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Abstract

Higher-degree polynomial interpolations carried out on uniformly distributed nodes are
often plagued by overfitting, known as Runge’s phenomenon. This work investigates
Runge’s phenomenon and its suppression in various versions of the matrix method for
black hole quasinormal modes. It is shown that an appropriate choice of boundary con-
ditions gives rise to desirable suppression of oscillations associated with the increasing
Lebesgue constant. For the case of discontinuous effective potentials, where the appli-
cation of the above boundary condition is not feasible, the recently proposed scheme
with delimited expansion domain also leads to satisfactory results. The onset of Runge’s
phenomenon and its effective suppression are demonstrated by evaluating the relevant
waveforms. Furthermore, we argue that both scenarios are either closely related to or
practical imitations of the Chebyshev grid. The implications of the present study are also
addressed.
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1 Introduction

The black hole quasinormal modes (QNMs) carry essential information on one of the most
crucial predictions of Einstein’s general relativity. These distinctive dissipative oscillations bear
intrinsic properties of the peculiar spacetime region [1–4]. From an observational perspective,
such a temporal profile may manifest as the ringdown phase of a merger through which the
black hole is formed. The associated signals are physically straightforward and mathematically
“clean” compared to those emanating from other stages of the merger process. Meanwhile, the
direct detection of gravitational waves (GWs) [5–8] has provided unique insights and raised
further expectations, widely recognized as heralding a new era of GW astronomy. Specifically,
it has been speculated that the strength of these signals is feasible for space-borne GW projects
currently under development, such as LISA [9], TianQin [10], and Taiji [11].

Besides its experimental relevance, black hole QNM is also an intriguing theoretical topic
in its own right. The QNMs are characterized by a spectrum of complex frequencies, subject
to the in-going and out-going boundary conditions defined at the horizon and the outer spa-
tial boundary, respectively. As a scattering problem, these discrete modes emerge when the
transmission or reflection coefficient becomes divergent. Schutz and Will argued that spe-
cific resonance might occur if the waveform frequency is numerically close to the peak of
the effective potential in the complex plane, especially when the transmission and reflection
coefficients are of similar magnitude. These arguments gave rise to the well-known WKB ap-
proximation [12,13]. Ferrari and Mashhoon [14] transformed the problem into a bound state
by extending the spatial wave function domain onto the imaginary axis through analytic con-
tinuation. One of the most accurate approaches, known as the continued fraction method, was
proposed by Leaver [15]. To solve for the complex frequencies, the wave function is expanded
near the horizon, and its asymptotic behavior is stripped away, reminiscent of the problem of
the hydrogen spectrum in quantum mechanics. Additionally, the hyperboloidal approach [16]
reformulated the task as an eigenvalue equation for a non-selfadjoint operator by replacing
spacelike infinity in the original problem with null infinity. Leaver treated the waveform in
terms of Fourier spectrum decomposition [17], a technique further explored by Nollert and
Schmidt [18] using Laplace transforms. This last framework identifies the QNMs as the poles
of the corresponding frequency domain Green’s function.
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On the practical side, much effort has been devoted to extracting information from the em-
pirical waveforms, known as the black hole spectroscopy [19–24]. Moreover, a black hole or
other compact object is always merged in a realistic environment, and the resulting spacetime
deviates from that entirely governed by a mathematical solution in the vacuum. Subsequently,
the emanated GWs might deviate substantially from an isolated object in the ideal scenario.
The latter leads to the notion of dirty black holes [25–28]. Many pertinent studies have been
carried out in this direction. The scalar QNMs of dirty black holes were first explored by
Leung et al. using the generalized logarithmic perturbation theory. A comprehensive analy-
sis was performed by Barausse et al., where the time evolution of small perturbations about
a central Schwarzschild black hole [28] was investigated. It was observed that the evalu-
ated QNMs might be substantially different from those of an ideal black hole. Nonetheless,
it was concluded that the astrophysical environment would not significantly affect the black
hole spectroscopy if an appropriate waveform template was adopted. The above studies have
partly promoted the recent developments on QNM instability [29–31]. In particular, for a
non-Hamiltonian system, the notion of pseudospectrum has been employed to understand
the system’s instability that cannot be captured by linear stability analysis. In the context of
black hole perturbation theory, the study was initiated by Nollert [32] and followed up by
Nollert and Price [33], Daghigh et al. [34], and some of us [35]. It was demonstrated that
the high-overtone modes of the QNM spectrum are unstable when triggered by ultraviolet
perturbations. This conclusion undermines the educated guess that the QNM spectrum is not
expected to be significantly different once a reasonable approximation for the effective po-
tential is adopted. In fact, the presence of an insignificant discontinuity might have a drastic
impact on the asymptotical behavior of the QNM spectrum [35]. From a general perspective,
Jaramillo et al. [29–31] demonstrated that the boundary of the pseudospectrum migrates to-
ward the real frequency axis as a result of randomized perturbations. These studies indicate
a universal instability of the high-overtone modes and their potential implications on GW as-
tronomy. Recently, Cheung et al. [36] further showed that even the fundamental mode can be
destabilized under generic perturbations. The above studies call for numerical results with un-
precedented precision. In particular, it is meaningful to further study the effect of the relevant
perturbations on the non-selfadjoint operator [29] in the context of black hole physics. Among
others, effective potentials with discontinuity might play an exciting role as a mathematically
simple and physically relevant model.

