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Abstract

This work proposes a digital quantum simulation protocol for the linear scattering pro-
cess of bosons, which provides a simple extension to partially distinguishable boson
cases. Our protocol is achieved by combining the boson-fermion correspondence rela-
tion and fermion to qubit encoding protocols. As a proof of concept, we designed quan-
tum circuits for generating the Hong-Ou-Mandel dip by varying particle distinguishabil-
ity. The circuits were verified with the classical and quantum simulations using the IBM
Quantum and IonQ cloud services.
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1 Introduction

Quantum simulation imitates an evolution of one quantum system with another artificially or-
ganized quantum system, i.e., quantum simulator [1]. Digital quantum simulators with qubits
can encode an arbitrary quantum system comprising various particles, such as spins, fermions,
and bosons, either exactly or approximately, depending on the particle nature. Qubits can
be realized with several physical systems, such as trapped ions [2, 3], nuclear magnetic res-
onance (NMR) [4, 5], superconducting circuits [6, 7], quantum dots [8], and photons [9].
Therefore, we can simulate any quantum system with digital quantum simulators using proper
qubit encoding protocols regardless of the physical nature of the simulator.

Among various many-particle quantum systems, bosonic systems are considered to have
the significant benefit from digital quantum simulations. Knill, Laflamme, and Milburn (KLM)
showed that the postselected linear optics is capable of universal quantum computing [10].
Also, boson sampling proposed by Aaronson and Arkhipov [11] is a strong candidate for
demonstrating the computational superiority of quantum devices. The boson sampling prob-
lem is believed to belong to classically hard sampling problems.

Inspired by the computational power of noninteracting bosonic systems, several boson
to qubit encoding (B2QE) protocols have been proposed to simulate bosonic problems with
digital quantum computers [12–18]. The majority of studies discretize bosonic creation and
annihilation operators directly using unary or binary qubit representations of the Fock states
as qubit encoding protocols. Ref. [15] presents a method for the digital quantum simulation of
linear and nonlinear optical elements. Ref. [17] simulated the beam-splitting and squeezing
operators with IBM Quantum based on the boson-qubit mapping developed in Ref. [19]. The
required resources, such as the numbers of qubits and gates, vary according to the encoding
protocols. Ref. [18] compared the resource efficiency among encoding protocols.

In this paper, we propose an alternative many-boson digital simulation method by combin-
ing the boson-fermion correspondence analyzed by Shchesnovich [20] and fermion to qubit
encoding (F2QE) protocols [21, 22]. Specifically, our protocol transforms bosonic states into
fermionic states with internal degrees of freedom, which are then transformed to qubit states via
a F2QE protocol (Jordan-Wigner (JW) transformation). With our simulation model, quantum
circuits with M bundles of N qubits can simulate the number-conserving scattering process of
N bosons in M modes. Our protocol is summarized in Fig. 1. The most significant advantage
of our protocol is that it can efficiently simulate non-ideal partially distinguishable bosons, i.e.,
bosons with internal degrees of freedom, using a direct extension of qubit numbers.

As a proof of concept, we generate the Hong-Ou-Mandel (HOM) dip [23] with our pro-
tocol. The HOM effect is important in optical quantum systems that provide the elementary
resource for logic gates in the linear optical quantum computing systems. The formal con-
nection between the HOM effect and the qubit-based SWAP test was discussed in Ref. [24].
To simulate HOM dip, we need a method to add an internal degree of freedom to photons.
It is easily achieved in our case by increasing the qubit number twice, which shows that our
protocol is suitable for simulating partially distinguishable bosons. We verified the validity of
our circuit using the IBM Quantum and IonQ cloud services.

This paper is organized as follows: Section 2 explains our digital boson simulation proto-
col. After reviewing the boson-fermion transformation protocol, we show how to combine this
transformation with the JW transformation for the digital bosonic simulation. In section 3, we
apply our model to the HOM dip experiment. We simulate the two-photon partial distinguisha-
bility with an eight-qubit-circuit. Finally, section 4 concludes our present work and discusses
its possible future extensions.
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Figure 1: Our protocol for digital simulation of multi-boson systems. Using antisym-
metrically entangled fermions as effective bosons, we can design digital quantum
circuit to simulate multi-bosonic system via JW transformation.

