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Abstract

This work is concerned with tree tensor network operators (TTNOs) for representing
quantum Hamiltonians. We first establish a mathematical framework connecting tree
topologies with state diagrams. Based on these, we devise an algorithm for constructing
a TTNO given a Hamiltonian. The algorithm exploits the tensor product structure of the
Hamiltonian to add paths to a state diagram, while combining local operators if possible.
We test the capabilities of our algorithm on random Hamiltonians for a given tree struc-
ture. Additionally, we construct explicit TTNOs for nearest neighbour interactions on a
tree topology. Furthermore, we derive a bound on the bond dimension of tensor opera-
tors representing arbitrary interactions on trees. Finally, we consider an open quantum
system in the form of a Heisenberg spin chain coupled to bosonic bath sites as a concrete
example. We find that tree structures allow for lower bond dimensions of the Hamilto-
nian tensor network representation compared to a matrix product operator structure.
This reduction is large enough to reduce the number of total tensor elements required
as soon as the number of baths per spin reaches 3.
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1 Introduction

Tensor networks are a description of high-dimensional data with a convenient graphical repre-
sentation. Their wide applicability leads to the use of tensor networks in a wide range of fields.
The specific subclass of tree tensor networks (TTN), introduced in more detail in Section 2,
was also successfully applied in many such fields, such as condensed matter physics [1–3] and
quantum chemistry [4–7] among others [8–10]. The well-established matrix product struc-
ture, also known as the tensor train structure, is a special case of TTN. It occurs if the tree
structure of the TTN is simply a chain. Methods for constructing an operator in the matrix
product representation, known as the matrix product operator (MPO), have been explored
extensively [11–15]. These methods are based on the microscopic Hamiltonian of a quantum
system. Notable examples are algorithms using finite state automata that can be converted
into MPO tensors [12, 16, 17]. However, analogous approaches using TTNs have not been
established so far, i.e., finding a tree tensor network operator (TTNO) given the Hamiltonian
of a quantum system. We will base our construction scheme on the data structure called state
diagrams [17], which are introduced in section 3. We provide an algorithm that constructs
a state diagram equivalent to a Hamiltonian in section 4. A TTNO is then easily obtained
from the state diagram. In one dimension, MPOs are the backbone of many algorithms. This
includes ground state search [18], time evolution [19, 20] and the simulation of open quan-
tum systems [21–23]. Our results are intended as a step to increase the usability of TTN for
the simulation of quantum systems. Some of the methods used in one-dimensional systems,
such as the density matrix renormalization group (DMRG) [4–6] and time-evolving variational
principle (TDVP) [24, 25], have already been extended to utilize TTN and require the use of
Hamiltonians in TTNO form.

2 Tree tensor networks

Tensors are a generalization of vectors and matrices in finite-dimensional Hilbert space and
can have an arbitrary, finite number of indices. Usually, tensors are considered in the form
M ∈ Cd1×···×dk , with elements denoted as Mi1,...,ik ∈ C [26]. Notably, extending tensor net-
works to other sets [27] and to continuous structures is possible [28–30]. However, we restrict
ourselves to the definition given above. There exists a canonical graphical notation for tensors
in which each index is represented by a line called a leg. Two tensors can be contracted along
a leg of equal dimension by summing over the index corresponding to the leg and multiplying
the elements with equal index value. The graphical notation reflects this by joining two legs.
One can now construct arbitrarily complicated combinations of tensors and contractions. Such
combinations are called tensor networks T = (M, C), where M and C are sets of tensors and
contractions, respectively. For a thorough introduction to the topic of tensor networks, we
refer to various introductory texts available, e.g., [26, 31, 32]. Every tensor network can be
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mapped to a graph GT = (VT , ET ), where the tensors M are mapped to the vertices VT and
the contracted legs C are mapped to the edges ET . If the underlying graph of a tensor network
is a tree, i.e., without loops, it is called a tree tensor network (TTN) [33]. It is possible for the
legs in a TTN to not be contracted. We call these legs physical since they usually correspond
to the indices of Hilbert spaces representing actual physical spaces. In this work, we focus
on two categories of such TTN. The first is tree tensor network states (TTNS), representing a
state in a physical Hilbert space. The other is tree tensor network operators (TTNO), which
are operators acting in a physical Hilbert space. Assume we have a TTNS and a TTNO, both
with the same tree structure. Then, applying the TTNO to the TTNS, the resulting TTNS will
have the same tree structure as our initial state and operator. This effect is desirable as no
loops are introduced, which would break the tree structure.