As mentioned above, one of the most accurate numerical schemes to date is the contin-
ued fraction method. While appropriately taken account the asymptotical waveform, such
an approach expands the waveform at a given coordinate [15,37,38]. As a result, the master
equation gives rise to a typically three or four-term iterative relation between the expansion co-
efficients, which can be expressed in a mostly diagonal matrix form. The problem for the QNMs
is thus effectively solved by using the Hill’s determinant [39,40] or Numerov’s method [41,42].
Following this line of thought, instead of a given position, one may discretize the entire spatial
domain and perform the expansions of the waveform on the entire grid [43]. Subsequently,
the master equation can also be formulated into a mostly dense matrix equation, and the QNM
problem is reiterated as an algebraic nonlinear equation for the complex frequencies. Such an
approach was employed to evaluate QNMs of compact stars [44, 45] pioneered by Kokkotas,
Ruoff, Boutloukos, and Nollert and recently promoted by Jansen [46]. Some of us have further
pursued the idea and dubbed the approach as matrix method [43,47–52]. Besides the metrics
with spherical symmetry [47], the method can be applied to black hole spacetimes with axial
symmetry [48] and system composed of coupled degrees of freedom [53]. The approach is
shown to be effective in dealing with different boundary conditions [49] and dynamic black
holes [50]. More recently, the original method was generalized [51] to handle effective po-
tentials containing discontinuity and pushed to the higher orders [52]. The method matrix
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method is shown to offer reasonable accuracy as well as efficiency and has been adopted in
various studies [34, 54–66]. Nonetheless, it also entails some drawbacks, specifically those
associated with the equispaced interpolation points implemented for most applications. It is
well-known that polynomial interpolation based on a uniformed grid is often liable to Runge’s
phenomenon, characterized by significant oscillations at the edges of the relevant interval,
closely related to an increasing Lebesgue constant [67]. In other words, even though the
uniform convergence over the interval in question is provided, an interpolation of a higher de-
gree does not necessarily guarantee an improved accuracy, similar to the Gibbs phenomenon
in Fourier series approximations.

The present study is primarily motivated by the above considerations. We investigate the
potential Runge’s phenomenon in various versions of the matrix method for black hole QNMs.
It is shown that an appropriate choice of boundary conditions can effectively suppress or delay
the onset of the phenomenon. Implementing a delimited expansion domain might also lead to
reasonable results when such boundary conditions are not feasible. Moreover, we note that the
recent results on the instability of the fundamental mode [36] invite further studies to explore
the black hole QNMs with unprecedented high precision. In this regard, such an analysis is
also physically meaningful.

The remainder of the paper is organized as follows. In the following section, we briefly
summarize various versions of the matrix method. After briefly reviewing Runge’s phe-
nomenon, we demonstrate its onset in various scenarios in Sec. 3. The deviation of the in-
terpolant is estimated in terms of the Lebesgue constant. Sec. 4 analyzes how the apparent
deviation can be suppressed. We elaborate on the role of boundary conditions and delimited
expansion domain. In particular, it is argued that both scenarios are intuitively related to the
Chebyshev grid. The concluding remarks are given in Sec. 5.

