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Abstract

Linear optics is a promising alternative for the realization of quantum computation pro-
tocols due to the recent advancements in integrated photonic technology. In this context,
usually qubit based quantum circuits are considered, however, photonic systems natu-
rally allow also for d-ary, i.e., qudit based, algorithms. This work investigates qudits
defined by the possible photon number states of a single photon in d > 2 optical modes.
We demonstrate how to construct locally optimal non-deterministic many-qudit gates
using linear optics and photon number resolving detectors, and explore the use of qu-
dit cluster states in the context of a d-ary optimization problem. We find that the qudit
cluster states require less optical modes and are encoded by a fewer number of entan-
gled photons than the qubit cluster states with similar computational capabilities. We
illustrate the benefit of our qudit scheme by applying it to the k-coloring problem.
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1 Introduction

In recent years, many advancements have been made in the area of integrated photonic quan-
tum technologies. Integrated quantum photonic processors (IQP) with on-chip linear op-
tics [1, 2], single photon sources [3-5] and photon number resolving detectors (PNRD) [6-8]
have been demonstrated. These integrated components and waveguides are usually printed
onto silica, which makes it possible to miniaturize the chips and increase the number of on-
chip components. Since photons couple very weakly to their environment, IQPs typically do
not require millikelvin temperatures to operate as opposed to other quantum information pro-
cessing architectures like superconducting devices [9]. However, there are still many hurdles
to overcome in order to achieve fully scalable and fault-tolerant quantum computation. Until
then even IQPs will remain intermediate scaled and thus the amount of available quantum
resources will be limited.

A common technique for reducing computational resources is to encode quantum infor-
mation efficiently. Typically quantum information is encoded into two level systems, qubits
which became standard due to their simplicity and analogy to classical computation. How-
ever, there are other ways to deal with quantum information. An alternative is to use qudits,
d > 2 level quantum systems, which are the basis for high-dimensional quantum computa-
tion [10]. Qudits have been considered in many areas of quantum computation, for example
in topological quantum computation the braiding of Z; parafermions [11] provide a natural
way to implement qudits [12]. There also have been attempts to realize superconducting qu-
dits [13, 14], but because of the flexibility in how photon states can be interpreted, qudits are
most prominent in photonics [15-20]. The use of qudits increases the number of dimensions
per computation unit. This property of qudits in theory can provide some benefits over qubit
systems by reducing circuit complexity of quantum algorithms or by increasing the channel
capacity and noise tolerance of communication protocols [21,22].

There has been considerable experimental progress on the way towards photonic quantum
supremacy via boson sampling (see, for example, Refs. [23-25]), however, the realization of
universal photonic quantum computation still seems far from reality. This is because linear
optics alone cannot be used to produce certain multi-photon states which are required in some
form by all universal photonic schemes. The most well-known universal photonic scheme is the
KLM scheme [26] which solves the problem of creating entanglement between photonic qubits
by applying postselection based on ancilla measurements. This makes it possible to prepare
entangled two qubit states non-deterministically using only linear optics and PNRDs. This
measurement based method combined with the quantum teleportation of qubits was shown
to be able to create near-deterministic two qubit gates. However, the complete implementation
of the KLM scheme proved to be out of reach with current technology, and only some of the
its techniques has been demonstrated experimentally.

Another approach for realizing universal quantum computation is to use measurement
based quantum computation (MBQC). In MBQC the quantum algorithms are performed by
making single qubit measurements on a large entangled state, usually a cluster state [27,
28]. For photonics MBQC provides a resource efficient and deterministic way to implement
universal quantum computation. Since using qudits instead of qubits are often beneficial in
quantum computation, as discussed above, it is natural to ask whether photonic MBQC can
also be improved by utilizing high-dimensional computational units. In this work, we show
that qudit cluster states can indeed be more resource efficient than qubit cluster states.

For the above mentioned reasons there has been a considerable effort to realize qudit
entanglement experimentally [15,29-33] and demonstrate the benefits of high-dimensional
quantum information processing. Observing the experimental setups used in these experi-
ments shows that there is a clear trade off between the experimental complexity and the high-


https://scipost.org
https://scipost.org/SciPostPhysCore.7.2.032

SCIl SciPost Phys. Core 7, 032 (2024)

dimensionality of the experiment. However, these experiments also show that the increased
complexity can be overcome using clever engineering and it is possible to demonstrate advan-
tages of high-dimensional quantum information processing experimentally.

The present paper is structured as follows: In Sec. 2 we go over a high-dimensional gen-
eralization of the KLM encoding and explain how to use passive linear optics to create single-
and many-qudit gates. We generalize the post selection based approach of the KLM scheme to
implement non-deterministic many-qudit gates. Then we use an optimization method to find
locally optimal interferometer configurations for some two-qudit gates. In Sec. 3 we intro-
duce the theory of high-dimensional clusters states, and then in Sec. 4 we show how to use
high-dimensional cluster states to solve the k-coloring problem.

