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Abstract

We complete the classification of 4 × 4 regular solutions of the Yang–Baxter equation.
Apart from previously known models, we find four new models of non-difference form.
All the new models give rise to Hamiltonians and transfer matrices that have a non-
trivial Jordan block structure. One model corresponds to a non-diagonalisable integrable
deformation of the XXX spin chain.
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1 Introduction

The Yang–Baxter equation

R12(u, v)R13(u, w)R23(v, w) = R23(v, w)R13(u, w)R12(u, v) (1)

is central to the study of quantum integrable models. This equation was first studied by Yang
in the context of a one-dimensional scattering problem [1], and by Baxter in the context of
the eight-vertex model [2]. Over the years (1) has appeared in many different settings, and its
applications range widely from correlation functions in quantum field theory and the AdS/CFT
correspondence [3,4] to statistical physics and condensed matter systems such as the Hubbard
model [5].

(1) is an equation in V1 ⊗ V2 ⊗ V3, where each Vi ≃ Cn, and the indices on the R-matrices
Ri j(u, v) ∈ End(Vi ⊗ Vj) indicate on which spaces they act non-trivially. An integrable spin-
chain Hamiltonian Q2(u) can be constructed from the R-matrix, and (1) directly implies the
existence of a tower of charges Qr(u), r = 1, 2,3, . . . , which pairwise commute; this is the
cornerstone of integrability. The integrability of a model often allows for the use of powerful
techniques to compute its spectrum exactly, for example the algebraic Bethe ansatz [6].

The prototypical example of such a quantum integrable model for n= 2 is the Heisenberg
XXX spin-1

2 chain [7]. Its R-matrix admits both trigonometric and elliptic deformations to the
XXZ and XYZ models respectively [8]. These R-matrices are of difference form R(u− v), and
the corresponding conserved charges Qr do not depend on the spectral parameter u. In the
most general case these charges do depend on u, and this parameter can be viewed as an
inhomogeneity on the underlying spin chain. In this case the corresponding R matrix depends
independently on the spectral parameters R(u, v). A particularly interesting class of solutions
to (1) are so-called regular solutions, which satisfy R(u, u) = P. This condition ensures that
the first conserved charge Q1 is simply the generator of translations along the spin chain, and
is natural in the context of periodic chains.

Given its ubiquity in physics, it is an interesting and challenging problem to solve the Yang–
Baxter equation (1). New solutions could correspond to new integrable condensed matter
systems, or novel integrable deformations of previously known models. A priori solving (1)
directly is a difficult task, given that it is a set of cubic functional equations for the entries of R.
However, several approaches have emerged. For example, one could require the R-matrix to
have some algebra symmetry [9–11]. In this case the number of free functions in the R-matrix
is reduced and it may be possible to classify all solutions. However, this approach does not
help in cases where the model has an unknown symmetry, or possibly no symmetry at all. A
different algebraic approach to solving the equation, known as Baxterisation, first emerged in
the realm of knot theory [17, 18]. This approach is intimately tied to the theory of quantum
groups and and consists of constructing solutions of (1) as representations of certain algebras,
for example Hecke algebras and Temperly-Lieb algebras. This approach has led to numerous
new insights and solutions of the Yang–Baxter equation [19–25].

Here we discuss a bottom-up approach to finding solutions of (1), which has been devel-
oped in a series of papers by one of the authors [26–29]. The main idea is to use the Hamil-
tonian density H(u), which is simply related to the R-matrix, as the starting point. From this
density the total Hamiltonian Q2(u) can be constructed, as well as the higher charge Q3(u)
using the so-called boost operator [30–32]. Then one can solve the Reshetikhin condition
[Q2(u),Q3(u)] = 0 [33] to identify integrable Hamiltonians.1 Finally, the R-matrix corre-
sponding to an integrable Hamiltonian can then be constructed by solving the Sutherland
equations [34], which follow from (1) and constitute a set of first order differential equations

1Although this condition is only necessary for integrability it is believed to be sufficient, and all evidence so far
confims this.
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for the entries of R(u, v), supplemented by appropriate boundary conditions. This approach
has been used to compute many new regular R-matrices for the cases of local Hilbert space
dimension n= 2,3, 4. A full classification for any n has so far been missing, mainly due to the
complexity of the equations resulting from the Reshetikhin condition. The most progress was
made for the case n = 2, where all Hermitian solutions were fully classified [29]. The main
result of the present paper is the completion of the classification for n = 2. We remark that
other approaches for solving the Yang–Baxter equation using the Sutherland equations have
appeared recently [35–37], as well as other approaches starting from the Hamiltonian [38–40].
A similar classification has also been completed for constant R matrices [41].

Since all the Hermitian solutions have been classified, the new models we find all corre-
spond to non-Hermitian Hamiltonians. Although such models are often regarded as unphysi-
cal, this is far from the case. For one, they can be used to model dissipative or chiral processes,
see [42] and references within for an excellent review. There has also been recent interest in
non-Hermitian models in the context of logarithmic conformal field theory [43, 44]. A con-
crete example of such a theory is the fishnet model, which arises in a strong-twist limit of
N = 4 super Yang–Mills [45]. There, owing to a chiral four-point vertex, the dilatation op-
erator of this theory becomes non-Hermitian and in particular non-diagonalisable in certain
operator sectors [46,47]. A particular 3-scalar sector of interest leads to the integrable eclectic
model [48], the spectrum of which has been studied using various methods [49–52].

The paper is organised as follows. In section 2 we fix our conventions and give the main
equations relevant for non-difference form R-matrices. In section 3 we discuss the classifi-
cation of R-matrices and outline our approach for identifying the remaining 4 × 4 regular
solutions to the Yang–Baxter equation. In section 4 we present our new solutions, and discuss
some of their properties. We also present the remaining solutions which have been classified
previously. Finally, in section 5 we conclude and give some outlook.