We will now introduce some notation. For a tree T = (VT , ET ), VT are the nodes and ET are
the edges. The set of all edges connecting to a node s ∈ VT is denoted by ET (s). Furthermore,
the route γ(s, s′) = (Vγ, Eγ) between two nodes is the unique smallest collection of nodes and
edges that need to be traversed to go from s to s′. From this, we can define the distance d(s, s′)
of the two nodes as |Eγ|, which defines a metric on the tree. In the case d(s, s′) = 1, we will
also write s ∼ s′, i.e. s and s′ are nearest neighbors. We assume T to be rooted in one of its
nodes r ∈ VT called root. Consequently, we can define the children of a node s as all c ∈ V ,
such that s ∼ c and d(c, r) = d(s, r)+1. If a node s is not the root, then its parent is the nearest
neighbor which is not a child of s. Leaves ℓ ∈ VT are the nodes with no children. The set of all
leaves is denoted by L(T ). With respect to the metric, d we define a ball of radius χ around
a midpoint s ∈ VT as

Bχ(s) =
�

s′ ∈ VT

�

�d(s, s′)≤ χ
	

, (1)

and its boundary as ∂Bχ(s) =
�

s′ ∈ VT

�

�d(s, s′) = χ
	

. Finally, for a rooted tree, we define the
subtree originating in node s as

T|s =
�

s′ ∈ VT

�

�s ∈ γ(s′, r)
	

. (2)

3 State diagrams

In many-body quantum mechanics, the Hilbert space dimension increases exponentially with
system size. However, for many models of interest, the Hamiltonian and relevant operators
have an exploitable structure. This structure allows the use of finite state automata to store
operators, leading to drastically reduced memory requirements [11, 12, 16, 34, 35]. We con-
sider the underlying structure of the automata to be hypergraphs, i.e., graphs where one edge
can connect more than two vertices simultaneously. More precisely, we use state diagrams
S = (VS , ES) that are directed hypergraphs with labelled hyperedges. Any tensor network can
be translated into such a state diagram by translating the bond indices into vertices and the
tensor elements into labeled hyperedges [17]. As an example, consider the TTN in Fig. 1a). It
can be recast into the state diagram shown in Fig. 1b). The vertices in VS are the black dots,
while the hyperedges in ES are the lines connecting the black dots. The label of every hyper-
edge corresponds to one tensor element and is shown by the rectangles. To avoid cluttering,
we assumed that the tensors in Fig. 1a) have few non-zero elements.

Since we consider tree tensor networks, the equivalent state diagrams will have an implicit
tree structure D = (VD,ED), such that

1. w ⊂ VS for w ∈ ED,

2. ϵ ⊂ ES for ϵ ∈ VD,

3. ED and VD form a disjoint covering of VS and ES , respectively.
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We provide this structure for the example state diagram in Fig. 1c). The edges w of D are
the subsets of vertices VS encircled by dashed green ellipses, and the nodes ϵ of D are the
subsets of hyperedges ES encircled by dotted purple ellipses. There exists a clear one-to-one
correspondence between ED and VD of the state diagram tree structure D, and ET and VT of the
original TTN, respectively. Every collection of edges ϵ ∈ VD corresponds to a node s ∈ VT . As an
example, consider the subset of hyperedges in Fig. 1c) denoted by ϵB. This subset corresponds
to the tensor B in Fig. 1a) and includes all of its non-zero elements as labels. Likewise, every
collection of vertices w ∈ ED corresponds to an edge e ∈ ET . Therefore, we will usually write
ϵs and we. For example, the subset of vertices denoted by wA,B in Fig. 1c) corresponds to the
edge (A, B) in Fig. 1a). To avoid confusion, we will refer to s ∈ VT as nodes or sites when
describing a quantum system and ν ∈ VS as vertices.

Another important concept is paths through a state diagram, which can be conceptualised
as a method for traversing the state diagram. We differentiate two kinds of paths: single and
full paths. Single paths only contain a single hyperedge y ∈ ϵ for every ϵ ∈ VD. Therefore,
they only contain one ν ∈ w for every w ∈ ED. In the case of a single path, we include exactly
one hyperedge yr ∈ ϵr corresponding to the root node. Additionally, the path includes all

a)

A

B C

D E

2 2

3 1

Tree Tensor Network

b)
a00 a10 a11

b0 b1 c000 c120 c010

d0 d1 d2 e0

State Diagram

c)
a00 a10 a11

b0 b1 c000 c120 c010

d0 d1 d2 e0

ϵA

ϵB

ϵC

ϵD ϵE

wA,B wA,C

wC ,D wC ,E

Tree Structure of State Diagram

Figure 1: a) A tree tensor network with five tensors. The number next to each leg
denotes the dimension of the leg. b) The state diagram corresponding to the tensor
network on the left. Some tensor elements are assumed to be zero-valued and are
left out to avoid cluttering. Starting at a00 and following the single path marked in
thick orange yields the term a00 b0c000d0e0. The full tensor network contraction can
be obtained by doing this for all paths in the state diagram. c) The tree structure
emerging in the state diagram. All hyperedges(/labels) belonging to one site s are
enclosed by dotted purple ellipses representing ϵs, and all vertices belonging to one
edge e are enclosed in dashed green ellipses we.
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vertices ν(r,c) connected to yr , where c are the children of r. Each of these vertices is also
connected to hyperedges in a collection wc . For every ν(r,c) already included in the path, we
include one hyperedge in wc connected to it. We repeat this process recursively until we reach
the hyperedges corresponding to leafs. If we construct a full path, we include all hyperedges
in one ϵ connecting ν. We then continue for all vertices connected by any of the hyperedges.
Once more, we terminate when the leafs are reached. Constructed this way, the labels of the
hyperedges represent terms of the tensor network contraction. In the case of a single path,
we obtain a single term, while for a full path, we can obtain multiple terms. A single path
is shown in the example state diagram in Fig. 1b) as a thick orange path through the state
diagram S.