2 Multi-rail qudit encoding

In this section, we describe a simple method for encoding d-level quantum system, i.e., qudits,
into optical modes and show how to implement non-deterministic many-qudit gates using
linear optics and PNRDs. Before describing the qudit encoding, we present a few basic qudit
gates and discuss some useful identities between them. Then, after the specific description
of the multi-rail encoding, we also present an optimization method for increasing the success
rate of non-deterministic photonic many-qudit gates.

2.1 Qudit gates

There are several different conventions in use for the generalization of the well known Pauli
X and Z gates for qudit systems. We will use the following definitions

d—1 d—1
X=) Ine1)n, z=2 o"[n)(nl, W
n=0 n=0

where @ means addition modulo d and w = exp (i27t/d). One can immediately see that X and
Z are unitary and X¢ = Z¢ = 1. However, it is important to note that they are not Hermitian
for d > 2. Since the qudit gates X and Z defined above have the same eigenvalues, they satisfy
a similarity relation,

HXH' = Z, 2)

where the corresponding basis change operator defines the qudit Hadamard gate

] d=1d
H=ﬁ22w”m|n) (m]. 3

n=0m=0

The Hadamard gate is often used to prepare the qudit state

1 d—1
I+) = H |0) :ﬁ;m)’ )

which plays a key role in many quantum algorithms.
The controlled X and Z gates are defined as

d—1 d—1
CX =2 In) (n] @ X", cz=7 In)(nlez" 5)
n=0 n=0

From Eq. (2) it follows that
cx=(1eH")CZ(1®H). (6)
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Equation (5) means that CX |n) ® [m) = |n) ® |n & m), thus one can write

cx'(1ez)cX|n)®|m)=CcX"(1®2Z)|n)® |n®m)
=CX"w"™™ |n) ® |n @& m)

="M |n)®|m)=Z®Z|n)®|m), (7
where n,m € {0,1,2,...d — 1}, therefore
cx'(1ez™Cx=2"@z™, (8)
and by a very similar derivation we obtain
CX(1®zZ ™Ccx'=z"ez ™. 9

Equations (8) and (9) will prove to be useful later when one needs to decompose unitaries of
the form exp (iaZ ® Z).

Another useful qudit gate is the one-level controlled-Z gate CZ, which is defined by its action
on the basis states |k) ® |I) as

CZ|k) ®|l) = exp (i2nl6) 4_1/d) k) ®1), (10)

where 8; ; denotes the Kronecker delta. In other words, the gate CZ is another generalization
of the two-qubit controlled sign flip operation, it applies a phase factor exp(i27tl/d) on the
target (second) qudit if the control (first) qudit is in the state |[d — 1).

2.2 Optical multi-rail qudit protocol

A straightforward way to encode a qudit in an optical system is to use d different optical modes,
labeled by the numbers 0,1,...,d — 1, and map the logical qudit levels to the occupation of
different modes via a one-hot encoding map [|i)) — [0)o]0)1---|1);---|0)4—;. This encoding of
qudit levels is a multi-rail encoding and has the advantage that any single-qudit U(d) transfor-
mation can be efficiently implemented using the Clements decomposition [34], for illustration
see Fig. 1.

Another competing encoding for discrete-variable photonic quantum computation are fre-
quency comb qudits. In concept they are very similar to multi-rail qudits, but instead of spatial
modes the qudit levels are represented by different frequencies. One of the advantages of this
frequency encoding is that the quantum information can be transported in a single fiber-optical
cable over long distances [35]. However, creating interference between modes with different
frequencies requires either y2, x> nonlinearities or electro-optic modulation (EOM). Such
nonlinearities have not yet been proven to be scalable to high-dimensional Hilbert spaces,
and although EOMs can be cascaded in a scalable manner to reproduce any operation pos-
sible with linear-optics on spatially encoded qudits, the realization of EOMs with arbitrary
modulation patterns pose significant practical challenges compared to the challenges of real-
izing linear-optical networks [36]. For this reason, spatially encoded multi-rail qudit regis-
ters are currently experimentally more viable than frequency comb qudit registers, as large
programmable linear-optical networks have been built and efficient single-photon generation
capabilities have been developed [37].
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Figure 1: Interferometer configuration for the implementation of a single qudit gate
when d = 5. This configuration can implement any single qudit gate and minimizes
the optical depth. Each crossing represents a general beamsplitter between neigh-
boring optical modes. In general the configuration requires d(d — 1)/2 number of

beamsplitters. On the left the input state ||2)) encoded by single photon enters the
interferometer and the output state U ||2)) appears on the right.

