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Krylov complexity in a natural basis for the Schrödinger algebra
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Abstract

We investigate operator growth in quantum systems with two-dimensional Schrödinger
group symmetry by studying the Krylov complexity. While feasible for semisimple Lie
algebras, cases such as the Schrödinger algebra which is characterized by a semi-direct
sum structure are complicated. We propose to compute Krylov complexity for this alge-
bra in a natural orthonormal basis, which produces a pentadiagonal structure of the time
evolution operator, contrasting the usual tridiagonal Lanczos algorithm outcome. The
resulting complexity behaves as expected. We advocate that this approach can provide
insights to other non-semisimple algebras.
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1 Introduction

Krylov complexity [1] is a measure introduced in order to quantify how quantum operators
change under time evolution. In complex quantum systems one generically expects that, due
to the non-trivial dynamics, a typical operator undergoing time evolution will tend to “spread"
such that it affects a larger number of the degrees of freedom of the system thereby increasing
in complexity. In [2] it was shown that symmetry plays an important role in determining the
features of this growth and following similar methods in this work we will be proposing a more
general framework that includes symmetries described by non-semisimple Lie groups.

Krylov complexity is conjectured to grow at a maximal rate for chaotic systems, although
there are subtleties that need to be taken into account, especially for quantum field theories
due to their infinite degrees of freedom in contrast to ordinary quantum mechanical systems,
see discussions in [3–10]. When one considers quantum many body systems such as spin
chains it is more straightforward to produce evidence that Krylov complexity can for example
distinguish between integrable and chaotic dynamics as was argued in [11–13].

However, despite its apparent relevance in the discourse regarding quantum chaos, one
might ask why is it worth studying Krylov complexity over all the different available measures
of which there has been a profound proliferation in recent years? We believe that there are
two main reasons. First, Krylov complexity can be applied to any quantum system making it
computationally available, at least in principle, for a plethora of different cases including but
not limited to condensed matter and many-body systems [13–17], quantum and conformal
field theories [3–5, 18–20], open systems [21–25], topological phases of matter [26, 27] and
many other topics related to aspects of the above and not only [28–31]. Second, it is related
by its construction to inherent properties and characteristic parameters of the system, namely
the Hamiltonian and the Hilbert space that it defines. The reason why this is important is
because it removes the arbitrariness which is to a large extent present in other definitions
of complexity. Namely, one usually needs to define a set of elementary operations that can
be performed on the system and assign a cost to them according to some justifiable albeit
arbitrary criteria. For a review on this topic see for example [32,33]. In the context of Krylov
complexity these choices are reduced to the choice of an inner product using which the Lanczos
algorithm can map the dynamics of a quantum mechanical system onto a semi-infinite one-
dimensional chain with nearest neighbor hopping. Krylov complexity is then simply defined
as the average position on the chain as a function of time. In the current note we review some
important examples of semisimple algebras for which one can analytically compute Krylov
complexity: the case of the Heisenberg-Weyl algebra, corresponding to states expressible in
the one-dimensional harmonic oscillator basis, and SL2(R), which for example represents the
two-dimensional conformal algebra.

Subsequently, we will go beyond studying the Krylov complexity of semisimple algebras,
which as we will discuss poses certain analytic challenges. We focus on the specific example of
the two-dimensional Schrödinger algebra. This algebra is the maximal symmetry algebra for
a two-dimensional Schrödinger equation with a quadratic potential or no potential at all and
appears as a subalgebra of the three-dimensional conformal algebra SO(3,2), see e.g. [34].
As the two-dimensional Schrödinger equation is relevant for, e.g., cold atom traps and optical
systems [35], having a prediction for Krylov complexity can yield insights in both directions.
Moreover, having analytic results for systems with such a symmetry structure can potentially
set the groundwork to study more complex systems that are relevant in high energy physics.

However, the usual Krylov approach for the two-dimensional Schrödinger group is prob-
lematic from an analytic point of view and only numerical approximations are available [36],
making it difficult to work with. In this note we propose an alternative method to probe the
Krylov subspace that relies on making use of the semi-direct sum structure of the symme-
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try algebra and methods used in the study of coherent states. We find that the semi-direct
sum structure presents us with an orthogonal basis that translates to a picture of hopping
on a semi-infinite chain where next-to-nearest neighbor interactions are allowed, contrasting
conventional Krylov complexity approaches. We advocate that generically in the case where
symmetry algebras are found to allow for a semi-direct sum structure, it can be more fruitful
to use a “natural" orthogonal basis that as a result induces more interactions from the chain
point of view, but can allow for direct evaluation.

