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Abstract

We examine the phase diagram of the extended Hubbard model on a square lattice, for
both attractive and repulsive nearest-neighbor interactions, using CDMFT+HFD, a com-
bination of Cluster Dynamical Mean Field theory (CDMFT) and a Hartree-Fock mean-field
decoupling of the inter-cluster extended interaction. For attractive non-local interac-
tions, this model exhibits a region of phase separation near half-filling, in the vicinity
of which we find islands of d-wave superconductivity, decaying rapidly as a function of
doping, with disconnected regions of extended s -wave order at smaller (higher) electron
densities. On the other hand, when the extended interaction is repulsive, a Mott insu-
lating state at half-filling is destabilized by hole doping, in the strong-coupling limit, in
favor of d-wave superconductivity. At the particle-hole invariant chemical potential, we
find a first-order phase transition from antiferromagnetism (AF) to d-wave superconduc-
tivity as a function of the attractive nearest-neighbor interaction, along with a deviation
of the density from the half-filled limit. A repulsive extended interaction instead favors
charge-density wave (CDW) order at half-filling.
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1 Introduction

The single-band Hubbard model has long served as a useful platform for studying the effect of
strong electronic correlations [1–6]. In particular, it explains many of the experimental obser-
vations in the high-Tc cuprate superconductors [2,7–16], providing an approximate picture for
the description of these materials [17–25]. More recently, there have been numerous studies
on extensions of this model with nearest-neighbor interactions, known as the extended Hub-
bard model (EHM) [26–90]. There are several reasons for the continuing interest of the com-
munity in exploring the effect of non-local interactions. In actual materials, the interactions
between neighboring sites may not be completely screened, necessitating a more careful treat-
ment of longer-range interactions. The model with an attractive nearest-neighbor interaction
provides an effective representation of the attractive interactions mediated by electron-phonon
coupling, and may be realized in ultra-cold atom systems. The relevance of studying such a
model is further emphasized by recent ARPES studies on the one-dimensional cuprate chain
compound Ba2−xSrxCuO3+δ [91], where the observations can be explained using a Hubbard
model with an attractive extended interaction. On the other hand, the model with repulsive
non-local interactions provides an ideal playground for studying the interplay of charge and
spin fluctuations, since the relative magnitude of the charge fluctuations can be controlled by
the strength of the extended interaction [26,30,34,35]. The EHM at quarter-filling has proven
useful for describing the charge ordering transition due to inter-site Coulomb interactions in
a variety of materials [28, 48, 49, 79, 83]. Both the Hubbard model and its extension with
longer-range interactions have contributed significantly to the methodological development
in the field of strongly correlated systems, and in particular high-Tc superconductors, which is
essential for obtaining results that can be quantitatively compared with experiments.

In recent years, the properties of the EHM have been analyzed using a variety of ap-
proaches, including, among others, mean-field theory [50–52,72], functional renormalization
group (fRG) [39], exact diagonalization (ED) [29,32,55,61], density-matrix renormalization
group (DMRG) [57, 63], Quantum Monte Carlo (QMC) [70, 87, 89, 92] and the fluctuation-
exchange approximation (FLEX) [56]. However, many of the approaches used are best suited
for studying the weak-coupling or the strong-coupling limit, and there are few that can de-
scribe the intermediate-coupling regime equally well. Even among those that can, each has its
own limitations. For instance, simple exact diagonalizations are restricted to small systems,
quantum Monte Carlo methods suffer from the fermion sign problem in many applications
of interest, the density-matrix renormalization group (DMRG) applies to one-dimensional or
ribbon-like systems, etc. In addition, certain aspects of the model with repulsive interactions
have been studied in detail using the so-called extended dynamical mean-field theory (EDMFT)
approach [93–95], in which the local density fluctuations together with the local self-energy
are propagated on the whole lattice using the known dispersion and density-density extended
interactions. Other variations of this method, such as a combination of EDMFT with the GW
approximation [27, 96–98],which perturbatively includes non-local self-energy corrections,
and the dual boson method [81, 82, 99], which constructs a diagrammatic expansion about
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the extended DMFT, have likewise contributed to its understanding. More recently, cluster
methods [26,38,76–78,100,101], which capture short-range correlations non-perturbatively
within periodic clusters, have also been applied to this model. However, such studies have
largely been limited to fixed densities and repulsive interactions. Overall, there have been
fewer studies that consider both an extensive range of interaction couplings and band fillings,
and relatively less focus on the case of attractive extended interactions.

In this paper, we study the phase diagram of the extended Hubbard model on a square
lattice, for both attractive and repulsive nearest-neighbor interactions, using CDMFT+HFD,
an extension of the Cluster Dynamical Mean Field Theory (CDMFT) [100,102] approach with
a Hartree-Fock decoupling of the inter-cluster interactions. CDMFT belongs to a class of meth-
ods called Quantum Cluster Methods [103–109]. This is a set of approaches that consider a
finite cluster of sites embedded in an infinite lattice, and introduce additional fields or “bath”
degrees of freedom, determined by variational or self-consistency principles, to best represent
the effect of the surrounding infinite lattice. These methods have proven useful for interpola-
tion between results obtained in the weak- and strong-coupling regimes, since their accuracy
is controlled by the size of the clusters used, rather than the strength of the couplings. Fur-
ther, we treat the inter-cluster interactions within a Hartree-Fock mean-field decoupling, which
generates additional Hartree, Fock and anomalous contributions to the cluster Hamiltonian.
While a similar treatment has been used to study the model at quarter-filling [48] for the case
of repulsive interactions, with the objective of understanding the electronic properties of met-
als close to a Coulomb-driven charge ordered insulator transition, this analysis was focused
on a specific parameter regime, and did not include superconducting orders.