2 Yang–Baxter equation and integrability

We are studying solutions of the Yang–Baxter equation

R12(u, v)R13(u, w)R23(v, w) = R23(v, w)R13(u, w)R12(u, v), (2)

where R : Cn ⊗Cn→ Cn ⊗Cn is the R-matrix. A solution R(u, v) of (2) is called regular if

R(u, u) = P, (3)

where P is the permutation operator on Cn ⊗Cn, which acts as2

P x ⊗ y = y ⊗ x , x , y ∈ Cn. (4)

Each regular solution to (2) generates an integrable nearest-neighbour Hamiltonian
Q2(u) : V → V , where V := (Cn)⊗L , and L is the length of the corresponding spin chain.
Explicitly, this operator can be realised as a sum over Hamiltonian densities

Q2(u) :=
L
∑

i=1

Hi,i+1(u), (5)

2If v ∈ Cn ⊗Cn is not a pure state, then this definition is extended by linearity.
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where the density Hi,i+1(u) : Cn ⊗Cn→ Cn ⊗Cn is related to the R-matrix via3

H(u) := P
d
du

R(u, v)
�

�

�

v→u
. (6)

We implement periodic boundary conditions by identifying HL,L+1 ≡HL,1.
From the R-matrix one can form a transfer matrix

t(u, v) := tra(RaL(v, u)Ra,L−1(v, u) · · ·Ra1(v, u)), (7)

and define range r local operators Qr(u) : V → V from t(u, v) via logarithmic derivatives

Qr+1(u) =
d r

dvr
log t(u, v)
�

�

�

v→u
. (8)

The Yang–Baxter equation (2) implies that the two-parameter transfer matrices (7) commute
at different values of v

[t(u, v), t(u, v′)] = 0, (9)

which further implies that the operators Qr(u) mutually commute

[Qr(u),Qs(u)] = 0. (10)

Since all the operators Qr(u) mutually commute, we will also refer to them as charges. The
existence of an infinite number of conserved charges is one of the key features of an integrable
system, and it is the Yang–Baxter equation (2) which ensures this.

The higher charges Q3(u),Q4(u), . . . can also be constructed interatively from lower
charges vanish

Qr+1(u) = [B[Q2(u)],Qr(u)], r = 2, 3, . . . , (11)

where

B[Q2(u)] := ∂u −
∞
∑

n=−∞
nHn,n+1(u) (12)

is the boost operator, introduced in [30] and first applied to non-difference form models in [31].
(12) is only well-defined on open spin chains of infinite length, however the commutator (11)
is well-defined on periodic chains with a finite length. For example, if L = 4, then

Q3(u) = [B[Q2(u)],Q2(u)] = ∂uQ2(u)−
4
∑

j=1

[H j, j+1(u),H j+1, j+2(u)]. (13)

A solution R(u, v) of (2) is of difference form if it depends only on the combination u− v. In
this case the operators Qr are independent of u. A solution is of eight-vertex type if R takes the
form

R(u, v) =







r1,1(u, v) 0 0 r1,4(u, v)
0 r2,2(u, v) r2,3(u, v) 0
0 r3,2(u, v) r3,3(u, v) 0

r4,1(u, v) 0 0 r4,4(u, v)






, (14)

and it is of six-vertex type if furthermore r1,4(u, v) = r4,1(u, v) = 0. We will call a solution
R(u, v) Hermitian if the corresponding Hamiltonian density H is Hermitian.

3It is possible to add any operator of the form A⊗ I − I ⊗A to H without affecting Q2. We will always take
A= 0.
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3 R-matrix classification

We wish to classify all regular solutions R(u, v) of (2) for n = 2. Much progress has already
been made in this direction. In particular all difference form solutions have been classified
in [27], and all non-difference form solutions of six- and eight-vertex type have been classified
in [29]. Furthermore, all Hermitian solutions of non-difference form have been classified,
and are equivalent to known models of eight-vertex type and lower. We wish to complete the
classification, and find all non-difference form 4× 4 R-matrices. Since all Hermitian solutions
are already known, any new solutions we find will necessarily correspond to non-Hermitian
Hamiltonians H(u).

3.1 Identifications

Given a regular solution R(u, v) to (2), there are several ways to generate more regular solu-
tions, namely via local basis transformations, reparametrisations, normalisations, and discrete
transformations, which we describe now.

Local basis transformations. Given a regular solution R(u, v) of (2) and a non-singular
matrix W (u) : C2→ C2, then

RW (u, v) := [W (u)⊗W (v)]R(u, v)[W (u)⊗W (v)]−1 (15)

is another regular solution. The corresponding Hamiltonian density is related to the Hamilto-
nian density H(u) of R(u, v) via

HW (u) = [W (u)⊗W (u)]H(u)[W (u)⊗W (u)]−1 − (ẆW−1 ⊗ I − I ⊗ ẆW−1), (16)

where Ẇ := dW/du. Note that the transformed Hamiltonian density picks up a range-one
term of the form A⊗ I − I ⊗A, which vanishes in the full Hamiltonian

QW
2 (u) = (W (u))

⊗LQ2(u)(W (u)
−1)⊗L . (17)

Reparametrisation. Given a regular solution R(u, v) of (2), then clearly

R f (u, v) := R( f (u), f (v)) (18)

is also a solution for an arbitrary function f : C→ C. The corresponding Hamiltonian density
is related to the original via

H f (u) = ḟ H( f (u)). (19)

Normalisation. We can normalise solutions by an arbitrary function g : C2 → C to get
another solution

Rg(u, v) := g(u, v)R(u, v), (20)

and regularity in maintained provided

g(u, u) = 1. (21)

The corresponding Hamiltonian density is related to the original via

Hg(u) =H(u) + ġ I , (22)

where I is the identity matrix, and

ġ =
d
du

g(u, v)
�

�

�

v→u
. (23)
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Discrete transformations. Given a regular solution R(u, v) to (2) with Hamiltonian density
H(u), then RT (u, v), PR(v, u)P and PRT (v, u)P are also regular solutions, with corresponding
Hamiltonian densities PH(u)T P, −PH(u)P, and −HT (u) respectively.

