , for h ∥ [112̄] ,

−J
�

eik·δx + eik·δy − eik·δz
�

, for h ∥ [001] ,

(8)

and

Bk =











Γ
�

(−1
3 −

ip
3
)eik·δx + (−1

3 +
ip
3
)eik·δy + 2

3 eik·δz

�

, for h ∥ [111] ,

Γ
�

(1
3 −

ip
6
)eik·δx + (1

3 +
ip
6
)eik·δy + 5

6 eik·δz

�

, for h ∥ [112̄] ,

Γ ei(k·δz+
π
2 ) , for h ∥ [001] ,

(9)

where δγ indicates the vector that connects an arbitrary site on a honeycomb lattice to its three
nearest neighbors [Fig. 1(a)]. Here, we drop the constant terms because they do not affect
the magnon excitation spectrum.

The analog with a transition to the traditional Bose-Einstein condensation (BEC) state that
corresponds to a spontaneous breaking of the continuous U(1) symmetry that preserves the
number of bosons, a spontaneous transition to a BEC state can be realized in quantum mag-
nets with the SO(2) spin rotational symmetry [66,67]. In magnetic systems, the longitudinal
magnetization parallel to the magnetic field maps into the boson density. Therefore, the boson
number conversation corresponds to the continuous symmetry of global spin rotations along
the field direction (uniaxial symmetry). In the h→∞ limit, the rotational symmetry around
the direction of the magnetic field (SO(2)) approximately restores. As a result, the physical
picture of the magnon-BEC works in the presence of an external magnetic field. It is important
to mention that the boson density, which plays the role of a chemical potential of magnons,
can be tuned via the magnetic field strength leading to the formation of a BEC. It is worth
mentioning that the magnon-BEC picture is suitable for understanding some central features
containing the spectrum of excitations, the nature of the field-induced ordered state right be-
low the critical field, the dynamical properties near the BEC quantum critical points to separate
the polarized state in the high-field to low-field phases.

To consider the magnon-BEC of the fully-polarized phase for the high-fields to its neighbor
phases by decreasing the field magnetic, we obtain the magnon spectra by diagonalization of
the quadratic Hamiltonian (7) via a standard Bogoliubov transformation [68]. The magnon
spectrum of the high-field phase in the absence of Goldstone modes is fully gapped (∼ hS) (not
shown). Above all zero-field classical phases within large h/S≫ |J | and |Γ |, the minimum of
the magnon spectrum is located at the Γ point of FBZ. Now, we can investigate the transition to
a uniform canting energetically favorable which is often revealed by a gap-closing phenomenon
at certain wave vectors within the FBZ.
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For field h ∥ [111]: The semiclassical ground state of the staggered Heisenberg-Γ model
under an external magnetic field in the direction of [111] is shown in Fig. 7(a). At the high-
field limit, there is a FM phase along the field polarization direction. With decreasing the field
strength, we find that for φ/π ∈ [0,0.46], the magnon gap vanishes at wave vector q=M2
of the FBZ [Fig. 7(b)]. The gap-closing at q=M2 illustrates that the system makes a continu-
ous phase transition from the polarized state to the canted zigzag phase in which the system
exhibits a long-range magnetic order. On further decreasing the field strength, the soft modes
for the magnon branch will result in imaginary spectra, well known as magnon instability, al-
lowing us to identify that the fully polarized phase is unstable. For the intermediate values of
φ/π ∈ [0.46,0.66], we find that the magnon gap suppression occurs at an incommensurate
wave vector along the K′ −M2 in the FBZ [Fig. 7(c)]. This magnetic phase with an incommen-
surate wave vector is called a spiral state. For φ/π > 0.66, the magnons condense at the M2
point corresponding to the ordering vector of the canted stripy phase [Fig. 7(d)].