4 Finding a TTNO

A many-body quantum Hamiltonian acting on a quantum system of L sites can be written as
a sum of N -many tensor products of single-site operators H =

∑N−1
j=0

⊗L−1
s=0 A[s]j , where A[s]j is

an operator acting on site s. Given a tree T = (VT , ET ), we can express the Hamiltonian as

H =
N−1
∑

j=0

⊗

s∈VT

A[s]j

︸ ︷︷ ︸

h j

. (3)

We want to find the TTNO representation of H with the same tree structure T . We also assume
h j ̸= hi for j ̸= i.

4.1 One term

Algorithm 1 Create single term state diagram

1: Initialize empty state diagram D = (VD,ED)
2: for s ∈ VT do
3: for e ∈ ET (s) do
4: if No vertex corresponding to e is in VD then
5: Initialize vertex νe
6: Add νe to VD
7: end if
8: end for
9: Initialize hyperedge ys connecting all νe for e ∈ ET (s)

10: Label ys with A[s]

11: Add ys to ED
12: end for

If H = h = ⊗s∈VT
A[s] consists of only one term, the TTNO is trivial: The tensor h[s] of

site s contains A[s] as its only element and has as many trivial legs, i.e., bond dimension 1,
as s has neighbors. Similarly, it is also easy to construct the state diagram corresponding to
a single term. Start with an empty state diagram D = (VD = ;,ED = ;). Then, run through
all sites s ∈ VT . For every edge e ∈ ET (s) connecting to s check if a vertex νe corresponding
to e is already in VD. If not create and add it to VD. Next, connect all vertices νe for e ∈ ET
via a single hyperedge ys and label ye with the operator A[s]. Add y to ED. This algorithm is
represented in Alg. 1. We give examples of single-term state diagrams in Fig. 2. Such diagrams
are needed to construct state diagrams for multi-term Hamiltonians.
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Figure 2: a) Tree structure for a given TTNO, where the Hamiltonian is given in
Eq. (6). Each single site operator in the same term is given the same color and
identity operators are not shown. We choose node 1 as the root of the tree structure.
b) Single paths state diagrams for each term. c) Simplified full path that generates
all terms.
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4.2 Multiple terms

Algorithm 2 Add term to state diagram

Input: State diagram D = (VD,ED), tree tensor network T , new term h j
1: Dj ← single term state diagram (h j)
2: function MARK_MATCHING(J ,ℓ, h j)

3: L← all hyperedges in J with label A[ℓ]j
4: for y ∈ L do
5: if exist exactly one vertex νℓ,s connected to y not marked then
6: if νℓ,s is connected to only one y ∈ ϵℓ then
7: mark νℓ,s
8: J ← all hyperedges in ϵs connected to νℓ,s
9: MARK_MATCHING(J , s, h j)

10: break for-loop
11: end if
12: end if
13: end for
14: end function
15: for ℓ ∈ L(T ) do
16: J ← ϵℓ
17: MARK_MATCHING(J ,ℓ, h j)
18: end for
19: for s ∈ VT do
20: L← all s′ ∼ s s.t. no vertex ν ∈ ws,s′ marked
21: for s′ ∈ L do
22: add new vertex νs,s′ to wℓ,s
23: mark νs,s′

24: end for
25: K ← all y ∈ ϵs s.t. all vertices connected to it are marked
26: if no y ∈ K has label A[s]j then

27: add new y to ϵs with label A[s]j connected to marked vertices
28: end if
29: end for

To construct a state diagram containing more than one term, we could repeatedly add new
paths to an existing D obtained from Algorithm 1. Each additional term requires exactly one
new path. When adding a term h j , one could simply take the corresponding state diagram Dj
and add it to D without connecting existing vertices. However, this leads to unnecessarily high
bond dimensions in the TTNO. Instead, one can check if the state diagram D already contains
elements of h j . We only want to add one path at a time, so it suffices to check if a subtree of D
matches with the subset of operators in h j corresponding to the same nodes. Since any subtree
has to contain at least one leaf, we can define an algorithm that traverses subtrees of D starting
from its leaves. For each leaf ℓ ∈ L(T ), we check whether the corresponding set of hyperedges
ϵsℓ in D contains a hyperedge y with the same label A[sℓ]j as the corresponding operator in h j .
In the case that the labels match, we have to check if y is the only hyperedge connected to the
vertex ν ∈ w(sℓ,sp), where sp is the parent of site sℓ. If there are multiple, we would add more
than one path to our state diagram when connecting ν to the rest of the new path. There is
a maximum of one hypergraph e′ for which both assertions are true. If there were two, we
could merge them without adding or removing a path. We mark the vertex ν′ connected to
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e′ and move to the leaf’s parent site sp. There, we check if any of the hyperedges ysp
∈ ϵsp