Twists. Given a regular R-matrix R(u, v) and a non-singular matrix U(u) : Cn→ Cn satisfying
[U(u)⊗ U(v), R12(u, v)] = 0, then

U2(u)R12(u, v)U1(v)
−1 (24)

is another regular solution of (2). The corresponding transformation of the Hamiltonian is
given by

Htwist
12 (u) = U1(u)H12U1(u)

−1 + U̇1(u)U1(u)
−1. (25)

We note that there are numerous transformations on the R-matrix which can be given the
name ‘twist’. The various possibilities are discussed in more detail in [29]. Since these are
all model dependent transformations, we cannot use them to refine our ansatz for integrable
Hamiltonians H, as described in section 3.3.

3.2 Method

Our goal is to find all regular solutions R(u, v) of (2), modulo the above identifications. Our
strategy follows that of [27,29]. We first identify all potentially-integrable Hamiltonian densi-
ties H(u). These are Hamiltonians such that Q2(u) =

∑

i Hi,i+1(u) commutes with the corre-
sponding charge Q3(u) constructed using the boost operator (12)

[Q2(u), [B[Q2(u)],Q2(u)]] = 0 . (26)

In fact, all known potentially-integrable HamiltoniansH(u) have so far proven to be integrable,
in the sense that they can be derived from a regular R-matrix satisfying the Yang–Baxter equa-
tion (2). Therefore we will refer to a Hamiltonian densitiy H(u) such that (26) is satisfied as
integrable. To find the R-matrix corresponding to an integrable Hamiltonian density H(u) we
use the Sutherland equations [34]

[R13(u, v)R23(u, v),H12(u)] = Ṙ13(u, v)R23(u, v)− R13(u, v)Ṙ23(u, v) , (27)

[R13(u, v)R12(u, v),H23(v)] = R13(u, v)R′12(u, v)− R′13(u, v)R12(u, v) , (28)

where˙and ′ denote derivatives with respect to u and v respectively. (27) follows immedi-
ately from the Yang–Baxter equation (2) by taking a derivative with respect u and sending
v → u, w → v. Similarly, (28) follows by taking a derivative with respect to v and sending
w→ v. Given H, these are a pair of first order differential equations for the matrix elements
of R(u, v), which can be solved subject to the pair of boundary conditions (3) and (6).

Since there are many equivalent R-matrices under the above identifications, there are also
many equivalent integrable Hamiltonians. We will call integrable Hamiltonians H and H̃
equivalent if they can be derived from equivalent R-matrices. To summarise, our approach
to identify all new regular solutions of (2) is as follows:

• Parametrise a general Hamiltonian density H(u).

• Use identifications to simplify this ansatz, and set Q2(u) =
∑L

i=1 Hi,i+1(u). For practical
purposes we can use L = 4.4

• Compute the corresponding charge Q3(u) using the boost operator (13).

4For L < 4 cancellations can occur in [Q2,Q3] which do not happen in general.
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• Impose [Q2(u),Q3(u)] = 0, and solve these equations for the entries of H(u). This will
give a list of integrable Hamiltonians H= {Hi(u)}Ni=1.

• Refine the list H, removing Hamiltonians which are equivalent to another Hamiltonian
in the list, as well as Hamiltonians which correspond to an R-matrix previously classified
in [27,29]. This will give a new list H′ = {Hi(u)}Mi=1, with M < N .

• For each integrable Hamiltonian Hi(u) ∈H′, use the Sutherland equations (27) and (28)
and the boundary conditions (3) and (6) to find the corresponding regular R-matrix.

• Verify that this R-matrix satisfies the Yang–Baxter equation (2).

3.3 Parametrisation of H

We begin with a general putative regular solution R(u, v) to the Yang-Baxter equation (2). Such
an R-matrix has a Hamiltonian density (6) where all entries are non-vanishing in general. We
parametrise these entries as follows

H16v =H8v + H̃8v , (29)

where H8v is a general eight-vertex Hamiltonian

H8v =h1 I ⊗ I + h2(σz ⊗ I − I ⊗σz) + h3σ+ ⊗σ− + h4σ− ⊗σ+
+h5(I ⊗σz +σz ⊗ I) + h6σz ⊗σz + h7σ+ ⊗σ+ + h8σ− ⊗σ−, (30)

and H̃8v accounts for the remaining entries

H̃8v =h9(σ− ⊗ I + I ⊗σ−) + h10(σ− ⊗ I − I ⊗σ−) + h11(σ+ ⊗ I + I ⊗σ+)
+h12(σ+ ⊗ I − I ⊗σ+) + h13(σ− ⊗σz +σz ⊗σ−) + h14(σ− ⊗σz −σz ⊗σ−)
+h15(σ+ ⊗σz +σz ⊗σ+) + h16(σ+ ⊗σz −σz ⊗σ+), (31)

where we suppress the u dependence of the functions hi .
We remark that although h2, h10, and h12 are coefficients of operators of the form

A ⊗ I − I ⊗ A which vanish in the full Hamiltonian Q2, we cannot automatically set them
to zero because these functions will in general appear in the operator Q3 using the boost con-
struction (13).

Since we are only interested in R-matrices modulo the identifications described in sec-
tion 3.1, we can use these identifications to simplify our ansatz for H. This is very important
in the present situation since a priori the condition [Q2,Q3] = 0 is a set of first order differ-
ential equations for 16 unknown functions hi . By using identifications to simplify our ansatz
(29) from the beginning we can reduce the complexity of the problem significantly.