It is worth mentioning that close to the quantum phase transition, the magnetic correlation
length diverges as ξ∼ |h−hc|−ν with ν= 1/z [69,70]. Here, z and ν are dynamic- and critical-
exponent, respectively. As shown in Figs. 7(b-d), the dynamic critical exponent is z = 1 because
the magnon spectra exhibit a linear form at the critical fields where the magnon gap closes at
certain wave vectors within the FBZ [70].

For field h∥[001]: For the external magnetic field in the direction of [001], the semiclas-
sical phase diagram includes the polarized magnetic phase at the higher fields and also the
canted-zigzag and -stripy phases in the lower fields, as illustrated in Fig. 8(a). Condensa-
tion of magnons at the M2 point with a linear dispersion results in the canted zigzag phase
for φ/π < 0.5 [Fig. 8(b)]. As a result, the correlation length critical exponent of the canted
zigzag phase is ν = 1 which may be the z = 1 3D Ising universality class [70]. The canted
stripy phase is stable φ/π > 0.5, for which condensation of magnons occurs at the M2 point
with a quadratic dispersion [Fig. 8(c)]. Therefore, the critical exponent of the canted stripy

Figure 8: (a) Same as Fig. 7(a), but for the external magnetic field in the direction of
[001]. The phase diagram includes the polarized magnetic phase at the higher fields
and the canted-zigzag and -stripy phases in the lower fields. The obtained magnon
spectra, along high symmetry lines in the FBZ (see inset), in going from the polarized
phase to its neighbor phases: (b) the canted zigzag phase, and (c) the canted stripy
phase.
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Figure 9: (a) Same as Fig. 7(a), but for the external magnetic field in the direction of
[112̄]. The phase diagram includes the polarized magnetic phase at the higher fields
and the canted zigzag, spiral, AFM, and canted stripy phases in the lower fields. The
obtained magnon spectra, along high symmetry lines in the FBZ (see inset), in going
from the polarized phase to its neighbor phases: (b) the canted zigzag phase, (c) the
canted stripy phase, (d) the spiral phase, and (d) the AFM phase.

phase is ν= 1/2, similar to the conventional magnon Bose-Einstein condensation [67].
For field h||[112̄]: Here, we investigate the semiclassical phase diagram of the staggered

Heisenberg-Γ model for the external magnetic field in the [112̄] direction. For this case, the
model exhibits a rich phase diagram including the fully polarized phase at the higher fields
and the canted zigzag, spiral, AFM, and canted stripy phases in the lower fields [Fig. 9(a)].
The canted-zigzag and -stripy orders, with the gap closing at the q =M2 point, are stable for
φ/π ∈ [0, 0.28] and φ/π ∈ [0.65, 1], respectively. In addition, the critical exponent for both
of them is ν = 1/2 due to the magnon spectra in the vicinity of the M2 point has a quadratic
form [Figs. 9(b-c)]. The intermediate phase with the spiral order forms for φ/π ∈ [0.28, 0.52]
is described by an incommensurate wave vector along the K − Γ of the FBZ [Fig. 9(d)]. For
φ/π > 0.52, we find that the system transitions from the spiral phase to the AFM order with
q = Γ , which remains stable up to φ/π = 0.65. For these intermediate phases, the magnon
spectra have a linear form [Figs. 9(d-e)], then the correlation length critical exponent is ν= 1.
The discrepancy between the phase diagrams of the staggered Heisenberg-Γ model in the
presence of the in-plane and out-of-plane fields can be related to a key role played by the
symmetric off-diagonal Γ interaction [21,32,71].
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Figure 10: The top row illustrates the classical phase transitions of the staggered
Heisenberg-Γ model as the parameter φ/π changes from 0 to 1, with model param-
eters defined as J = cosφ, Γ = sinφ. This behavior is shown for three magnetic
field orientations at a fixed strength (h = 0.2): (a) parallel to the [111] direction,
(b) parallel to the [001] direction, and (c) parallel to the [112̄] direction. The bot-
tom row presents the corresponding quantum ground state phase diagrams obtained
using DMRG on a 2 × 4 × 4 cylinder for the same three magnetic field directions,
(d) h||[111], (e) h||[001], and (f) h||[112̄]. The dash-dotted line in panels (d-f)
demarcates the boundary of the polarized phase. This line corresponds to the critical
field, hc(φ), where the magnon gap closes.