This work constitutes a test of the CDMFT+HFD method, described in Sect. 2 below. Our
main findings are as follows. For a weak repulsive local interaction U and an attractive ex-
tended interaction V , the system undergoes a transition towards a phase separated (PS) state
when the chemical potential lies in the vicinity of its particle-hole symmetric value, U/2+4V .
The exact region of phase separation is identified by using the hysteresis in the behavior of the
electron density as a function of the chemical potential, which corresponds to the coexistence
of two different uniform-density solutions. As a function of doping away from the half-filled
point, symmetrical and sharply decaying regions of dx2−y2-wave superconducting order are
observed, followed by disconnected regions of extended s-wave order near quarter-filling, as
well as at very small (large) densities. A stronger attractive extended interaction tends to fa-
vor phase separation as well as superconductivity, whereas the repulsive on-site interaction
U is found to be detrimental to both. At the particle-hole symmetric chemical potential, we
detect a first-order phase transition from antiferromagnetism (AF) to d-wave superconductiv-
ity as the attractive V becomes stronger, which is accompanied by a gradual deviation of the
density from its half-filled limit, induced by phase separation. For repulsive nearest-neighbor
interactions in the strong-coupling regime U ≫ t, the Mott insulating state at half-filling is
destabilized, upon hole doping, in favor of a dome-shaped region of d-wave superconducting
order. This order is found to be remarkably stable in the presence of a non-local interaction,
and slightly suppressed by it. At half-filling, a repulsive non-local interaction induces a first-
order phase transition from antiferromagnetism (AF) to a charge-density wave (CDW) order.
Our results are qualitatively in agreement with the existing literature on the phase diagram
of the EHM, with some notable differences in the region of attractive interactions. An im-
portant difference is that intra-cluster fluctuations are treated exactly, which tends to make
superconducting orders somewhat weaker in this approach.

The paper is organized as follows. In Sect. 2, we introduce the model Hamiltonian, and
provide a brief overview of the CDMFT approach that we use for our analysis, as well as the
Hartree-Fock mean-field decoupling of the inter-cluster interactions. In Sect. 3, we describe
the phase diagram obtained as a function of the interaction strength and doping, and the phase
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transitions observed at half-filling. Finally, in Sect. 4, we summarize our results, discuss some
relevant observations and present the conclusions of our study.

2 Model and method

2.1 Model Hamiltonian

The general form of the extended Hubbard model Hamiltonian is

H =
∑

r,r′,σ
trr′ c

†
rσcr′σ + U
∑

r

nr↑nr↓ +
1
2

∑

r,r′,σ,σ′
Vrr′nrσnr′σ′ , (1)

where r, r′ label lattice sites, trr′ are the hopping amplitudes, U the on-site Hubbard interaction,
and Vrr′ the nearest-neighbor interaction (each bond counted once, hence the factor 1

2).
For the purpose of our analysis, we study the following model on a square lattice:

H = −t
∑

r

�

c†
r cr+x + c†

r cr+y +H.c.
�

+ U
∑

r

nr↑nr↓ −µ
∑

r

(nr↑ + nr↓)

+ V
∑

r,σ,σ′

�

nrσnr+x,σ′ + nrσnr+y,σ′
�

, (2)

where x,y are the lattice unit vectors along the x and y directions, and the operator crα an-
nihilates a particle with spin α =↑,↓ at site r. The occupation number is nrα = c†

rαcrα. We
consider a range of values for the chemical potential µ, corresponding to a continuous range
of densities, from n = 0 to 2, along with a repulsive local interaction U > 0, and a nearest-
neighbor interaction V that can be positive or negative. The particle-hole symmetric value of
the chemical potential, µ = U/2+ 4V , which corresponds to a half-filled band in the absence
of phase separation, features prominently in our analysis. The unit of energy is taken to be
the nearest-neighbor hopping amplitude t = 1.0, with the lattice constant a = 1. Note that
in the absence of longer-range hopping terms, beyond the nearest-neighbor bonds, the model
respects particle-hole symmetry n→ 2− n.

We examine the possibility of superconducting as well as density-wave orders. For this
purpose, the anomalous operators are defined on the lattice using a d-vector, as

∆rr′,bcrs(iσbσ2)ss′ cr′s′ +H.c. , (3)

where b = 0,1, 2,3, and σb are the Pauli matrices. The case b = 0 corresponds to singlet
superconductivity, in which case ∆rr′,0 = ∆r′r,0 and the cases b = 1, 2,3 correspond to triplet
superconductivity, in which case, ∆rr′,b = −∆r′r,b. In practice, these operators are defined by
specifying b and the relative position r− r′.

Density wave operators are defined with a spatial modulation characterized by a wave
vector Q, and can be based on sites or on bonds. In our analysis, we focus on site density
waves, defined as

∑

r

Ar cos(Q · r+φ) , (4)

where Ar = nr, S x
r , Sz

r corresponds to charge- or spin-density wave orders, and φ is a sliding
phase. We probe the presence of density-wave orders with Q= (π,π) and φ = 0.

2.2 Method: CDMFT+HFD

Let us briefly describe the method used in our analysis, Cluster dynamical mean-field theory
(CDMFT). For a detailed discussion of the basic principles of such Quantum Cluster Methods,
please see Ref. [103,105,110].
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Figure 1: Schematic representation of the first (“simple”) impurity problem used
in our analysis, with bath energies εi , cluster-bath hybridization parameters θi and
anomalous bath parameters ∆i . Physical sites are marked by numbered black dots
and bath orbitals by red squares. We choose the bath parameters such that the envi-
ronment of each cluster site is identical. This impurity model has reflection symmetry
with respect to horizontal and vertical mirror planes (C2v symmetry), and typically
involves only spin-independent hopping terms. Pairing terms ∆1,2 are introduced
between bath orbitals, with signs adapted to the SC order probed (shown here for a
d-wave order, but all positive for an extended s-wave order). The number of inde-
pendent bath parameters is 6.
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Figure 2: Schematic representation of the second (“general”) impurity problem used
in our analysis. Each representation of the point group C2v (A1,2 and B1,2) corre-
sponds to a set of phases (±1), and each of the 8 bath orbitals belongs to one of
these four representations (two bath orbitals per representation). The different bath
orbitals are independent (the bath system is diagonal) and we only show here a view
of each of the four representations with the corresponding signs associated to each
cluster site (black dots). The hybridization parameters θ are shown, and correspond-
ing pairing operators (or anomalous hybridizations) between each bath orbital and
each site also exist, with the same relative phases. We have 3 parameters per bath
orbital, which leads to a total of 24 bath parameters, and subtracting six constraints
due to a C4v rotational symmetry, we obtain 18 independent bath parameters for the
general model.
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This approach is an extension of dynamical mean-field theory (DMFT) [111–114], which
accounts for short-range spatial correlations, by considering a cluster of sites with open bound-
ary conditions, instead of a single-site impurity. The effect of the cluster’s environment is taken
into account by introducing a set of uncorrelated “bath” orbitals hybridized with it. In this man-
ner, the infinite lattice is tiled into identical clusters coupled to a bath of auxiliary, uncorrelated
orbitals, with energy levels εiσ, which may or may not be spin dependent, and hybridized with
the cluster sites (labeled r) with amplitudes θirσ. In addition, for studying superconducting
orders, different types of anomalous pairings ∆i jσσ′ may be introduced between bath orbitals
i, j or ∆irσσ′ between bath orbital i and cluster site r.