Local basis transformations. First of all, we can perform a local basis transformation (15)
on the R-matrix to modify the entries h7 and h8. Under such a transformation, the Hamiltonian
transforms as (16). We parametrise the local change of basis as

W =

�

a b
c d

�

(32)

with ad − bc = 1, where we suppress all dependence on u. The entries h7 and h8 transform5

5The range one piece ẆW−1 ⊗ I − I ⊗ ẆW−1 in (16) does not contribute to h̃7 or h̃8.
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h7→ h̃7 = a4h7 + b4h8 + 4ab3h13 − 4a3 b h15 + a2 b2(4h6 − h3 − h4) , (33)

h8→ h̃8 = c4h7 + d4h8 + 4cd3 h13 − 4c3dh15 + c2d2(4h6 − h3 − h4) . (34)

We see that for general hi we can pick a, b, c, d to ensure that h̃7 = h̃8 = 0, since this amounts
to the solution of a pair of quartic equations.6 If h7 = h8 = 0 from the beginning we do not
perform the basis transformation. The only situation when it is not possible to set both h̃7 and
h̃8 to zero is when h13 = h15 = 0, 4h6 = h3 + h4, and either h7 = 0 or h8 = 0. Therefore we
can restrict to two types of Hamiltonians7

• Type 1: h7 = h8 = 0.

• Type 2: h7 = h13 = h15 = 0, 4h6 = h3 + h4, h8 ̸= 0.

We can also set h2 = 0 with a further local basis transformation

W =

�

a 0
0 a−1

�

, a = exp(

∫ u

1

h2(t)d t). (35)

Since W is diagonal this local basis transformation does not interfere with the type 1 and type
2 constraints above.

Shifting by the identity. A normalisation of the R-matrix (20) corresponds to a shift of the
Hamiltonian by the identity matrix (22). For both type 1 and type 2 Hamiltonians we can
normalise the corresponding R-matrix by

g(u, v) = 1+

∫ v

u
h1(t)d t. (36)

Comparing with (22) we see that this shifts the Hamiltonian by −h1 I ⊗ I , effectively setting
h1 = 0.

Normalisation. A reparametrisation of the R-matrix (18) corresponds to a normalisation of
the Hamiltonian (19). We will use this freedom to set a single nonzero entry of H to 1. For type
1 Hamiltonians we don’t know which specific entries will be nonzero, and so further analysis
is required before this normalisation freedom can be used. For type 2 Hamiltonians we use
normalisation to set h8 = 1.

In summary, we have used our identifications to restrict our ansatz (29) to two different cases:

Htype 1 =H16v(h1 = h2 = h7 = h8 = 0), (37)

Htype 2 =H16v(h1 = h2 = h7 = h13 = h15 = 0, 4h6 = h3 + h4, h8 = 1). (38)

With these ansätze the integrability condition [Q2,Q3] = 0 can be solved exactly.

6Due to the symmetry between the equations (a, b)↔(c, d) the solutions of both equations are equivalent.
7Without loss of generality we can set h7 = 0 and h8 ̸= 0. The case h8 = 0, h7 ̸= 0 is an equivalent Hamiltonian.

8

https://scipost.org
https://scipost.org/SciPostPhysCore.7.3.045


SciPost Phys. Core 7, 045 (2024)

3.4 Solving the equations

For both Hamiltonian ansätze (37) and (38) we form the total Hamiltonian
Q2(u) =
∑4

i=1 Hi,i+1(u) on a periodic chain of length L = 4 and the corresponding charge
Q3(u) using the boost operator (13). The integrability condition [Q2(u),Q3(u)] = 0 consti-
tutes a set of first order differential equations for the functions hi(u). We first solve the set of
equations as algebraic equations for hi and ḣi using the Mathematica command Solve. This
is straightforward for type 2 Hamiltonians. For type 1 Hamiltonians it is necessary to consider
the following 10 cases (we define h± := h3 ± h4):

• Case 1: h− = 0, h+ ̸= 0.

• Case 2: h− ̸= 0, h+ = 0.

• Case 3: h− = h+ = 0, h5 ̸= 0.

• Case 4: h− = h+ = h5 = 0, h6 ̸= 0.

• Case 5: h− = h+ = h5 = h6 = 0.

• Case 6: h−, h+ ̸= 0, h15 = 0, h13 ̸= 0.

• Case 7: h−, h+ ̸= 0, h13 = 0, h15 ̸= 0.

• Case 8: h−, h+ ̸= 0, h13 = h15 = 0, h6 ̸= 0.

• Case 9: h−, h+ ̸= 0, h6 = h13 = h15 = 0.

• Case 10: h−, h+, h13, h15 ̸= 0.

For each of these cases at least one hi is taken to be nonzero, and so we can use normalisation
freedom to set one of these entries to 1. After solving the equations algebraically in hi and
ḣi , we solve the resulting differential equations to fix the functions hi(u) and find on the
order of 100 integrable Hamiltonians H(u). Many of these are equivalent to Hamiltonians
already classified in [27, 29]. For example, any constant solution ḣi = 0 is equivalent to an
integrable Hamiltonian classified in [27]. Furthermore, many of the non-constant solutions
can be mapped to a six-/eight-vertex model under a local basis transformation (16), and thus
are equivalent to an integrable Hamiltonian classified in [29]. For example, the solution

H(u) =















1 h9(u)−
(2h9(u)+1)ḣ9(u)

4h9(u)+1 h9(u) +
(2h9(u)+1)ḣ9(u)

4h9(u)+1 0

1− 2ḣ9(u)
4h9(u)+1 0 0 h9(u) +

(2h9(u)+1)ḣ9(u)
4h9(u)+1

1+ 2ḣ9(u)
4h9(u)+1 0 0 h9(u)−

(2h9(u)+1)ḣ9(u)
4h9(u)+1

0 1+ 2ḣ9(u)
4h9(u)+1 1− 2ḣ9(u)

4h9(u)+1 −1















(39)
appears to be a non-constant integrable Hamiltonian which is not of six- or eight-vertex form.
However, if we take the local basis transformation

W (u) =

�

e
p

4h9(u)+1 1
2 e
p

4h9(u)+1
�p

4h9(u) + 1− 1
�

1 1
2

�

−
p

4h9(u) + 1− 1
�

�

(40)

then using (16) the Hamiltonian transforms

H(u)→HW (u) =









p

4h9(u) + 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −

p

4h9(u) + 1









, (41)
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which is a trivial diagonal model. We also discard Hamiltonians which can be obtained as a
specialisation of another one by fixing free functions and constants.