4 Quantum spin-1/2 ground state

Here, we study (1) with spin-1/2 constituents within the context of quantum simulation. The
ground state of the staggered Heisenberg-Γ model at zero field [i.e., (1) with h = 0] in the
range of 0≤ φ/π≤ 1 has recently been considered by Luo et al [55]. Their results signal the
emergence of a gapless QSL state in the range of 0.5 ≲ φ/π ≲ 0.66. In addition, for small
values of φ/π, the zigzag ordering is stable up to φ/π≃ 0.5 and φ/π≳ 0.66, and the system
transitions from the gapless QSL state to the stripy phase.

To investigate the quantum phase diagram of (1), we use the DMRG method which is one of
the most powerful techniques for computing the ground state of strongly correlated quantum
many-body systems [72,73]. To this end, we perform quantum simulation on both hexagonal
clusters and a series of finite cylinders based on the matrix product states via the open-source
ALPS library [74]. Here, we use a C3-symmetric hexagonal cluster with N = 24 sites under full
periodic boundary conditions, as shown in Fig. 1(a). In addition, we consider the honeycomb
cylinders of 2× L ×W , where L and W are the number of unit cells along the two primitive
vector directions. We will provide numerical evidence for the excitation gaps, the static spin
structure factor, and the susceptibilities χh = −d2eg/dh2, where eg = Eg/N is the ground state
energy density, through the DMRG simulation. Then, we investigate the importance of finite
size effects by employing the DMRG method on both C3-symmetric hexagonal clusters with
N = 18,24, 32, and 54 under full periodic conditions and also finite cylinders with cluster
sizes of N = 2× 4× n (n = 3, 4,5, and 6). In addition, the truncation error is decreased to
10−5J or smaller by keeping 1000 density matrix eigenstates in the renormalization procedure
and performing 10 sweeps.

In the following, we will focus on the effect of an external magnetic field on the quantum
phase diagram of the staggered Heisenberg-Γ model [55]. Our results show that the external
magnetic field influences the zero-field quantum phase diagram. Quantum phase diagrams in
the φ/π−h plane for the various field directions h||[111], h||[001], and h||[112̄], which were
obtained through the numerical DMRG method, indicated in Figs. 10(d-f). For a tiny field, all
spins in the stripy- or zigzag-ordering are canted toward the field. With increasing the field
strength, a continuous phase transition occurs from the canted-zigzag and -stripy phases to the
fully polarized phase in a critical field. Close to the Γ limit (φ/π∼ 1/2) for given h= 0, there
exists a phase transition from the zigzag phase to the gapless QSL phase [55]. It is worth men-
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Figure 11: (a) The first thirteen excitation gaps ∆ν (ν = 1 − 13) of the staggered-
Heisenberg Γ model under a [112̄] magnetic field at h = 0.1 were obtained us-
ing DMRG on a 24-site hexagonal cluster. (b) The first thirteen energy gaps ∆ν
(ν = 1− 13) for the canted zigzag phase (φ/π = 0.2), the ΓSL state (φ/π = 0.54),
and the canted stripy phase (φ/π = 0.8). The size dependence of the two lowest
excitation gaps ∆1 and ∆2 at φ/π = 0.54 and h = 0.1 on both (c) C3-symmetric
hexagonal clusters with N = 18,24, 32, and 54 and (d) a series of finite cylinders
with N = 2× 4× n (n= 3, 4,5, and 6) sites.