While this approach in itself is novel, there have been several works already where an or-
thonormal basis for the Krylov subspace is not obtained through the Lanczos algorithm and
as such the Liouvillian (Hamiltonian) is not tridiagonal. These include [18,37], where (simi-
larly to this work) the symmetry algebra is considered for the full Virasoro group and SLn(R)
respectively. For the former this leads to a block diagonal structure of the Liouvillian and for
the latter to a “trivially" non-tridigonal structure along the same lines with SL2(R) which we
examine in more detail in the following sections. Importantly, in both cases, this leads to an-
alytically tractable results, although there does not appear to be a complete understanding of
the precise difference between the implementation of this approach as compared to the Lanc-
zos algorithm. Another instance where an explicitly non-tridiagonal form of the Liouvillian is
required in order to make progress arises in open quantum systems (see e.g. [23]). The reason
is that the Liouvillian for these systems is not a Hermitian operator anymore and as such the
Lanczos algorithm is insufficient, so a more general orthogonalization scheme has to be imple-
mented instead. In particular one can use the Arnoldi iteration which puts the Liouvillian in
Hessenberg form (triangular matrix with non-zero entries in the first subdiagonal). The com-
mon element in all of these considerations is that while it is possible to obtain an orthonormal
basis for the Krylov subspace in different ways, the differences between these bases and the
associated complexities are unclear. We comment further on this point from the perspective
of our results in the discussion section.

The remainder of this note is organized in the following way. In Section 2 we review
Krylov complexity and establish notation. In Section 3 we introduce the Schrödinger algebra
and present our results. Finally, in section 4 we present a discussion on our obtained results.

2 Krylov complexity

In this section we introduce Krylov complexity and establish notation through a series of ex-
amples.

2.1 Krylov basis

There are many works that include a pedagogical introduction to the notion of the Krylov basis,
to which we refer the reader for a detailed derivation [1,2,38–40]. The central concept is the
expansion of a time evolved operator O(t) = eiH tOe−iH t = eiLtO in the Krylov subspace HO
defined as the linear span of the action of the Liouvillian on the initial operator

HO = span{LnO}+∞n=0 . (1)

In other words one seeks to decompose an operator at some arbitrary time as

|O(t)) =
∑

n

φn|Kn) . (2)

Here we adopt the curly bracket notation to denote a state in the operator Hilbert space.
Therefore, |Kn) denotes an orthonormal basis for the Krylov subspace and φn the appropri-
ate coefficients satisfying

∑

n |φn|2 = 1. The most common way of obtaining such a basis is
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through the Lanczos algorithm which applies the Gram-Schmidt orthogonalization scheme to
the elements |On) = Ln|O) [41]. This has the effect of tridiagonalizing the Liouvillian such
that

L|On) = bn+1|On+1) + bn|On−1) . (3)

This tridiagonal structure manifests explicitly when the elements of the Liouvillian are repre-
sented in matrix form.

L=

















0 b1 0 · · · 0

b1 0 b2
. . .

...

0 b2 0
... 0

...
. . . . . . . . . bn

0 · · · 0 bn 0

















. (4)

Note that the diagonal elements are zero due to the properties of the operator inner product,
which we assume (as is standard) to involve a trace and given that we are interested in the
growth of Hermitian operators. Having obtained the basis one can then study different aspects
of the probability distribution provided byφn to probe the growth of the operator in the Krylov
subspace and assess its resulting complexity. In particular the average of that distribution
∑

n n|φn|2 is dubbed Krylov complexity and quantifies, albeit in a somewhat crude manner, the
growth of the operator. A natural question that arises is why should one consider the average
as a measure of complexity rather than any other moment of the distribution. There are some
formal arguments to be made in favour of that choice as is done for example in [42], but here
we will take a more heuristic approach that will prove useful in our subsequent considerations.
The so-called “Krylov chain" picture was pointed out in the seminal work of [1] and it has since
been explored by several others [13, 14, 43]. This picture arises from the realization that the
dynamics of the Krylov subspace can be mapped to that of a particle hopping on a semi-infinite,
one-dimensional chain. This identification is made by the discrete Schrödinger equation that
relates the Lanczos coefficients bn with the coefficients φn as