Type 2 example. As an example of the solution and identification procedure, the most non-
trivial solution after solving the type 2 equations algebraically in hi and ḣi is

{h−, h14, h10, h9, h5, ḣ−, ḣ14, ḣ9, ḣ5}= 0,

ḣ16 = −h11

�

h+ + 4h2
16

�

, ḣ+ = −4h11h16hp. (42)

We see that the differential equations for ḣ−, ḣ14, ḣ9, ḣ5 are trivially satisfied, leaving non-
trivial differential equations for h16 and h+. The solution to these equations is

h16(u) =
−H11(u)

2(A−H11(u)2)
, h+(u) =

1
2(A−H11(u)2)

, (43)

where A is a constant and Ḣ11 = h11.8 The corresponding integrable type 2 Hamiltonian is

H =













1
8(A−H2

11)
H11

2(A−H2
11)
− h12 + Ḣ11

−H11

2(A−H2
11)
+ h12 + Ḣ11 1

0 −1
8(A−H2

11)
1

4(A−H2
11)

H11

2(A−H2
11)
+ h12 + Ḣ11

0 1
4(A−4H2

11)
−1

8(A−H2
11)

−H11

2(A−H2
11)
− h12 + Ḣ11

0 0 0 1
8(A−H2

11)













. (44)

We can use identifications to bring this Hamiltonian into a nicer form. Applying the local basis
transformation (16)

W =

�

1
∫ u

1 h12(u) d t
0 1

�

, (45)

sets h12 = 0. Next we make a shift by the identity matrix

H→H− 1

8(A−H2
11)

I , (46)

and restore the normalisation we previously fixed by reparametrising u →
∫ u

1 f (t) d t and
multiplying by f (u), see (19). We then make the redefinitions

G(u) = H11

�∫ u

1

f (t) d t

�

, f (u)→ 4 f (u)(A− G(u)2), (47)

and the resulting Hamiltonian is

H =







0 Ġ + 2G f Ġ − 2G f 4 f
�

A− G2
�

0 − f f Ġ + 2G f
0 f − f Ġ − 2G f
0 0 0 0






, (48)

where we suppressed the u dependence in f and G. This is the only new type 2 solution we
find; the other solutions are specialisations of this Hamiltonian or can be mapped to a previ-
ously classified model. Using the Hamiltonian (48) the Sutherland equations (27) and (28)
can be solved straightforwardly.

Going through all the cases, we find 4 non-constant solutions which are not possible to map to

8We can absorb an integration constant into the function H11.
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six-/eight-vertex form using our identifications. One of these is the type 2 solution (48), and
3 are solutions which arise from solving the type 1 equations for case 4 and case 5 above. The
Hamiltonians with the most non-trivial (elliptic) functional dependence, occur for h± ̸= 0,
i.e. cases 6–10. We find that all of these Hamiltonians can be mapped to six-/eight-vertex
form. We list the new integrable Hamiltonians and their corresponding non-difference form
R-matrices in section 4.1. For completeness, we also include the remaining 4× 4 R-matrices
which complete the classification in section 4.2 and section 4.3.

4 Solutions

In this section, we give the full classification of 4× 4 solutions of the Yang–Baxter equation.
We checked in each case explicitly that (2) is satisfied. We will present one representative
of the solutions in each family. In particular, one can act on each of these models with the
identifications described in section 3.1: local basis transformations, reparameterisations, nor-
malisations, and discrete transformations. In previous papers we also used identifications
using twists. We did not find any relations between the new models using these twist degrees
of freedom. We have written each of the solutions in the simplest form we could find; this may
have involved performing identifications after solving the equations. We denote free functions
appearing in our solutions as

F := F(u), G := G(u), H := H(u), (49)

i.e. we suppress u dependence unless it is necessary to distinguish between u and v. We denote
their derivatives as

f := Ḟ(u), g := Ġ(u), h := Ḣ(u). (50)

For brevity we will also use the shorthand

δX := X (u)− X (v). (51)

Our models also depend on constants, which will be denoted by A, B, C . Finally, we choose to
normalise our R-matrices such that the (1, 1) component is 1. This is possible because all our
R-matrices are regular, and in particular the (1,1) component is non-vanishing.

4.1 New solutions: non-difference form R beyond six-/eight-vertex type

Let us first list the new models that complete the classification. In each case we checked that
the corresponding R-matrix satisfies the Yang–Baxter equation (2).

Model 1 – Nilpotent A. The first R-matrix we find is

R=







1 δG δF AδF δG
0 0 1 AδG
0 1 0 AδF
0 0 0 1






, (52)

where A is a constant and F, G are free functions. We notice that this model is of quasi-
difference form since the dependence on the spectral parameter of the entries is always of
the form X (u)− X (v). However, since it depends on two functions, it is not possible to use a
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reparameterisation to make it depend solely on u− v. The corresponding Hamiltonian density
is

H =







0 g f 0
0 0 0 A f
0 0 0 A g
0 0 0 0






(53)

=
g
2
(A+ I ⊗σ++A−σz ⊗σ+) +

f
2
(A+σ+ ⊗ I + A−σ+ ⊗σz), (54)

where A± := A± 1.