connected to ν′ have the label A
[sp]
j . If so, we check if all but one vertex ν̃ connected to it are

marked. If all are, the operators in h j corresponding to the subtree rooted at sp are already
contained in D. To avoid adding more than one path, we check that ysp

is the only hyperedge
in ϵsp

connected to ν̃. If so, we mark ν̃ and continue the same procedure with the hyperedges
connected to ν̃ that is not ϵsp

. If any checks are false, we start anew with the next leaf. Once
we have repeated this procedure for all leaves, we need to include the additional vertices and
hyperedges required for the new path that does not yet exist in D. For this, we can then run
over all s ∈ VT in arbitrary order. For each s, we check if there is a hyperedge y ∈ ϵs such that
all vertices connected to it are marked. If the label of y is A[s]j , we are done. Otherwise, we
create a new hyperedge with that label and connect it to all marked vertices. If not all vertices
are marked, then there exists s′ such that s′ ∼ s and ϵs′ contains no marked vertices. Thus, a
new vertex is created, added to ϵs′ and marked. Then, we create a new hyperedge with label
A[s]j and connect it to all vertices in

⋃

s′∼s ϵs′ that are marked. This procedure is summarized
in Alg. 2; repeating it for every term in the Hamiltonian yields a state diagram corresponding
to the total Hamiltonian H.

From this description, we can clearly see that the algorithm scales linearly in N , the num-
ber of terms of the Hamiltonian. Furthermore, there is an upper bound on the scaling by
considering a worst-case scenario. Our worst-case scenario occurs if, for every term, we reach
the root for every search starting from a leaf. In this case, the entire algorithm would scale
linearly in |L(T )|, the number of leaves, and the tree depth depth(T ). Therefore, the runtime
scaling of our algorithm is upper bounded by

O(N |L(T )|depth(T )) . (4)

This is below the complexity of any tensor network algorithm in which we might use a TTNO.

4.3 State diagram to TTNO

Once a state diagram corresponding to a Hamiltonian is obtained, one can read off the TTNO
tensors. For every (s, s′) ∈ ET , we find a bijection f(s,s′) : w(s,s′) −→ {0, . . . , |w(s,s′)| − 1}. In this
way, we assign an index value to every vertex in the state diagram D. This also means the bond
dimension in the resulting TTNO is equal to the number of vertices at the corresponding edge.
Denoting the tensor of the TTNO at site s as h[s], we define its elements by running through
the hyperedges ys ∈ ϵs. Let σ be an arbitrary ordering of ET (s), the edges connected to site s.
We define the tensor elements as

h[s]f (νσ1
), f (νσ2

),..., f (νσ|ET (s)|
) = A[s] , (5)

where {νi} are the vertices connected to a hyperedge ys and A[s] is the hyperedges’s label.
Doing this for all sites and hyperedges yields all tensors in the TTNO, which is equivalent to
the original Hamiltonian.

5 Examples

Now, we have a way to convert a given Hamiltonian into a state diagram and can translate
that state diagram into a TTNO. To improve the understanding of the algorithm 2 we will look
at some examples.
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5.1 Toy examples

As an initial example, we look at a toy model. We define a Hamiltonian acting on a given tree
structure where the set of single-site operators {A j} = {1, X , Y, Z}. For concreteness, we take
these to be the Pauli operators. However, it is only important that they are all different. Our
example Hamiltonian will act on a total system consisting of eight sites with an underlying
tree structure as given in Fig. 2 a) with node 1 as the root. For this example, we define the
Hamiltonian specifically as

Htoy =
4
∑

j=1

h j = Y2X3X4 + X1Y2Y6 + X1Y2Z5 + Z5X7X8 . (6)

In Fig. 2b) we constructed the state diagrams corresponding to each of the four terms in (6).
Every diagram has seven vertices, one for each bond, and eight hyperedges, one for each site.
We can use our algorithm to individually add the state diagrams corresponding to terms h2, h3,
and h4 to the diagram corresponding to h1. As a result, we obtain the large state diagram in
Fig. 2c). We can immediately notice that no edge has more than three vertices corresponding
to it. The naive solution of combining the diagrams without connecting them would result in
four vertices at every edge. Since the number of vertices is the number of bond dimensions in
the resulting TTNO, this is an advantage. The choice of the root does not influence the size
of the bond dimensions in the resulting TTNO, with one exception. Choosing a site with only
one neighbor as the root results in a significantly worse performance of our algorithm. This
can be traced back to the fact that a site with only one neighbor would be a leaf if it were not
the root. To showcase this, we give the resulting state diagrams for two different root choices
in App. A.

