
SciPost Phys. Core 7, 035 (2024)

Rapid measurements and phase transition
detections made simple by AC-GANs

Jiewei Ding1,2, Ho-Kin Tang3⋆ and Wing Chi Yu1,2†

1 Department of Physics, City University of Hong Kong, Kowloon, Hong Kong
2 City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China

3 School of Science, Harbin Institute of Technology, Shenzhen, 518055, China

⋆ denghaojian@hit.edu.cn , † wingcyu@cityu.edu.hk

Abstract

In recent years, significant attention has been paid to using end-to-end neural networks
for analyzing Monte Carlo data. However, the exploration of non-end-to-end genera-
tive adversarial neural networks remains limited. Here, we investigate classical many-
body systems using generative adversarial neural networks. We employ the conditional
generative adversarial network with an auxiliary classifier (AC-GAN) and integrate self-
attention layers into the generator. This modification enables the network learn the dis-
tribution of the two-dimensional (2D) XY model’s spin configurations and the physical
quantities of interest. Utilizing the symmetry of the systems, we discover that AC-GAN
can be trained with a very small raw dataset. This approach allows us to obtain reliable
measurements for models typically demanding large samples, such as the large-sized 2D
XY and the 3D constrained Heisenberg models. Moreover, we demonstrate the capability
of AC-GAN to identify the phase transition points by quantifying the distribution changes
in the spin configurations of the systems.
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1 Introduction

In condensed matter systems, the interactions among a large number of microscopic parti-
cles can lead to fascinating collective physical phenomena [1]. Some of these phenomena
offer insights for developing new materials with useful properties. However, when studying
many-body systems, exact calculations are often challenging due to the vast number of cou-
pled degrees of freedom. The stochastic nature of Monte Carlo (MC) simulation has rendered
it a crucial tool for studying many-body physics [2, 3]. Nevertheless, Monte Carlo methods
encounter issues such as critical slowdown around phase transitions, which may limit their
applicability to complex systems. Improving the Monte Carlo algorithm or discovering alter-
native tools has become a vibrant research area in the field [4–10].

As a statistical tool, deep learning has attracted significant attention in physics and other
scientific disciplines in recent years due to its capability to model highly complex functions
[11–17]. Monte Carlo simulation is commonly used to generate a large amount of high-quality
data for studying many-body systems, making the analysis of this data using deep learning an
intriguing area of research. For instance, prior studies have demonstrated that unsupervised
deep learning can roughly identify phase transition points in many-body systems using config-
uration samples from Monte Carlo simulation [18–20], while supervised learning can pinpoint
these points with high precision [21,22]. Efforts have also been made to employ deep learning
to identify the effective non-interacting subsystem of a many-body system and incorporate it
into Monte Carlo simulation to expedite sampling of the original system [8].

Generative Adversarial Networks (GANs) are non-end-to-end deep learning models that
have garnered much attention owing to its ability in generating high-quality samples from an
implicit probability distribution. In computer vision, GANs are used for tasks such as image
modification, generation, and enhancing image resolution [23–25]. Recently, GANs have also
started to gain attention in fields such as chemistry, pharmaceuticals, and engineering [26–31].
In physics, recent research by J. Singh et. al. has shown that implicit-GANs can replace Monte
Carlo methods to sample XY model’s spin configurations and predict phase transitions without
prior knowledge of symmetry breaking [32]. However, there are differences between the spin
configurations sampled by implicit-GANs and those sampled by Markov Chain Monte Carlo
(MCMC), leading to discrepancies in the measured physical quantities at high temperatures.
In this study, we further explore the application of GANs to many-body systems, focusing on
addressing these issues.

Firstly, to enhance the performance of GANs in fitting Monte Carlo data, we employ con-
ditional GANs with an auxiliary classifier (AC-GAN) as our primary architecture [33]. To im-
prove the Generator’s ability to learn the correlation between spins, we integrate multi-head
self-attention layers into the Generator. The physical quantities measured by our AC-GANs
agrees almost perfectly with those measured by MCMC [34, 35]. Secondly, we discover that
an AC-GAN can be effectively trained using an augmented dataset obtained by applying rota-
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tions, translations, mirror symmetries, etc., to a very small raw dataset. This finding enables
us to apply AC-GANs to many-body systems where sampling spin configurations with MCMC
is challenging. Finally, we demonstrate that GANs can be utilized to locate phase transition
points in many-body systems. We propose a measure of the difference between the distribution
of GAN-generated spin configuration samples and MCMC samples to identify phase transition
points. We observe that phase transitions are accompanied by significant changes in the con-
figuration distribution. The method does not require any preprocessing of raw data and offers
a more physically intuitive approach to locate the phase transition points compared to most
other methods [18–22].

The paper is organized as follows. In Section 2, we introduce the deep learning model
AC-GANs used in this work. Then, in Section 3, we compare the AC-GANs and MCMC re-
sults on spin configurations and measured physical quantities in the two-dimensional (2D) XY
model. Section 4 presents the results in the 2D XY and the three-dimensional (3D) constrained
Heisenberg models with AC-GANs trained with data augmentation. In Section 5, we discuss
the property of generative configurations in AC-GANs. We demonstrate how this property can
be used to locate the phase transition. Finally, we provide a conclusion in Section 6.

2 Conditional GAN with auxiliary classifier

The basic structure of GANs consists of a generator (G) and a discriminator (D), which are
two independent deep learning models, along with a database for storing real samples. The
generator inputs a random noise matrix z and produces generated samples as output. These
generated samples, along with the real samples, are then fed into the discriminator, which per-
forms binary classification to distinguish between generated and real samples. The discrimi-
nator aims to accurately differentiate between the two types of samples, while the generator
aims to produce samples that closely resemble real ones to deceive the discriminator [23].
In practice, the discriminator and generator are trained alternately in an adversarial manner,
allowing both models to improve their performance iteratively through parameter updates.

In AC-GAN, along with the random noise matrix z, constraineds are included as a condi-
tional matrix c in the input to the generator. The discriminator now has the additional task of
identifying which conditional class the input sample belongs to, besides determining whether
the input is a real sample or a generated one. This extra output can assist the discriminator
in updating the machine’s parameters during backward propagation, resulting in more sta-
ble training and faster convergence [33]. A schematic diagram of the AC-GAN architecture is
depicted in Fig.1.