tioning that the unique aspect of the quantum phase diagrams in Figs. 10(d-f) is the stability
of the QSL phase in a magnetic field with a finite extent at low fields. As is clear, the stability
region of the QSL phase in Fig. 10(d) with field along the h||[111] direction is approximately
twice that of the other two directions, i.e., h||[001] and h||[112̄] [Figs. 10(e-f)]. As the mag-
netic field is tilted away from the [111] direction, the stability region of QSL begins to reduce
in the φ/π−h plane. This discrepancy can be attributed to the off-diagonal Γ exchange inter-
action [21, 32, 71]. Here, we consider the dependence of the finite size effects on the phase
boundary between two phases of different orderings in Figs. 10(d-f). Our results indicate that
the peaks of susceptibilities become narrower and sharper with the increase in the system size,
and the peak locations shift slightly. DMRG calculations unveil that classical magnetic phases
with large unit cells, such as CSL, canted NCP, and canted mixed, become unstable towards
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Figure 12: (a) Color map of the static magnetic structure factor S(k) within the FBZ
of the staggered-Heisenberg Γ model under a [112̄] magnetic field at φ/π = 0.46
obtained using DMRG on a 2 × 4 × 4 cylinder within the canted zigzag, ΓSL, and
polarized phases. (b) The magnetization −deg/dh (dashed line) and magnetic sus-
ceptibility −d2eg/dh2 (solid line) as a function h of the θ = 90

◦
tilted field, for given

φ/π= 0.46.

a QSL state in the presence of strong spin fluctuations, as illustrated in Fig. 10. While the
standard spin wave theory successfully captures quantum effects within the ordered states, it
fails to describe the shifts of the phase boundaries by quantum fluctuations [see Figs. 10(d-f)].

To elucidate the nature of the QSL phase in the presence of the uniform magnetic field,
we study the first few lowest excitation gaps ∆ν = Eν − Eg with ν = 1− 13 as a function of
φ/π in the staggered Heisenberg-Γ model under a [112̄] magnetic field, for given h = 0.1
[Fig. 11(a)]. For both the canted zigzag order and the canted stripy order, the first excitation
gap ∆1 becomes vanishingly tiny. Therefore, this result illustrates that these magnetic phases
are indeed doubly degenerate. As is apparent, the excitation gaps ∆ν with ν ⩾ 2 survive
for both the zigzag order (φ/π = 0.2) and the stripy order (φ/π = 0.8) [Fig. 11(b)]. With
increasing φ/π across φ/π = 0.49, the second excitation gap ∆2 of the canted zigzag phase
gradually reduces to vanishingly small and the system undergoes a quantum phase transition
from the canted zigzag phase to the QSL sate [Fig. 11(a)]. Beyond the canted zigzag phase,
it unveils a unique feature: Excitation gaps are small in a large interval and the low-energy
spectrum is very dense. Our results illustrate the signatures of a gapless region [50, 75, 76].
Independent of the magnetic field strength, the excitation gap is still highly dense in the QSL
phase (not shown). As can be seen from Fig. 11(b), the excitation gaps at φ/π = 0.54 of
the QSL region continuously enhance without an abrupt rise. This successive increase of the
excitation gap may give evidence for the absence of a macroscopically-degenerate ground
state.

To consider the extrapolations of the two lowest excitation gaps (∆ν,ν= 1, 2) of the QSL
region as a function of the system sizes, we have performed large-scale DMRG calculations on
both hexagonal and cylinder clusters as presented in Figs. 11(c) and (d), respectively. With the
increase in the system size (N), the excitation gaps begin to quickly decrease on both distinct
cluster geometries. Similar to the case of the zero-field limit [55], we predict that the lowest
gap should be vanishingly small in the thermodynamic limit due to the overall downward
trend in the two lowest excitation gaps. Further, the vanishing lowest excitation gap in a large
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enough system size indicates that the QSL phase of the staggered Heisenberg-Γ model under
the [112̄] magnetic field is still a gapless state called a ΓSL phase. It is worth mentioning that
we cannot find any signature from the possible existence of a field-induced gapped QSL phase
by switching the magnetic field from the in-plane [112̄] axis towards the out-of-plane [111]
axis.