−i
dφn

d t
= bn+1φn+1 + bnφn−1 . (5)

In this picture the bn play the role of the hopping coefficients between two adjacent sites and
φn the amplitude of finding the particle at each site. Krylov complexity can be interpreted as
the average position on the chain at a particular time. This is indeed a very useful piece of
information, especially in cases where access to other aspects of the probability distribution
defined by the φn is limited. However, there is much more refined information that one can
extract from said probability distribution if it can be obtained analytically. For instance one
can study the Krylov variance [18], entropy [39, 44, 45], logarithmic negativity and capacity
of entanglement [43].

Our main motivation is to study the Krylov subspace as it arises from the symmetry of the
quantum system of interest in the spirit of [2]. Assuming that this symmetry is described by a
Lie group and that the system is closed, then the Liouvillian can be written as a linear combina-
tion of the algebra generators. For three-dimensional Lie algebras that admit a representation
in terms of some generalized ladder operators one can write the Liouvillian in the following
form

L= ξL+ − ξL− . (6)

The action of such a Liouvillian on a general Fock state |n〉 is then by construction identical to
how the Liouvillian acts on the Krylov basis and by an appropriate choice of ξ one can identify
the two in a precise mathematical manner. This enables us to identify the operator eiLt as a
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group element, thus leading to an interpretation of the time evolved operator

|O(t)) = eiLt |O(0)) =
∑

n

φn |n〉 , (7)

as a coherent state. The latter have been studied extensively [46] and are very well known
for a number of different symmetry groups. This is particularly useful given that one can
readily obtain the coefficients φn from which the Krylov complexity can be extracted, but it
additionally endows these results with a certain degree of universality. More specifically, this
construction implies that any system with the same type of symmetry will exhibit the same
behaviour in terms of its Krylov complexity. As mentioned in the introduction our aim here
is to study a group with more general structure for which the Liouvillian is not automatically
tridiagonal. Our vehicle in that endeavour is the Schrödinger group which in 1+1 dimensions
is the semi-direct product of the Heisenberg-Weyl and SL2(R) groups. For that reason, we
review the methods and results for these two groups in the following subsections.

2.2 Heisenberg-Weyl algebra

The Heisenberg-Weyl algebra (HW ) is defined by (we borrow the notation employed in [2])

[a, a†] = 1 , [n̂, a†] = a† , [n̂, a] = −a , (8)

with all other commutators vanishing, n̂ = a†a and the usual creation and annihilation op-
erators a† and a. Defining a vacuum state |0〉 via a|0〉 = 0 we can consider the following
orthonormal basis for the corresponding Hilbert space:

|n〉=
1
p

n!
(a†)n|0〉 , (9)

such that
a†|n〉=

p
n+ 1|n+ 1〉 , a|n〉=

p
n|n− 1〉 . (10)

To compute the associated Krylov complexity it was shown [2] that we can simply make the
following identifications

L= α(a† + a) , |On) = |n〉 . (11)

This allows us the write the Heisenberg operator state in Krylov space as

|O(t)) = eiαt(a†+a)|0〉=
∞
∑

n=0

(i t)nφn(t)|n〉 , φn = e−α
2 t2 αn tn

p
n!

,
∞
∑

n=0

|φn|2 = 1 , (12)

where at the second equality sign we simply wrote the exponent in its series representation
and worked out that (a†)n|0〉= 1p

n!
|n〉. This allows us to compute Krylov complexity KO:

KO =
∞
∑

n=0

n|φn(t)|2 = α2 t2 . (13)

While the HW group appears elementary it actually arises in cases much more sophisti-
cated than that of the harmonic oscillator with which it is usually associated. For example
in [47] the authors discuss how the symmetry of SYK in the triple scaling limit is described by
HW and how that leads to the universal Krylov complexity result presented above.
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2.3 SL2(R) algebra

We will now consider the SL2(R) (or the isomorphic SU(1,1)) algebra and compute complexity
in two different bases: the Heisenberg-Weyl basis and the ‘natural’ SL2(R) basis. The algebra
is defined as

[L0, L±1] = ∓L±1 , [L1, L−1] = 2L0 , (14)

where we define a vacuum |h〉 via L1|h〉 = 0 and L0|h〉 = h|h〉 where positive integer h labels
the different states that are allowed. An orthonormal basis is given by

|h, n〉=

√

√ Γ (2h)
n!Γ (2h+ n)