For the many-body systems we considered in the following sections, we used the spin con-
figurations at each site to create input matrices. We divided the continuous temperature range
into intervals of 0.2 to form Nc conditional classes. Generally, the elements in the configura-
tion matrix are correlated due to spatial correlations present in the many-body system [36–38].
However, the kernel in the convolutional neural network (CNN) of a classical generator typi-
cally has a small receptive field (the common kernel size being 3x3, resulting in an effective
receptive field of only 2x2) [39]. This limitation makes it difficult for the generator to produce
configurations with long correlation lengths. To address this, we introduced self-attention
layers to our generator. These layers can capture global features from the feature map and
update the configuration matrix elements based on the extracted long-range information dur-
ing the forward propagation of the neural network (see Appendix A for an introduction to
self-attention layers and the detailed architecture). This modification allows our AC-GAN to
generate configurations in larger size systems [34,35].
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Figure 1: (a) depicts the main architecture of the AC-GAN. The block labelled “G”
and “D” represents the generator and the discriminator, respectively, and their de-
tailed architecture is shown in Appendix A. The generator takes as input a random
noise matrix with elements generated from a Gaussian distribution and a condition
matrix. (b) and (c) illustrate the architectures of the generator and the discrimina-
tor, respectively. The generator comprises a series of CNN blocks and self-attention
blocks, while the discriminator consists solely of a series of CNN blocks and outputs
the real/fake classification and condition class classification.

The elements of the random noise matrix are generated from a Gaussian distribution with
mean 0 and variance 1. Along with the conditional matrix, the random noise matrix is input
into the generator, which then passes through several CNN blocks and multi-head self-attention
layers (Fig. 1(b)). These neural networks transform the input data into spin configurations
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that meet the temperature conditions and generate diverse spin configurations from the ran-
dom noise matrix. The discriminator is a classical CNN neural network comprising multiple
CNN blocks (Fig. 1(c)).

The loss functions of the generator and the discriminator are

GLoss =



− log D1 (Xreal ) + log
�
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�
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���
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(1)

and
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Y
�

Xgen

�

log D2

�
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,
(2)

respectively [33]. In the above equations, D1 is one output branch of the discriminator that
classifies the input configuration as either real data or generated data, and D2 is another branch
that determines which conditional class the input configuration belongs to. X real and X gen
represent the real data and the generated data, respectively, while Y denotes the true condition
class corresponding to the X fed into the discriminator, and 〈· · · 〉 represents the expectation
value. It can be observed that GLoss expects the discriminator to misclassify real and generated
data, while DLoss expects the discriminator to correctly classify the data. Furthermore, both
GLoss and DLoss expect the discriminator to correctly classify the conditional classes of the
input samples.

3 Generating spin configurations of the XY model

3.1 The 2D XY Model

The Hamiltonian of the 2D XY model is given by

H = −J
∑

〈i, j〉

cos(θi − θ j) , (3)

where J represents the strength of the spin-spin interaction, θi ∈ (0, 2π] denotes the spin angle
at the i-th site, and the sum is taken over all nearest neighbors. The XY model on a square lat-
tice is a classical model that displays a Kosterlitz-Thouless (KT) transition, where the spin-spin
correlations decay algebraically and exponentially in the low and high temperature phases,
respectively [40]. In the low-temperature phase, the vortices and anti-vortices stay close to
each other to minimize the system’s energy and tend to annihilate, resulting in vanishing local
winding numbers. In the high-temperature phase, the vortices and anti-vortices become free.
The phase transition occurs at Tc/J = 0.89, where the unbinding of vortex-antivortex pairs
begins as the temperature increases.

3.2 Training data and training process

We utilized MCMC to generate training data for the XY model with system sizes L × L for
L = 16 and L = 32. To circumvent critical slowing down, we sampled the data in temperature
regions away from the phase transition point, specifically T/J ∈ ([0, 0.8] ∪ [1.4,2]). A total
of 10,000 spin configurations were obtained and used as the real samples (database data in
Fig.1 (a)) to train the AC-GAN.

For the discriminator, the continuous temperature conditions are divided into 10 classes
with intervals of 0.2. Since the generator may produce unreasonable configurations early in
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the training process, an extra class is introduced to label the conditional classes that are outside
the temperature range T/J ∈ [0,2]. In other words, we assign integer labels from 1 to 10 to
the database data and label the generated data with 11 as the condition class, respectively.

For each epoch, we begin by inputting a batch of random noise matrices and temperature
conditions (in the temperature range T ∈ ([0,0.8]∪ [1.4,2])) into the generator to generate
a batch of configurations. Another batch of real configurations is sampled from the database
and combined with the generated configurations. Subsequently, the discriminator is trained
twice with the mixed data. Then, a new batch of random noise matrices and temperature
conditions is sampled and used to train the generator twice.

The optimizer used in both the generator and the discriminator is RMSprop, with a learning
rate of 2.5× 10−4 and a clip value of 0.1. The sigmoid function is employed as the activation
function for D1 in Eqs. (1) and (2), allowing the output value to range between 0 and 1. A
linear function is used as the activation function for D2, with the output value ranging from 0 to
2. The kernel size of the CNN layer is specified in Fig. 7 of Appendix A. The batch size for each
epoch is 64, consisting of 32 real input data and 32 generated input data for the discriminator,
and 64 random input data for the generator. A total of 5000 epochs are preformed for one
complete training cycle.

3.3 Results

To evaluate the performance of the AC-GAN, we sample spin configurations from a well-trained
AC-GAN across the entire temperature range and compare the physical quantities measured
by the AC-GAN spin configurations with those measured by MCMC spin configurations. Three
key physical quantities are of interest to us. Firstly, we examine the energy, as it is a fundamen-
tal characteristic of a physical system. Additionally, since the XY model elucidates magnetic
dipole-dipole interactions between spins, we also calculate the magnetization as a function
of temperature. Lastly, we also measure the vorticity, which quantifies the binding of vortex-
antivortex pairs.

For a given spin configuration, the vorticity is characterized by the local winding numbers.
In the continuous case, the winding number is defined as the integration over a closed loop γ:

W (γ) =
1

2π

∮

γ

(xd y − yd x) , (4)

where x and y represent the spin components in Cartesian coordinates. In the lattice model,
we first select a specific site i and identify the eight neighboring sites around it. These eight
sites form a loop, and we calculate the difference in spin orientations between the neighboring
spins around this loop. The mean of these differences is then taken as the winding number of
the site i, given by:

Wi =
1

8sin π4

8
∑

j=1

�

sinθ j+1 cosθ j − sinθ j cosθ j+1

�

, (5)

where θ j+1 represents the spin orientation adjacent to that of the j-th site (i.e., θ j) in the
counterclockwise direction on the loop.