The cluster and bath size is limited by the exact diagonalization solver: the practical upper
limit for the total number of cluster and bath orbitals is 4+8=12, given that the ground state
and Green function must be computed repeatedly in this approach. A true finite-size analysis
is impossible here, for the next cluster size of the same square geometry would be 9, and the
number of bath orbitals would need to grow accordingly. Even in a one-dimensional model,
analyzing finite-size effects in CDMFT is challenging, because of the combined effects of cluster
size and bath size [115].

We use two types of bath models. In the simple model (Fig. 1), the environment of each
cluster is identical, and we introduce two bath orbitals per cluster site. Parameters of the impu-
rity model include bath orbital energy levels (ε1,2), hybridization between each cluster site and
the corresponding bath orbitals (θ1,2), and pairings between the bath orbitals (∆1,2). The pre-
cise form of ∆1,2, including their relative phases between different bath orbitals, depends on
whether we probe extended s-wave, d-wave, or triplet superconductivity. This simple impurity
model involves 6 independent parameters to be determined self-consistently. At half-filling,
we introduce bath energies as well as hoppings, that are consistent with the appearance of a
density-wave order, and additionally spin-dependent in the presence of antiferromagnetism.
This increases the number of independent parameters. However, imposing particle-hole sym-
metry at half-filling once again reduces this number to 6. For V < 0, we do not impose
particle-hole symmetry on the bath parameters due to the possibility of phase separation, and
the number then increases to 10.

We also use a more general bath model (Fig. 2). While the total number of bath orbitals
is unchanged, every bath orbital is connected to every cluster site (with distinct combinations
of relative phases), and we define bath energies, cluster-bath hybridizations and anomalous
pairings between the cluster and the bath sites. In this model the bath is diagonal, i.e., the
different bath orbitals are not directly coupled between themselves. We have 3 parameters
per bath orbital, and taking into account six constraints due to rotation symmetry, there are
18 independent bath parameters to set. At the particle-hole symmetric chemical potential,
we introduce bath energies, hybridizations and anomalous pairings that have two different
values for alternative sites. This gives us a total of 42 independent parameters in the absence
of particle-hole symmetry for V < 0 and 15 independent parameters when superconductivity
is absent (i.e. for V > 0) and particle-hole symmetry is taken into account.

All bath parameters are determined by a self-consistency condition (see Ref. [103,105,110]
for details). The simple bath model is expected to be easier to converge than the general bath
model, because of the smaller set of parameters. While we expect the results obtained from the
general bath model to be more reliable, we do find most of the results to be qualitatively similar
in the two cases. Once the bath parameters are converged, the self-energy Σ(ω) associated
with the cluster is applied to the whole lattice, so that the lattice Green function is

G−1(k̃,ω) = G−1
0 (k̃,ω)−Σ(ω) . (5)

Here, k̃ denotes a reduced wave vector (defined in the Brillouin zone of the super-lattice
of clusters defined by the tiling) and G0 is the non-interacting Green function. The Green-
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function-like objects G, G0 and Σ are L × L matrices, L being the number of physical degrees
of freedom on the cluster (here L = 8 because of spin and the four cluster sites). The aver-
age values of one-body operators defined on the lattice are obtained using the lattice Green
function G determined from the solution for the optimum values of the bath parameters. An
exact-diagonalization solver (the Lanczos method or variants thereof) is used at zero temper-
ature. The computational size of the problem increases exponentially with the total number
of cluster and bath orbitals.

In the presence of extended interactions, we also perform a Hartree-Fock mean-field de-
composition of the interaction terms defined between different clusters, while the interactions
within a cluster are treated exactly. The inter-cluster interactions are decoupled in the Hartree,
Fock and anomalous channels, which contribute to the number density, the hopping and the
pairing operators, respectively. Moreover, we only retain those combinations of the site/bond
operators that are physically relevant in the regions we work in (such as d-wave or extended
s-wave), and discard the rest. The mean-field values of the relevant combinations are deter-
mined self-consistently, within the CDMFT loop that optimizes the bath parameters. For the
details of this procedure, please refer to Appendix A. For a comparison of different methods
used for solving the self-consistent nonlinear equations involved in the CDMFT procedure,
please refer to Appendix B.

3 Results

In this section, we discuss the salient features of the phase diagram obtained from our analysis,
for both attractive and repulsive nearest-neighbor interactions. The dominant superconduct-
ing and density-wave orders are identified by computing the corresponding order parameters
using the optimum values of the CDMFT (bath and mean-field) parameters, as a function of
electron density, as well as at half-filling. In the following analysis, we focus our attention on
the strong coupling limit U ≫ t for V > 0, which is a regime well-understood on physical
grounds. For V < 0, we consider relatively weak interactions U ∼ t, far from the Mott insu-
lating regime, which primarily serve the purpose of controlling the extent of phase separation
when the interaction V becomes sufficiently attractive. At half-filling, we confirm the nature
of the phase transitions, by plotting the relevant order parameters both as a function of U > 0,
for fixed values of V > 0 or V < 0, and as a function of V for fixed values of U .

3.1 Phase diagram at the particle-hole symmetric chemical potential

Here, we fix the chemical potential to µ= U/2+ 4V , corresponding to a half-filled band, and
examine the behavior of different superconducting and density-wave orders, as a function of
the local repulsion U as well as attractive/repulsive V . While antiferromagnetism is favored
at half-filling, in both weak- and strong-coupling regimes, an attractive non-local interaction
is expected to drive the system towards a superconducting instability, and eventually phase
separation. On the other hand, repulsive interactions V would typically foster competition
between charge and spin fluctuations, and favor a charge-ordered state. Below, we discuss the
results obtained using the simple bath model (Fig. 1).