Ln
−1|h〉 , (15)

such that

L0|h, n〉= (h+ n)|h, n〉 , L±|h, n〉=

√

√

�

n+
1∓ 1

2

��

2h+ n−
1± 1

2

�

|h, n± 1〉 . (16)

To compute the associated Krylov complexity KO we can make the following identifications [2]

L= β(L−1 + L1) , |On) = |h, n〉 . (17)

It then follows that

φn(t) =

√

√Γ (2h+ n)
n!Γ (2h)

tanhn(β t)

cosh2h(β t)
, KO = 2h sinh2(β t) . (18)

What happens when we express the above in the HW basis instead? After some algebra we
establish the mapping

L0 =
1
4
(a†a+ aa†) , L+1 =

1
2

a2 , L−1 =
1
2
(a†)2 , (19)

with value of h = 1/4, which we treat as a continuation from the usual integer values. As a
result the exponentiated Liouvillian takes the form of a so-called squeeze operator which one
encounters quite frequently in quantum optics [48]. In that case it is known that [46]

|O(t)) =
∞
∑

n=0

in

p

(2n)!
2mm!

tanhn(β t)
p

cosh(β t)
|2n〉 , (20)

which leads to the same complexity as previously computed, but restricted to h= 1/4.

3 Two-dimensional Schrödinger algebra

3.1 Schrödinger symmetries

The Schrödinger group is the maximal symmetry group corresponding to the free Schrödinger
equation [49] and is isomorphic to the maximal symmetry group of the Schrödinger equation
with a harmonic potential [50]. In general, from a group perspective the Schrödinger group
can be viewed as the extension of the Galilean group. The generators of the Galilean group
consist of time (T) and spatial translations (Pi), Galilean boost (Gi) and spatial rotations. The
Galilei algebra admits a central extension M of the commutator of the boost generator Gi and
the spatial translation generator Pi . Adding this extension yields the Bargmann algebra. In or-
der to reach the Schrödinger algebra we take into account a dilatation operator D under which
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time scales twice as fast as space and a special conformal symmetry generator K . We tailored
the names of these generators to the case of the free Schrödinger equation. In two dimensions
the only non-vanishing commutators of this algebra are given by (where we dropped the index
i as it runs over the spatial indices)

[P, G] = −iM , (21)

[D, T] = −2T , [D, K] = 2K , [T, K] = D , (22)

[D, P] = −P , [D, G] = G . (23)

In (21) we recognize a Heisenberg-Weyl sub-algebra and in (22) we recognize an SL2(R)
sub-algebra. The remaining brackets in (23) are between elements of either sub-algebra. We
conclude that the two-dimensional Schrödinger algebra is a semi-direct sum sl2(R)⋉ hw.

Using the insight from Section 2 in which we showed that sl2(R) can be written in terms of
hw generators we cast all the algebra elements of the two-dimensional Schrödinger in terms
of ladder operators:

P = −
i
p

2
(a− a†) , G =

1
p

2
(a† + a) , M = aa† − a†a , (24)

T = −
1
4
(a− a†)2 , K = −

1
4
(a+ a†)2 , D =

1
2
(a2 − (a†)2) . (25)

Therefore, the Liouvillian expressed as a general element of the Lie algebra can be cast in the
form

L= α(a† + a) +
β

2
((a†)2 + a2) , α,β ∈ R , (26)

and accordingly the element of the Schrödinger group that results from its exponentiation can
be parametrized as

eiLt = S(v, w) = e(va−va†)e(
w
2 a2− w

2 (a
†)2) , (27)

where we have not taken into account bilinears of a and a† that act diagonally on the Fock
states in either of the two expressions involving the Liouvillian, since they just produce a
phase that can be included in the normalization. We provide an explicit mapping between the
parameters α,β and v, w in subsection 3.4.