2 Digitizing bosonic systems

In this section, we explain our B2QE protocol to simulate many-boson systems with qubits.
Our protocol consists of two steps: First, we express the number-conserving bosonic systems
with entangled multi-fermions with an internal degree of freedom. Second, we map the trans-
lated multi-fermionic system to a qubit system using a well-known F2QE protocol, the JW
transformation [21].

2.1 Effective bosonic states of multi-fermions

We first explain how a specific form of entangled multi-fermions can effectively behave as
multi-bosons. In the second quantization language, the bosonic creation and annihilation
operators â†

i and âi (i = 1, · · · , M) obey the following commutation relations:

[âi , â†
j ] = δi j , [âi , â j] = [â

†
i , â†

j ] = 0 , (1)

while the fermionic operators b̂†
i and b̂i obey the anti-commutation relations:

¦

b̂i , b̂†
j

©

= δi j ,
�

b̂i , b̂ j

	

=
¦

b̂†
i , b̂†

j

©

= 0 , (2)

where {Â, B̂} ≡ ÂB̂+ B̂Â. The above relations satisfy the Pauli exclusion principle for fermions,
which prohibits the superposition of two fermions in the same state. Indeed, we see that
b̂†

i b̂†
i |vac〉 = −b̂†

i b̂†
i |vac〉 = 0 by Eq. (2), where |vac〉 is a vacuum state. On the other hand, if

the fermions have internal degrees of freedom, such as spin, fermionic modes with different
internal states can occupy the same spatial mode. By denoting a K-dimensional internal degree
of freedom as µ (µ = 0, · · ·K − 1), a fermionic operator with internal degrees of freedom µ is
defined as b̂†µ

i and b̂µi . The anticommutation relations for the operators are as follows:
¦

b̂µi , b̂†ν
j

©

= δi jδ
µν ,

¦

b̂µi , b̂νj
©

=
¦

b̂†µ
i , b̂†ν

j

©

= 0 . (3)

In such a case, the fermions can condensate in the same spatial mode up to K . We aim to
employ this feature of multi-fermionic states for mimicking the Bose-Einstein condensation
(BEC) with the cutoff K . Fig. 2 explains the concept of fermionic condensation.

On the other hand, for the fermionic condensation to operate like the BEC, we must prop-
erly consider the fundamental differences between bosons and fermions, i.e., the exchange
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Figure 2: M -fermionic modes with K internal states. Fermions can condensate in the
same mode up to K . If a fermion state is entangled in Eq. (5), we can simulate BEC
with the condensation cutoff K .

symmetry and antisymmetry indicated in Eqs. (1) and (2). Shchesnovich [20] showed that
the interchangeability of entanglement and exchange symmetry can render entangled multi-
fermions symmetric under the exchange of spatial modes. Here, we introduce the effective
bosonic state of multi-fermions with the condensation limit K in the second quantization lan-
guage, which offers a more refined explanation than of the first quantization language used
in Ref. [20].

Let us consider an N -fermionic state,

b̂†µ1
i1

b̂†µ2
i2
· · · b̂†µN

iN
|vac〉 (4)

(iα = 1,2, · · · , M and µα = 1,2, · · · , K for 1 ≤ α ≤ N). This state is always antisymmetric
under the exchange of the total indices (µ, i). However, if K ≥ N , we can obtain a symmetric
state under the spatial modes iα by suitably superposing fermionic states as follows:

1
p

N !
b̂†[µ1

i1
b̂†µ2

i2
· · · b̂†µN ]

iN
|vac〉 (5)

(a square bracket [, ] on the upper indices means that the indices are antisymmetrized. For
the simplest example, b̂†[µ1

i1
b̂†µ2]

i2
≡ b̂†µ1

i1
b̂†µ2

i2
− b̂†µ2

i1
b̂†µ1

i2
). Since the following relation,

b̂†[µ1
i1
· · · b̂†µα

iα
· · · b̂†µβ

iβ
· · · b̂†µN ]

iN
|vac〉= −b̂†[µ1

i1
· · · b̂†µβ

iβ
· · · b̂†µα

iα
· · · b̂†µN ]

iN
|vac〉

= b̂†[µ1
i1
· · · b̂†µα

iβ
· · · b̂†µβ

iα
· · · b̂†µN ]

iN
|vac〉 , (6)

holds for any α and β for 1≤ α≤ N and 1≤ β ≤ N , we have

1
p

N !
b̂†[µ1

i1
b̂†µ2

i2
· · · b̂†µN ]

iN
|vac〉=

1
p

N !
b̂†[µ1
{i1

b̂†µ2
i2
· · · b̂†µN ]

iN }
|vac〉 (7)