For sufficiently small systems, we can construct the complete matrix presentation of a
Hamiltonian. Given the Hamiltonian as a matrix, we obtain a TTNO (as a reference for com-
parison) by using singular value decompositions (SVD). The resulting TTNO will then have
the minimal possible bond dimension due to the truncation of zero-valued singular values. To
benchmark our algorithm in terms of small bond dimensions, we run it for random Hamilto-
nians on the tree structure in Fig. 2a) with the same four single-site operators. Additionally,
we vary the number of terms of the Hamiltonian. Some of the results are shown in Fig. 3.

Notice that our algorithm does not always find the optimal bond dimension. In Fig. 3a we
can clearly see that many data points are below the blue line. The blue line visualizes where
the bond dimension found via our algorithm 2 would be equal to the bond dimension found by
using SVDs. However, we can see that the darkest points, i.e., the ones with the most samples
are on the blue line. Furthermore, most points are still close to optimality.

A related question concerns the difference in the bond dimension obtained by our algo-
rithm compared to the optimum, depending on the number of terms in the Hamiltonian. Thus,
we also plot this difference after averaging over all bonds:

rdiff =

∑

Dalg − Dsvd

NsamplesNbonds
. (7)

Here, we sum over all bond dimensions we obtained in the numerical experiment. We find
that the more terms the Hamiltonian is made of, the higher rdiff. While our algorithm does
not provide the optimal bond dimensions, it is an efficient way to obtain a Hamiltonian in
TTNO form without ever creating a high-degree tensor or a high-dimensional matrix. Once
the TTNO form is obtained, the optimal dimension may be found by SVDs. Since the cost of a
single SVD sweep is usually low compared to the total tensor network algorithm and the TTNO
is reused many times, this is a feasible way to obtain the optimal TTNO. Instead of a normal
SVD one can also use the compression methods for MPOs proposed in [36], which are easily
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generalizable to TTNO. They consider sparsity and the appearance of vastly different singular
values.

5.2 Nearest neighbour interactions

While nearest neighbor interactions have already been thoroughly investigated on Cayley trees
[37,38], we can find the TTNO representing nearest neighbor interactions on an arbitrary tree
structure T . Such interactions are given by a Hamiltonian of the form

Hnn =
∑

s∼s′
A[s]A[s

′] , (8)

where an operator A[s] is applied to the site s. Note that we assume all operators A to be
different in every term. We do not make this explicit in the notation to avoid clutter. Assuming
the tree T is rooted in a vertex r ∈ VT , we can rewrite (8) as

Hnn =
∑

s s.t. s∼r

A[r]A[s] +
∑

r∼s

�

∑

s∼c

A[s]B[c] +1[s]C

�

, (9)

where all terms that act non-trivially only on the subtree rooted in s and couple to A[s] are de-
noted by B[c]. All terms that are additionally trivial on s are collected in the operators C . Thus,
we can combine all of the tree’s vertices that are children of a given root child s into a single
vertex. Using our algorithm, we can find a state diagram as pictured in Fig. 4 representing the
rewritten Hamiltonian (9).

Let us take a closer look at the terms involving the first child s1 of the root r. All terms
that act non-trivially only on the subtree below s1 are connected via the vertex indexed by 2.
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A[r] 1
[r]A[r] 1

[r]· · ·· · ·

1
[s1]A[s1]· · ·A[s1]1

[s1]A[s1]

· · ·

1 B[c1] B[cκ1
] C· · ·

· · ·
1
[sκ] A[sκ] · · · A[sκ] 1

[sκ] A[sκ]

· · ·

1B[c1]B[cκ1
]C · · ·

1 0 2 102

Figure 4: The state diagram corresponding to the rewritten Hamiltonian (9) on an
arbitrary tree structure. r has κ children, while the jth child s j has κ j children. The
dashed blue box contains the parts of the state diagram corresponding to the subtree
rooted at vertex s1. All terms acting non-trivially only in that subtree are rooted to
the vertex on the left indexed by 2. When recursively building the state diagram,
we can reuse the vertex marked in cyan to minimize the bond dimensions. The red
digits correspond to the index values of the TTNO-tensor at the root r.

Considering the algorithm Alg. 2, this happens since the subtree above this vertex has only
identities acting on it for every term. Thus, it suffices to have a single path through the re-
maining tree consisting of identities. Conversely, all terms that act trivially on the subtree of
s1 are connected via the vertex indexed by 0. The only term that acts non-trivially on both
subtrees is the interaction between r and s1 and can be connected via the vertex indexed as 1.
There is an analogy between the total tree and the terms acting trivially only on the subtree
below s1. By considering s1 as the root of this subtree and forgetting about the remaining tree,
we can recursively build the complete state diagram. Notably, we can reuse the vertex marked
in cyan for terms acting trivially on s1 itself. Thus, we obtain the same state diagram structure
below s1. We repeat this procedure recursively and for all children of the root r.