The Schrödinger group, apart from describing the symmetries of a non-relativistic CFT [51]
and thus being relevant for a non-relativistic limit of AdS/CFT [34, 52], finds applications in
systems with experimental realizations. In particular, it is used to describe specific processes
in molecular dynamics and two-photon processes [35,53]. Namely, within the study of coher-
ent states, squeezing refers to saturating the uncertainty relation and in quantum optics, to
reach such a state, one needs to take into account pairs of photons on top of single photon
states. Two-photon processes and the collision of molecules can be modelled with a Hamilto-
nian expanded in a power series and truncated at quadratic order thus producing an effective
Hamiltonian of the form

H = ħhω(aa† +
1
2
) + f2(t)(a

†)2 + f ∗2 (t)a
2 + f1(t)a

† + f ∗1 (t)a . (28)

In the Liouvillian presented above the coefficients α,β are time independent, but generally
they can be promoted to time-dependent as in this Hamiltonian to capture squeezing that is
not necessarily linear in time.

3.2 Computation of coherent states

Acting with this general element on a quantum state of a system with Schrödinger symmetry
provides a family of generalized coherent states in line with Perelomov [46]. Let us discuss the
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construction of those coherent states following [54]. We first consider the Baker-Campbell-
Hausdorff (BCH) decomposition of the displacement operator combined with a complex phase
factor θ

S(v, w) = θ e(va−va†)e(
w
2 a2− w

2 (a
†)2)

= θ e−
|v|2

2 e−va†
evae−

1
2

w
|w| tanh (|w|)(a†)2 e− ln (cosh (|w|))(a†a+ 1

2 )e
1
2

w
|w| tanh (|w|)a2

,
(29)

where we have used the standard results for the BCH decomposition of the two exponential
terms, see e.g. [35]. One might easily guess that expanding the action of that operator on
a general quantum state is impractical. Instead one can obtain a recurrence formula for the
coefficients φk = 〈k|S |0〉. However, before that we need to calculate φ0 which will serve as
normalization.

φ0 = 〈0|S |0〉= θ
e−
|v|2

2

cosh (|w|)
1
2

〈0| evae−
1
2

w
|w| tanh |w|(a†)2 |0〉

= θ
e−
|v|2

2

cosh (|w|)
1
2

e−
1
2 v2 w
|w| tanh |w| .

(30)

Subsequently one can compute φk by observing that

〈k|Sa |0〉= 〈k|SaS−1S |0〉= 0 . (31)

Inserting above the following Bogoliubov transformation (i.e., the result of commuting a
with S−1)

SaS−1 = cosh |w|a+
w
|w|

sinh |w|a† + v cosh |w|+ v
w
|w|

sinh |w| , (32)

we obtain the following relation

p

k+ 1cosh |w|φk+1 +
p

k
w
|w|

sinh |w|φk−1 +
�

v cosh |w|+ v
w
|w|

sinh |w|
�

φk = 0 . (33)

This three-term recurrence relation can be solved in terms of Hermite polynomials, thus pro-
ducing an analytical expression for all φk [54]

φk =
1
p

k!

�

1
2

w
|w|

tanh |w|
�

k
2

Hk(s)φ0 , (34)

where

s = −
1
p

2

�

v
�

w
|w|

�
1
2Æ

tanh |w|+ v
�

w
|w|

�
1
2 1
p

tanh |w|

�

. (35)

Here, the appearance of orthogonal polynomials is reminiscent of [55], where the authors
investigate the relationship of Krylov complexity and orthogonal polynomials. While this hints
at a possible connection, the orthogonal polynomials here enter the expression for φk whereas
in [55] they play the role of the operator states themselves. It is unclear at this time whether
there is an overarching description of this problem in terms of orthogonal polynomials or
this is simply a coincidence. Moving past this digression, we have achieved our initial goal
of obtaining a distribution over the Fock basis of the Perelomov coherent states for the two-
dimensional Schrödinger group in the form

S |0〉=
∞
∑

k=0

φk |k〉 , (36)

with the coefficients φk specified above.

8

https://scipost.org
https://scipost.org/SciPostPhysCore.7.2.037


SciPost Phys. Core 7, 037 (2024)

3.3 Krylov complexity in a natural basis

As we showed previously, the probability distribution over the Fock basis is given by (34).
First, let us show that indeed the condition

∑

k |φk|2 = 1 is satisfied. For that we will need to
use Mehler’s formula

∞
∑

n=0

Hn(x)Hn(y)
n!

� z
2

�n
= (1− z2)−

1
2 e

2x yz−(x2+y2)z2

1−z2 , (37)

which for x = s and y = s simplifies to

∞
∑

n=0

Hn(s)Hn(s)
n!