(a brace {, } on the lower indices on the right hand side denotes that the indices are sym-
metrized. For the simplest example, b̂†µ1

{i1
b̂†µ2

i2}
≡ b̂†µ1

i1
b̂†µ2

i2
+ b̂†µ1

i2
b̂†µ2

i1
). Therefore, we can

consider Eq (5) to be an effective N -boson state with the condensation limit K .
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As a simple example, when N = 2, Eq. (5) becomes

1
p

2

�

b̂†µ1
i1

b̂†µ2
i2
− b̂†µ2

i1
b̂†µ1

i2

�

|vac〉 . (8)

By exchanging the mode indices i1 and i2, we have

1
p

2

�

b̂†µ1
i2

b̂†µ2
i1
− b̂†µ2

i2
b̂†µ1

i1

�

|vac〉=
1
p

2

�

− b̂†µ2
i1

b̂†µ1
i2
+ b̂†µ1

i1
b̂†µ2

i2

�

|vac〉

=
1
p

2

�

b̂†µ1
i1

b̂†µ2
i2
− b̂†µ2

i1
b̂†µ1

i2

�

|vac〉 , (9)

where the second line is obtained by changing the order of fermionic operators.
Since the antisymmetrical entanglement of the fermions is essential for effective bosonic

states to behave like bosons, the exchange symmetry of the state must be preserved under
evolutions. In other words, if we want to simulate the bosonic scattering process with fermions,
the transformation operators of fermions must preserve the antisymmetrical entanglement. We
observe that some transformation operators satisfy this restriction. We first consider a bosonic
operator T of the following form:

T = exp



i t

 

M
∑

j,k=1

Φ jk â†
j âk

!



 , (10)

where t is the evolution time and Φ jk ∈ C. We note that
∑

jk

Φ jk â†
j âk (11)

behaves as the Hamiltonian of the given system by setting Φ jk = Φ∗k j . Then, the transformation

of â†
i under T is given by

T â†
i T † =

∑

j

exp(i tΦ∗)i j â
†
j

≡
∑

j

ui j â
†
j , (12)

where Φ is a Hermitian matrix whose elements are Φi j and
∑

j ui ju
∗
k j = δik. In the fermionic

system, the corresponding operator T f is expressed as follows:

T f = exp

 

i t
∑

µ

∑

j,k

Φ jk b̂†µ
j b̂µk

!

, (13)

which gives

T f b̂†µ
i T †

f =
∑

j

ui j b̂
†µ
j . (14)

Then, the state Eq. (5) evolves via T f as follows:

|Ψ〉 f =
1
p

N !

∑

k1,··· ,kN

uk1
{ j1
· · ·ukN

jN }
b̂†[µ1

k1
· · · b̂†µN ]

kN
|vac〉

=
1
p

N !

∑

k1,··· ,kN

u{k1
{ j1
· · ·ukN }

jN }
b̂†[µ1
{k1
· · · b̂†µN ]

kN }
|vac〉 . (15)
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The second line of the above equation shows that the transformed state is a linear combination
of effective multi-boson states, which itself is an effective multi-boson state. In a more general
form, we see that any number-conserving Hamiltonian looks like H =

∑

jk Φ jk â†
j âk + c.c..