When encoding many-qudit systems using the multi-rail encoding, one thus needs d optical
modes for each qudit, and all the one-qudit operations can be performed by linear optical gates.
To implement two-qudit gates, one can generalize the KLM construction, where a nonlinear
sign flip operation is used to obtain non-deterministic two-qubit gates. Moreover, in general
not only the sign flip but any phase shift can be implemented this way. The nonlinear phase
shift acts on a linear combination of the vacuum, one- and two-photon states of an optical
mode, say the i-th mode, in the following way

NS, :00[0); +a;1); + a3]2); = g [0); + a1 [1); + eYay|2);, (1D

It can be implemented in a probabilistic way with linear optics and PNRDs utilizing two ancilla
modes.

The ancilla modes are prepared in the state |1), ®|0)3, so that the initial state of the system
looks like (g [0); + a1 ]1); +@5]2);) ® |1), ® |0)5. After this preparation of the ancillas, a
specific interferometer configuration U is applied on the three modes and then finally the
ancillas are measured. If the result of the measurement is |1), ® |0)5 then the operation was
successful otherwise it failed. There are infinitely many choices for U such that one obtains
on the first mode the state a,|0); + a; |1); + eYa,|2); when measuring |1), ® |0)5 on the
ancilla modes, however, the optimal solution in terms of the probability of success is unique
up to some phase factors of the rows and columns of the matrix. The set of solutions for U is
the following

Up=1-v1-ev, |U,le(0,{/1-1UnLI2), U= /1-UnR-[UsP,

_ ﬁ(]‘_Ull) U =1/ﬁ U zﬁ |U11|2_UT1_|U12|2
21 U12 > 22 E] 23 U12U13 B
Usi = > €U Uso (12)
Jk
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where ¢ is the desired phase shift and

U* (1-Uy) 2 -1
(—11 211 + 1) U].Z _ 2
[Ura] 11— Uyl
P 3 5 3 +1 s (13)
1—|U1112 = |Usal |U12l

is the probability of success. The optimal solution can be found by simply finding the maximum
of P as a function of |U;,].

Since all single-qudit gates are already established, it is enough to implement the two-qudit
transformation CZ defined in Eq. (10) to create a universal gate set [10]. The qudit gate CZ
can be constructed using beamsplitters and nonlinear phase shift operations, this is shown by
Fig. 2. As can be seen the CZ gate is made up by 2(d—1) number of non-linear phase shifts
and the same number of beamsplitters. The nonlinear phase shifts have a success rate less than
1/4 which is the global maximum of Eq. (13), thus the probability of the CZ gate is bound by
P < 1/16971 (the asymptotic scaling is much worse than that, see Fig. 4). This construction
proves that a universal qudit protocol is possible in the same way as in the teleportation-based
KLM scheme. However, the proposed CZ gate has a very low success rate, which implies that
it is an unfeasible option for actual applications (especially when d is high). This means that
one needs an alternative method, which we will present in the next subsection.

Control
Qudit

VR A
e | Ve

e/ L

Figure 2: Realization of the CZ gate entangling two qudits defined by the multi-rail
encoding. The red and blue segments indicate symmetric beamsplitters with angles
6 = £n/4 and ¢ = 0 (red is plus and blue is minus), and the white boxes denote
nonlinear phase shifts with angles ¢; = 27k/d.

2.3 Locally optimal many-qudit gates

We now present, as an alternative to the scheme of Sec. 2.2, an optimized method for ob-
taining photonic many-qudit gates, e.g., CZ or CZ operations, with a considerably improved
success rate. Similarly to the scheme presented in the previous subsection, the desired gate
is executed by implementing a non-trivial unitary transformation and doing postselection on
the measurement results, as shown by Fig. 3. The parameters of the unitary are optimized to
enhance the success rate. Such a scheme was already employed for generic two-qubits gates
successfully [38]. Now we apply the method for generic many-qudit gates.
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Figure 3: Configuration of the interferometer for a general nonlinear operation. The
many-qudit state is encoded in the modes at the top and the ancilla modes are placed
below them. The ancilla modes are measured using PNRDs and the measurement
result is used to determine whether the operation was successful or not. In the event
of success, the computational output is encoded in the many-qudit state [¢,),.

In the multi-rail encoding the many-qudit basis states |[i;) ® [|li;) ® --- ® [|iy_) are mapped
to photon number states |ni,n,,...,n,) = |n) with fixed photon number N. matching the
number of qudits and a fixed number of optical modes M = N,d. The general problem we
aim to solve is how to implement a many-qudit gate T using linear optics and PNRDs. Given
some computational input state |t;,). = >, oy |n) encoded into the M computational optical
modes, the many-qudit gate T transforms it into

|qrb0ut>c =T |¢in)c = ZZ TronOn |m), (14)

where n and m indices are referring to the photon number states |n) = |n,n,,...,n,) and
lm) = |my, my,...,my) with Y, n; = Y. m; = N,. Unfortunately for a general transformation
T there exists no linear interferometer which could execute such a transformation, i.e., most
of the time some nonlinear effects are required. Here we will provide nonlinearities via photon
number measurements and postselection.