Model 2 – Nilpotent B. The next R-matrix is

R=







1 δG δF δH + 1
2δG2 + 1

2δF2 + F(u)G(v)− G(u)F(v)
0 0 1 δF
0 1 0 δG
0 0 0 1






. (55)

The corresponding Hamiltonian is

H =







0 g f h+ f G − F g
0 0 0 g
0 0 0 f
0 0 0 0






(56)

=
f + g

2
(σ+ ⊗ I+I ⊗σ+) +

f − g
2
(σ+ ⊗σz −σz ⊗σ+) + (h+ f G − F g)σ+ ⊗σ+. (57)

Model 3. The third R-matrix is

R=









1 G(u)eδF − G(v) G(v)eδF − G(u) 2sinh(δF)
0 0 eδF 0
0 eδF 0 0
0 0 0 1









(58)

with Hamiltonian

H =







0 g + f G −g + f G 2 f
0 f 0 0
0 0 f 0
0 0 0 0






(59)

=
f
2
(1−σz ⊗σz + 4σ+ ⊗σ+) +

g + f G
2

((1+σz)⊗σ+) +
−g + f G

2
(σ+ ⊗ (1+σz)). (60)

Model 4 – XXX deformation. The final R-matrix we find is

R=
1

1+δF







1+δF δG + 2G(u)δF δG − 2G(v)δF X (u, v)
0 δF 1 δG − 2G(v)δF
0 1 δF δG + 2G(u)δF
0 0 0 1+δF






, (61)

with
X (u, v) := δG2 + AδF2 +δF(A− 4G(u)G(v)), (62)
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where A is a constant. The corresponding Hamiltonian is

H =







0 g + 2 f G g − 2 f G 4 f (A− G2)
0 − f f g + 2 f G
0 f − f g − 2 f G
0 0 0 0






(63)

=
f
2
(σz ⊗σz − 1+ 2σ+ ⊗σ− + 2σ− ⊗σ+) + 4 f (A− G2)σ+ ⊗σ+ − 2 f G(σ+ ⊗σz −σz ⊗σ+)

+g(σ+ ⊗ I + I ⊗σ+). (64)

When A= G = 0 we recover the XXX model.

4.2 Difference form R beyond six-/eight-vertex type

Many models from our previous classification in [27] are now actually given as a special case
of one of the new non-difference models. Only two models remain and we will list them here.

Model 5. The first R-matrix we find is Class 3 from [27], which in our current conventions
reads

R=









1 C(e(2A−B)u − 1) C(e(2A+B)u − 1) 0
0 0 e(2A+B)u 0
0 e(2A−B)u 0 0
0 0 0 1









(65)

Since these models are of difference form, the functional dependence of the R-matrix is greatly
simplified. In particular, we simply let the functional dependence be on u for these types of
models.

H =







0 (2A− B)C (2A+ B)C 0
0 2A− B 0 0
0 0 2A+ B 0
0 0 0 0






(66)

= A(1−σz ⊗σz) +
B
2
(I ⊗σz −σz ⊗ I)

+
C
2
((2A+ B)(σ+ ⊗ (1+σz)) + (2A− B)((1+σz)⊗σ+)) . (67)

Model 6 – 11 vertex. The second R-matrix of difference form is Class 6 from [27] and is
given by

R=









1 Au Au −A2u2(u+ 1)
0 u

u+1
1

u+1 −Au
0 1

u+1
u

u+1 −Au
0 0 0 1









(68)

This model is the 11-vertex model [53,54]. It can be obtained as a singular limit of the usual
8-vertex model [55].

H =







0 A A 0
0 −1 1 −A
0 1 −1 −A
0 0 0 0






(69)

=
1
2
(σz ⊗σz − 1+ 2σ+ ⊗σ− + 2σ− ⊗σ+) + A(σ+ ⊗σz +σz ⊗σ+). (70)
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Notice that this model is a deformation of the XXX spin chain, similarly to Model 4 above.

4.3 R of six-/eight-vertex type

All models of 8-vertex type were derived in [26,29]. For completeness we list the results here.

4.3.1 Difference form

First there are two models that are of difference form and they correspond to the standard
XXZ and XYZ spin chains.

6vA. This is the usual XXZ spin chain with standard twists included

R=









1 0 0 0

0 eA cosh B
sinh B cotδF−1

sinh B
sinh B cosδF−sinδF 0

0 sinh B
sinh B cosδF−sinδF

e−A cosh B
sinh B cotδF−1 0

0 0 0 1









. (71)

We find the standard twisted XXZ Hamiltonian

H =
f

sinh B







0 0 0 0
0 1 e−A cosh B 0
0 eA cosh B 1 0
0 0 0 0






(72)

=
f

2sinh B

�

1−σz ⊗σz + 2 cosh B
�

e−Aσ+ ⊗σ− + eAσ− ⊗σ+
��

. (73)

8vA. The next model is the usual XYZ spin chain with R-matrix given by

R=











1 0 0 B sn(A
�

�B2 )sn(δF
�

�B2 )

0
sn(δF|B2 )

sn(δF+A|B2 )
sn(A|B2 )

sn(A+δF|B2 ) 0

0
sn(A|B2 )

sn(A+δF|B2 )
sn(δF|B2 )

sn(δF+A|B2 ) 0
B sn(A
�

�B2 )sn(δF
�

�B2 ) 0 0 1











, (74)

where sn, cn, dn are the Jacobi elliptic functions with modulus B. The corresponding Hamil-
tonian reads

H = f











0 0 0 B sn(A
�

�B2 )

