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Abstract

We show that orbital currents can describe the transport of orbital magnetic moments of
Bloch states in models where the formalism based on valley current is not applicable. As
a case study, we consider Kekulé-O distorted graphene. We begin by analyzing the band
structure in detail and obtain the intrinsic orbital magnetic moment operator of Bloch
states for this model. Despite the simultaneous presence of time-reversal and spatial-
inversion symmetries, such operator may be defined, although its expectation value at a
given energy is zero. Nevertheless, its presence can be exposed by the application of an
external magnetic field. We then proceed to study the transport of these quantities. In
the Kekulé-O distorted graphene model, the strong coupling between different valleys
prevents the definition of a bulk valley current. However, the formalism of the orbital
Hall effect together with the non-Abelian description of the magnetic moment operator
can be directly applied to describe its transport in these types of models. We show that
the Kekulé-O distorted graphene model exhibits an orbital Hall insulating plateau whose
height is inversely proportional to the energy band gap produced by intervalley coupling.
Our results strengthen the perspective of using the orbital Hall effect formalism as a
preferable alternative to the valley Hall effect approach.
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1 Introduction

The manipulation of electronic orbital angular momentum (OAM) has garnered increasing
interest in recent years, giving rise to the emerging field of orbitronics [1–12]. One of the
cornerstones of this field is the so-called orbital Hall effect (OHE) that allows the generation
of orbital currents in systems with negligible spin-orbit coupling [13–26]. This effect has
also gained importance beyond pragmatic applications in orbitronics, allowing for a deeper
understanding of some topological aspects of multi-orbital systems [27–32]. Additionally, the
OHE may shed light on some long-standing discussions surrounding the valley Hall effect
(VHE) and the definition of valley currents.

The VHE is built upon the concept of valley current [33], which in the case of regular
graphene involves two inequivalent valleys K and K′. In this case, the valley current density
may be defined by

Jv = (−e) (v|K − v|K′) , (1)

where, v|K and v|K′ are the valley-projected velocity operators. The concepts underlying the
VHE have indeed contributed to the understanding of important electronic transport properties
in condensed matter [34–38]. Nevertheless, in recent theoretical and experimental studies,
some uncertainties surrounding these concepts have come to light. [39–45], as reviewed in
Ref. [46]. The valley quantum number itself does not couple with experimental probing fields.
It is the magnetic moment associated with valleys that may be observed. Part of the puzzle
associated with the physics of the VHE may be related to the confusion between the magnetic
moment operator and its expectation value. The Bloch states orbital magnetic moment oper-
ator was clearly delineated in the original works within the modern theory of magnetism. For
degenerate bands, it acquires a matrix structure [34,35,47]. However, misleading notions from
earlier studies suggest that the simultaneous presence of spatial inversion and time-reversal
symmetries impedes the transport of magnetic moments. In reality, these symmetries merely
confine the existence of finite magnetic moment expectation value in equilibrium. As we elu-
cidate in this paper, by employing a straightforward model that adheres to these symmetries,
the transport of magnetic moments is not forbidden, despite their expectation value vanishing
at any point in k-space in equilibrium.

Recently, Bhowal and Vignale [48] proposed that the OHE may offer an effective and clear
alternative description to the physics underlying the VHE. In this view, the magnetic moment
associated with the valleys would be transported by an orbital current density defined by

JLz =
1
2

�

v, L̂z

	

, (2)

where L̂z is the OAM operator associated with Bloch states magnetic moments. Orbital current
yields different outcomes in orbital transport compared to valley current. For instance, the
existence of the OHE in centrosymmetric and non-magnetic systems follows naturally [28,49].
One advantage of this description is to avoid the need for a valley projection typically used to
define valley current. The need for valley projection within the valley Hall perspective imposes
serious limitations when dealing with models with strong valley mixing.