A linear optical interferometer can be described by a unitary U which transforms the cre-
ation operators via al’.J" => iU -a;’.' and the photon number states via

j
Uln) = l_[ (Z uijaj.') |0). (15)

i J

Since for most transformations T there exist no U such that U [¢;,). = [¥our)., the next best
thing we can achieve is

U i), 1)V [0)®Nr = e!® VP 1) |1) N |0)®™ + terms with other ancilla values, (16)

where we introduced N, number of ancilla modes each occupied by a single photon and N,
number of vacuum ancilla modes. If we were to prepare the state U [1);,), [1)®N |0)®Y, we
would find the ancillas in the state |1)®V« |0)®*"» with probability P. This means that by prepar-
ing U [1;,). 11)®V |0)®™ and measuring the ancilla modes T is implemented with probability
P. The relation between U and T is

(ﬁ1| ) |ﬁ> = ﬁmn = ei¢ 1/ﬁTmm 17)
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where |ii) = |n) |1)®V [0)®"". The Fock space matrix elements Uy, can be expressed in terms
of u;; using permanents [39]. Equation (17) is a nonlinear polynomial equation for u;; and it
can be solved for u;; using numerical optimization methods while maximizing the success rate
P. Since u is unitary it also has to satisfy uu" = 1. To solve this problem via optimization we

can define the cost function

L=F+AP+0C, (18)
where
e (07 T)? Tr (070) )
=— , = —, C=-T T—1)°¢, 19
Tr(T70) Tr (TTT) Tr(TTT) r{(uu )} (19

and A and o are positive real constants. The fidelity F reaches its maximum if and only if Eq.
(17) is satisfied for some probability P, this is guaranteed by the Cauchy-Schwarz inequality.
The unitary constraint C reaches its maximum if and only if U is a unitary matrix.

The optimization problem defined by the cost function L was solved using a trust-region
method [40] which, beside direct line search methods [41], is one of the most established
family of algorithms for solving non-linear unconstrained optimization problems. We chose
this technique because it has been shown that trust region methods in certain cases can have
better convergence properties than direct line search methods [40], and the implementations
of the trust-region methods provided by the Scipy Python package [42] proved adequate.

We employed the method of continuation to solve the optimization problem: First the
problem was solved using A = 0. Once a solution with F = 1 and C = 0 was found, A was
gradually increased to the largest possible value for which the solution still converged to F =1
and C = 0. This process proved practical for two reasons. The first reason was that the local
optimum to which the algorithm converged to from a random staring point did not necessarily
lie on the F = 1 and C = 0 surface. By performing the optimization process with A set to zero,
we checked that the algorithm can actually reach the F = 1 and C = 0 surface. This initial
checking run saved time as the optimization process could be restarted from a new initial point
when it was clear that the solution will not reach the F = 1 and C = 0 surface. The second
reason was that if the optimization run succeeded with A = 0, i.e., the solution reached the
F =1 and C = 0 surface, the solution could be used as a starting point for the complete
optimization problem when A > 0.

At the beginning N, and N, were chosen such that the system of equations in Eq. (17)
would be under-defined. After finding a solution N, and N, would be decreased until no
solution with F = 1 and C = 0 could be found. This process was carried out for the qutrit
CZ and CZ gates (see Table 1). There is a significant improvement in the success rate when
the gates are optimized. However, the scaling properties of the optimized solutions are not
known. Our numerical results suggests that the optimized gates’ probabilities could scale much
better with the dimension d then the naive gates’ probabilities (see Fig. 4). Unfortunately, our
results only extend up to d = 4, because for larger d values the optimization algorithm failed to
converge in a reasonable amount of time. Thus, using our results it is not possible to make any
conclusive statements about the scaling of the optimized gates’ probabilities and it remains an
open problem to find optimal solutions for larger qudit dimensions d. These optimized gates
could be used to non-deterministically prepare entangled photon states which are necessary
for many measurement based architectures like optical cluster state computing [43].
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Table 1: Optimized two-qutrit gates. P, iS the probability we get when the gates
are decomposed into many nonlinear phase shifts. P is the best probability found
after doing the optimization process for many different randomly selected initial con-
ditions (these are not guaranteed to be global optima).

T | Pnaive | p | Na | Nv
CZ (qubit) [44] | 0.0625 0.0740... | 2 0
CZ (d=23) ~ 0.0016 0.011 3 3
CZ (d=4) ~ 0.00006681 | 0.00285 4 5
CZ (d=23) ~ 0.00000256 | 0.000507 | 5 4
107!
1072
2
S 10
fa)
o
a
» 10744
5
£
0N 105
—&— Optimized probability
Naive probability
107 —— Naive asymptote ~ 0.037¢
2 3 4 5
d

Figure 4: Comparison of the success probabilities of the naive and optimized CZ non-
deterministic gates for different d values. The naive probabilities scale exponentially
with d, where the base of the exponential is 0.037. The optimized probabilities were
only calculated up to d = 4.