2 The matrix method

In this section, we briefly revisit the algorithm of the matrix method and elaborate on its
modification to deal with effective potential with discontinuity. Based on the interpolation
associated with a series of the nodes [43], the matrix method rewrites the derivatives of the
relevant waveform in terms of their function values on the nodes. Subsequently, the master
equation of the black hole QNMs [2]

�

∂ 2

∂ r2
∗
+ω2 − Veff

�

Ψ = 0 , (1)

where Veff is the effective potential, the spatial variable r∗ is known as the tortoise coordinates,
and the frequency ω is a complex eigenvalue, can be transformed into a non-standard matrix
eigenvalue equation [47,48],

GF = 0 , (2)

where G is a N × N matrix determined by the specific interpolation scheme, and the column
matrix F reads

F =
�

Ψ(x1),Ψ(x2),Ψ(x3), · · · ,Ψ(x j), · · · ,Ψ(xN )
�T

. (3)

In practice, the tortoise coordinate r∗ is transformed into x whose domain is of finite range,
and {x1, · · · , xN} are N discrete nodes where the interpolation is performed. One typically
choose x ∈ [0, 1], where the boundaries are located at x = x1 = 0 and x = xN = 1.
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To adapt the physical boundary conditions, the asymptotic form at the horizon and spatial
infinity is subtracted from the original wave function [49]. As a result of the above process,
the boundary conditions of the waveform read

Ψ(x = 0) = C0 , and Ψ(x = 1) = C1 . (4)

Since the asymptotic forms of the wave function have been stripped away, the remaining parts
C0 and C1 are constants.

To simply the boundary condition, as proposed in Refs. [47–49], one rewrites G by intro-
ducing the transform

Φ(x) = Ψ(x)x(1− x) , (5)

and rewrites Eq. (2) into

G F = 0 , (6)

where the matrix G is defined by

G i, j =











δi, j , i = 1 or N ,

Gi, j , i = 2, 3, · · · , N − 1 ,

(7)

and

F =
�

Φ(x1),Φ(x2),Φ(x3), · · · ,Φ(x j), · · · ,Φ(xN )
�T

. (8)

Accordingly, the above equation is accompanied by the modified boundary conditions

Φ(x = 0) = Φ(x = 1) = 0 . (9)

The matrix equation Eq. (6) implies that the quasinormal frequencies ω satisfy

detG(ω) = 0 . (10)

The roots of Eq. (10) can be found using the standard nonlinear equation solver. The above
approach will be denoted by MV1 in the remainder of the manuscript.

As pointed out in [51], the above scheme cannot be straightforwardly applied to the sce-
nario where the effective potential possesses discontinuity. The remedy to the difficulty is to
explicitly take into account Israel’s junction condition [68, 69] at the point of discontinuity,
denoted by the grid points x = xc . To be specific, the wave functions on the two sides of
discontinuity are related by [27,70]

lim
ε→0+

�

R′(xc + ε)
R(xc + ε)

−
R′(xc − ε)
R(xc − ε)

�

= κ , (11)

and for the master equation given by Eq. (1), one has

κ= lim
ε→0+

∫ xc+ε

xc−ε
Veff(x)d x . (12)

In the specific case of a finite jump, the above condition can be further simplified to the van-
ishing condition of the following Wronskian

W (ω)≡ R(xc + ε)R
′(xc − ε)− R(zx − ε)R′(xc + ε) . (13)
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Figure 1: An illustration of Runge’s phenomenon for the quasinormal waveform of
the fundamental mode for the potential barrier given by Eq. (14). The calculations
are carried out for interpolation on a uniform grid with different grid numbers, and
the results are represented in the top-left (n = 10), top-right (n = 30), and bottom-
left (n= 70) panels. The bottom-right plot shows a zoomed-in portion of the bottom-
left panel.

The matrix G should be revised to adopt the above conditions. As discussed in [51], the
modified matrix is almost broken into two diagonal sections of block submatrices. The relation
given by Eq. (11) or (13) is transformed into a row shared by these two blocks. The above-
modified version for discontinuous effective potential will be denoted as MV2 in the remainder
of the manuscript.