Finally, we check whether the measurement of the state Eq. (5) that evolves with Eq. (10) is
effectively bosonic, i.e., the scattering probability is proportional to the absolute square of the
transformation matrix permanent. Suppose first that we postselect terms without bunching,
irrespective of what the internal states of the particles are. Without loss of generality, we can
assume the boson number distribution vector as follows:

n⃗= (1,1, · · · , 1
︸ ︷︷ ︸

N

, 0, · · · , 0
︸ ︷︷ ︸

M−N

) (M ≥ N) . (16)

Then, the scattering probability is given with a projector

E =
∑

µ1···µN

(b̂†µ1
1 ) · · · b̂†µN

N |vac〉〈vac|b̂µN
N · · · b̂

µ1
1 ,

as follows:

P = Tr(Eρ f )

=
∑

µ1,··· ,µN

〈vac|b̂µN
N · · · b̂

µ1
1 |Ψ〉〈Ψ| f b̂†µ1

1 · · · b̂
†µN
N |vac〉 . (17)

Using the relation,

b̂µ1
i1
· · · b̂µN

iN
b̂†[ν1

k1
· · · b̂†νN ]

kN
|vac〉= δ{k1

i1
· · ·δkN }

iN
δ[ν1
µ1
· · ·δνN ]

µN
|vac〉 , (18)

we have

P ∼ |perm(u)|2 , (19)

where u is an N ×N matrix whose entries are ui j and perm(u) denotes the permanent of u, as
expected for a bosonic systems with T [11,25]. If the postselected states permit bunching, the
probability becomes proportional to the permanent of the submatrix of u as expected [26–29].

2.2 Simulating multi-boson systems with qubits

Since a fermionic state of the form indicated in Eq. (5) can simulate a linear scattering of
bosons, we conclude that digital quantum computers can also simulate the same system using
the JW transformation. Before explaining how we actually organize quantum circuits and
algorithms for such a simulation, we first review the JW transformation, which maps fermions
to qubits [21].

In the JW transformation, qubit states |0〉 and |1〉 correspond to the empty and occupied
states of fermions for a given mode, i.e., the following isomorphism should hold:

N qubit state |n⃗〉= |n1, · · · , nN 〉 (n j = 0, 1)
∼= N fermionic state (b̂†

1)
n1 · · · (b̂†

1)
nN |vac〉 . (20)

The left and right hand side denotes an N -qubit state and an N -fermionic state, respectively,
and ∼= represents that the two sides are in a correspondence relationship with each other. For
this relationship to hold, there must be operators acting on the N -qubit system that play the
roles of creation and annihilation operators. Indeed, we can construct such operators by com-
bining the Pauli operators X j , Yj and Z j ( j = 1, · · · L), i.e., b̂†

j (X , Y, Z)∼= b̂†
j and b̂ j(X , Y, Z)∼= b̂ j .

6

https://scipost.org
https://scipost.org/SciPostPhysCore.7.3.042


SciPost Phys. Core 7, 042 (2024)

We can see that |n⃗〉 and b†
j (X , Y, Z) must satisfy the following conditions:

• If n j = 0, then b̂ j|n⃗〉= 0

• If n j = 1, then b̂ j|n⃗〉 = (−1)s
j
n⃗+1|n1, · · · , n j ⊕ 1, · · · , nL〉 where s j

n⃗ ≡
∑ j−1

k=1 nk. Note that

(−1)s
j
n⃗+1 comes from the anticommutation property of the creation-annihilation opera-

tors.

It can easily be verified that

b̂ j(X , Y, Z)≡ (⊗ j−1
k=1Zk)⊗σ−j ,

b̂†
j (X , Y, Z)≡ (⊗ j−1

k=1Zk)⊗σ+j (21)

(σ+ ≡ |1〉〈0| and σ− ≡ |0〉〈1|), satisfy the above conditions. One can also check that Eq.
(21) satisfies the anticommutation relations, i.e., {b̂ j , b̂†

k} = δ jk and {b̂†
j , b̂†

k} = {b̂ j , b̂k} = 0.
The state transformation of Eq. (20) and operator transformations in Eq. (21) define the JW
transformation for the digital simulation of fermionic systems.

By combining the JW transformation and the results of Section 2.1, we can see that N
bosons in M modes can be simulated with N M qubits (see Fig. 3). To impose this correspon-
dence, consider an MN -qubit state

�

�

�

n1
1, · · · , nN

1

�

,
�

n1
2, · · · , nN

2

�

, · · · ,
�

n1
M , · · · , nN

M

��

, (22)

where nµi = 0,1 and each bracket (n1
i , n2

i , · · · , nN
i ) denotes the state of a bundle of N qubits.