In this work, we illustrate the flexibility of using orbital current by studying the OHE in a
model that respects spatial inversion and time-reversal symmetries and shows strong interval-
ley mixing, v.i.z., the Kekulé-distorted graphene of type O [50–53]. As will be pedagogically
presented below, the calculation of the orbital Hall conductivity in this type of model follows
straightforwardly from the approach introduced in Refs. [48,49].

2

https://scipost.org
https://scipost.org/SciPostPhysCore.7.3.046


SciPost Phys. Core 7, 046 (2024)

2 Kekulé distorted graphene

The electronic structure of the regular graphene monolayer is characterized by two gapless
Dirac cones located at inequivalent valleys of the Brillouin zone (BZ) K and K′ = −K. At
low-energy regime, the electronic properties are described by the Dirac Hamiltonian,

Hg(q̃) = ħhvF(τzσx q̃x +σy q̃y) , (3)

where, σx ,y,z are Pauli matrices related to the sublattice degree of freedom of graphene.
τz = diag(1,−1) is the Pauli matrix related to the valley degree of freedom. q̃x ,y are crys-
tal momentum measured with respect to the valleys and vF is the Fermi velocity.

In this work, we consider a graphene monolayer subjected to a Kekulé-type distortion.
These distortions can be achieved by inducing a spatial perturbation with a periodicity of
G = (K+ − K−) [see Fig. 1 (a)]. This leads to a BZ folding and shifts of the low-energy sec-
tor to the Γ -point of the supercell BZ [Fig 1 (b)]. There are two types of Kekulé distortion:
Y-distortion (Kek-Y) and O-distortion (Kek-O). The Kek-Y distortion preserves graphene´s gap-
less structure and modifies its Fermi velocity. This phenomenon was experimentally observed
in graphene grown on top of copper substrate [54]. The Kek-O distortion is particularly inter-
esting for our purposes. In this scenario, the BZ folding is accompanied by a bandgap opening.
This distortion has been recently observed in graphene intercalated with lithium [53] and also
has been predicted to occur in graphene grown on top of some topological insulators [55]. We
follow Refs. [50–52] and choose the basis βKek =

�

ΨT
K′ ,Ψ

T
K

	

=
�

−|B,K′〉 , |A,K′〉 , |A,K〉 , |B,K〉
	

,
where the superscript T means the transpose operation and A, B represents the two distinct
graphene sublattices. Thus, on this basis, the low-energy Hamiltonian of the Kek-O distorted
graphene can be cast as

HO(q) =







0 γ− ∆ 0
γ+ 0 0 −∆
∆ 0 0 γ−
0 −∆ γ+ 0






, (4)

where, γ± = ħhvF(qx ± iqy) = ħhvFqe±iφ . Here qx ,y is the crystal momentum measured from
the Kek-O BZ center Fig. 1 (b). The term ∆ arises from Kek-O distortion, resulting in a
coupling between sectors ΨK′ and ΨK of the Hilbert space. The functional dependency of ∆
with the parameters of the original lattice Hamiltonian can be found in Ref. [50–52]. It is
worth noting that in the distortion represented in Fig. 1 (a), no point group symmetry is
broken. The superlattice structure only reduces translational symmetry. In particular, Kek-O
distorted graphene preserves spatial inversion symmetry [56,57].

2.1 Eigenvectors and energy spectra

It is straightforward to compute the energy spectrum of the Hamiltonian given by Eq. (4).
One obtains a doubly degenerate valence energy band,

Ev,n(q) = −
Ç

ħh2v2
F q2 +∆2 = −ϵ(q) , (5)

and a doubly degenerate conduction energy band,

Ec,n(q) = +
Ç

ħh2v2
F q2 +∆2 = +ϵ(q) , (6)

where n= 1,2 for each branch in the energy degenerate subspace.
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Figure 1: (a) Kekulé distorted honeycomb lattice of type O (Kek-O). The black lines
indicate slightly weaker (longer) bonds, while the red lines indicate slightly stronger
(shorter) bonds. (b) The Brillouin zones of regular graphene (dashed black) and
Kekulé-distorted graphene (blue). (c) Electronic spectra of Kek-O distorted graphene
around the Γ point.