A comparison of the DMRG phase diagrams of the staggered Heisenberg-Γ model on a hon-
eycomb lattice under a uniform magnetic field shows that a small region of an intermediate-
field ΓSL state near the pure Γ limit (φ/π = 1/2) emerges when the external magnetic field
has the in-plane components of the field [Fig. 10]. To investigate in detail the intermediate-
field ΓSL phase for the honeycomb Γ magnet with the in-plane field h||[112̄], we illustrate
the magnetization m = −deg/dh, magnetic susceptibility χh = −d2eg/dh2, and static spin
structure factor as a function of h, for given φ/π = 0.46 in Fig. 12. As is apparent, the phase
transitions are signaled by two singular behaviors in χh and the spin configuration of the dif-
ferent phases on either side of these anomalies points are characterized by the Bragg peaks in
S(k). Close to h ≈ 0.15, the system undergoes a continuous phase transition from the canted
zigzag phase with a Bragg peak only at the M point to the ΓSL phase without any peak in the
reciprocal space. With an increase in h up to h = 0.18, the phase changes from the ΓSL state
to a fully polarized phase in which the static spin structure factor has a finite value only at the
Γ point. Similar to the Kitaev materials that an intermediate QSL phase emerges between the
low-field and high-field phases owing to different magnetic interactions of non-Kitaev terms,
here we find the intermediate-field ΓSL sitting between the canted zigzag phase and the fully
polarized order depends crucially on the presence of the staggered Heisenberg exchange in-
teraction [Figs. 10(e-f)]. The main result of an emerging intermediate-field ΓSL disappears
at large staggered Heisenberg interaction. It leaves a single direct transition from the canted
zigzag phase to the fully polarized state. Thus, with the magnetic field tilted away from the
out-of-plane [111] direction, the ΓSL in the honeycomb Γ magnet is confined to a narrow
range of low fields near the pure Γ limit.

5 Conclusions

Here, we presented a theoretical study of the interplay of magnetic field and staggered Heisen-
berg exchange interaction in a honeycomb Γ magnet. At the classical level, complicated inter-
mediate phases with large magnetic unit cells, which are sandwiched between canted-zigzag
and -stripy phases, are enlarged for moderate magnetic fields before entering the high-field
polarized state. Within the DMRG method, our findings indicate that the quantum fluctua-
tions destabilize these intermediate phases in favor of the ΓSL state. Uniquely, this model
gives the ΓSL state in a rather large extent region mediated by the delicate interplay between
staggered Heisenberg and symmetric off-diagonal exchange interactions with the assistance of
an external magnetic field.

As the magnetic field is tilted away from the out-of-plane [111] direction, our numerical
data show that an intermediate gapless ΓSL state emerges between the zigzag and fully polar-
ized phases as h increases [Figs. 10(b-c)]. Note that this intermediate-field ΓSL state is stable
within a narrow region close to the pure Γ limit. While this intermediate ΓSL state disappears
for tilting angle θ = 0

◦
, leaving a single direct transition from the canted zigzag phase to the

polarized state [Figs. 10(a)].
As a final remark, we add that it is possible that the ΓSL phase survives to a much larger

region and drives into a long-sought-gapped QSL state in the presence of off-diagonal Γ ′ cou-
pling or the inclusion of a staggered magnetic field [76,77]. In addition, experimental recent
observations have established that a small pressure leads the suppression of magnetic order
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and the emergence of a magnetically disordered state in α-RuCl3 [78–81]. These features sup-
port the case for a QSL phase arising from pressure-increased spatially anisotropic interactions.
Thus, the staggered Heisenberg-Γ model on the honeycomb lattice by varying the anisotropy
of the interactions may help to discuss the stability of the magnetically disordered state. These
questions are left for future study.
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