Figure 2 displays the spin configurations for L = 16 generated by AC-GAN and MCMC
at low temperature (left panel), phase transition point (middle panel), and high temperature
(right panel). The colour indicates the local winding number. With the implementation of the
self-attention layer, the AC-GAN model captures the correlation between spins and generates
spin configurations with relatively uniform orientation at low temperatures, consistent with
those obtained from MCMC. As the temperature approaches the phase transition point and in
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Figure 2: The spin configurations (depicted as black arrows) of the XY model on a
square lattice sampled from AC-GAN (top row) and Monte Carlo simulations (bot-
tom row) at various temperatures. The color indicates the local winding number.
The spin configurations sampled from both AC-GAN and Monte Carlo simulations
exhibit consistent features. At low temperatures, the spins tend to align, resulting
in a local winding number close to zero everywhere. As the temperature increases
across the Kosterlitz-Thouless transition, the spins become more disordered, leading
to the unbinding of vortex-antivortex pairs.

the high-temperature region, thermal fluctuations become more pronounced, leading to dis-
ordered spin configurations generated by MCMC. Similar features are observed in the samples
generated by AC-GAN.

We further compare the mean energy per site, mean magnetization, and the mean vorticity
(average of the absolute value of the local winding number) measured by AC-GAN and MCMC.
The results are shown in Fig. 3. In the temperature region of T/J ∈ ([0,0.8] ∪ [1.4, 2]),
where we use a large amount of training data to train AC-GAN, the mean and variance of
the observables measured by AC-GAN exhibit a trend similar to those measured by MCMC.
In contrast, while Implicit-GAN [32] and AC-GAN show similar performance in magnetization
measurement, our AC-GAN outperforms Implicit-GAN in the measurement of the other two
quantities, especially the vorticity (see Appendix B for a quantitative comparison).

In Fig. 3, we observe that the AC-GAN results do not fall within the error range of the
MCMC results for L = 16 in the low-temperature region, but they are consistent with the
MCMC results in the high-temperature region. This discrepancy arises from the fact that in
small systems, fluctuations from a few spins at low temperatures can significantly affect the
measured macroscopic quantity. However, this situation improves in larger systems. As shown
in Fig. 3 (bottom panel), where the system size is doubled, the AC-GAN results fall within the
error range of the MCMC results across the entire temperature range.

Moreover, it is worth noting that AC-GAN performs well at high temperatures for L = 16
and at low temperatures for L = 32. This suggests that the AC-GAN can effectively learn the
spin configuration distribution at any temperature in principle. However, learning the spin con-
figuration distribution across the entire temperature range in a single training session can be
challenging, and is still an open question undergoing active investigation in generative learn-
ing research. Employing more sophisticated training techniques, such as inserting spectral
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Figure 3: The mean energy density (left column), the mean magnetization (middle
column), and the mean vorticity (right column) as a function of the temperature of
the XY model with a system size of L = 16 (top row) and L = 32 (bottom row)
measured from AC-GAN and MCMC. The error bars show the standard deviation of
100 data sampled by AC-GAN or MCMC. The results from the two methods agree
reasonably well with each other.

normalization layers between CNN layers, using multiple generators to generate data, or re-
placing the cross-entropy loss of the discriminator with Wasserstein loss [41–43], may improve
the results across the entire temperature range. Nevertheless, our results here demonstrate
the potential of using GANs to accelerate MCMC sampling.

In the vicinity of phase transition, even without the training data, the AC-GAN results are
similar to those of MCMC, suggesting that the deep learning model can extract information
about the phase transition by learning configurations outside the critical region. Implicit-GAN
obtains similar results for system sizes of 8× 8 and 16× 16 [32]. Additionally, from Fig. 3, it
is worth noting that the performance of the AC-GAN does not deteriorate with the increase in
the system size, indicating its capability to generate configurations in larger-sized systems.

As a remark, our deep learning model also suffers from a certain degree of mode collapse
depending on the system’s driving parameters. Nevertheless, as shown in Fig. 2, Fig. 3,
and Figure 8 in Appendix B, the mode collapse does not affect the machine’s ability to sample
physical quantities of interest. Furthermore, we also compare the difference in the distribution
of AC-GAN and MCMC samples in Appendix C as quantified by the Earth Mover’s Distance [44]
and the Jensen-Shannon divergence [45, 46]. The results further suggest that the sampled
distribution from AC-GAN is sufficiently close to that from MCMC.

4 Learning with a few raw data

Using MCMC to obtain samples from large-sized 2D and 3D condensed matter models requires
a lot of computational time. In these cases, obtaining a large amount of raw data through
MCMC for training GANs is challenging. In this section, we present a method to generate a
large number of training samples from just a few raw MCMC data using symmetry operations.
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4.1 The models and the training data

We tested our method on the 2D XY and 3D constrained Heisenberg models. For the XY model,
a total of 16 spin configurations in the temperature range T/J ∈ ([0,0.8] ∪ [1.4, 2]) with an
interval of 0.1 are sampled with MCMC. We then applied the following symmetry operations
to each spin configuration: (1) randomly shifting all spins in the xy plane, (2) reflecting a spin
configuration along the x-axis with a half probability, (3) reflecting a spin configuration along
the y-axis with a half probability, (4) transposing a spin configuration with a half probability,
and (5) randomly rotating all spins by an angle θ . A training dataset of 10,000 samples was
obtained. The 2D XY model serves as a benchmark for comparing the results of learning with
a few raw data to that with a large amount of data in the previous section, allowing us to gain
a deeper understanding of the advantages and disadvantages of the method presented here.

We also explored whether the method is applicable to models in higher dimensions, where
obtaining a large number of configurations through MCMC becomes computationally expen-
sive. Specifically, we considered the 3D constrained Heisenberg model on a simple cubic lat-
tice, whose Hamiltonian is given by

H = −J
∑

〈i, j〉

Si · S j , (6)

where J represents the interaction strength between nearest neighboring spins, Si denotes
the spin on the i-th site, which can be characterized by the azimuthal angle θ and the polar
angle φ as Si = (|Si| sinφi cosθi , |Si| sinφi sinθi , |Si| cosφi), where |Si| is taken to be 1 in the
simulations. In the Monte Carlo simulation, we update θ and φ using a uniform distribution
from 0 to 2π and π, respectively. The update of θ here is different from the conventional
practice [47] to challenge the AC-GANs in sampling spin configurations under different con-
straints. We sampled a total of 31 spin configurations from MCMC in the temperature range
T/J ∈ ([0, 1.5]∪ [3.5,5]) with an interval of 0.1. Then, we applied the same symmetry oper-
ations mentioned above for the 2D XY model to obtain 10,000 training samples.