In the following section, we will show that both schemes presented in this section give
reasonable results for black hole QNMs at moderately lower order. However, as one goes to
higher orders, Runge’s phenomenon emerges and becomes more significant with increasing
grid numbers.

3 Runge’s phenomenon and its occurrence in the matrix method

Named after German mathematician Carl Runge, the phenomenon refers to the oscillation that
occurs when using polynomial interpolation at equidistant points to approximate a continuous
function. The problem becomes more severe as the degree of the interpolating polynomial
increases. Rather than converging to the function being approximated, the polynomial shows
increasing oscillations near the endpoints of the interval. It is especially problematic near
points where the function to be approximated has discontinuities or sharp turns.
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As an illustration, we start with the discussions of the quasinormal waveform of a simple
square potential barrier

V 0
eff = Vbarrier(x) =











0 , x < 0 ,

1 , 0≤ x ≤ 1 ,

0 , x > 1 .

(14)

The QNMs of the square potential barrier can be evaluated semi-analytically by identifying
the singularities of the reflection and transmission coefficients when viewing the problem as
a scattering process against the potential given by Eq. (14). Specifically, the resulting QNMs
correspond to the roots of the matrix component T22 = 0 [14], which subsequently gives rise
to the following equation

e2i
p
−1+ω2
�

1+ 2ω
�

−ω+
p

−1+ω2
��

+ 2ω
�

ω+
p

−1+ω2
�

− 1= 0 . (15)

The fundamental mode corresponds to the root of Eq. (15) with the smallest magnitude for
the imaginary part, which is found to be

ω0 = 4.63002044069− 5.218929351124i , (16)

and the corresponding waveform possesses the analytic form,

Ψ(x) =

q

ω2
0 − 1−ω0
q

ω2
0 − 1+ω0

ei
q

ω2
0−1x−2i
q

ω2
0−1 + e−i
q

ω2
0−1x , (17)

up to an irrelevant normalization constant.
To proceed, we perform an interpolation of the waveform Eq. (17) using a uniform grid

and show the resultant polynomial in Fig. 1 The calculations are carried out for different grid
numbers n = 10,30, and 70. It is observed that for small grid numbers, the interpolated
waveforms are essentially identical, as shown in the top-left (n = 10) and top-right (n = 30)
panels. However, for a more significant grid number, roughly n ≳ 60, significant oscillations
appear at the edges of the interval, indicating the onset of Runge’s phenomenon. This is
demonstrated by the bottom-left and bottom-right panels. The above results indicate that
Runge’s phenomenon may play a role in the matrix method when interpolation is performed
on a uniform grid. As will be elaborated further below, the relevant grid number when the
original approach ceases to provide reasonable results is numerically consistent with the above
results.

In what follows, we explore the occurrence of Runge’s phenomenon numerically regarding
the two versions of the matrix method discussed in the last section. Although reasonable results
are retrieved under moderate circumstances, we show that Runge’s phenomenon does become
a severe problem at higher orders.

Concerning the purpose of the present study, we consider two specific forms of effective
potential as follows. The first one is the Regge-Wheeler potential for Schwarzschild black
holes, which reads

V 1
eff = VRW(r)≡
�

1−
rh

r

�

�

ℓ(ℓ+ 1)
r2

+ (1− s2)
rh

r3

�

, (18)

where r is the radial coordinate, related to the tortoise coordinate by r∗ =
∫ dr

1− rh
r

, rh is the

location of the horizon, and ℓ corresponds to the angular momentum. The variable x is defined
as x = r−rh

r . The form of the potential is shown in the left plot of Fig. 2.
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Figure 2: The effective potentials adopted in the present study for axial gravitational
perturbations in Schwarzschild black hole metric. Left: the Regge-Wheeler potential
defined in Eq. (18). Right: The truncated potential Eq. (19), where a cut is imple-
mented at rc = 4.