Thus, we find the TTNO tensor elements at a site s to be

h[s]i1,...,iκs ,ip
=



























1 , i j = 0 , ∀ j ,

Ap , ip = 1∧ i j′ = 0 , for j′ ̸= p ,

A j , i j = 1∧ ip = 2∧ i j′ = 0 , for j′ /∈ { j, p} ,
1 , i j = ip = 2∧ i j′ = 0 , for j′ /∈ { j, p} ,
0 , else,

(10)

where A j is the operator applied to site s in the interaction term with site j. Additionally, p
denotes the parent site of s and indices {1 . . .κs} denote the κs children of s. We can reduce
this for some of the special vertices. Since the root r does not have a parent, we find

h[r]i1,...,iκs
=











A j , i j = 1∧ i j′ = 0 , for j′ ̸= j ,

1 , i j = 2∧ i j′ = 0 , for j′ ̸= j ∧ j no leaf,

0 , else,

(11)

on the other hand, since leaves do not have children, the respective tensor of a leaf ℓ reduces
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Figure 5: Full Cayley trees of depth D = 2 of degree κ = 2,3, 4 (from left to right).
The root is colored in orange.

to

h[ℓ]ip
=











1 , ip = 0 ,

Ap , ip = 1 ,

0 , else.

(12)

This also implies that the parents of leaves have a smaller bond dimension to these leaves.
Consequently, for nearest-neighbor interactions, the bond dimension is independent of system
size. However, the number of elements required in the TTNO-tensor of a site scales exponen-
tially with the number of children.

Some Hamiltonians, such as the Ising model [39], contain single site operators Zs in addi-
tion to the nearest neighbor interaction. Such terms can be incorporated in the above tensors
by changing a single element:

h[r]0,...,0 = Zr , for the root r , (13)

h[ℓ]2 = Zℓ , for all ℓ ∈ L(T ) , (14)

h[s]0,...,0,2 = Zs , for all other s ∈ VT . (15)

5.3 Long-range interactions

For long-range interactions, we restrict our trees to be full Cayley trees of degree κ. This means
every node, except for the leaves, is connected to κ other nodes and there exists a node r ∈ VT
such that for all leaves ℓ ∈ L(T ) the distance d(r, s) = D for a fixed D ∈ N. See Fig. 5 for some
examples. We call D the depth of the tree and choose r as its root. For a given interaction
range χ, we want to find the maximum bond dimension required to represent the Hamiltonian

Hχ =
∑

(s,s′)∈Mχ

A[s]s′ A[s
′]

s , (16)

where Mχ = {(s, s′) ∈ VT ×VT | d(s, s′) = χ ∧ s < s′} for an arbitrary ordering < of the vertices.
The operators acting on the same site are in general different in each term. Therefore, we
know that there will not be any equal subtrees in the single-site diagrams except for the trivial
subtrees where all sites are acted upon by 1. Therefore, the dimension of a bond equivalent
to an edge (v, v′) ∈ ET increases by one for every term A[s]s′ A[s

′]
s , such that (v, v′) ∈ Eγ(s,s′).

The bond dimensions of the root tensor are maximal in this situation, so we determine it
as an upper bound for the rest of the network. With the argumentation above, we need to
determine for each child s of r the number of pairs (v, v′) ∈ VT × VT such that (s, r) ∈ Eγ(v,v′).
We immediately know that v and v′ have to be in the subtree of different children of r. We
will at first consider the number of pairs from one such subtree T|s to a different one T|s′ . The
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following identity will be useful
�

�T|s ∩ ∂BR(r)
�

�= (κ− 1)R−1 , (17)

for any R ∈ N such that ≤ 2D − 1 and where |A| for a subset A ⊂ T denotes the number of
nodes in A. For any c ∈ T|s with δ = d(c, r) we find

�

�T|s′ ∩ ∂Bχ(c)
�

�=
�

�T|s′ ∩ ∂Bχ−δ(r)
�

�= (κ− 1)χ−δ−1 . (18)

There exist
�

�T|s′ ∩ ∂Bδ(r)
�

�= (κ− 1)δ−1 , (19)

many different c. Therefore if χ ≤ D the total number of pairs (c, c′) ∈ T|s × T|s′ fulfilling the
above condition are

χ−1
∑

δ=1

(κ− 1)δ−1(κ− 1)χ−δ−1 = (χ − 1)(κ− 1)χ−2 . (20)

Additionally, we have one term for each interaction between r and sites in T|s and consider
the two bond dimensions required to represent the trivial subtree on either side of the edge
(r, s). Considering that there are κ children of r and that the tree is symmetric around r, we
obtain the total maximum required bond dimension