To further discuss the impact of these results it is useful to make an estimate of what is
practically achievable in the near term using already existing single-photon generation and
detection devices. Highly indistinguishable single photons can be generated on-demand using
quantum dots [45-47]; state-of-the-art sources can generate as much as 100 million single
photons per second [37] potentially allowing for MHz attempt rates when implementing non-
deterministic entangling gates such as the ones listed in Table 1. When it comes to the detec-
tion of single photons, superconducting nanowire single-photon detectors (SNSPDs) are the
leading technology in the near-infrared region [48-51]. The advantages of SNSPDs are that
they have exceptionally low dark count rates, high system detection efficiency (SDE) and low
reset times on the order of nanoseconds. These properties make SNSPDs ideal for quantum
information processing applications.

The increased success probabilities of the optimized non-deterministic gates presented in
this section provide a speedup over their naive variants. The speed of the non-deterministic
gate synthesis is directly proportional to the success probability of the gate and the rate of
attempts which is dictated by the reset time of the detectors and the emission rate of single-
photon sources. In previous boson sampling experiments single-photon pulse trains generated
by quantum dots were demultiplexed and injected into several spatial modes at rates close to
1 MHz [52,53]. An experimental setup similar to what is presented in Refs. [52,53] could be
used to implement non-deterministic gates with an attempt rate in the MHz range. At such a
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rate even the naive variants of the gates listed in Table 1 would be technically feasible under
ideal circumstances. For example, the naive non-deterministic qutrit (d = 3) CZ gate would
take roughly 4-10° attempts on average to succeed, i.e., 0.4 seconds if 10° attempts are made
every second. On the other hand, the optimized qutrit CZ gate would take only 2 milliseconds
on average to succeed under the same circumstances.

While the naive gates are feasible by themselves, in practice there can be strict timing con-
straints on the gate times in quantum information processing schemes which require quantum
memories. In many cases the storage time of quantum memories poses as a limit on the gates
times, e.g., in the KLM scheme or in cluster state preparation schemes like Ref. [54]. For these
and similar applications the gate times should be much shorter than the storage time of the
quantum memories. Current quantum memories operating on the single-photon level typically
have storage times between a few milliseconds to a second at most [55, ]. Thus, in the near
term it is unlikely that non-deterministic gates with average gate times longer than a few mil-
liseconds would be practical for universal quantum computing schemes. Also, the efficiency
of quantum memories usually decreases exponentially with the storage time (see Refs. [55, ]),
further emphasizing the need for speed optimized gates. The optimized gates in Table 1 show
an improvement over the success probabilities of the naive gates and hence reduces the aver-
age gate times by orders of magnitude. For the reasons above, these improvements can have a
significant impact on the feasibility of experimental realization of high-dimensional universal
quantum computing schemes.

3 High-dimensional cluster states

The most common computational model is the quantum circuit model which resembles the
logic gate based description of classical computation. Measurement based quantum com-
putation is an alternative to the circuit model, where instead of applying unitary gates one
performs adaptive single qubit or qudit measurements on a large entangled state, called the
cluster state. At first this may seem completely different from the circuit model but their equiv-
alence have been proved [28]. MBQC is in particular a promising paradigm for the realization
of universal optical quantum computation, because if cluster states can be prepared efficiently
there is no longer need for further non-deterministic gates to perform the computation. In
other words, MBQC shifts the problem of implementing nonlinearities to the problem of state
preparation. Several methods have been developed to generate cluster states efficiently, thus
MBQC is one of the most viable options for realizing universal quantum computation using
photonics [54,57,58].
Cluster states have the form
l_[ Cz;;|+)®", (20)
{i,jteC

where CZ is the controlled qudit Z gate and C is a graph whose edges represent the CZ
gates between qudits. The idea is to perform single-qudit measurements sequentially on the
qudits found in the cluster, where the basis of each measurement depends on the results of the
previous measurements. When a qudit is measured it is effectively removed from the cluster
reducing its size. After the measurements, the remains of the cluster state will encode the
computational state up to some known single-qudit Pauli errors which can be easily corrected
for at the end of the computation.

10
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To connect the cluster state picture with the quantum circuit model, we can use the teleporta-

tion identity
) P(8) - H' =m

I+) — 2 X™HP(8)|v)

, (21

where |1) is a general qudit state, m is the result of the measurement performed on the top
qudit, and P(0) is a phase gate with 8 € RY which acts like P(8) |n) = exp(i6,,) |n) [59]. This
circuit represents a single measurement step in the cluster state picture. It applies the single-
qudit unitary HP(0) and propagates the state to the qudit that connects to it. Any unitary
can be decomposed into a product that only contains gates of the form HP(0), thus chaining
together many of these circuits one can perform any single-qudit unitary [59,60]. These chains
directly correspond to measurements on a linear cluster state. An important detail is that after
each measurement we introduce Pauli errors of the form X?Z? where a, b depend on the results
of the previous measurements. In order to account for the accumulated Pauli errors we have
to change the measurement angles to 8’ such that HP(8")X?Z? = Xa/ZbIHP(O).