Second, for the case of effective potential with discontinuity, we consider the following
form obtained by truncating the Regge-Wheeler potential Eq. (18) at r = rc . As shown in the
right plot of Fig. 2, it is defined by

V 2
eff =

¨

VRW , r ≤ rc ,

0 , r > rc .
(19)

In the remainder of this paper, calculations are carried out for the fundamental mode of
axial gravitational perturbations with s = −2, rh = 1, and ℓ= 2. Nevertheless, the conclusion
drawn from axial gravitational perturbations has also been verified to be, by and large, valid
to other types of perturbations with different angular momenta. As a reference for the accu-
rate value, the quasinormal frequency for the effective potential Eq. (18) is also evaluated by
employing the continued fraction method [15] at 300th order. The value is found to be

ωCF = 0.74734336883598689863− 0.17792463137781263197i .

The quasinormal frequency for the effective potential Eq. (19) can also be evaluated by using
a recurrence Taylor expansion scheme [71] at 300th order, which reads

ωRTE = 0.79425298413668122287− 0.14836993024971837407i .

The evaluated QNM frequencies for the effective potentials Eqs. (18) and (19) are pre-
sented in Tabs. 1 and 2. In Tab. 1, as the grid number increases, it is observed that the re-
sulting complex frequency first converges and then diverges as the grid number goes beyond
41. Compared to the value from the continued fraction method, at N = 35, the method MV1
attains the highest significant figures NSig = 8. In the top left plot of Fig. 3, we show the cor-
responding waveform for the grid number N = 61. Even though the boundary condition has
enforced Ψ(0) = Ψ(1) = 0, significant oscillations appear near the edges, which is a typical
demonstration of the Runge’s phenomenon [67].

Similarly, the results obtained by the method MV2 for the effective potential Eq. (19) are
shown in Tab. 2. Reasonable results for black hole QNMs are observed at moderately lower
order N ≤ 35, with an agreement of NSig = 6 significant figures. As one goes to higher
orders, again, Runge’s phenomenon emerges and becomes more significant with increasing
grid numbers. The corresponding waveform for N = 61 is presented in the top right and
bottom plots of Fig. 3. As clearly shown in the zoomed-in shot near the right edge x = 1, the
oscillations have undermined the method’s precision.
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Figure 3: The Runge phenomenon is demonstrated by significant oscillations in the
interpolated waveforms, occurring at both edges of the interval x = 0 and 1. The real
and imaginary parts of the waveform Ψ(x) are shown by the dashed orange and solid
blue curves. Top left: The evaluated waveform of the method MV1, calculated for
the effective potential shown in the left plot of Fig. 2 using 61 grid points. Top right:
The evaluated waveform of the method MV2, calculated for the effective potential
shown in the right plot of Fig. 2, also using 61 grid points. Bottom: A zoomed-in
portion of the top right plot, indicated by the black square.

In literature, the undesirable deviations associated with Runge’s phenomenon can be esti-
mated in terms of the rapid growth of the Lebesgue constant. For a given set of grid points on
the interval [a, b], the Lebesgue constant is defined as the norm of a linear operator associated
with the interpolation process based on the grid. The process in question is essentially a pro-
jection X from the space C([a, b]) of all continuous functions on the relevant interval [a, b]
onto the subspace Πn of polynomials up to degree n. As an operator norm, the definition of

Table 1: The calculated fundamental mode employing the matrix method (MV1) for
the Regge-Wheeler effective potential Eq. (18) by using different grid numbers.

Grid number N ω Λn/Λ35

11 0.74736508236138663485− 0.17788604312667105354i 2.6× 10−7

15 0.74733828947826767365− 0.17792416187562642623i 2.8× 10−6

21 0.74734366219031232799− 0.17792481061688616289i 1.2× 10−4

25 0.74734340368062390603− 0.17792456992234014614i 1.5× 10−3

31 0.74734336062217307506− 0.17792463238941793080i 7.3× 10−2

35 0.74734336866050136697− 0.17792463358986663649i 1
41 0.71366355617972504354− 0.34217275143274520441i 52
51 0.65235499436784095031− 0.27756660050373268323i 4.1× 104

61 0.66424482851821401498− 0.24986341753963809900i 3.4× 107
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Table 2: The calculated fundamental mode employing the modified matrix method
(MV2) for the Regge-Wheeler effective potential Eq. (19) by using different grid num-
bers.