3.1.1 V < 0

For a fixed attractive nearest-neighbor interaction V , as the strength of the local repulsive
interaction U decreases, the system undergoes a first-order phase transition from antiferro-
magnetism to d-wave superconductivity. This is accompanied by a deviation in the electron
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Figure 3: First-order phase transition from d-wave superconductivity (indicated by
filled/open red circles) to antiferromagnetism (AF, indicated by filled/open blue cir-
cles), as a function of the repulsive local interaction U , at fixed V = −0.4 (top) and
V = −0.6 (bottom), and fixed chemical potential µ = U/2+ 4V (particle-hole sym-
metric point). The simple impurity model (Fig. 1) is used. The transition is accom-
panied by a deviation in the number density (indicated by filled/open green circles)
from the half-filled value n = 1, meaning that we are entering a phase separated
regime. The dashed (solid) curves of each color depict the behavior of the differ-
ent quantities for decreasing (increasing) U , respectively. The prominent region of
hysteresis between the two curves confirms the order of the transition. The small
jump/discontinuity observed in the d−wave order parameter for increasing U for
V = −0.4 results from issues with the convergence of the CDMFT procedure at that
point. On the other hand, for V = −0.6, we observe a jump in the d−wave order pa-
rameter for decreasing U , which appears to signal a transition from a d−wave order
at half-filling to one coexisting with phase separation, rather than being a numerical
error. Likewise, for increasing U , we observe a nontrivial d−wave order parameter
both in the presence and absence of phase separation for V = −0.6 (for more details,
see Appendix B).
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Figure 4: First-order phase transition from antiferromagnetism (AF) (indicated by
filled/open blue circles) to d-wave superconductivity (indicated by filled/open red
circles), for increasingly attractive V , followed by a rapid suppression in the super-
conducting order parameter, for on-site interaction U = 1 (top) and U = 2 (bottom).
The simple impurity model (Fig. 1) is used. The transition is accompanied by a devia-
tion in the number density (indicated by filled/open green circles) from the half-filled
value n= 1. The dashed (solid) curves of each color depict the behavior of different
quantities for decreasing/more negative (increasing/less negative) V , and we find
significant hysteresis. For larger repulsive interactions U , the transition is found to
occur at a critical value of V that is more attractive. For U = 1, we observe oscil-
lations between the d−wave and AF orders at half-filling, close to the transition for
decreasing/more negative V , while for U = 2, we see a significant region of d−wave
superconductivity close to half-filling for increasing/less negative V , as well as similar
oscillations between the d−wave and AF orders at half-filling, close to the transition
between the two states for increasing/less negative V .

density from its half-filled limit, which can be attributed to the effects of phase separation, dis-
cussed in more detail in the next subsection. Each of the order parameters is plotted for both
increasing and decreasing U , and the region of hysteresis between the two curves indicates
that the transition is first-order in nature. We have verified that other pairing symmetries,
such as extended s-wave and p-wave, do not compete with dx2−y2 pairing in this regime. The
results of our analysis are shown in Fig. 3. Likewise, an antiferromagnetic order is destabilized
in favor of d-wave superconductivity for an attractive V , at a fixed repulsive U ∼ t, with signif-
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icant hysteresis between the curves obtained for increasing/decreasing V . The latter state is
then rapidly suppressed due to the effect of phase separation. The results are shown in Fig. 4.

3.1.2 V > 0

For repulsive nearest-neighbor interactions V , we do not expect to find any superconducting
orders at half-filling in the strong-coupling limit U ≫ t, and instead focus on studying the
competition between charge- and spin-density-wave orders. At fixed V > 0, we observe a
first-order phase transition from a charge-density wave (CDW) to an antiferromagnetic (AF)
state, as a function of increasing U . Likewise, for a large repulsive U , the system undergoes
a phase transition from antiferromagnetism to CDW, as a function of the repulsive V . In both
cases, a large region of hysteresis is observed between the results obtained for increasing and
decreasing values of the respective interaction couplings. The results of our analysis are shown
in Figs 5 and 6, respectively.
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Figure 5: First-order phase transition from a charge-density wave (CDW) order (in-
dicated by filled/open red circles) to antiferromagnetism (indicated by filled/open
blue circles), at half-filling, as a function of the local repulsive interaction U , for
V = 0.5 (top) and V = 0.75 (bottom). The simple impurity model (Fig. 1) is used.
The dashed (solid) curves of each color depict the behavior of the order parameters
for decreasing (increasing) U , and exhibit significant hysteresis. As the repulsive V
becomes stronger, the transition is found to occur at a larger value of U , the CDW
order parameter increases considerably in magnitude, and the region of hysteresis is
somewhat enhanced.
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Figure 6: First-order phase transition from antiferromagnetism (indicated by
filled/open blue circles) to charge-density wave (CDW) order (indicated by
filled/open red circles), at half-filling, as a function of the repulsive interaction V
for fixed U , with U = 8 (top) and U = 12 (bottom). The simple impurity model
(Fig. 1) is used. The dashed (solid) curves of each color depict the behavior of the
order parameters for decreasing (increasing) V , and exhibit considerable hysteresis.
As U increases, the transition occurs at a larger critical value of V , and the antiferro-
magnetic order parameter increases in magnitude.

We do not present the corresponding results for the more general bath model (Fig. 2) here,
as they are found to be qualitatively similar to those obtained for the simple model. The key
differences, that are sometimes observed, include a) an increase/decrease in the strength of
the d-wave order parameter close to the transition, b) a smaller region of hysteresis, c) a small
shift in the position of the transition, particularly as a function of V for fixed U .