In general, we can translate any quantum circuit to a cluster state with measurement in-
structions using the teleportation identity defined above. This way each qudit in the quantum
circuit model will correspond to a linear subcluster made up of several physical qudits and
the CZ gates between qudits in the quantum circuit will become connections across the cor-
responding linear clusters. Although this construction is enough to translate any quantum
circuit, it makes the translation easier if we allow the use of CZ" connections between phys-
ical qudits in the cluster. This is justified by another teleportation identity slightly different

from (21)
) P(6) =m

I+) — 27 X™H'P() )

(22)

These cluster states can be illustrated by depicting the linear clusters as rows with the CZ or
CZ'" gates between them shown as vertical lines. An example of this is shown by Fig. 5.

H Ht

XaZb|’l,[)> U Xa’Zb’Uhp)

~_ 7 ~—_ 7~ ~—_ 7~ ~—_ 7~
H HT HP(0) HT

Figure 5: Qudit cluster state with the measurement instructions to implement the
two qudit unitary U = CXP(0)CX". The black and red edges denote the CZ and
CZ" connections between the physical qudits. The initial state with its Pauli errors
is encoded in the green qudits. The measurement order is indicated by the numbers.
After the execution of all the measurements, the final state is encoded in the red
qubits. The arrows show how the qudit states are teleported from one qudit to the
next, and the unitary of each arrow indicates what transformation should the tele-
portation perform.
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4 The k-coloring problem

Graph coloring is one of the most studied topics of graph theory because of its applications in
solving scheduling problems and compiler theory [61, 62]. Coloring refers to the assignment
of labels (colors) from a label set to the vertices of a graph G. This assignment defines a map
C : V — L, where V is the set containing the vertices of G and L is the label set. Arbitrarily
ordering the vertices of G allows us to represent a coloring as string of labels: If we call the i-th
vertex v; € V and its assigned color C(v;) =1; € L, then the string 1 = ;1,15 .. )y completely
characterizes the coloring C. The k-coloring problem of a graph is to decide whether the
vertices of the graph can be colored using k colors, such that no adjacent vertices have the
same color. The smallest k for which the k-coloring is possible for a given graph is called
the chromatic number of the graph. The k-coloring problem of an arbitrary graph is known
to be NP-complete [63-65]. There has been rigorous proof showing the speed up of certain
quantum algorithms compared to the best known classical, [66], and even certain heuristic
variational quantum algorithms for a similar problem have been hinted to outperform classical
methods [67].

4.1 Qubit algorithm

The k-coloring problem can be reformulated as a combinatorial optimization problem where
the goal is to minimize the number of edges connecting vertices with identical colors by search-
ing through the possible |V| length strings of the label set L = {0,1,2,...,k —1}. On qubit-
based architectures, binary optimization problems can be solved using the quantum approxi-
mate optimization algorithm (QAOA) [68]. Encoding the strings of L as bit-strings means that
we can use the QAOA to solve the k-coloring problem as well; such a QAOA type of approach
for the k-coloring (and the related k-SAT problem) has been studied in Refs. [69-73]. The
encoding of colorings into bit-strings is most easily done via one-hot encoding, this means that
the strings of L are encoded into N = |V| - k bits, where each set of k consecutive bits encodes
the color of a vertex. The color of the i-th vertex [; is indicated by the i-th set of k bits of the
form 00...010...00, where the [;-th bit is flipped and the rest of the k bits is zero. We will
denote the j-th bit of the i-th set of k bits by x; ;.

Minimizing the cost function f : {0, 1}"

14 2 V| V] k—
fO= CZ( an ) +DY. >, ZAnmxn ot (23)
n=1

n=1m=1i=0

is equivalent to finding a solution to the k-coloring problem, where x is a bit-string of length N,
A,,,, are the matrix elements of the adjacency matrix of G and C and D are arbitrary positive
real constants. The first term in Eq. (23) weighted by C is a penalty term, since not every
bit-string of length N corresponds to a coloring. For every n € {1,2,...,|V|} exactly one of the
k bits x,, ;, where j € {0,1,...,k—1}, has to equal one in order for x to encode a coloring. The
remaining term simply counts the number of edges that connect vertices with the same color.
To construct the QAOA cost Hamiltonian we can use the recipe

> F&IX) (24)

x€{0,1}"
where |x) is the computational state

VI k=1
(@ |xn,i)) .
n=1 \\i=0
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Substituting Eq. (23) into Eq. (24), the cost Hamiltonian becomes

=—%(zn Z(n—zn,i)) %%i%(ﬂ Z)(1=Zp1),  @29)

i=0 n1m110

where Z,, ; is the Pauli Z matrix acting on the (k-(n—1)+1i)-th qubit labeled by the tuple (n, i).
Obtaining the ground state of H is the same as finding a bit-string that minimizes the cost
function f [70].