If nµi = 1, then it is considered in the fermion picture that a fermion exists in the ith mode
with internal state j. Any state of this kind can be generated from |vac〉 ∼= |00 · · ·0

︸ ︷︷ ︸

N×M

〉 with the

creation operators as follows:

b̂†1
1 = σ

+,

b̂†2
1 = Z ⊗σ+,

...

b̂†N
1 = Z ⊗ · · · ⊗ Z

︸ ︷︷ ︸

N−1

⊗σ+,

...

b̂†N
M = Z ⊗ · · · ⊗ Z

︸ ︷︷ ︸

N M−1

⊗σ+. (23)

Now we can express an effective multi-boson state described in Eq. (5), which is entan-
gled as antisymmetric under the internal states in the qubit space. As an example, consider
the case with N bosons when all bosons from 1 to N are in different modes with respect to
each other. Using Eq. (7), such a state can be expressed as 1p

N !
b̂†[1

1 · · · b̂
†N]
N |vac〉. By defining

χi = (0, · · · , 0,
ith
1 , 0, · · · , 0

︸ ︷︷ ︸

N

) and χ0 = (0, 0, · · · , 0
︸ ︷︷ ︸

N

), the state can be expressed in the N M qubit

space as follows:

1
p

N !

∑

ρ∈SN

sgn(ρ)|χρ(1),χρ(2), · · · ,χρ(N),χ0, · · · ,χ0〉 , (24)
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Figure 3: N M qubits that can simulate N bosons in M modes. Each bundle of N
qubits behaves as a mode that can contain up to N bosons. Using M bundles of N
qubits, we can simulate N -boson scattering process in M modes.

where SN is the permutation group. On the other hand, if all the bosons are in the same mode,
e.g., the first mode, the state can be written as follows:

1
p

N !
b̂†[1

1 · · · b̂
†N]
1 |vac〉= b̂†1

1 · · · b̂
†N
1 |vac〉

∼= |(1, 1, · · · , 1
︸ ︷︷ ︸

N

),χ0, · · · ,χ0〉 . (25)

For the case with N = 2 and M = 3, Eq. (24) takes the following form:

1
p

2

�

|χ1,χ2,χ0〉 − |χ2,χ1,χ0〉
�

=
1
p

2

�

|10,01, 00〉 − |01,10, 00〉
�

, (26)

which corresponds to the bosonic state â†
1â†

2|vac〉, while Eq. (25) becomes |11, 00,00〉, which
corresponds to the bosonic state 1p

2
(â†

1)
2|vac〉.

Since Eqs. (22) and (23) represent a mapping from bosonic systems to qubits, we can
digitally simulate multi-boson systems with the following process:

1. Preparation of the initial state: We first need to prepare the initial states of the form
shown in Eq. (7), which can be achieved by adopting one of the known antisymmtriza-
tion algorithms, e.g., those in Refs. [30, 31]. On the other hand, we can find optimal
algorithms for the states with small N case-by-case.

2. Evolution: The unitary operations can be executed by substituting Eq. (23) into the
Hamiltonian operator of Eq. (11).

3. Measurement: While the order of the excited states is unimportant, the number of ex-
cited states in each bundle is crucial because it determines the distributions of boson
numbers. For example, if N = 3, (100), (010), and (001), in all cases a mode has one
particle with different internal state. Nevertherless, we only record that one of three
qubit states in the bundle is excited. Eq. (17) represents such a measurement process.

3 Application: Hong-Ou-Mandel dip

In this section, we use our protocol to simulate the HOM effect for N = 2 [23]. We first simulate
ideal photon case (with no internal degree of freedom), which is then generalized to non-ideal
photons with a two-dimensional internal degree of freedom. This generalization shows our
protocol can simulate non-ideal bosons simply with a direct extension of qubit numbers.
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Figure 4: Full circuit for HOM experiment. As seen in figures in the second line, TH
given by Eq. (32) is further decomposed into one- or two-qubit gates. We set, for
example, RX ZX (Θ) = exp[iΘ(X ⊗ Z ⊗ X )], where the index indicates the operator in
the exponent.

3.1 HOM experiment with ideal photons

Since two qubits can represent a bosonic mode with a maximal photon number of two, our
protocol needs four qubits here.