0 − cn(A|B2 )dn(A|B2 )
sn(A|B2 )

1
sn(A|B2 ) 0

0 1
sn(A|B2 ) − cn(A|B2 )dn(A|B2 )

sn(A|B2 ) 0
B sn(A
�

�B2 ) 0 0 0











(75)

= f
cn(A
�

�B2 )dn(A
�

�B2 )

2sn(A |B2 )

�

σz ⊗σz − 1+
1+ B sn(A
�

�B2 )2

cn(A |B2 )dn(A |B2 )
σx ⊗σx +

1− B sn(A
�

�B2 )2

cn(A |B2 )dn(A |B2 )
σy ⊗σy

�

. (76)

4.3.2 Non-difference form

There are also 6- and 8-vertex models that have an R-matrix that is of non-difference form.
These models all satisfy the free fermion condition [56] and are related to the integrable
structures that appear in the lower dimensional instances of the AdS/CFT correspondence
[26,29].

14

https://scipost.org
https://scipost.org/SciPostPhysCore.7.3.045


SciPost Phys. Core 7, 045 (2024)

6vB. We have the free fermion model

R=











1 0 0 0

0 eAδF
1+G(u)δF

1
1+G(u)δF 0

0 1
1+G(u)δF e−A
�

G(v)− G(u)
1+δFG(u)

�

0

0 0 0 1−G(v)δF
1+G(u)δF











(77)

with Hamiltonian

H = f







0 0 0 0
0 −G G2 − g 0
0 1 −G 0
0 0 0 −2G






(78)

= f
�

σ− ⊗σ++(G2 − g)σ+ ⊗σ− − G
2 (σ

z ⊗ 1+ 1⊗σz − 2)
�

. (79)

It is related to a solution of the coloured Yang–Baxter equation [57].

8vB. We also have a free fermion model of 8-vertex type

R=



















1 0 0 Acnsn
p

sin G(u)
p

sin G(v)
cn sin ΣG

2 −dn sn cos ΣG
2

0
cn sin δG

2 +dn sn cos δG
2

cn sin ΣG
2 −dnsncos ΣG

2

dn
p

sin G(u)
p

sin G(v)
cn sin ΣG

2 −dn sn cos ΣG
2

0

0 dn
p

sin G(u)
p

sin G(v)
cn sin ΣG

2 −dn sn cos ΣG
2

cn sin δG
2 −dn sn cos δG

2

dn sn cos ΣG
2 −cn sin ΣG

2
0

Acnsn
p

sin G(u)
p

sin G(v)
cn sin ΣG

2 −dn sn cos ΣG
2

0 0 1+ 2dnsn
cn tan ΣG

2 −dn sn



















(80)

where the Jacobi elliptic functions sn, cn,dn are with arguments δF and with modulus A.
Finally we introduced ΣG = G(u) + G(v). The Hamiltonian for this model is

H =









0 0 0 Af
0 f cot(G)

�

f − g
2

�

csc(G) 0
0
�

f + g
2

�

csc(G) f cot(G) 0
Af 0 0 2 f cot(G)









(81)

=
f

tan G
−

f
2 tan G

�

σz ⊗ 1+ 1⊗σz

�

+ Af
�

σ+ ⊗σ+ +σ− ⊗σ−
�

+
2 f − g
2sin G

σ+ ⊗σ− +
2 f + g
2sin G

σ− ⊗σ+.

(82)

Off-diagonal model. Finally there is a purely off-diagonal model given by

R=







coshδF 0 0 sinδG
0 − sinhδF cosδG 0
0 cosδG sinhδF 0

sinδG 0 0 coshδF






, (83)

with corresponding Hamiltonian

H =







0 0 0 g
0 0 f 0
0 − f 0 0
g 0 0 0






(84)

= f (σ+ ⊗σ− −σ− ⊗σ+) + g(σ+ ⊗σ+ +σ− ⊗σ−). (85)
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4.4 Properties of the new models

We remark on a few of the properties of the new models.

Non-diagonalisable. As expected, all of the new models we find are non-Hermitian. Models
1 and 2 are nilpotent, and all models are non-diagonalisable in general. We present the Jordan
block spectra of all models on a chain of length L = 4, denoting the ℓ× ℓ Jordan block with
generalised eigenvalue λ as

Jℓλ =















λ 1 0
λ 1

λ
. . .
. . . 1

0 λ















. (86)

For model 1 (53) we have

Qmodel 1
2 (u)≃ J5

0 ⊕ (J
3
0 )
⊕3 ⊕ (J1

0 )
⊕2. (87)

For various choices of the parameter A and free functions f and g the Jordan block spectra
may refine. For example, if we take A= −2−

p
3 then we find

Qmodel 1
2 (u)≃A→−2−

p
3 (J

3
0 )
⊕5 ⊕ J1

0 . (88)

Model 2 (56) has the same Jordan block spectrum as model 1 for generic choices of the free
functions f , g, h:

Qmodel 2
2 (u)≃ J5

0 ⊕ (J
3
0 )
⊕3 ⊕ (J1

0 )
⊕2. (89)

Models 1 and 2 are non-diagonalisable for all possible specialisations, because they are always
nilpotent. For model 3 (59) we have

Qmodel 3
2 (u)≃ (J1

−4 f )
⊕2 ⊕ (J4

−2 f )
⊕3 ⊕ J2

0 . (90)

There are several interesting specialisations of this model. For example, if G(u) = exp(±iF(u))
or G(u) = ±1 then the Jordan block spectrum refines

Qmodel 3
2 (u)≃G→e±iF (J1

−4 f )
⊕2 ⊕ (J1

−2 f )
⊕3 ⊕ (J3

−2 f )
⊕3 ⊕ J2

0 , (91)

Qmodel 3
2 (u)≃G→±1 (J

1
−4 f )