3.2 Phase diagram as a function of density

Next, we examine the phase diagram of the model over a continuous range of densities, for
U > 0 and attractive/repulsive V . For V > 0, we once again limit ourselves to the strong-
coupling limit U ≫ t. For V < 0, we focus on studying the effect of an attractive extended
interaction, with a local repulsion U controlling the extent of phase separation.
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Figure 7: Superconducting order parameter of the EHM with attractive nearest-
neighbor interactions, as a function of density n, from n = 0 to 2 for the simple
bath model (Fig. 1). Close to the half-filled value n= 1, we find signatures of phase
separation, indicated by a gap in the curve over a range of densities, caused by a jump
in the compressibility ∂ n/∂ µ (as shown in Fig. 9). For smaller (larger) fillings, nearly
symmetrical and sharply defined regions of d-wave superconductivity (represented
by filled/open blue circles) are followed by disconnected patches of extended s-wave
order (represented by filled/open red circles), which appear only beyond a critical
attractive value of V . Note that the asymmetry between either the d−wave regions
or the extended s-wave regions near the band edges, especially evident for V = −0.4,
is a numerical artefact owing to insufficient accuracy in the CDMFT procedure and
has no physical consequence.
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Figure 8: Superconducting order parameter of the EHM with attractive nearest-
neighbor interactions, as a function of density n, from n = 0 to 2 for the general
bath model (Fig. 2). The overall behavior of the d− and extended s-wave patches are
similar to the corresponding result for the simple bath model. However, note that the
structure of the s-wave order parameter has changed, with a more extended region
near quarter-filling, and an additional patch near 1/3−filling. For U = 0, V = −0.7,
the phase separation region extends all the way to quarter-filling, and the corre-
sponding superconducting patches are almost absent, and asymmetric about n = 1.
Moreover, the new s-wave order parameter becomes unambiguously weaker as the
repulsive U increases, and is completely absent for U = 1 and U = 2, thus resolving
the question of the non-monotonous behavior of the s-wave order parameter in the
simple bath model.

3.2.1 V < 0

Let us now discuss the different phases that are supported by the model as a function of den-
sity. Close to half-filling, we find a region of phase separation, indicated by a jump in the
density, flanked by symmetrical islands of dx2−y2 pairing, which decay rapidly as a function of
density. For further smaller (larger) fillings, an extended s-wave order appears in the form of
disconnected regions, near quarter-filling and at very small (large) densities. Interestingly, the
variation of the extended s-wave order parameter as a function of U and V are found to be dif-
ferent for the simple bath model and the more general one. In the case of the simple model (see
Fig. 7), we find small regions of extended s-wave superconductivity near quarter-filling, that
vary non-monotonously as a function of U . Only for sufficiently attractive V , nearly symmetri-
cal regions of extended s-wave order also appear close to the band edges. The corresponding
results for the general bath model are illustrated in Fig. 8. While the overall magnitude of the
s-wave order parameter turns out to be smaller than in the previous case, its shape is more
extended at quarter-filling, with two patches appearing next to each other, which, interest-
ingly, appear close to fillings of 1/3 and 1/2, respectively. While it is tempting to blame the
n = 1/2 feature on a commensurate finite-size effect on a 4-site cluster, this is less obvious
for the n = 1/3 feature. The superconductivity also clearly becomes stronger as a function of
V < 0. Notably, the s-wave order is clearly absent for both U = 1 and U = 2, thus eliminating
the confusion caused by the aforementioned non-monotonous variation in the case of the sim-
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Figure 9: Number density n as a function of the chemical potential µ (measured
with respect to its particle-hole invariant value, µc = U/2 + 4V ) for an EHM with
attractive nearest-neighbor interactions, over a range of values of U ≥ 0 and V < 0
for the simple bath model (Fig. 1). On either side of half-filling (µ = µc), we find
symmetrical jumps in the compressibility ∂ n/∂ µ enclosing a region of hysteresis,
which corresponds to the coexistence of two different uniform-density solutions. This
is interpreted as the region of phase separation. The red, blue and black filled/open
circles represent the behavior for various values of U for V = −0.7, and demonstrate
that while a sufficiently attractive interaction V favors phase separation, a stronger
on-site repulsion U is detrimental to it.
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Figure 10: Number density n as a function of the chemical potential µ (measured
with respect to its particle-hole invariant value, µc = U/2 + 4V ) for the EHM with
attractive nearest-neighbor interactions, over a range of values of U ≥ 0 and V < 0
for the general bath model (Fig. 2). The behavior is very similar to that observed
in the simple bath model, with the most notable difference being the appearance of
symmetric jumps in the number density n, close to quarter-filling, for each of the
curves.
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Figure 11: Superconducting d-wave order parameter of the EHM with repulsive
nearest-neighbor interactions in the strong-coupling limit, i.e., at U = 8t, using the
simple bath model (Fig. 1). The Mott insulating state at half-filling is destabilized
in favor of dx2−y2 pairing, upon hole doping. The dome-like region of d-wave su-
perconducting order is observed for V = 0 (indicated by the solid blue curve) and is
somewhat suppressed for nonzero repulsive V (indicated by the solid red curve). No
other superconducting orders are found to be stabilized in this region.

ple model, and illustrating the advantage of considering a larger number of bath parameters
in the CDMFT procedure. This being said, the conclusions from the two bath models are very
similar. Using two different bath models provides us with an order-of-magnitude estimate of
the error caused by the discreteness of the bath.

To better characterize the region of phase separation, we examine the behavior of the num-
ber density n as a function of the chemical potential µ, measured with respect to its particle-
hole symmetric value µc = U/2+ 4V . On either side of µ = µc , we find symmetrical jumps
in the compressibility ∂ n/∂ µ, enclosing a region of hysteresis in the µ− n curve, depicted in
Fig. 9, where two uniform-density solutions coexist. Within our approach, this is interpreted
as the region of phase separation, and is found to shrink under the influence of stronger local
repulsive interactions U , and expand when V becomes more attractive. The corresponding re-
sults for the general bath model are depicted in Fig. 10. The two sets of results are qualitatively
similar, except for symmetric jumps observed in the number density n near quarter-filling in
the latter case. We note that the jumps occur only for the model with the larger number of
bath parameters, and are the most prominent for U = 0, V = −0.7, where the phase separa-
tion region extends all the way to quarter-filling, becoming progressively smaller for U = 1
and 2. It is plausible that phase separation might lead to the appearance of multiple jumps in
the density, at half-filling as well as quarter-filling. Moreover, a finite-size effect would have
been even more obvious in the simple bath model, where these jumps are found to be absent.
The origin of the jumps is currently unclear to us.

The appearance of a phase separated state for sufficiently attractive interactions is a famil-
iar result [32, 52, 71, 81, 87, 116], which has received attention from other groups, including
very recently [70], but the characterization of the region of phase separation tends to depend
on the method used for the analysis, and whether it is capable of handling a nonuniform
distribution of particles.
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Figure 12: Superconducting d-wave order parameter of the EHM with repulsive
nearest-neighbor interactions in the strong-coupling limit (U = 8t) using the gen-
eral bath model (Fig. 2). The behavior is qualitatively similar to that obtained in the
simple model, with a slight difference in the magnitudes of the d-wave order param-
eter. The most noticeable difference between the two bath models is the relatively
sharp transition into and out of the d-wave superconducting phase.