One can calculate the eigenvectors of the energy degenerate subspaces and enforce their
orthonormality. Thus, for the valence band, the eigenvectors are given by,

|uv,1(q)〉=
�

−
γ−p
2ϵ(q)

,
1
p

2
,0,

∆
p

2ϵ(q)

�T

,

(7)

|uv,2(q)〉=
�

−
∆
p

2ϵ(q)
, 0,

1
p

2
,−

γ+p
2ϵ(q)

�T

,

(8)

and for the conduction band,

|uc,1(q)〉=
�

−
γ−p
2ϵ(q)

,−
1
p

2
, 0,

∆
p

2ϵ(q)

�T

,

(9)

|uc,2(q)〉=
�

∆
p

2ϵ(q)
, 0,

1
p

2
,
γ+p
2ϵ(q)

�T

.

(10)

The superscript T designates the transpose operation that transforms the line array into a
column array. It is important to note that when q → 0 (γ± → 0, ϵ(q) → |∆| ≠ 0 ), all
eigenstates exhibit a superposition of equal-weighted amplitudes associated to valleys K and
K′. The states also present maximum entanglement between valley and sublattice. In contrast
to graphene with sublattice potential, it is impossible to decouple the Hilbert space for the
Kekulé distorted graphene into two subspaces with well-defined valley quantum numbers.
Hence, it is meaningless to use Eq. (1) to define a valley current in the case of Kekule-distorted
graphene Hamiltonian [Eq. (4)].
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3 Bloch states orbital magnetic moment

The existence of Bloch state orbital magnetic moment was first derived by Kohn using pertur-
bation theory [58] and later re-obtained through the application of semi-classical wave packet
formalism [35,59,60]. In this formalism, it may be interpreted as the self-rotation of the wave
packet. For the case of degenerate bands, the Bloch state orbital magnetic moment acquires a
non-Abelian (matrix) structure [34,35,47]. This non-Abelian structure permits the appearance
of non-zero matrix elements of orbital magnetic moments, even in systems that respect both
spatial inversion and time-reversal symmetry, e.g., bilayer transition-metal dichalcogenides
[see Appendix of Ref. [49]].

In the case of Kek-O graphene, we have two degenerate subspaces, each with dimension 2.
One formed by the conduction band, and the other by the valence band. Within each subspace,
the matrix elements of the orbital magnetic moment are

mz,u
b;n,m(q) =
� e

2ħh

�

· Im
�

〈∇⃗qub,n(q)|×
�

HO(q)− Ẽb,m,n(q)1̂
�

|∇⃗qub,m(q)〉
�

, (11)

where, b = c, v and the sub-indexes n and m= 1,2. ∇⃗q = x̂∂ /∂ qx+ ŷ∂ /∂ qy and× represents
the cross-product [34, 47]. Also, we define Ẽb,m,n(q) =

�

Eb,n(q) + Eb,m(q)
�

/2. In the valence
band subspace (b = v), one uses the energy given by Eq. (5) and n, m = 1, 2 designate
eigenvectors of Eqs. (7) and (8). Similarly, in the conduction band subspace (b = c), one
uses the energy given by Eq. (6), with n, m = 1,2 designating eigenvectors of Eqs. (9) and
(10). The matrix elements coupling conduction and valence bands are disregarded in the non-
Abelian formulation as detailed in Refs. [34, 35, 47]. After straightforward calculations one
obtains

m̂z,u(q) =
�

m̂z,u
v (q) 02×2
02×2 m̂z,u

c (q)

�

=
2m0(q)
q

∆2 + q2ħh2v2
F







−∆ ħhvFqeiφ 0 0
ħhvFqe−iφ ∆ 0 0

0 0 ∆ ħhvFqeiφ

0 0 ħhvFqe−iφ −∆






,

(12)

where m0(q) =
� e
ħh

� ∆ħh2v2
F

2(∆2+q2ħh2v2
F)