⊕2 ⊕ J1
−2 f ⊕ J2

−2 f ⊕ (J
3
−2 f )

⊕3 ⊕ (J1
0 )
⊕2. (92)

Model 3 is also non-diagonalisable for all possible specialisations. For model 4 (63) we have

Qmodel 4
2 (u)≃ J1

−6 f ⊕ J3
−4 f ⊕ J1

−2 f ⊕ (J
3
−2 f )

⊕2 ⊕ J5
0 . (93)

The Jordan block spectrum refines for G→ 1 and G→ 0

Qmodel 4
2 (u)≃G→1 J1

−6 f ⊕ J1
−4 f ⊕ J2

−4 f ⊕ J1
−2 f ⊕ (J

3
−2 f )

⊕2 ⊕ J2
0 ⊕ J3

0 , (94)

Qmodel 4
2 (u)≃G→0 J1

−6 f ⊕ J1
−4 f ⊕ J2

−4 f ⊕ (J
1
−2 f )

⊕7 ⊕ J2
0 ⊕ J3

0 , (95)

and if we simultaneously take G→ 0 and A→ 0 then the model is diagonalisable

Qmodel 4
2 (u)≃G,A→0 J1

−6 f ⊕ (J
1
−4 f )

⊕3 ⊕ (J1
−2 f )

⊕7 ⊕ (J1
0 )
⊕5. (96)
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Higher Charges. When the total Hamiltonian Q2(u) is non-diagonalisable, we find that the
higher charge Q3(u) is too. For example, for model 4 (63) we find that

Qmodel 4
3 (u)≃ J2

−2 ḟ
⊕ J3
−2 ḟ
⊕ J1
−2 ḟ
⊕ J3
−4 ḟ
⊕ J1
−6 ḟ
⊕ J3
−2 ḟ −4i f 2 ⊕ J3

−2 ḟ +4i f 2 . (97)

We see that in this case all of the eigenvalues are of the form α ḟ + β f 2. This is ex-
pected, since all the eigenvalues of Q2 are proportional to f , and Q3 takes the schematic
form Q3 ∼ ∂uQ2 − [H,H].

Braiding unitarity. All of the models we find satisfy the braiding unitarity condition

R12(u, v)R21(v, u) = β(u, v) I (98)

with β(u, v) = 1 for the normalisations we have chosen. Renormalising any of our R-matrices
R(u, v)→ g(u, v)R(u, v) leads to a braiding factor β(u, v) = g(u, v)g(v, u).

Integrable deformations. All of the models we find can be regarded as integrable deforma-
tions of previously studied models in the literature, in particular those classified in [27, 29].
Interestingly, model 4 (61) is a non-diagonalisable integrable deformation of the XXX model,
since it can be written as

R(u, v) =
RXXX(δF)

1+δF
+
∆R(u, v)
1+δF

, (99)

with the well-known XXX R-matrix

RXXX(u) = u I + P. (100)

The non-difference integrable deformation ∆R(u, v) takes the form

∆R(u, v) =







0 δG + 2G(u)δF δG − 2G(v)δF δG2 + AδF2 +δF(A− 4G(u)G(v)),
0 0 0 δG − 2G(v)δF
0 0 0 δG + 2G(u)δF
0 0 0 0






,

(101)
where again we have

abbreviated δF := δF(u, v) = F(u) − F(v) and δG := δG(u, v) = G(u) − G(v). For G → 0
and A→ 0 we see that ∆R(u, v)→ 0. This explains the diagonalisability of the model in this
limit (96).

5 Conclusions and outlook

In this paper we provided the first full classification of regular solutions of the Yang–Baxter
equation for the case of local Hilbert space dimension n = 2. We found four new inte-
grable models of non-difference form, all giving rise to non-Hermitian and furthermore non-
diagonalisable Hamiltonians.

A natural next step would be to attempt to complete the classification of solutions for n= 3
and higher. The main technical obstruction for our current approach is the sheer number of
free functions in a general Hamiltonian density, which is n4. While identifications may be
used to reduce this number somewhat, it is likely that the system of equations [Q2,Q3] = 0 is
much more complex than the present case. However, it is possible that it is still solvable with
appropriate casework. While there are some results for integrable Hamiltonians for n = 3
and higher [29, 36, 39], they all assume that the Hamiltonian takes a specific simple form.
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Classifying the solutions in general would likely lead to many new integrable models, both
Hermitian and non-Hermitian.

It would be interesting to study the new models we have found in greater detail. One
could try to identify a symmetry algebra, which may hint at applications of the models. It
would also be interesting to investigate if there is a way to compute the Jordan block spectra
of these models using integrability methods. While it is possible to compute the Jordan block
spectra symbolically for small L, it becomes very difficult for L > 4, especially when there are
free functions/constants in the Hamiltonian. Given the rich algebraic structure hiding in the
Yang–Baxter equation, it seems likely that there should be a version of the algebraic Bethe
ansatz for non-diagonalisable models. Such a Bethe ansatz has been exhibited for the Uq(sl2)
invariant XXZ spin chain, for the non-diagonalisable case where q is a root of unity [58].

An enumeration of the Jordan block spectrum for the n = 3 integrable eclectic model has
been provided in terms of q-binomial coefficients [49]. It would be interesting to check if
the spectra of different non-diagonalisable integrable models follow similar combinatorics in
terms of q-deformations.

Our results are also interesting in the context of integrable deformations, given that we
identified a non-diagonalisable integrable deformation of the XXX spin chain (63). Given that
the XXX spin chain corresponds to the dilatation operator of the su(2) sector of N = 4 super
Yang–Mills [59], it seems plausible that our deformation corresponds to the dilatation operator
of a deformed theory. Since our deformation is non-diagonalisable, it would correspond to a
conformal field theory which is logarithmic, similar to the γ-deformation of N = 4 [60].
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