3.2.2 V > 0

At half-filling, for U = 8t, the large on-site interaction freezes the charge degree of freedom,
and the ground state is a Mott insulator. Hole doping is found to destabilize the magnetic
order, and drive the system towards a d-wave superconducting phase. We encounter a dome-
shaped region of d-wave superconductivity for V = 0, which is suppressed at smaller densities,
where no competing superconducting orders are found to be stabilized in our analysis. Upon
introducing a repulsive V ∼ t, the superconducting order remains stable, but is somewhat
suppressed. The results are depicted in Fig. 11. The corresponding results for the general bath
model are depicted in Fig. 12. The two sets of results are qualitatively similar, with the most
noticeable difference being the relatively sharper transition to and from the d-wave ordered
state in the latter case. These results are consistent with the picture of superconductivity
mediated by short-range spin fluctuations in a doped Mott insulator [117–119].

4 Discussion and conclusions

In summary, we have studied the phase diagram of the extended Hubbard model, for both
attractive and repulsive nearest-neighbor interactions, using a combination of Cluster Dynam-
ical Mean Field Theory (CDMFT), with a dynamical Hartree-Fock approximation for treating
inter-cluster interactions. We examine possible phase transitions at half-filling, as well as the
dominant phases that are stabilized as a function of density. At the particle-hole invariant
chemical potential, which corresponds to a half-filled band in the absence of phase separation,
the antiferromagnetically ordered state undergoes a first-order phase transition to d-wave su-
perconductivity for a critical attractive interaction V . Stronger attractive extended interactions
also tend to induce phase separation, which manifests itself in the form of a gradual deviation
of the density from its half-filled limit, for a fixed chemical potential. For a sufficiently strong
repulsive interaction V , a charge-density wave order is stabilized at half-filling.
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Figure 13: The figure shows the behavior of the extended s-wave order parameter as a
function of the number density n, with and without the inclusion of the self-consistent
anomalous mean-field parameter Es (see Appendix A), for U = 0, V = −0.4 (above)
and U = 0, V = −0.7 (below). Clearly, some of the regions with a nontrivial s-wave
order parameter are found to be absent when Es is not included. For U = 0, V = −0.7,
the most prominent among these appears to be the region with density in the range
0< n< 0.3. Upon considering a stronger attractive V , these regions tend to reappear,
but are suppressed in magnitude in the absence of Es.

As a function of density, a phase separated state near the half-filled point is flanked by
symmetrical regions of d-wave superconductivity, that decay sharply as a function of density,
and islands of extended s-wave order at smaller (larger) band fillings. For the case of repulsive
non-local interactions, in the strongly coupled limit, the Mott insulator at half-filling gives way
to a dome-shaped region of d-wave superconductivity, upon hole doping, which is expected
on physical grounds. No other competing superconducting orders are found to be stabilized
in this region of parameter space.

For the most part, our results are found to be qualitatively consistent with the existing
literature. The transition between antiferromagnetism and CDW at half-filling, for repulsive
interactions, has been predicted by several previous studies [26,31,54,58,62,65,70,76–78,87],
although the critical interaction strength typically depends on the method of analysis. For
densities away from half-filling, there have also been some predictions of dx y pairing, that
appears beyond the region of dx2−y2 pairing, for repulsive extended interactions [39,56]. We
do not find such a state in our analysis. The phase diagrams obtained from self-consistent
mean-field theory based analyses tend to prominently feature d-wave superconductivity at
half-filling, with a continuous region of extended s-wave order at smaller densities, along
with a region of coexistence between the two, i.e., s + id pairing [50, 51]. In our analysis,
we do not usually see a coexistence between d- and extended s-wave orders. In the simple
model, such a coexistence is observed only in those regimes where both interactions U > 0
and V < 0 are sufficiently strong, and comparable in magnitude. This may be due to the
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fact that the superconducting orders found in our analysis are fairly weak, and the significant
attractive interactions that are, therefore, needed for stabilizing overlapping regions of d-
and extended s-wave orders, would also lead to a larger region of phase separation. This
effect can only be compensated by including a sufficiently large repulsive local interaction.
On the other hand, we have not been able to verify a similar coexistence of the orders for the
general bath model, due to the rapid suppression of the extended s-wave order, near quarter-
filling, with an increase in U . Some studies have also suggested the possibility of p-wave
superconductivity, especially at half-filling [32], and for intermediate hole doping, beyond
the region of d-wave superconducting order [39, 50, 51]. We do not find signatures of p-
wave superconductivity in the parameter regimes that we study. Some of our results at half-
filling are found to be qualitatively consistent with a recent study on the extended Hubbard
model using the determinantal Quantum Monte Carlo technique [70], which also reports the
transitions between d-wave superconductivity and AFM, as well as between phase separation
and d-wave, that we observe in our analysis. In addition, the authors of the aforementioned
paper also explore other quadrants of the U − V phase diagram, including the case where
U < 0, which we do not take into account, since the repulsive component of the Coulomb
interaction is always expected to be present in a realistic situation.