4.2 Results

Figure 4 shows the results obtained from the 2D XY model with a system size of 32× 32 and
the 3D constrained Heisenberg model with a system size of 16×16×16. The training process
follows the same procedure described in Section 3. The observables, as measured from AC-
GAN, exhibit a qualitatively similar behavior to those from MCMC, indicating that a small set
of raw MCMC configurations can effectively train an AC-GAN. This suggests that such a data
augmentation scheme could potentially be extended to other tasks involving deep learning
in the study of many-body systems, thereby reducing the computational time required for
collecting training data.

Comparing the results shown in Fig. 4 (a-c) to those shown in Fig. 3 (bottom row), we
observe that the AC-GAN trained with a small dataset did not perform as well as that trained
with a large number of training samples. However, we can reduce 99.84% of the time required
for collecting the training data using this data augmentation scheme, while still achieving
acceptable results. This will be particularly useful when sampling a system with a large size
or strong auto-correlation, where the time needed to collect training data will be much longer
than the time required to train GANs.

The main reason for the deteriorated performance is that although we obtain a large
amount of training samples through data augmentation, these augmented data possess simi-
lar features, which can be easily captured by the discriminator. However, it is preferable that
the generator and the discriminator gradually improve their performance during the training
process to achieve the goal of adversarial learning. The use of augmented data greatly reduces
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Figure 4: (a-c) show the mean energy density, mean magnetization, and mean vor-
ticity as functions of temperature for the 2D XY model with a system size of 32×32,
measured by AC-GAN and MCMC. The AC-GAN1 and AC-GAN2 results were ob-
tained using only 1 and 10 raw data points, respectively, for each temperature in-
terval. (d) and (e) show the mean energy and the mean squared magnetization as
functions of temperature for the 3D constrained Heisenberg model with a system size
of 16× 16× 16. The error bars represent the standard deviation of 100 data points
sampled by AC-GAN or Monte Carlo.

the training difficulty of the discriminator and enables it to converge to a good local minimum
more rapidly than the generator, which makes the training process unstable.

Here we demonstrate an extreme case where only one training sample is provided at each
temperature interval. As we increase the number of raw data from only 1 to 10 in each temper-
ature interval, the performance of the AC-GAN improves, and the sampling results from AC-
GAN generally agree better with those from MCMC, as shown in Fig. 4 (a-c). When applying
this scheme to real research tasks, one can effectively mitigate the drawback on performance
by increasing the amount of raw data, striking a balance between required computational
resources, simulation time, and performance.

5 Detecting phase transitions by distribution difference

When a system is in a particular phase, the high-probability states following the Boltzmann
distribution form a subspace in the entire phase space. Upon undergoing a phase transition
and transitioning to another phase, the distribution’s subspace undergoes a drastic change.
From the perspective of spin configurations, the correlation length experiences a significant
variation. For instance, in the classical 2D Ising model at low temperatures, spontaneous
symmetry breaking leads to all spins in the system aligning in one direction, resulting in a
large correlation length. Conversely, at high temperatures, due to the restoration of symmetry,
spins in the system randomly point up or down, leading to a small correlation length. Similarly,
in the classical XY model, although true spontaneous symmetry breaking doesn’t occur due to
the presence of vortices, phenomena resembling spontaneous symmetry breaking emerge in
finite system sizes at low temperatures. In this case, the correlation length of spins becomes
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substantial. When employing AC-GANs to learn the spin configuration distribution at different
temperatures, these distribution characteristics are captured. This capability allows us to use
data generated by AC-GANs to identify phase transitions effectively.

5.1 The distribution overlap of spin configurations

We trained our AC-GAN for 5000 epochs using the full temperature range of MCMC spin
configurations. The AC-GAN converged after 2000 epochs. For the next 3000 epochs, we
sampled spin configurations from the AC-GAN with temperature intervals of 0.1. To measure
the distribution difference, we calculated the overlap of the distribution sampled from the AC-
GAN and that from MCMC. To collect a sufficiently diverse dataset, we repeatedly restarted the
Markov chain and employed various random initial spin configurations in each temperature
interval.

Theoretically, one should calculate the overlap of the two distributions in all dimensions of
the configuration space. However, for a many-body system, the dimension of the configuration
space is usually high. One needs to sample a large number of configurations from AC-GAN
and MCMC to calculate the overlap accurately, but that would require a lot of computational
time. Instead of calculating the overlap between the two distributions in the whole space,
we randomly select two sites from the spin configurations and calculate the overlap of their
distributions using the formula:

CrossArea(Si , S j) =
min(FMC(Si , S j), FGAN (Si , S j))

FMC(Si , S j)
. (7)

Here, Si is the randomly selected spin on site i, and FMC and FGAN are the distributions of
the spin configurations from MCMC and AC-GAN, respectively. To minimize the error of the
overlap calculated by the two sites compared to the full-dimensional space, we repeated the
random selection of two sites 100 times at each temperature and calculated the averaged
overlap.

Since the order parameters that detect the phase transitions in condensed matter models
may not always be known and can be difficult to obtain, in most cases, even with extensive
Monte Carlo data, accurately locating the transition points can be challenging. On the other
hand, the method proposed here relies only on the Monte Carlo data, AC-GANs data, and
the equation above, but not on the knowledge of the order parameter, to locate the phase
transition point.

5.2 Results

We applied the above-mentioned scheme for detecting phase transitions to the 2D square lat-
tice Ising model with L ∈ {16, 32,64} and the XY model with L ∈ {16,32}, and the results
are shown in Fig. 5. The data collection process and the training process of the AC-GAN are
similar to that described in Sec. 3, except that we are now using training data across the
full temperature range. In Fig. 5(a), the overlap (CrossArea in Eq. (7)) between the distri-
bution of the AC-GAN and MCMC is about 0.5 at low temperatures, indicating that half of
the spin configurations from MCMC are pointing up and the other half are pointing down,
while all spin configurations from AC-GAN are pointing up (or all pointing down). As the tem-
perature increases, the spin configurations of MCMC eventually become disordered, and the
distribution transforms into a uniform one. Consequently, the overlap between the AC-GAN
and MCMC distributions increases to a value close to one. Figure 5(c) shows the first deriva-
tive of the CrossArea with respect to the temperature. The derivative exhibits a significant
change around the transition. From the maximum of the gradient, we estimated the transition
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Figure 5: Cross-area as a function of temperature in (a) the 2D Ising model and (b)
the 2D XY model with various system sizes. (c) and (d) depict the first derivative of
the Cross-Area in (a) and (b) with respect to temperature, respectively. The transition
temperature estimated by the maximum of the gradients for the largest system agrees
well with the theoretical transition temperature (indicated by the vertical dash-dotted
line). The error bars represent standard deviations of 100 samples.

temperature to be 2.5, 2.4, and 2.3 (in the unit of J) for L = 16, 32, and 64, respectively. The
estimated transition temperature tends to the theoretical value as the system size increases.