Preparation.— Using the notations given before Eq. (24), we prepare the following initial
state |Ψ〉i:

|Ψ〉i =
1
p

2

�

|χ1,χ2〉 − |χ2,χ1〉
�

=
1
p

2

�

|10, 01〉 − |01,10〉
�

. (27)

Evolution.— For the case of HOM scattering, we set

t =
π

4
, Φ=

�

0 1
1 0

�

, (28)

in Eq. (10) which produces the following transformation operator TH :

T H ≡ exp
�

iπ
4

�

â†
1â2 + â†

2â1

�

�

. (29)

In the fermion system, TH is given as follows:

T H
f = exp

�

iπ
4

�

b̂†1
1 b̂1

2 + b̂†1
2 b̂1

1 + b̂†2
1 b̂2

2 + b̂†2
2 b̂2

1

�

�

= exp
�

iπ
4

�

b̂†1
1 b̂1

2 + b̂†1
2 b̂1

1

�

�

exp
�

iπ
4

�

b̂†2
1 b̂2

2 + b̂†2
2 b̂2

1

�

�

. (30)

Using the JW transformation, we obtain

b̂†1
1 b̂1

2 + b̂†1
2 b̂1

1 =
1
2
(X ⊗ Z ⊗ X + Y ⊗ Z ⊗ Y )⊗ I ,

b̂†2
1 b̂2

2 + b̂†2
2 b̂2

1 =
1
2
I⊗ (X ⊗ Z ⊗ X + Y ⊗ Z ⊗ Y ) , (31)

in the qubit system. Since X ⊗ Z ⊗ X and Y ⊗ Z ⊗ Y commute, TH can be further decomposed
follows:

TH = exp
�

iπ
8
(X ⊗ Z ⊗ X ⊗ I)

�

exp
�

iπ
8
(Y ⊗ Z ⊗ Y ⊗ I)

�

× exp
�

iπ
8
(I⊗ X ⊗ Z ⊗ X )

�

exp
�

iπ
8
(I⊗ Y ⊗ Z ⊗ Y )

�

. (32)
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Figure 5: Simulation results of the circuit in Fig. 4 using quantum devices:
(a) ibm_brisbane of IBM Quantum, and (b) ionq_qpu of IONQ.

Note that we have not used the Trotter decomposition, because all the terms in the exponential
terms commute with each other. This is true for the general linear optical transformations [15].

Measurement.— The final state transformed by Eq. (29) is given by

|Ψ〉 f =
i
p

2

�

|11, 00〉+ |00, 11〉
�

. (33)

The interpretation of the above state is that two bosons always bunch, i.e., the HOM effect
occurs.

The full circuit for the HOM digital simulation is shown in Fig. 4. According to Eq. (33),
the ideal outcome probabilities of states |11,00〉 and |00,11〉 are 50% each, which shows
the photon-bunching effect of indistinguishable photons. The ideal result can be confirmed
via classical simulations of Fig. 4 using, for example, Qiskit’s qasm_simulator. We used
ibm_brisbane of IBM Quantum and ionq_qpu of IONQ for the digital quantum simulation of
the ideal indistinguishable photons case. Fig. 5 shows the results. In contrast to the theoretical
prediction, quantum states other than |11, 00〉 and |00, 11〉 were measured. It is attributed to
errors arising from gate operations and measurements in real quantum devices. For assess-
ment of the simulation, we performed fidelity calculations after tomography for ibm_brisbane,
ibm_perth, ibm_lagos, and ibm_nairobi on IBM Quantum, and ionq_qpu on IONQ. We summa-
rized the tomography and fidelity calculation results in Supplementary Materials, along with
the technical specifications of the devices used.