QAOA minimizes the expectation value (Y (a, B)|H¢ |¢ (@, f)), where

P
Y (a, ) = (]_[ei“nHMeiﬁnHC) [+, (26)

n=1

a,p €RP and
V] k=1

HM = Z ZXn,i
n=1i=0
is the mixing Hamiltonian, where p denotes the number of QAOA layers. Preparation of
[ (a, B)) requires the implementation of two parameterized unitary Uy (a) = e!*#¥ and
Uc(B) = ePHc. U, can be realized using single qubit rotations and only U, requires en-
tangling gates. U, can be further separated into the product of two unitaries, where one of
the unitary requires only single qubit phase gates and the other unitary requires only controlled
rotations. This can be achieved by separating the cost Hamiltonian into a non-interacting and
an interacting part, H- = Hy + H;, where

VI k-1
D IDILNRLID 3 A @
n=1i<j=0 {nm}eEl 0

In Eq. (27) E denotes the set containing the edges of the graph. The Hamiltonians H, and H;
commute since they only contain Pauli Z matrices, thus

Uc(a) = e'@HoeioH (28)

The unitary e'*"1 can be decomposed into the product of |V|(§) + k|E| number of controlled
rotations

V] k k-1
elaH1 = l_[ ( l_[ CXn,i;n,an,j (aC/2) CXn,i;n,j) X l_[ (l_[ CXn,i;m,iPm,i (aD/Z) CXn,i;m,i) N (29)

n=1 \li<j=1 {n,m}eE \i=0

where P, j(a) = e'*Znj is the phase gate acting on the qubit labeled by the pair of indices (n, j)
and CX,,;.,; is a controlled NOT gate between the control qubit (n,7) and the target qubit
(n, ). Eq. (29) can be derived using the identity e!*?®Z = CX (1 ® P(a)) CX.

The physical realization of the unitary e!*"! requires by far the most amount of physical
resources compared to the other parts of the algorithm, since only this part needs entangling
gates. Therefore, focusing only on the implementation details of e!*1 can give us a good lower
bound on the resources necessary to carry out the QAOA.

4.2 Graph coloring using qudits

When using qudits with dimension d = k, there is a one-to-one correspondence between the
computational basis and the possible graph colorings with k colors via the mapping

Lly...ly = 1) ®|L) ®|l3) @+ ®|ly)), (30)
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where [; € {0,1,2,...,k—1}. This means that the coloring problem can be formulated as an
unconstrained d-ary optimization problem which can be solved by the QAOA generalized to
qudits [74-76]. Because the optimization problem is unconstrained, the decomposition of the
QAOA layers will turn out to be simpler due to lack of penalty terms. The QAOA for qudits is
very similar to the qubit version only the form of the mixing and cost Hamiltonian is different.
The mixing Hamiltonian is still a simple sum of single-qudit terms, e.g., the r-nearby-values

vl Zir=1 (X;l +X;’;i) as in Ref. [75], and the cost Hamiltonian is

single-qudit mixer Hy; = Y.

n=1

VI VI k=1 k—1
133 S - ¥ Sane -

n=1m=1i=0 {n,m}€E i=0

where Z,, is the qudit Pauli Z gate acting on the n-th qudit and A,,,, are the matrix elements
of the adjacency matrix of the graph G. The ground states of the Hamiltonian H. corre-
spond to optimal k-colorings of G. Similarly to the qubit case, we can decompose the unitary
Uc(a) = e'*He into |E| number of controlled qudit rotations

eiefle = [T CXpmPr(@)CX] (32)

n;m’
{n,m}€E

where P,,(a) is a single-qudit phase gate which acts on the m-th qudit the following way

) s iak f =0
Pm(a)|x>=el“2ﬁ—ézm|x>={e i =0 33

%) otherwise.