Figure 5(b) shows the results of the 2D XY model. When the system is at low temperature,
the configurations sampled by MCMC can have spins aligning in any direction, which can cause
AC-GAN to experience a symmetry-breaking-like phenomenon. Consequently, the configura-
tions sampled by AC-GAN will have spins aligning in one direction, while the input random
noise matrix only causes small local fluctuations in the spins. Therefore, the overlap between
MCMC data and AC-GAN data is low. As the temperature of the system gradually increases
across the phase transition, the distribution of MCMC data gradually tends to a uniform dis-
tribution, which is a friendly and easy-to-fit distribution for AC-GAN. Thus, the AC-GAN will
not experience the symmetry-breaking-like phenomenon, and the resulting overlap between
the MCMC and AC-GAN data is high. The overlap converges to about 0.5 above T/J = 1.2.

It is worth noting that the overlap tending to 0.5 at high temperatures does not mean
that AC-GAN experiences the symmetry-breaking-like phenomenon. Instead, it is caused by
an insufficient number of samples when we calculate the overlap of two distributions. While
the spins of the Ising model are binary and we can accurately calculate the overlap, the spins
of the XY model can have orientations ranging from (0, 2π]. This requires more samples to
better reflect the distribution of MCMC data and AC-GAN data on the 2-dimensional plane. If
the number of samples increases, the overlap is expected to converge to a value closer to one.
Nevertheless, to detect the phase transition, we only care about whether there is a significant

12

https://scipost.org
https://scipost.org/SciPostPhysCore.7.2.035


SciPost Phys. Core 7, 035 (2024)

change in the overlap as a function of the driving parameter, not the value to which the overlap
converges.

Figure 5(d) shows the first derivative of the CrossArea with respect to the temperature,
and the estimated phase transition points from the maximum gradient are Tc/J = 1.0 and
Tc/J = 0.9 for L = 16 and L = 32, respectively. Note that similar to other unsupervised
machine learning methods for phase transition detection [18, 19, 21, 48–52], a detailed error
estimation on the predicted Tc is not available. However, the convergence of the predicted Tc
as the system size increases suggests the validity of the method.

Finally, it is important to note that the method we propose here does not require any data
pre-processing and is universally applicable for identifying phase transitions. This approach
also provides a physical intuition for interpreting the deep learning model, as it correlates
phase transitions with changes in the configuration distribution.

6 Conclusion

In this study, we explored the application of GANs in many-body systems. We found that
AC-GANs with self-attention layers could effectively capture spin-spin correlations in many-
body systems and produce high-quality configuration samples. We validated our deep learn-
ing model using the 2D XY model. The spin configurations generated by AC-GAN closely
resembled those obtained by MCMC. Moreover, the mean energy, magnetization, and vorticity
calculated from AC-GAN also exhibited strong agreement with those derived from MCMC.

We further investigated the performance of AC-GAN trained with only a few raw data sam-
ples. Using MCMC, we sampled a limited number of spin configurations and applied data aug-
mentation through symmetry operations. Remarkably, the AC-GAN was successfully trained
with the augmented data and demonstrated strong performance. The success of this data aug-
mentation method not only enables the study of condensed matter models with challenges in
MCMC sampling via AC-GAN but also suggests its applicability to other deep learning tasks
requiring a large number of configurations.

We also observed that the symmetry-breaking-like phenomenon in AC-GAN can serve as
a tool for locating phase transitions. We trained AC-GAN using MCMC data spanning the
full temperature range. By computing the overlap between the distributions of configurations
sampled by AC-GAN and MCMC, we quantified the distribution difference and successfully
identified the transition temperatures of the 2D Ising and XY models on a square lattice. This
approach to phase transition detection provides physical insights into the information encoded
in the configuration distributions, rather than relying solely on the order parameters. One
could extend this method to more complex systems, such as the random bond model [53],
where either the order parameter is unknown or accurately calculating the order parameter
using Monte Carlo simulations is challenging.
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Figure 6: The architecture of the self-attention layer.

A Self-attention layers and detailed machine architecture

In the classical convolutional GAN, the decoder and encoder in the generator are multi-layer
convolutional neural networks (CNNs). The performance of this GAN model will be limited
by the kernel size of the CNN layers. Even though the receptive field of the kernel increases
as the encoder deepens, the kernel only operates on the matrix elements within its size in
the feature map, and information from elements far away is ignored. However, long-range
correlations can play a significant role in condensed matter models. If the generator is unable
to capture this long-range information in the feature map, the generated spin configurations
will be of low quality. To overcome this deficiency, we introduced the self-attention layers into
the network. The self-attention layers can learn the global relationship between the elements
and further adjust the value of each element in the feature map, thus allowing the generator
to fine-tune the spin on each site in the generated configurations according to the long-range
correlation.

The architecture of the self-attention layer is shown in Fig. 6. Specifically, the feature maps
input to the self-attention layer are a 3D tensor with shapes of height, width, and channel
(H, W, C). These feature maps are fed into three CNN layers with a kernel size of 1x1 and
reshaped into (H ×W, C). Consequently, we obtain three matrices named query (Q), key (K),
and value (V) respectively. The transpose of K is multiplied by Q to obtain a matrix QK, also
known as the energy matrix, with a shape of (H ×W, H ×W ). In the energy matrix, the (i, j)-
th element represents the relationship between the i-th element in the feature map across all
channels and the j-th element across all channels (note that here we only use one index to
denote the position of an element in the feature map since we have flattened each feature map
into a 1D vector). By applying the softmax activation function on QK, all elements of each row
of QK now add up to one. This re-scaling helps the self-attention layer converge faster. Finally,
QK is multiplied by V to incorporate the channel information. The resultant matrices are then
reshaped into a 3D tensor with the same shape as the input feature maps.

Figure 7 shows the detailed architecture of the machine learning model used in this work.
In this figure, the content labeled ‘conv 3x3 64’ indicates the use of 64 filters in the convo-
lution layer, each being a 3 × 3 matrix. Pixelwise multiplication implies that each element
in every channel of the 16 × 16 × 64 (or 16 × 16 × 128) feature maps is multiplied by the
corresponding element in the 16 × 16 × 1 feature map. Figure 7(a) depicts the architecture
of the generator. Input 1 and Input 2 represent the condition matrix and the random noise
matrix, respectively, with the output being the generated spin configuration. Figure 7(b) illus-
trates the discriminator’s architecture. The input is the spin configurations obtained either by
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Figure 7: The detailed architecture of (a) the generator and (b) the discriminator of
the deep learning model used.