� z
2

�n
= (1− z2)−

1
2 e

2|s|2z−(s2+s2)z2

1−z2 . (38)

The sum expression |φn|2 in terms of (34), using that Hn(z) = Hn(z), simply becomes

∞
∑

k=0

Hk(s)Hk(s)
k!

�

tanh |w|
2

�k

|φ0|2 = cosh |w|e
2|s|2 tanh |w|−(s2+s2) tanh2 |w|

1−tanh2 |w| |φ0|2 = 1 , (39)

where we used the definition of s from (35) to show the last step. In computing Krylov com-
plexity we consider rewriting the definition as follows

KO =
∞
∑

k=0

k|φk|2

= |φ0|2z∂z

∞
∑

k=0

� z
2

�k
Hk(s)Hk(s)− |φ0|2z

∞
∑

k=0

� z
2

�k
∂z

�

Hk(s)Hk(s)
�

= |φ0|2z∂z|φ0|−2 − |φ0|2 y∂y |φ0|−2

= |v|2 + sinh2 |w| ,

(40)

where z = tanh |w| and y = (v/|v|)2 and in the third equality we used the identity

z∂zs = y∂ys . (41)

In fact, using induction one can easily arive at the conclusion

K(n) =
∞
∑

k=0

kn|φk|2 = |φ0|2
�

sinh(2|w|)
2

∂|w|

�n

|φ0|−2

�

�

�

�

s
, (42)

where n is any integer and |s indicates that when taking the derivative with respect to |w|, s is
kept fixed.

The variance σ2 = 〈k2〉 − 〈k〉2 can be computed using the identity in (42) and reads

σ2 = |v| cosh2|w|+ sinh |w| cosh |w|
�

sinh2|w| −
v2w+ v2w
|w|

�

. (43)

To get some more feeling for expression (40), it is instructive to reproduce the limit in
which either the Heisenberg-Weyl part or the SL2(R) part are turned off by hand. If we take
v = −v = iαt and w= w= 0 we find

KO = α
2 t2 , (44)
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k

0.02
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0.06

0.08

0.10

0.12

ϕk
2

Figure 1: In this figure we compare the probabilities for the Schrödinger group (yel-
low dots) and SL2(R) (blue dots) as a function of their index k. Notice that for odd k
the probabilities for the Schrödinger group vanish, while for even k they are pairwise
equal to SL2(R), but shifted.

where we assumed α to be real and we indeed reproduce the correct Krylov complexity from
(13). In the opposite case we consider v = v = 0 and w = −w = iβ t, where β is real, and we
find

KO = sinh2 β t , (45)

which indeed reproduces (18) (with h= 1/4) up to a factor of 2. This can be attributed to the
fact that the chain picture that we obtain for the Schrödinger group has double the number
of sites compared to SL2(R). Setting v = 0 has the effect of the probability vanishing on
odd sites, which however are still counted by the complexity. On the contrary the way that
the Krylov basis is built for SL2(R) (using the harmonic oscillator realization of the algebra
presented previously) is such that only the even sites are taken into account to begin with and
this subtle difference leads to this factor of two discrepancy. This effect is captured graphically
in figure 1.

3.4 Interpreting complexity

The displacement operator S(v, w) introduced in (29) leads to Perelomov coherent states for
the two-dimensional Schödinger group. In order to interpret the result for complexity we need
to relate the displacement operator S(v, w) to the Liouvillian

L= α(a† + a) +
β

2

�

(a†)2 + a2
�

, α,β ∈ R , (46)

such that complex parameters v and w inherit the appropriate time dependence. To relate
these quantities we will use the identity

ei[α(a†+a)+ β2 ((a
†)2+a2)]t = θ e(va−va†)e(

w
2 a2− w

2 (a
†)2) , (47)

v =
α

β
(1− coshβ t) + i

α

β
sinhβ t , w= iβ t , (48)

and we pick up a phase factor θ = exp
�

i α
2

β2 (sinhβ t − β t)
�

. To obtain the above identity we
circumvented using the BCH formula by adopting an explicit matrix representation [35] that
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Figure 2: This figure contains the plots of complexity as a function of time for the
cases where α = 0.01,β = 1 (red curve) and α = 1,β = 0.01 (black curve). We
observe that the red curve clearly exhibits the exponential behavior characteristic of
SL2(R) whereas the black curve is closer to the quadratic behavior of HW.