In contrast to ordinary mean-field theory, our approach takes the intra-cluster fluctuations
into account exactly, and is therefore expected to give more reliable quantitative results. In par-
ticular, ordered phases are weaker in this approach than in ordinary mean-field theory. At the
same time, it should be noted that we only take into account spatial fluctuations within small
clusters, and the accuracy of the method is controlled by the size of the clusters used. To illus-
trate the importance of including the effect of the inter-cluster interactions self-consistently,
which are usually disregarded in cluster-based approaches, we have compared the behavior of
the superconducting d- and extended s-wave orders as a function of density n, for an attractive
V (see Fig. 13) in the presence and absence of the anomalous mean-field parameters (which we
refer to as Ed and Es respectively). Certain regions of the extended s-wave order, that we ob-
serve in our analysis, disappear entirely in the absence of the self-consistent anomalous mean
field parameter Es. These regions tend to reappear, but with a smaller amplitude, when the at-
tractive V is sufficiently strong. Likewise, in the case of d-wave superconductivity, we find that
the superconducting order parameter is negligible when Ed is absent, and tends to reappear,
with a much smaller amplitude, when the repulsive U is increased. Our approach is more suit-
able for making predictions about the thermodynamic limit than exact diagonalization studies
on finite-sized clusters, since only the self-energy is limited by the cluster size. Some recent
studies have explored the possibility of magnetic states characterized by ordering wave vectors
that are incommensurate with the lattice periodicity [120] in the two-dimensional Hubbard
model, for electron densities below half-filling, where the antiferromagnetic state becomes
unstable. Our approach is unsuitable for identifying such incommensurate charge and spin
orders. Our method does not suffer from fundamental restrictions on its applicability in any
particular parameter regime, and allows us to study the behavior of the model as a continuous
function of doping, rather than by focusing on specific densities, as has been done in many
previous studies. In the future, this method could be potentially useful for analyzing more
complicated models, including those with spin-orbit interactions. It can also be applied to the
single-band Hubbard model on a triangular lattice, in which the importance of non-local inter-
actions has been pointed out in the literature [121]. It would also be interesting to explore the
regime of non-perturbative repulsive local interactions and attractive extended interactions, to
observe their combined effect on driving or suppressing phase separation [122,123]. Longer-
range hopping terms can also be included within our exact diagonalization implementation,
which give rise to geometric frustration, making the analysis more relevant for the physics of
the cuprates.
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Figure 14: Inter-cluster Hartree-Fock mean fields for the solutions shown in the top
panel of Fig. 4. Ed is the eigen-operator associated with d-wave superconductiv-
ity, E f with the nearest-neighbor kinetic operator frr′σσ and En with the density n
(basically a shift in the chemical potential induced by V ). The mean-field Es asso-
ciated with extended s-wave superconductivity is negligible over almost the entire
range of V , since this is at half-filling, except at significantly attractive V (due to
phase separation). Note the very different scales (the superconducting mean field
is much magnified). The filled and empty circles denote the results for increasing
(less negative) and decreasing (more negative) V , respectively. The oscillations in
the d−wave order parameters observed close to the transition are also reflected in
the corresponding mean-field parameter.
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A The inter-cluster mean-field procedure

The extended interaction term can be rewritten as

1
2

∑

r,r′,σ,σ′
Vrr′nrσnr′σ′ =

1
2

∑

r,r′,σ,σ′
V c

rr′nrσnr′σ′ +
1
2

∑

r,r′,σ,σ′
V ic

rr′nrσnr′σ′ ,

where r, r′ refer to the lattice sites, and nrσ is the number of particles at site r with spin σ.
Here V c

rr′ and V ic
rr′ refer to the intra-cluster and inter-cluster parts of the interaction. Inspired

by Wick’s theorem, we decompose the inter-cluster part of the interaction into Hartree, Fock
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and anomalous channels, as follows:

1
2

∑

r,r′,σ,σ′
V ic

rr′nrσnr′σ′ =
∑

r,r′,σ,σ′
V ic

rr′

�

nrσ n̄r′σ′ −
1
2

n̄rσ n̄r′σ′

�

−
∑

r,r′,σ,σ′
V ic

rr′

�

frr′σσ′ f̄
∗
rr′σσ′ −

1
2

f̄ ∗rr′σσ′ f̄ rr′σσ′

�

+
1
2

∑

r,r′,σ,σ′
V ic

rr′
�

∆rr′σσ′∆̄
∗
rr′σσ′ +∆

†
rr′σσ′∆̄rr′σσ′ − ∆̄rr′σσ′∆̄

∗
rr′σσ′
�

,

(A.1)

where the operators are defined as nrσ ≡ c†
rσcrσ, frr′σσ′ ≡ c†

rσcr′σ′ and ∆rr′σσ′ ≡ crσcr′σ′ . Note
that the applicability of Wick’s theorem is not exact in this case, as we are considering a model
which already includes on-site interactions, but must be considered as an ad hoc Ansatz. In
other words, at a fundamental level, we are not assuming that the ground state of the system is
a Slater determinant. We are rather resting on a variational principle for the self-energy [124]
on which CDMFT is formally based.

The sum over sites r, r′ is taken over the whole lattice. But the average n̄rσ will be assumed
to have the periodicity of the cluster, i.e., n̄r+Rσ = n̄rσ where R belongs to the super-lattice. In
addition, the two-site averages f̄ rr′σσ′ and ∆̄rr′σσ′ are assumed to depend only on the relative
position r− r′. The mean-field inter-cluster interaction (A.1) is then a one-body contribution
to the Hamiltonian with the periodicity of the super-lattice, and contains both intra-cluster
and inter-cluster terms, whereas the purely intra-cluster part V c

rr′ retains its fully correlated
character.

For a four-site cluster, we have a total of eight bonds between neighboring clusters, along
the x and y directions, with two spin combinations (σ,σ′) per bond, where we consider spin-
parallel combinations for the Fock terms (in the absence of spin-dependent hopping) and spin-
antiparallel combinations for the anomalous terms. In practice, we only consider physically
relevant combinations of operators defined on different sites/bonds for our analysis (such as
those compatible with a d-wave or an extended s-wave order). As an illustration of this, let
us consider the pairing fields ∆ defined on all of these bonds, which we denote by the labels
i = 1− 16 (including different bond and spin combinations).

The mean-field Hamiltonian can be written as

V
2

∑

i, j

�

∆̄∗i Mi j∆ j +∆
†
i Mi j∆̄ j − ∆̄∗i Mi j∆̄ j

�

, (A.2)

where i, j = (r, r′,σ,σ′) and the matrix Mi j describes the combinations of the pairing fields
defined on different bonds which appear in the Hartree-Fock decomposition of the inter-cluster
interactions. The matrix M turns out to be an identity matrix for the Fock and pairing fields f
and ∆ respectively, but the corresponding matrix for the Hartree fields n is off-diagonal.