Monte Carlo simulation or from the generator. Output 1 determines whether the input spin
configuration originates from Monte Carlo data or generative data, while Output 2 specifies
the condition of the input spin configuration.

B Comparing the performance between AC-GAN and Implicit-GAN

To compare the performance of AC-GAN and Implicit-GAN quantitatively, we computed the
percentage difference between the GAN-generated results and the MCMC results in the XY
model. Figure 8 illustrates the results for measurements on various physical quantities. While
both GANs perform similarly in magnetization measurements (Fig. 8(b)), the AC-GAN sur-
passes the Implicit-GAN in energy and vorticity measurements. Specifically, in the energy
measurement, the Implicit-GAN yields a percentage difference that is about twice that of AC-
GAN in the high-temperature regime (Fig. 8(a)). Additionally, in the calculation of vorticity,
the Implicit-GAN performs poorly in the low-temperature regime, where the percentage dif-
ference is generally higher, and can be up to 10 times higher compared to the case of using
AC-GAN (Fig. 8(c)). This provides strong evidence that the AC-GAN with the self-attention
layer outperforms the Implicit-GAN.

15

https://scipost.org
https://scipost.org/SciPostPhysCore.7.2.035


SciPost Phys. Core 7, 035 (2024)

0.0 0.5 1.0 1.5 2.0
T/J

0.25

0.20

0.15

0.10

0.05

0.00
(a)

AC-GAN
Implict-GANpe

rc
en

ta
ge

 d
iff

. (
E)

0.0 0.5 1.0 1.5 2.0
T/J

0.000
0.025
0.050
0.075
0.100
0.125
0.150
0.175
0.200

(b)
AC-GAN
Implict-GAN

pe
rc

en
ta

ge
 d

iff
. (

M
)

0.0 0.5 1.0 1.5 2.0
T/J

0

5

10

15

20

(c)
AC-GAN
Implict-GAN

pe
rc

en
ta

ge
 d

iff
. (

V)

Figure 8: The percentage difference in (a) the mean energy, (b) the mean magne-
tization, and (c) the mean vorticity between the GANs and MCMC results for the
XY model with a system size of L = 16. The AC-GAN generally yields significantly
smaller percentage differences in the energy measurement at high temperatures and
vorticity measurement at low temperatures.
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Figure 9: (a) Earth Mover’s Distance and (b) Jensen-Shannon divergence measur-
ing the distribution differences in the energy sampled by AC-GANs and Monte Carlo
methods for the XY model.

C The distribution difference in the AC-GAN and MCMC samples

In Figure 3 of the main text, we compare the physical quantities obtained from AC-GAN sam-
ples and from MCMC simulations. The calculated quantities agree well in the entire simulated
temperature range. This indicates that the AC-GAN has effectively learned the Monte Carlo
(MC) sampling distribution. As supplementary analysis, we examined the distribution differ-
ences in the energy of the XY model for L = 16 and L = 32 sampled via MC and AC-GANs,
quantified by the Earth Mover’s Distance [44] and Jensen-Shannon divergence [45,46].

The Earth Mover’s Distance, also known as the Wasserstein distance, quantifies the min-
imum amount of work required to transform one distribution into another. It measures the
distance between distributions as the cost of transporting mass in one distribution to match
the other. On the other hand, the Jensen-Shannon divergence is based on the Kullback-Leibler
divergence, providing a symmetric and smoothed measure of the difference between two prob-
ability distributions. It calculates the divergence between each distribution and the average
of both, offering a bounded score (typically between 0 and 1) that indicates how similar or
different the distributions are. Both measures yield smaller values for distributions that are
more similar to each other.

Figure 9 shows the Earth Mover’s Distance and JS divergence between the AC-GAN and
MCMC samples as a function of temperature. It is evident that, despite fluctuations in the
two measures, the dissimilarity between the two distributions remains consistently low across
the entire temperature range. This further substantiates the validity of the machine learning
model used.
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[3] J. Kolorenč and L. Mitas, Applications of quantum Monte Carlo methods in condensed sys-
tems, Rep. Prog. Phys. 74, 026502 (2011), doi:10.1088/0034-4885/74/2/026502.

[4] R. H. Swendsen and J.-S. Wang, Replica Monte Carlo simulation of spin-glasses, Phys. Rev.
Lett. 57, 2607 (1986), doi:10.1103/PhysRevLett.57.2607.

[5] U. Wolff, Collective Monte Carlo updating for spin systems, Phys. Rev. Lett. 62, 361 (1989),
doi:10.1103/PhysRevLett.62.361.

[6] B. A. Berg and T. Neuhaus, Multicanonical ensemble: A new approach to simulate first-
order phase transitions, Phys. Rev. Lett. 68, 9 (1992), doi:10.1103/PhysRevLett.68.9.

[7] N. V. Prokof’ev, B. V. Svistunov and I. S. Tupitsyn, “Worm” algorithm in quantum Monte
Carlo simulations, Phys. Lett. A 238, 253 (1998), doi:10.1016/S0375-9601(97)00957-2.

[8] J. Liu, Y. Qi, Z. Y. Meng and L. Fu, Self-learning Monte Carlo method, Phys. Rev. B 95,
041101 (2017), doi:10.1103/PhysRevB.95.041101.

[9] L. Del Debbio, J. M. Rossney and M. Wilson, Efficient modeling of trivializing maps for
lattice φ4 theory using normalizing flows: A first look at scalability, Phys. Rev. D 104,
094507 (2021), doi:10.1103/PhysRevD.104.094507.

[10] P. Białas, P. Korcyl and T. Stebel, Analysis of autocorrelation times in neu-
ral Markov chain Monte Carlo simulations, Phys. Rev. E 107, 015303 (2023),
doi:10.1103/PhysRevE.107.015303.

[11] N. M. Ball and R. J. Brunner, Data mining and machine learning in astronomy, Int. J. Mod.
Phys. D 19, 1049 (2010), doi:10.1142/S0218271810017160.

[12] D. Baron, Machine learning in astronomy: A practical overview, (arXiv preprint)
doi:10.48550/arXiv.1904.07248.

[13] A. Radovic, M. Williams, D. Rousseau, M. Kagan, D. Bonacorsi, A. Himmel, A. Aurisano,
K. Terao and T. Wongjirad, Machine learning at the energy and intensity frontiers of particle
physics, Nature 560, 41 (2018), doi:10.1038/s41586-018-0361-2.