3.2 HOM dip

We will now simulate the HOM dip (see, e.g., [32] for a pedagogic review) with a two-
dimensional internal degree of freedom that creates distinguishability. By denoting the in-
ternal state of bosons as s (= 0,1), the creation and annihilation operators are written as â†

is

and âis with [âis, â†
jr] = δi jδsr . Then, an N -boson state â†

i1s1
â†

i2s2
· · · â†

iN sN
|vac〉 (iα ∈ {1, · · · , N},

sβ ∈ {0,1} for α,β ∈ {1, · · · , N}) can effectively be expressed as a fermionic state as follows:

1
p

N !
b̂†[µ1

i1s1
b̂†µ2

i2s2
· · · b̂†µN ]

iN sN
|vac〉 . (34)

Therefore, the general initial state for the HOM dip with two photons can be written as

10

https://scipost.org
https://scipost.org/SciPostPhysCore.7.3.042


SciPost Phys. Core 7, 042 (2024)

Figure 6: Qubit representation of two photons in two modes with two-dimensional
internal degree of freedom.

follows:

|Ψ〉i = â†
1|s〉â

†
2|r〉|vac〉 ∼=

1
p

2
b̂†[1

1|s〉 b̂
†2]
2|r〉|vac〉 , (35)

where |s〉 and |r〉 are the general internal states of the form ζ|0〉 + ξ|1〉 (ζ,ξ ∈ C and
|ζ|2 + |ξ|2 = 1). To simulate this type of HOM dip, we need eight qubits, which are displayed
in Fig. 6. Each qubit corresponds to the particle states (i,µ, s) as indicated in the figure.

Preparation.— Without loss of generality, we can assume the internal state of the photons as
|s〉= |0〉 and |r〉= ζ|0〉+ξ|1〉. Therefore, the initial state for partially distinguishable photons
can be described as follows:

|Ψ〉i =
1
p

2
b̂†[1

10 b̂†2]
2|r〉|vac〉

=
1
p

2

�

ζb̂†[1
10 b̂†2]

20 + ξb̂†[1
10 b̂†2]

21

�

|vac〉

=
1
p

2

�

ζ(|1000, 0010〉 − |0010, 1000〉) + ξ(|1000,0001〉 − |0010,0100〉)
�

. (36)

We can prepare this state by first creating

1
p

2

�

|1000, 0010〉 − |0010, 1000〉
�

, (37)

and then applying the following gates:

q0 : •
q1 : • U(θ ,φ,γ) •

between (2, 0,1) and (2,1, 1) and between (2,0, 2) and (2,1, 2). The above gates can be rep-
resented in a matrix form as follows:









1 0 0 0
0 eiγ cos(θ2 ) −eiφ sin(θ2 ) 0
0 e−iφ sin(θ2 ) e−iγ cos(θ2 ) 0
0 0 0 1









, (38)
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where ζ, and ξ are given with (γ,φ,θ ) by

ζ= eiγ cos
�θ

2

�

, ξ= −eiφ sin
�θ

2

�

. (39)

For two indistinguishable bosons (ideal photons), i.e., ζ = 1, and the initial state is as
follows:

|Ψ〉ind
i =

1
p

2
b̂†[1

10 b̂†2]
20 |vac〉

=
1
p

2

�

|1000,0010〉 − |0010, 1000〉
�

. (40)

On the other hand, if two bosons are fully distinguishable, i.e., ξ = 1, the initial state can be
given without loss of generality as follows:

|Ψ〉dis
i =

1
p

2
b̂†[1

10 b̂†2]
21 |vac〉

=
1
p

2

�

|1000, 0001〉 − |0010,0100〉
�

. (41)

Evolution.— The evolution operator with distinguishability is simply obtained by generaliz-
ing Eq. (30) as follows:

TH = exp

�

iπ
4

∑

s,µ

�

b̂†µ
1s b̂µ2s + b̂†µ

2s b̂µ1s

�

�

= exp
�

iπ
4

�

b̂†1
10 b̂1

20 + b̂†1
20 b̂1

10

�

�

exp
�

iπ
4

�

b̂†1
11 b̂1

21 + b̂†1
21 b̂1

11

�

�

× exp
�

iπ
4

�

b̂†2
10 b̂2

20 + b̂†2
20 b̂2

10

�

�

exp
�

iπ
4

�

b̂†2
11 b̂2

21 + b̂†2
21 b̂2

11

�

�

. (42)

Measurement.— When the bosons are indistinguishable, the final state |Ψ〉ind
f is as follows:

|Ψ〉ind
f =

i
p

2

�

b̂†[1
10 b̂†2]

10 + b̂†[1
20 b̂†2]

20

�

|vac〉

=
i
p

2
(|1010,0000〉+ |0000, 1010〉) , (43)

i.e., two particles are always in the same mode and the coincidence probability (the probability
that each mode simultaneously detect particles) becomes zero.