Defining the eigen-combinations of the pairing fields by

Eα = Uαi∆i , (A.3)

and the eigenvalues of the matrix M by λα, such that

Mi j =
∑

α,β

U∗αiλαδαβUβ j ,

we can rewrite Eq. (A.2), above, as

V
2

∑

α

λα
�

Ē∗αEα + E†
α Ēα − Ē∗α Ēα
�

. (A.4)
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The mean-field values Ēα of the relevant eigen-combinations Eα of the pairing operators de-
fined on different nearest-neighbor bonds are obtained self-consistently within the CDMFT
loop, and likewise for the other mean fields that are the appropriate eigen-combinations of
n̄rσ and f̄ rr′σσ′ .

B CDMFT convergence

The CDMFT procedure is iterative and aims at finding a solution to a set of nonlinear equations
that can be schematically expressed as

x= f(x) , (B.1)

where x stands for the set of bath and inter-cluster Hartree-Fock parameters and f is an equally
large set of functions that returns the next set of parameters from the current set, following
a procedure that combines the CDMFT update with the inter-cluster mean-field one. The
canonical way to solve Eqs (B.1) is the fixed-point method: the map xn+1 = f(xn) is iterated
until the difference ∆xn+1 = xn+1 − xn is smaller than some preset accuracy.

However, if the purpose is to find a solution to (B.1), there are more efficient and stable
alternatives. Specifically, one could use the classic Broyden method for finding roots of sets
of nonlinear equations, a generalization to many variables of Newton’s root-finding method.
Broyden’s method relies on a computation of the Jacobian matrix J= ∂ f/∂ x that is improved
at each iteration. It typically finds a solution with fewer iterations than the fixed-point method,
and with greater accuracy. In addition, it is “stickier”, meaning that upon performing an exter-
nal loop over model parameters, it will “stick” to the current solution (or the current phase),
whereas the fixed-point method will be prone to instabilities and will more likely switch to
more stable solutions.

This means that the fixed-point method, although less efficient, is more appropriate to
detect phase transitions, whereas the Broyden method is better at keeping the current solution
into its metastable regime. Hence the Broyden method will typically result in wider hysteresis
loops than the fixed-point method when the external parameter is cycled in both directions
(ascending and descending).

In practice, we can converge the CDMFT-DHF procedure on the difference ∆xn+1, but we
can also ask for the convergence of physical quantities, such as the cluster self-energy Σ(ω), or
relevant order parameters. It may happen that physical quantities converge even though bath
parameters do not, because the latter are sometimes subject to discrete “gauge” symmetries
that do not affect physical observables. But even though convergence criteria may be based
on physical quantities, the iteration xn → xn+1 is still based on either the fixed point or the
Broyden method. In this work, we used the self-energy and relevant order parameters as
convergence criteria, with accuracies of the order of 10−4.

As an illustration, we compare the behavior of the relevant order parameters for the phases
observed at the particle-hole symmetric chemical potential as a function of U > 0 for V = −0.6
in Fig. 15 and as a function of V < 0 for U = 2 in Fig. 16, using the fixed-point and the
Broyden methods for obtaining the optimal set of CDMFT parameters. As expected, the region
of hysteresis is found to be much larger when the Broyden method is used, consistent with
the tendency of this method to stick to the current solution. Interestingly, we find that the
existence of d-wave order does not necessarily coincide with phase separation, and there may
be a region with a nontrivial d− order parameter even at half-filling. However, such a region is
not easily observed with the fixed-point method and is usually significantly amplified when the
Broyden method is used, as illustrated in the lower plot of Fig. 15. We also observe oscillations
between the d-wave solutions obtained in the presence and absence of phase separation within
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Figure 15: Order parameters for the different phases observed at the particle-hole
symmetric chemical potential for V = −0.6, as a function of U , using the fixed-point
method (above) and the Broyden method (below) for obtaining the optimal set of
bath and mean-field parameters. The hysteresis loop obtained for increasing and
decreasing U is found to be much larger for the Broyden method, indicating that it
has a tendency to stick to the current solution. A prominent region with a nontrivial
d-wave superconducting order parameter is observed at half-filling for the Broyden
method (indicated by the region with filled red circles in the lower plot). The tran-
sition from the phase-separated to the half-filled state is indicated by a shoulder-like
feature in the corresponding d-wave order parameter. Oscillations are observed be-
tween the d-wave solutions with and without phase separation, within the hysteresis
region, for both methods. In the presence of phase separation, the density is found to
oscillate between values greater than and less than 1, when the Broyden method is
used, and sometimes also with the fixed-point method. Moreover, some oscillations
are also observed between the AF and normal states, close to the phase transition
towards AF for increasing U (see open blue circles in the lower plot).

the gray hysteresis region, for both the methods. Although the Broyden method converges
faster even with a higher accuracy, we obtain more oscillatory solutions in general with this
method, which includes oscillations between densities greater than and less than 1 in the
phase-separated region for small U , as well as between the normal state and the AF state,
close to the transition from d-wave to antiferromagnetism for increasing U . In Fig. 16, we see
that d-wave superconducting state persists well into the region of half-filling as V becomes
less negative, for both methods. When the Broyden method is used, we find that the system
continues in the AF state down to V = −1.8 and then undergoes a transition to the normal
state, without the appearance of a d-wave order or phase separation. This is an extreme
example of the tendency of this method to preserve the existing solution. In contrast, the
fixed-point method gives rise to a phase transition towards the d-wave superconducting state,
close to V=-0.9. Therefore, for most situations, it is more convenient for us to employ the
fixed-point method for our computations.
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Figure 16: Order parameters corresponding to the different phases observed at the
particle-hole symmetric chemical potential for U = 2, as a function of V , using the
fixed-point method (above) and the Broyden method (below) for obtaining the op-
timal bath and mean-field parameters. Once again, the hysteresis region between
increasing and decreasing negative V is found to be much larger when the Broyden
method is employed. Interestingly, the AF region is found to persist all the way to
V = −1.8 for decreasing (more negative) V with the Broyden method (not shown in
the figure), beyond which the system directly undergoes a transition to the normal
state, and the intervening d-wave superconducting region is found to be absent (the
open blue circles in the lower plot depict the behavior up till V = −1.1). For increas-
ing (less negative) V , a part of the d-wave superconducting phase observed is found
to be very close to half-filling for both methods (indicated by the filled red circles).
Moreover, oscillations are observed between the d-wave and AF phases, which are
found to occur more frequently when the Broyden method is used. Note that the
results for increasing V have been plotted starting from V = −1.0 in both cases for
convenience, but may be smoothly extrapolated to more negative values of V .
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