(κ− 1)(χ − 1)(κ− 1)χ−2 + (κ− 1)χ−1 + 2= 2+χ(κ− 1)χ−1 . (21)

Note that for the case of an MPO, i.e., κ = 2, we obtain the well-known linear scaling of the
bond dimension with system size. In the case of χ > D, we have to replace Eq. (20) by

D
∑

δ=χ−D

(κ− 1)δ−1(κ− 1)χ−δ−1 = (2D−χ)(κ− 1)χ−2θ (χ − 2D) , (22)

where θ represents the Heaviside step function.
If we have an all-to-all connectivity instead of a fixed interaction length, the Hamiltonian

reads as

H =
2D−1
∑

χ=0

∑

(s,s′)∈Mχ

A[s]s′ A[s
′]

s . (23)

Using our previous results and assuming κ > 2, we obtain the bond dimensions of the tensor
at r as

2+
D
∑

χ=1

χ(κ− 1)χ−1 +
2D−1
∑

χ=D+1

(2D−χ)(κ− 1)χ−1 , (24)

which scales as O((κ− 1)2(D−1)). However, the number of sites in the tree is given by

|VT |= 1+
D
∑

∆=1

κ(κ− 1)D−1 , (25)

for D ≥ 1. Thus, the maximum bond dimension scales linearly O(|VT |) in the number of sites.
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a)

b)

c)

d)

S
E

Figure 6: a) Schematic of an open quantum system. A principal system S interacts
with an environment E. b)–d) The three different tree structures that we consider.
b) The fork tensor product network, c) the star tree network, d) and the matrix
product/chain network. The orange nodes correspond to the spin sites and the blue
ones to the bosonic bath sites.

6 Application to open quantum systems

We will now consider an application well suited for the use of TTN inspired by open quantum
systems. In open quantum systems, the Hamiltonian generally has the form

H = HS +HE +HSE . (26)

It is split into three parts: The Hamiltonian of the principal system HS , which can be interpreted
as the experimentally accessible system, the Hamiltonian of the environment HE , and the
interaction between the two mediated by HSE . A sketch of this concept is also shown in Fig. 6a).
As a principal system, we will consider a spin-1

2 Heisenberg chain of length N :

HS = −J
N−2
∑

s=0

〈σ⃗, σ⃗〉 , (27)

where J ∈R+ is the interaction strength and σ⃗ =
�

X Y Z
�T

is the vector of Pauli operators.
Every spin is coupled to M bosonic environment sites via

HSE =
N−1
∑

s=0

M−1
∑

b=0

�

gs,bZsBs,b + h.c.
�

, (28)

where gs,b is the coupling strength of spin s with boson (s, b) and B and B† are the bosonic
annihilation and creation operators. We assume that the bosons do not interact with each
other. Therefore, the environment Hamiltonian is given by

HE =
N−1
∑

s=0

M−1
∑

b=0

ωs,bNs,b , (29)

where ωs,b is the characteristic frequency of a boson and N the bosonic number operator. For
simplicity, we assume a homogenous model with ω=ωs,b and g = gs,b for all (s, b).
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The interaction structure makes this problem suited to a tree topology. We will run our
algorithm on three different tree topologies, a depiction of which is given in Fig. 6b–d). The
first topology is a chain as found in Fig. 6c). The leftmost tensor represents a spin site. It
is followed by all the tensors representing the bosonic sites coupled to the first spin. The last
bosonic site is then connected to the next spin site. Therefore, we are just searching for an MPO
representation of the interaction. Our algorithm finds bond dimensions of (5,6) for the non-
boundary spin sites as well as (6,6) or (6, 5) for the non-boundary bosonic sites, depending on
their position in the chain. The bond dimension for the boundary sites is lower, as expected.
One can find the same bond dimension and in fact, the same tensors up to row and column
order using the finite automaton method for MPOs [12]. A choice of the explicit tensors can
be found in Appendix B. For the fork tensor product (FTP) [1] network all the bosons coupling
to the same spin site are placed in a chain. The chain is attached to the spin site at one of
its ends. Additionally, the spins are attached to each other in an additional chain. Using our
algorithm, we find that the tensors of the spin sites have bond dimensions of (5,5, 3), while
the bosonic sites’ are reduced to (3, 3). Notably, the number of elements required to represent
the TTNO with an FTP topology is smaller for N > 3 and arbitrary M than the number of
elements required to represent the equivalent MPO. This shows the advantage of using a tree
tensor network over one-dimensional chains for specific problems. This difference becomes
especially important if the operator is applied to a quantum state many times, as is the case
in time-evolution methods [19,24] or stochastic methods for open quantum systems [22,40].
However, this advantage does not carry over to the star-shaped topology. Here, we find a
bond dimension for the spin sites of 5 for the bonds connecting to other spins and of 3 for the
bonds connecting to bosonic sites. However, since we have to add an additional leg for each
additional bosonic site, the number of elements required to represent each spin tensor scales
exponentially in N .