4.3 Cluster states for the qubit and qudit implementations

Having established all the necessary techniques to implement the QAOA solution of the k-
coloring problem both using qubits and qudits, we can now compare the physical resources
used by the two methods. A single layer of the qudit QAOA algorithm without the mixing
part can be executed on the qudit cluster state C; constructed from many copies of R4, where
Ry is a cluster with the topology depicted by Fig. 5 made up by d-dimensional qudits. When
the number of colors is k, one has to use d=k-dimensional qudits for the algorithm. The
construction of C; is shown by Fig. 6. The construction of C,, the qubit equivalent of Cjy,
works differently. In the qubit case, one has to add k copies of R, for each edge of G and also
k(k—1)/2 copies for each node of G. These construction rules follow from the decompositions
in Egs. (29) and (32).
The number of qudits in C; is approximately

|Cal ~ IRq4| - |E| = 8|E], (34)

where |E| is the number of edges in G, which is equal to the number of copies of R; used to
build C,4, and |Ry4| is the number of qudits in R;. The approximation can be made exact by
carefully considering the precise sequence of node additions and removals in the cluster grow-
ing process, however, for large enough graphs Eq. (34) provides a highly accurate estimate.
Similarly, the number of qubits in C, is

k k
Col Rl (G )1+ kier) = v+ iz (35
In general, the ratio |C,|/|Cy| is strictly larger than k, and in the large dense graph limit,

when |E| > |V|, this ratio approaches k. This is illustrated by Fig. 7 for Erd6s-Rényi random
graphs. If one uses the multi-rail encoding described in Sec. 2, the photon numbers of the
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cluster states is equal to their size. The number of optical modes required to encode the cluster
state Cy is d|Cy| including the qubit case d = 2. Thus, the number of photons decreases by a
k-fold and the number of optical modes halves, when using multi-rail qudits instead of KLM
qubits to encode the k-coloring problem.

1
4
2
5 3
@_'3.
4e
5

Figure 6: Qudit cluster state for a single layer of the qudit QAOA. Each edge of G cor-
responds to a controlled qudit rotation in the decomposition of exp(iaH.) described
by Eq. (32). Thus one can chain many copies of R; to form the complete qudit clus-
ter. The two input nodes of R; are merged with two output nodes of the unfinished
cluster state based on the topology of G. Each row of physical qudits represents a
logical qudit labeled by the numbers. Each logical qudit encodes the color of a node
in G.

(@  x108 Cluster size (V| =500, k =3) (b) Cluster size ratio (|V| =500, k = 3)
2.51 G 3.20 — IGl/Icdl
Cy -k
209 3.151
151 £
=2 5 3101
1.0
3.051
0.51
0.0 , , , , , 3.00 --=mm-mmmommo-moo- sommmmommooeoe-
02 04 06 08 1.0 02 04 06 08 1.0
|E] x10° |E| x10°

Figure 7: (a) Number of physical qubits and qudits versus the number of edges in G,
the graph to be colored. |C,| is the number of physical qubits in the qubit cluster state
implementation of exp(iaH,), where H; is defined by Eq. (27). |C,]| is the number
of physical qudits in the cluster state implementation of exp(iaH.), where H is
defined in Eq. (31). (b) Ratio of the qubit and qudit cluster sizes when |V| = 500
and k = 3, where |V| is the number of vertices in G and k is the number of colors
used for the coloring.
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5 Conclusion and Outlook

In this work, we investigated a KLM-like qudit encoding for universal photonic quantum com-
putation. First, the optimization of non-deterministic many-qudit gates was discussed, then
the solution of the k-coloring problem as an application of high-dimensional cluster states was
examined.

The physical implementation of the single-qudit gates by the described protocol should
pose no problem in experiments, since they require only the use of passive linear optics. How-
ever, the low probabilities of the entangling many-qudit gates make this scheme applied with
postselection challenging from the universal quantum information processing point of view.
Nevertheless, the approach may still be used to non-deterministically prepare highly entangled
photon states, which are required by many other universal photonic schemes, most notably
photonic cluster state computation. We present a numerical optimization method to improve
the success rate of a general many-qudit gate. The method is capable of finding locally opti-
mal solutions with perfect fidelity, improving the success rates typically by orders of magnitude
compared to the naive implementations when the gates are decomposed into nonlinear phase
shift operations. We only considered qudit gates where photon number of the input states is
fixed, but in principle it could also be used when this restriction is lifted. For example, it can be
applied to numerically find an optimal solution for the nonlinear phase shift. Furthermore, it
can be employed for more general hybrid qudit gates [77], when the dimensions of the qudits
are not the same.

To amend the problems of the non-deterministic postselection based approach, we used
cluster states encoded in the multi-rail encoding to give an implementation for the high-
dimensional QAOA. We demonstrated our method on the k-coloring problem which can be
solved by either using qubits or qudits with d=k. We show that the high-dimensional cluster
states proposed in this work to solve the k-coloring problem are made up of fewer photons and
require less optical modes to encode than the KLM qubit cluster states needed to perform the
same task. The reduced number of photons can help with quantum storage since usually the
fidelity of quantum memories drop quickly with number of photons due to photon loss [78].
The real difficulty of cluster state computation is in the generation of the cluster states, and all
results involving cluster states rely on the assumption that they can be generated efficiently. In
a recent work it has been shown that in theory one can produce these type of high-dimensional
cluster states deterministically using quantum emitters [79]. The methods shown in Ref. [79]
combined with the result of this work give a convincing argument for the usefulness of multi-
rail encoded high-dimensional cluster states.
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