Grid number N ω Λn/Λ41

11 0.78332877298546168772− 0.15890873993628376931i 5.0× 10−9

15 0.79164131485624724313− 0.14726475130268517427i 5.3× 10−8

21 0.79427451740740686113− 0.14827048584492279671i 2.2× 10−6

25 0.79425867578740535325− 0.14836310303749736941i 2.8× 10−5

31 0.79425333074579068309− 0.14836965173112674700i 1.4× 10−3

35 0.79425305864517265298− 0.14836991724415013199i 1.9× 10−2

41 0.79376170367437759294− 0.14887545803671615841i 1
51 0.81212553473007960577− 0.06803874222674382039i 7.8× 102

61 0.59169792910015569757− 0.35049028115298366817i 6.5× 105

Lebesgue constant resides on the definition of the norm on C([a, b]), the space of continuous
functions on the interval. It can be shown that the Lebesgue constant is the maximum value
of the Lebesgue function

λn(x) =
n
∑

j=0

�

�ℓ j(x)
�

� , (20)

over the domain, i.e.,
Λn = sup

x∈[a,b]
λn(x) , (21)

where ℓ j ’s are the Lagrange polynomials

ℓ j(x) =
n
∏

i=0,i ̸= j

x − x j

x i − x j
. (22)

Intuitively, the Lebesgue constant bounds the interpolation error and provides a quantitative
measure of how close the interpolant of a function is with respect to the best polynomial ap-
proximant of the function of the same degree. One may use the Weierstrass approximation
theorem to address the remainder in the Lagrange interpolation formula. Two factors govern
the upper bound of the latter: the nodal function and the (N + 1)th derivative of the wave-
form [72]. In the case of a uniform grid, the Lebesgue constant can be estimated according
to Turetski [73]. In the last columns of Tabs. 1 and 2, the Lebesgue constants are given with
respect to the order in which the divergence starts to emerge.

4 Recipes for accuracy improvement

The last section shows that Runge’s phenomenon poses a severe challenge to the accuracy of
the matrix method at higher orders. In the present section, we investigate possible remedies
to the problem and present numerical evidence for the elaborated algorithms. Moreover, we
explore the connection between the improvements of the matrix method and the well-known
Chebyshev grid.

In literature, one of the most well-known approaches to suppress the Runge phenomenon
is the Chebyshev grid [67]. Exponential convergence can be achieved by minimizing the La-
grange interpolation error [72], specifically, the maximum of the nodal functions. The result-
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ing Chebyshev grid (of the second kind) is given by

yCheb
j = cos
�

π j
N

�

, j = 0,1, · · ·N . (23)

It is featured by non-uniform distribution, for which the nodes cluster at the two edges of the
interpolation interval [−1, 1]. The Fekete grid adopts a similar strategy and maximizes the Van-
dermonde determinant, yielding a smaller Lebesgue constant. Also, a few approaches based
on equidistant nodes on different basis have been proposed [74]. Notably, most proposed
schemes involve a specific nonlinear transform. The latter introduces either a non-uniform
grid distribution or sophisticated regularization factors for the expansion coefficients. Regard-
ing the matrix method, implementing such processes often undermines the analytic form of
the matrix G, which, in turn, potentially leads to a price in terms of either computational time
or precision. Moreover, it was pointed out [75] that the spatial dependence of a differential
equation owing to the Chebyshev discretization could be undesirable as it might become very
stiff. In what follows, we elaborate on two possible modifications to the matrix method that
effectively suppress Runge’s phenomenon.

4.1 Suppression by boundary conditions

However, while maintaining a uniform grid, it can be shown that the convergence of the matrix
method is manifestly achieved in numerical practice. A better convergence can be attained by
lifting the boundary condition enforced by Eq. (9). Specifically, one resorts to the original
matrix equation Eq. (2) for effective potential without discontinuity. In other words, one
solves for the quasinormal frequencies ω by

detG(ω) = 0 , (24)

where the corresponding column matrix F constitutes the wave function Ψ(r∗) at the grid
points. The above recipe with enforced boundary conditions will be denoted as MV3.

The corresponding quasinormal frequencies evaluated for the effective potential Eq. (18)
using the above approach are presented in Tab. 3. By comparing to those given in Tab. 1
obtained using MV1, the convergence of the method MV3 is manifestly shown. Moreover,
when compared to the value from the continued fraction method, the method MV3 achieves
NSig = 11 significant figures. In the left plot of Fig. 4, we show the corresponding waveform for
the grid number N = 61. It is observed that the enforced boundary condition Ψ(0) = Ψ(1) = 0
is lifted, and no noticeable oscillation is observed.