allows us to perform ordinary matrix exponentiation:

η

�

a†a+
1
2

�

+δ+ R(a†)2 + La2 + ra† + la 7→







0 0 0 0
r η 2R 0
−l −2L −η 0
−2δ −l −r 0






, (49)

where η, δ, R, L, r, l are complex numbers.
Now that we know v(t) and w(t) we can interpret complexity (40) as a function t:

KO = α
2 t2 + sinh2 β t +α2

�

4coshβ t sinh2 β t
2

β2
− t2

�

, (50)

where the first term reproduces the HW complexity (β = 0) and the second term reproduces
the SL2(R) complexity (α = 0), for a comparison see Section 2. The third term in square
brackets, which we dub the interaction term, vanishes in either cases and we interpret it as
arising from the fact that elements of either sub-algebras do not commute. When expanding
the hyperbolic functions in the interaction term we get an infinite series in even power that
cancels the single t2, showing that the interaction term is always positive. This means that
the Schrödinger complexity is more than the sum of the separate complexities of HW and
SL2(R). While for non-zero α,β the interaction term is always present, the relative size of
these parameters determines the character of the system. In other words if αβ is small then
the system behaves closer to pure SL2(R) and conversely when α

β is large then the behavior
resembles pure HW, as seen in figure 2.

Let us consider early and late time limits to explore the effects of the interaction term. For
early time we find

KO = (α
2 + β2)t2 +O(t3) , (51)

where the β2 comes from the sinh2 and the interaction term does not contribute. The effects
of the interaction term becomes apparent at late times

KO =

�

1
4
+

1
2
α2

β2

�

eβ t = eβ(t−ts) , (52)

11

https://scipost.org
https://scipost.org/SciPostPhysCore.7.2.037


SciPost Phys. Core 7, 037 (2024)

2 4 6 8 10
k

0.05

0.10

0.15

0.20

0.25

ϕk
2

Figure 3: Probabilities for the Schrödinger group as functions of their index k (made
into a continuous variable for illustration purposes) for α= 0 (blue curve), α= 0.25
(yellow curve) and α= 0.5 (green curve). We notice that the magnitude of the prob-
ability drops for larger values of α. Since the probability functions are normalized.
This illustrates the faster spreading that occurs due to the interaction term in (54).

which implies that the Lyapunov exponent remains unaltered, but the scrambling time ts,
which can be a probe for operator growth, does receive a correction:

ts =
1
β

log
4β2

β2 + 2α2
. (53)

For α > 0, the scrambling time decreases as compared to the SL2(R) case and for α > β
p

3/2
the scrambling time becomes negative, as can also happen for the pure SL2(R) case for dif-
ferent representations, i.e., values of h in (18). This is to be expected as it signals that one
needs more information than just the leading order term for such cases. We furthermore point
out that the first and second derivative of the complexity with respect to time are positive for
t ≥ 0.

The variance in (43) combined with v(t) and w(t) and normalized with K2
O yields

σ2 =

�

α2 t2 +
1
2

sinh2 2β t +
α2

2β2

�

4 (coshβ t + cosh 3β t) sinh2 β t
2
− 2β2 t2

+32cosh
β t
2

cosh3/2 β t sinh4 β t
2

�ªÁ

�

sinh2 β t + 4
α2

β2
coshβ t sinh2 β t

2

�2

, (54)

where the first two terms correspond to the variance of purely HW and SL2(R) respectively.
The term in the numerator within brackets is positive for t > 0. In order to appreciate the
effect of the interaction term it is useful to investigate the plots of the probabilities φ2

k which
appear in figure 3.

It is also worth examining in more detail the form of |φ0|2, which is the autocorrelator
(survival amplitude) of the system

|(O(0)|O(t))|2 = |φ0(t)|2 =
e
− α

2(e2β t−1)2

8β2 +2β t

cosh (2β t)
, (55)

where we have restored the time dependence using (47). We remind the reader that the
information contained in the autocorrelation function is equivalent to the Lanczos coefficients,
or in our case the hopping coefficients. We observe that the leading contribution to the decay
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Figure 4: Comparison for the autocorrelator functions for α = 1,β = 0 (yellow
curve), α = 0,β = 1 (green curve), α = 1,β = 1 (blue curve). We observe that
the autocorrelator for the Schrödinger group decays faster than both the HW and
SL2(R) groups.

of the autocorrelation function is of the form e−α
2e2β t

, that is doubly exponential. This is unlike
any of the semisimple groups that were studied so far, although it corroborates the enhanced
spreading of the wavefunction as argued previously. We illustrate this result by comparing to
the results for pure HW and SL2(R) in figure 4.