[14] M. S. Albergo, D. Boyda, D. C. Hackett, G. Kanwar, K. Cranmer, S. Racanière, D. Jimenez
Rezende and P. E. Shanahan, Introduction to normalizing flows for lattice field theory,
(arXiv preprint) doi:10.48550/arXiv.2101.08176.

[15] E. Bedolla, L. C. Padierna and R. Castañeda-Priego, Machine learning for condensed matter
physics, J. Phys.: Condens. Matter 33, 053001 (2020), doi:10.1088/1361-648X/abb895.

[16] J. F. Rodriguez-Nieva and M. S. Scheurer, Identifying topological order through unsuper-
vised machine learning, Nat. Phys. 15, 790 (2019), doi:10.1038/s41567-019-0512-x.

[17] J. Carrasquilla, Machine learning for quantum matter, Adv. Phys.: X 5, 1797528 (2020),
doi:10.1080/23746149.2020.1797528.

17

https://scipost.org
https://scipost.org/SciPostPhysCore.7.2.035
https://doi.org/10.1126/science.177.4047.393
https://doi.org/10.1002/wics.1314
https://doi.org/10.1088/0034-4885/74/2/026502
https://doi.org/10.1103/PhysRevLett.57.2607
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1103/PhysRevLett.68.9
https://doi.org/10.1016/S0375-9601(97)00957-2
https://doi.org/10.1103/PhysRevB.95.041101
https://doi.org/10.1103/PhysRevD.104.094507
https://doi.org/10.1103/PhysRevE.107.015303
https://doi.org/10.1142/S0218271810017160
https://doi.org/10.48550/arXiv.1904.07248
https://doi.org/10.1038/s41586-018-0361-2
https://doi.org/10.48550/arXiv.2101.08176
https://doi.org/10.1088/1361-648X/abb895
https://doi.org/10.1038/s41567-019-0512-x
https://doi.org/10.1080/23746149.2020.1797528


SciPost Phys. Core 7, 035 (2024)

[18] L. Wang, Discovering phase transitions with unsupervised learning, Phys. Rev. B 94, 195105
(2016), doi:10.1103/PhysRevB.94.195105.

[19] W. Hu, R. R. P. Singh and R. T. Scalettar, Discovering phases, phase transitions, and
crossovers through unsupervised machine learning: A critical examination, Phys. Rev. E
95, 062122 (2017), doi:10.1103/PhysRevE.95.062122.

[20] K. Kottmann, P. Huembeli, M. Lewenstein and A. Acín, Unsupervised phase
discovery with deep anomaly detection, Phys. Rev. Lett. 125, 170603 (2020),
doi:10.1103/PhysRevLett.125.170603.

[21] E. P. L. van Nieuwenburg, Y.-H. Liu and S. D. Huber, Learning phase transitions by confu-
sion, Nat. Phys. 13, 435 (2017), doi:10.1038/nphys4037.

[22] J. Carrasquilla and R. G. Melko, Machine learning phases of matter, Nat. Phys. 13, 431
(2017), doi:10.1038/nphys4035.

[23] J. Gui, Z. Sun, Y. Wen, D. Tao and J. Ye, A review on generative adversarial networks:
Algorithms, theory, and applications, IEEE Trans. Knowl. Data Eng. 35, 3313 (2023),
doi:10.1109/TKDE.2021.3130191.

[24] A. Aggarwal, M. Mittal and G. Battineni, Generative adversarial network: An overview
of theory and applications, Int. J. Inf. Manag. Data Insights 1, 100004 (2021),
doi:10.1016/j.jjimei.2020.100004.

[25] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta and A. A. Bharath,
Generative adversarial networks: An overview, IEEE Signal Process. Mag. 35, 53 (2018),
doi:10.1109/MSP.2017.2765202.

[26] Y. Li, O. Vinyals, C. Dyer, R. Pascanu and P. Battaglia, Learning deep generative models of
graphs, (arXiv preprint) doi:10.48550/arXiv.1803.03324.

[27] W. P. Walters and M. Murcko, Assessing the impact of generative AI on medicinal chemistry,
Nat. Biotechnol. 38, 143 (2020), doi:10.1038/s41587-020-0418-2.

[28] Y. Mao, Q. He and X. Zhao, Designing complex architectured materials with generative
adversarial networks, Sci. Adv. 6, eaaz4169 (2020), doi:10.1126/sciadv.aaz4169.

[29] Y. Dan, Y. Zhao, X. Li, S. Li, M. Hu and J. Hu, Generative adversarial networks (GAN) based
efficient sampling of chemical composition space for inverse design of inorganic materials,
npj Comput. Mater. 6, 84 (2020), doi:10.1038/s41524-020-00352-0.

[30] S. Kim, J. Noh, G. H. Gu, A. Aspuru-Guzik and Y. Jung, Generative adver-
sarial networks for crystal structure prediction, ACS Cent. Sci. 6, 1412 (2020),
doi:10.1021/acscentsci.0c00426.

[31] A. Nouira, N. Sokolovska and J.-C. Crivello, CrystalGAN: Learning to discover
crystallographic structures with generative adversarial networks, (arXiv preprint)
doi:10.48550/arXiv.1810.11203.

[32] J. Singh, M. Scheurer and V. Arora, Conditional generative models for sampling
and phase transition indication in spin systems, SciPost Phys. 11, 043 (2021),
doi:10.21468/SciPostPhys.11.2.043.

[33] A. Odena, C. Olah and J. Shlens, Conditional image synthesis with auxiliary classifier GANs,
(arXiv preprint) doi:10.48550/arXiv.1610.09585.

18

https://scipost.org
https://scipost.org/SciPostPhysCore.7.2.035
https://doi.org/10.1103/PhysRevB.94.195105
https://doi.org/10.1103/PhysRevE.95.062122
https://doi.org/10.1103/PhysRevLett.125.170603
https://doi.org/10.1038/nphys4037
https://doi.org/10.1038/nphys4035
https://doi.org/10.1109/TKDE.2021.3130191
https://doi.org/10.1016/j.jjimei.2020.100004
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.48550/arXiv.1803.03324
https://doi.org/10.1038/s41587-020-0418-2
https://doi.org/10.1126/sciadv.aaz4169
https://doi.org/10.1038/s41524-020-00352-0
https://doi.org/10.1021/acscentsci.0c00426
https://doi.org/10.48550/arXiv.1810.11203
https://doi.org/10.21468/SciPostPhys.11.2.043
https://doi.org/10.48550/arXiv.1610.09585


SciPost Phys. Core 7, 035 (2024)

[34] H. Zhang, I. Goodfellow, D. Metaxas and A. Odena, Self-attention generative adversarial
networks, (arXiv preprint) doi:10.48550/arXiv.1805.08318.