4.2 Suppression by delimited expansion domain

For the case where discontinuity is present, a generalized matrix method was proposed to
suppress the Runge phenomenon [52]. The modified algorithm does not perform a full-rank
interpolation using the entire N nodes. Instead, for a given grid point x i , only a subset of P
is utilized. The latter governs the polynomial order of such a “localized” interpolation and
satisfies [76]

P <

√

√ 1
χ

p
N , (25)

where

χ >
2
π2

. (26)
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Table 3: The calculated fundamental mode employing the matrix method (MV3) for
the Regge-Wheeler effective potential Eq. (18) by using different grid numbers.

Grid number N ω

11 0.74734142569718546206− 0.17792359012679884957i
15 0.74734339428402995916− 0.17792493160929834949i
21 0.74734337435074057974− 0.17792461580026767347i
25 0.74734336575997473616− 0.17792463033137827244i
31 0.74734336894429315299− 0.17792463171019160783i
35 0.74734336892429329525− 0.17792463136858928592i
41 0.74734336883626139147− 0.17792463137856964651i
51 0.74734336883626139147− 0.17792463137856964651i
61 0.74734336883609414984− 0.17792463137782069136i

Such a recipe can be readily applied to the case of effective potential with discontinuity Eq. (19)
discussed in Sec. 3. As a result, the matrix Ḡ becomes more sparse, as only P elements will be
filled on each row. Subsequently, the calculation becomes more efficient when compared with
its counterpart with an identical grid number. Typically, a more significant value of N can be
adopted at moderate computational time, resulting in better performance. This modification
with delimited expansion domain will be referred to as MV4.

The corresponding quasinormal frequencies evaluated for the effective potential Eq. (18)
using the above approach are presented in Tab. 4. By comparing with those given in Tab. 2 ob-
tained using MV2, the convergence of the method MV4 is significantly improved. In particular,
when compared to the value from the continued fraction method, the method MV4 obtains
NSig = 11 significant figures. In the right plot of Fig. 4, we show the corresponding waveform
for the grid number N = 265. It is observed that there is no oscillation at the boundary of the
interval. Besides increasing precision, the method MV4 also warrants satisfactory efficiency.

4.3 Connection with Chebyshev grid

The delimited expansion approach Eqs. (25) discussed in the previous subsection was shown
to be particularly useful for higher-order calculations. We argue that the approach is in ac-
cordance with the spirit of the Chebyshev grid. In particular, it can be viewed as inspired
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Figure 4: The waveforms Ψ(x) are obtained by the approaches discussed in the
present section using 61 grid points. The real and imaginary parts are shown by the
dashed orange and solid blue curves. Left: The evaluated waveform of the method
MV3, calculated for the effective potential shown in the left plot of Fig. 2. Right: The
evaluated waveform of the method MV4, calculated for the effective potential shown
in the right plot of Fig. 2.
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Table 4: The calculated fundamental mode employing the modified matrix method
(MV4) for the Regge-Wheeler effective potential Eq. (19) by using different grid num-
bers.

Grid number N Polynomial P ω

33 8 0.79427102360997376129− 0.14815202532364477392i
61 10 0.79425457798200380894− 0.14837036928039701020i
85 12 0.79425298430556435132− 0.14836995464695804226i
113 14 0.79425298391364355806− 0.14836993034017380308i
145 16 0.79425298413593529556− 0.14836993024928454064i
181 18 0.79425298413719213174− 0.14836993025040434318i
220 20 0.79425298413719036408− 0.14836993025041291405i

by the overdetermined least-square method [74, 76] and mock-Chebyshev grid [76, 77]. Both
approaches were first introduced by Boyd and Xu, based on the findings of Rakhmanov [78].

The overdetermined least-square method [74,76] is a generalization of the standard linear
regression. Intuitively, if the physical law (after the appropriate transformation of the relevant
variables) is known to be linear, then linear regression should be used even though the data
size is significant. In other words, any attempt to fit the data with a higher-order polynomial
will result in overfitting. According to the overdetermined least-square method, one should
perform the least square fit to a polynomial, whose degree P is typically much smaller than
the size of the data N .