4 Discussion

In this paper we proposed an approach to computing Krylov complexity for the two-
dimensional Schrödinger group in what we dub to be a natural orthonormal basis, which
does not involve the usual tridiagonal Liouvillian, but a pentadiagonal one instead. We argue
that regardless the same Krylov subspace is probed. The naturalness of the basis arises from
the fact that the two-dimensional Schrödinger group is generated by a non-semisimple algebra
that can be written as the semi-direct sum of the Heisenberg-Weyl algebra and SL2(R), which
can both be naturally expressed in the Heisenberg-Weyl basis. We advocate that this approach
might provide insights to other non-semisimple algebras for which the usual Krylov basis is
technically non-attainable.

We find that the Krylov complexity in its natural basis is greater than the sum of the Krylov
complexity of the separate sub-algebras and the same holds for its variance. At late time
we recover the same Lyapunov exponent as for SL2(R), but we do find a naive scrambling
time of smaller value. This is an intriguing aspect of our results as it creates the following
picture. At late times the dynamics of the system are dominated by the SL2(R) degrees of
freedom, which is why we observe the exponential growth of Krylov complexity with the same
Lyapunov exponent. However, the spreading of the wave function, or in other words the
distribution of the state over the Krylov subspace happens at a faster rate as shown by our
variance calculations and the smaller scrambling time. While a rigorous interpretation of this
phenomenon is outside of our reach for the moment, this highlights the importance of probing
multiple aspects of the probability distribution rather than just the average. We believe this
behavior makes sense from an intuitive point of view: due to its semi-direct sum structure,
elements in different sub-algebras have non-trivial commutation relations and as such there
should be an increase of the total complexity compared to the naive sum of the sub-algebras.
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Our complexity grows convexly, which contrasts the numerical findings of [36], who con-
sidered Krylov complexity in an approximate tridiagonal basis. They furthermore explicitly
find that the complexity of the two-dimensional Schrödinger algebra is less than its separate
sub-algebras. It would be interesting to understand this discrepancy, especially since in the
end both methods probe the same Krylov subspace.

Doing computations in the natural basis, from the perspective of the harmonic oscillators
basis a† and a, amounts to taking into account generators (a†)2 and a2 in the Liouvillian. One
might wonder: why stop at quadratic order? It turns out that higher orders, say, a†3 and a3

do not close the algebra. Commuting these generators yields fourth order generators in terms
of the oscillator basis and one is led to conclude that the algebra does not close for a finite
number of generators.

The autocorrelator computed using the Krylov basis for SL2(R) can be reproduced using
a thermofield double setup in the context of holography. The Schrödinger algebra is non-
Lorentzian and its holographic manifestation is less well understood [34,56]. Perhaps the here
presented results, the autocorrelator that exhibits doubly-exponential scrambling specifically,
can provide a bench mark for further developing Schrödinger holography.

Finally, it is important to ask what our results imply for the bigger picture and how do they
fit into our understanding of Krylov complexity and its relation to other complexity measures.
Here we have established that one can obtain analytic results for systems with symmetry that
go beyond the case of semisimple Lie algebras. The key ingredient in this endeavour is the
use of generalized coherent states, which appear to play a prevalent role not only when it
comes to Krylov complexity, but also in approaches to complexity that rely on geometry as is
the case in [57–62] for example. This is due to the natural organization of coherent states
in metric spaces as explained in detail in [46]. It would be interesting to think how our re-
sults fit into that framework as the Schrödinger group provides an incremental step in tackling
more complicated problems like the Virasoro group which, being centrally extended, also falls
into the category of non-semisimple groups. Due to its relevance in AdS/CFT this group has
been studied extensively and there are some results with regard to complexity that take ad-
vantage of the associated geometry and are possibly implicitly related to certain classes of
coherent states [59]. Recently there have also been advances in understanding Krylov com-
plexity from a holographic perspective [37, 47, 63], although there are still many open ques-
tions that one would hope to address. Thus, we believe that our work is not only important
for a non-relativistic limit of AdS/CFT, but also provides the groundwork for more general
considerations.
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