[35] A. Brock, J. Donahue and K. Simonyan, Large scale GAN training for high fidelity natural
image synthesis, (arXiv preprint) doi:10.48550/arXiv.1809.11096.

[36] T. T. Wu, B. M. McCoy, C. A. Tracy and E. Barouch, Spin-spin correlation functions for
the two-dimensional Ising model: Exact theory in the scaling region, Phys. Rev. B 13, 316
(1976), doi:10.1103/PhysRevB.13.316.

[37] D. X. Nui, L. Tuan, N. D. T. Kien, P. T. Huy, H. T. Dang and D. X. Viet, Correlation
length in a generalized two-dimensional XY model, Phys. Rev. B 98, 144421 (2018),
doi:10.1103/PhysRevB.98.144421.

[38] Y.-H. Li and S. Teitel, Finite-size scaling study of the three-dimensional classical XY model,
Phys. Rev. B 40, 9122 (1989), doi:10.1103/PhysRevB.40.9122.

[39] W. Luo, Y. Li, R. Urtasun and R. Zemel, Understanding the effective receptive field in deep
convolutional neural networks, (arXiv preprint) doi:10.48550/arXiv.1701.04128.

[40] J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-
dimensional systems, J. Phys. C: Solid State Phys. 6, 1181 (1973), doi:10.1088/0022-
3719/6/7/010.

[41] M. Arjovsky, S. Chintala and L. Bottou, Wasserstein GAN, (arXiv preprint)
doi:10.48550/arXiv.1701.07875.

[42] T. Miyato, T. Kataoka, M. Koyama and Y. Yoshida, Spectral normalization for generative
adversarial networks, (arXiv preprint) doi:10.48550/arXiv.1802.05957.

[43] S. Zhu, S. Fidler, R. Urtasun, D. Lin and C. C. Loy, Be your own prada: Fashion synthesis
with structural coherence, in IEEE international conference on computer vision, Venice, Italy
(2017), doi:10.1109/ICCV.2017.186.

[44] Y. Rubner, C. Tomasi and L. J. Guibas, A metric for distributions with applications to image
databases, in Sixth international conference on computer vision, Bombay, India (1998),
doi:10.1109/ICCV.1998.710701.

[45] I. Dagan, L. Lee and F. Pereira, Similarity-based methods for word sense disambiguation, in
Proceedings of the 35th annual meeting of the association for computational linguistics and
eighth conference of the European chapter of the association for computational linguistics,
Madrid, Spain (1997), doi:10.3115/976909.979625.

[46] J. Lin, Divergence measures based on the Shannon entropy, IEEE Trans. Inf. Theory 37,
145 (1991), doi:10.1109/18.61115.

[47] P. Peczak and D. P. Landau, Monte Carlo study of critical relaxation in the 3D Heisenberg
model, J. Appl. Phys. 67, 5427 (1990), doi:10.1063/1.344578.

[48] S. J. Wetzel, Unsupervised learning of phase transitions: From principal com-
ponent analysis to variational autoencoders, Phys. Rev. E 96, 022140 (2017),
doi:10.1103/PhysRevE.96.022140.

[49] A. Canabarro, F. Fernandes Fanchini, A. L. Malvezzi, R. Pereira and R. Chaves, Un-
veiling phase transitions with machine learning, Phys. Rev. B 100, 045129 (2019),
doi:10.1103/PhysRevB.100.045129.

19

https://scipost.org
https://scipost.org/SciPostPhysCore.7.2.035
https://doi.org/10.48550/arXiv.1805.08318
https://doi.org/10.48550/arXiv.1809.11096
https://doi.org/10.1103/PhysRevB.13.316
https://doi.org/10.1103/PhysRevB.98.144421
https://doi.org/10.1103/PhysRevB.40.9122
https://doi.org/10.48550/arXiv.1701.04128
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.48550/arXiv.1701.07875
https://doi.org/10.48550/arXiv.1802.05957
https://doi.org/10.1109/ICCV.2017.186
https://doi.org/10.1109/ICCV.1998.710701
https://doi.org/10.3115/976909.979625
https://doi.org/10.1109/18.61115
https://doi.org/10.1063/1.344578
https://doi.org/10.1103/PhysRevE.96.022140
https://doi.org/10.1103/PhysRevB.100.045129


SciPost Phys. Core 7, 035 (2024)

[50] J. Wang, W. Zhang, T. Hua and T.-C. Wei, Unsupervised learning of topological
phase transitions using the Calinski-Harabaz index, Phys. Rev. Res. 3, 013074 (2021),
doi:10.1103/PhysRevResearch.3.013074.

[51] Y.-H. Tsai, K.-F. Chiu, Y.-C. Lai, K.-J. Su, T.-P. Yang, T.-P. Cheng, G.-Y. Huang and M.-C.
Chung, Deep learning of topological phase transitions from entanglement aspects: An un-
supervised way, Phys. Rev. B 104, 165108 (2021), doi:10.1103/PhysRevB.104.165108.

[52] E.-J. Kuo and H. Dehghani, Unsupervised learning of interacting topological
and symmetry-breaking phase transitions, Phys. Rev. B 105, 235136 (2022),
doi:10.1103/PhysRevB.105.235136.

[53] A. Scaramucci, H. Shinaoka, M. V. Mostovoy, R. Lin, C. Mudry and M. Müller, Spiral
order from orientationally correlated random bonds in classical XY models, Phys. Rev. Res.
2, 013273 (2020), doi:10.1103/PhysRevResearch.2.013273.

20

https://scipost.org
https://scipost.org/SciPostPhysCore.7.2.035
https://doi.org/10.1103/PhysRevResearch.3.013074
https://doi.org/10.1103/PhysRevB.104.165108
https://doi.org/10.1103/PhysRevB.105.235136
https://doi.org/10.1103/PhysRevResearch.2.013273

	Introduction
	Conditional GAN with auxiliary classifier
	Generating spin configurations of the XY model
	The 2D XY Model
	Training data and training process
	Results

	Learning with a few raw data
	The models and the training data
	Results

	Detecting phase transitions by distribution difference
	The distribution overlap of spin configurations
	Results

	Conclusion
	Self-attention layers and detailed machine architecture
	Comparing the performance between AC-GAN and Implicit-GAN
	The distribution difference in the AC-GAN and MCMC samples
	References