From a mathematical perspective, the above conclusion is based on Rakhmanov’s theorem
(theorem six of [76]). Let us consider a scenario when the data is only available on a uniformly
distributed grid with a total of N nodes. By employing a full-rank polynomial fit, Runge’s
phenomenon will likely occur and lead to undesirable outcomes. Instead, one considers a
polynomial fit of a minor rank P with P < N . The idea behind the proposed model is to
estimate the upper bound of the deviation between the fit and the original (unknown) function.
This can be done by bringing in the Chebyshev interpolant, which will be interpolated on the
Chebyshev grid (the function values on which are unknown). However, the deviation can be
estimated in terms of the deviation of the Chebyshev interpolant (theorem five of [76]). As
it turns out, the deviation is roughly proportional to

p
N . When used in conjunction with

Rakhmanov’s theorem, it leads to the conclusion that a polynomial fit of smaller P is more
favorable, giving rise to convergent results as N → +∞. More quantitatively, the Runge
region, an area defined by error isosurface inside of which any pole of the target function
implies Runge’s phenomenon, shrinks as the ratio between the polynomial degree and grid
points decreases (theorem seven of [76]).

Alternatively, the mock-Chebyshev method chooses to perform a polynomial interpolation
of degree P using a given number of P nodes. The approach can be understood intuitively
in terms of the Chebyshev grid. Specifically, the grid points’ clustering near the end of the
interpolation interval effectively suppresses the significant amplitude oscillations in the inter-
polant. In particular, the nodes’ density is quadratic in the total grid number N , in accordance
with Rakhmanov’s findings. The latter states [78] that convergence can be restored for the
function’s singularity close to the interval if and only if the number of grid points N grows
at least as fast as the square of the polynomial degree P. Motivated by the above considera-
tions, the authors of [76] proposed to choose P points out of an equispaced grid containing N
nodes, which are closest to the Chebyshev grid while satisfying Eq. (25). While such a choice
is intuitive, it is apparent that the generalized matrix method with delimited expansion region
follows a very similar spirit.
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On the other hand, the release of the enforced boundary condition Eq. (9) corresponds
to multiplying the factor x(1 − x). The latter is readily rescaled to the relevant interval of
[−1,+1] for the Chebyshev grid by transforming y = 2x − 1. Compared with the sampling
of Chebyshev grid Eq. (23), it becomes apparent that the above factor in the matrix method
plays the role of cos function in the Chebyshev grid, which effectively leads to a clustering of
nodes near the edges. We conclude that both versions of the generalized matrix method have
their origin in the Chebyshev grid.

5 Concluding remarks

As pointed out by Runge more than a century ago, higher degree polynomial interpolation in
terms of a uniformly spaced grid might lead to an undesirable convergence problem, known
as Runge’s phenomenon. In this regard, the matrix method for black hole QNMs demonstrates
surprising robustness in practice. The present paper aims to explore this aspect and provide
a feasible explanation. For most metrics, we showed that an appropriate choice of boundary
conditions gives rise to desirable suppression of Runge’s phenomenon. In cases where dis-
continuity is present in the effective potentials, it is shown that a generalized version of the
method with a delimited expansion domain leads to satisfactory results. We argue that both
scenarios are closely related to or practically imitating the Chebyshev grid. Although the im-
plementations are somewhat distinct, the matrix method with delimited expansion domain is
closely associated with the overdetermined least-square and mock-Chebyshev methods pro-
posed earlier in the applied mathematics literature. One concludes that the matrix method is
a sound and helpful tool for the numerical study of black hole QNMs.

Implementing the matrix method is relatively straightforward, chiefly due to the uniform
grid used across all of its variations. This approach improves computational efficiency, as
adopting a non-uniform grid like the Chebyshev one leads to a more complex differential ma-
trix. Additionally, round-off errors are inevitably introduced due to the inclusion of trigono-
metric functions. Nonetheless, it is worth investigating whether the matrix method can be
adapted to incorporate the Chebyshev grid and the spectral method. The primary challenge
for the latter is expected to lie in computational cost, as the grid points often do not take
rational values. We plan to explore these topics in the near future.
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