7 Discussion and future work

Using state diagrams as a data structure, we found a way to construct TTNO for a given Hamil-
tonian. Notably, the algorithm can find a TTNO close to the optimal bond dimension. However,
there is still some compression required to reach the optimal dimension. It would, therefore,
be interesting to see if one can combine concepts from our algorithm and the construction of
MPO using bipartite graph theory [14] to find an optimal construction scheme for arbitrary
TTNO. We also found that using tree topologies and TTNO can be better than just using a one-
dimensional chain with MPOs. However, one can observe, as is also usual for physics-inspired
MPOs, that the tensors are very sparse. Therefore, one could continue the exploration of TTN
and state diagrams by finding efficient ways to directly apply the state diagram to a TTNS.
There might also be modifications that can be made to the DMRG and TDVP methods, which
allow a direct application of state diagrams, thus improving their performance when used on
TTN. As a final direction for future work, one could try to conceive algorithms that find an
optimal tree topology with respect to the total number of elements or bond dimension.
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A Influence of root node choice

In section 5.1 we always used the same tree structure and labelled the first node as the root.
In this appendix, we show the impact of choosing a different node as the root. First, we choose
node 5 as the root for the tree in Fig. 1a). Repeating the process to obtain the state diagram for
the toy Hamiltonian (6), we arrive at the diagram in Fig. 7. This state diagram is just a shifted
version of the diagram where the root node is node 1 seen in Fig. 1c). One can find that the
output of Alg. 2 is independent of the choice of root as long as the root is not a leaf. This is
further supported by the results in Fig. 9a, showing the bond dimensions for 10000 different
Hamiltonians defined on the tree Fig. 1a). The bond dimensions found by our algorithm are
plotted against those found via SVDs. Fig. 9a is exactly the same as Fig. 3a showing the data
for the root at node 1.

However, there is a significant change in the algorithm’s performance if we choose a leaf
node as the root. For example, choose node 6 in Fig. 1a) as the root. For this case the state
diagram obtained by applying the algorithm to (6) is given in Fig. 8. Comparing this to the
original case with the root at node 1 shown in Fig. 1c), we find that the bond dimension
between nodes 5 and 6 grows from 3 to 4, while the others do not change. We observe a
similar result if we compute the bond dimensions for many random Hamiltonians. While many
of the bond dimensions are still close to the diagonal, the points spread further. Additionally,
we get a group of data points where the bond dimension found via Alg. 2 is far higher than
their counterpart found via SVDs. These are likely the dimensions of the bond between nodes
5 and 6. Overall, our numerical findings suggest that the impact of choosing a leaf as the tree
structure’s root significantly harms the performance of Alg. 2. On the other hand, as expected,
the results are independent of the choice of the root as long as it is not a leaf node.

1 Z 1 Z

1 X 1

Y Y 1

X 1 X 1

1 Y 1 X

1 X

Figure 7: The state diagram of the toy Hamiltonian (6), if we choose node 5 to be
the root of the tree structure.
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1 1 Y 1

1 Z 1 Z

1 X 1

Y Y 1

X 1 X 1

1 X

1 X

Figure 8: The state diagram of the toy Hamiltonian (6), if we choose node 6 to be
the root of the tree structure.

0 10 20 30
Bond Dimensions via State Diagram

0

5

10

15

20

25

30

Bo
nd

 D
im

en
si

on
s 

vi
a 

SV
D

100

101

102

103

104

(a) Results choosing node 5 as the root in
the tree from Fig. 1a).
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(b) Results choosing node 6 as the root in
the tree from Fig. 1a).

Figure 9: Plots showing the bond dimension for random Hamiltonians with 30 terms
obtained via our algorithm versus the optimal (minimal) bond dimension based on
singular value decompositions. For both the roots are different compared to the
example in section 5.1. The blue line shows y = x .
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B Open quantum system MPO

This appendix provides the explicit form of the MPO tensors corresponding to (26). The spin
tensors are given by the operator-valued matrix

h[s] =











I 0 0 0 0 0
−JX 0 0 0 0 0
−JY 0 0 0 0 0
−J Z 0 0 0 0 0

0 Z X Y Z I











. (B.1)

For s = 0 we only take the last row vector, and for s = M−1 we leave out the columns 2, 3, and
4. For the bosons, there are two distinct matrices. The first one is only valid for every boson
of the form (s, M − 1), so the last boson is coupled to a spin in the chain. The corresponding
matrix is

h[(s,M−1)] =















I 0 0 0 0
gB + g∗B† 0 0 0 0

0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
ωN 0 0 0 I















. (B.2)

Otherwise, we find

h[(s,b)] =















I 0 0 0 0 0
gB + g∗B† I 0 0 0 0

0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
ωN 0 0 0 0 I















, for b ∈ {0, . . . , M − 1} . (B.3)

Notably for s = N − 1 we cut the rows and columns 1, 2, and 3 in (B.2) as well as 2, 3, and 4
in (B.3).
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