When they are distinguishable, the final state |Ψ〉dis
f is given as follows:

|Ψ〉dis
f =

1
p

2

�

i b̂†[1
10 b̂†2]

11 + b̂†[1
10 b̂†2]

21 − b̂†[1
20 b̂†2]

11 + i b̂†[1
20 b̂†2]

21

�

|vac〉

=
i
p

2

�

i
�

|1001, 0000〉 − |0110, 0000〉
�

+ i
�

|0000, 1001〉 − |0000, 0110〉
�

+
�

|1000,0001〉 − |0010,0100〉
�

−
�

|0001, 1000〉 − |0100,0010〉
�

�

, (44)

which means that each particle can arrive at each of the two detectors with probability 0.5.
In general, the final state with an arbitrary distinguishability (|r〉= ζ|0〉+ξ|1〉) is given by

|Ψ〉 f =
iζ
p

2

�

|1010,0000〉+ |0000,1010〉
�

+
ξ

2
p

2

�

i
�

|1001,0000〉 − |0110, 0000〉
�

+
�

|1000,0001〉 − |0010,0100〉
�

−
�

|0001,1000〉 − |0100,0010〉
�

+ i
�

|0000,1001〉 − |0000,0110〉
�

�

. (45)
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Figure 7: HOM dip classical simulation graph according to variation of θ from −π
to π. The interval between angles is π/100. All simulations were performed using
Qiskit’s qasm_simulator.

We can predict that the coincidence probability for the photons varies from 0 (fully indistin-
guishable) to 0.5 (fully distinguishable).

The increase in the circuit’s width corresponds to the rise in the depth for simulating the
scattering process of partially distinguishable photons, which causes a significant error in the
quantum simulation. Therefore, we executed a classical simulation with qasm to show the
validity of our method. Fig. 7 reveals a clear pattern of the HOM dip.

Remark.— It is worth mentioning that our example of the HOM dip simulation with dis-
tinguishable bosons shows the advantage of our scheme over other integer-to-bit mappings
in, e.g., Ref. [13–19]. Comparing Eq. (27) with Eq. (36), we see that bosonic system with a
2-dimensional internal degree of freedom is directly simulated by adding one copy of 4 qubits.
Since our mapping from the bosonic system to qubits is set to preserve the exchange symmetry,
the generalization from ideal bosons to distinguishable bosons is straightforward. Moreover,
we do not need Schur transformation gates as in Ref. [12], hence more efficient. On the other
hand, recent research on the digital simulation of the HOM experiment with ideal photons
in Ref. [33] shows that a significant amount of qubits are needed to add distinguishability in
integer-to-bit mappings, such as the gray code encoding.

4 Conclusions

We have proposed an alternative method for the digital simulation of linear-optical networks by
using the property that suitably entangled fermions can effectively behave like bosons. Unlike
other existing B2QE protocols, our approach provides a simple and intuitive extension of an
ideal bosonic system to a non-ideal one by introducing additional internal degrees of freedom.
As a proof of concept, we designed quantum circuits for generating the Hong-Ou-Mandel dip by
varying particle distinguishability. We successfully executed a digital simulation using the IBM
Quantum and IonQ cloud services for the ideal boson case. For the partially distinguishable
boson case, we showed the validity of our scheme with a classical simulation using Qiskit’s
qasm.

The obvious extension of our B2QE approach would be the non-number-conserving bosonic
system simulations, such as Gaussian boson sampling [34] and molecular simulations [35].
However, confining the infinite bosonic Hilbert space to the finite qubit Hilbert space will in-
trinsically generate errors for the non-number-conserving bosonic problems. In future work,
we will attempt to optimize the required resources and errors induced by the confinement. We
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also intend to develop another efficient quantum algorithm for computing the matrix perma-
nent [36] based on our B2QE protocol. With the help of the new B2QE protocol, we envisage
developing efficient qubit-based quantum algorithms for bosonic systems, e.g., the boson sam-
pling with nonideal photons, the Bose-Hubbard model, and the spin-boson model.
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