. This matrix is written on the eigenstates basis

βu =
�

|uv,1〉 , |uv,2〉 , |uc,1〉 , |uc,2〉
	

.
At this point, it is instructive to consider the impact of an external magnetic field on the

electronic spectra of distorted graphene. For weak intensities of the external magnetic field
(B < 1 T), the energy is corrected by a factor proportional to the diagonal elements of the
matrix of Eq. (12):

EB
b,n(q) = Eb,n(q)− B ·mz,u

b;n,n(q) = Eb,n(q)±
2∆m0(q) · B
q

∆2 +ħh2v2
F q2

, (13)

where the sign + is for states |uv,1〉 , |uc,2〉 and the sign − for states |uv,2〉 , |uc,1〉. As illustrated
in Fig. 2, the external magnetic field lifts the energy degeneracy near Γ exposing the orbital
magnetic moment associated with Bloch bands of the Hamiltonian. This can originate a giant
Zeeman effect for small values of the Kekulé distortion.

Figure 2 depicts the Zeeman shift induced by the external magnetic field. The dotted lines
represent the energy spectrum for B = 0, while the red and blue curves illustrate the energy
spectrum for B ̸= 0 and opposite orbital magnetic moments. In contrast to graphene with sub-
lattice asymmetry or TMD layers [61], the relative shift of states with opposite orbital magnetic
moments cannot be attributed to individual valleys, as each state is a linear combination of
valley states.

5

https://scipost.org
https://scipost.org/SciPostPhysCore.7.3.046


SciPost Phys. Core 7, 046 (2024)

Figure 2: Effect of the external magnetic field in the low-energy spectra of Kek-O
distorted graphene. The dashed gray curve shows the low-energy spectra near the Γ
point of the folded BZ without an applied magnetic field for ∆ = 50meV. The blue
(EB

v,1, EB
c,2) and red (EB

v,2, EB
c,1) curves show the electronic spectrum for an applied

external magnetic field B = 1.0 T.

To obtain the orbital magnetic moment operator in the βKek basis, which is useful for the
transport calculations, one needs first to define a unitary transformation U(q) that changes the
basis from βu to βKek. Such an operator obeys the relation Û†(q)HO(q)Û(q) =
diag
�

Ev,1(q), Ev,2(q), Ec,1(q), Ec,2(q)
�

and can be easily constructed from eigenvectors of Eqs.
(7-10). Thus, applying it to the matrix of Eq. (12), one obtains

m̂z,Kek(q) = Û(q)m̂z,u(q)Û†(q) =







0 0 −m0(q) 0
0 0 0 −m0(q)

−m0(q) 0 0 0
0 −m0(q) 0 0






. (14)

The existence of such an operator allows the orbital transport when the system is out of equi-
librium. This occurs despite the general belief that the simultaneous occurrence of spatial-
inversion symmetry and time-reversal symmetry imposes the absence of magnetic moment
transport. This arises from neglecting the non-Abelian nature of the magnetic moment in
nearly-degenerate bands [49].

4 Orbital current operator

To study orbital transport, we follow Refs. [48, 49] and define an OAM operator using the
matrix from the Eq.(14):

L̂z(q) = −(ħh/µB gL)m̂
z,Kek(q) , (15)

where, µB = eħh/(2me) is the Bohr magneton in terms of the electron rest mass me and gL = 1
is the Landé g-factor. In general, for multi-orbital systems like transition metal dichalcogenides
[49], this operator takes into account contributions from both intrasite (intra-atomic) electron
motion and intersite movement [62, 63]. In the case of Kek-O graphene, the band structure
is governed by orbitals pz , which lack intra-atomic contributions. Thus, Eq. (15) is ruled by
the intersite movement of electrons, similarly to the modern theory of orbital magnetization
[64,65].
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One can use Eq. (2) to define an orbital current density associated with the operator de-
fined in Eq. (15) without any ambiguity. The velocity operators v̂x(y)(q) = ħh−1∂HO(q)/∂ qx(y)
can be easily calculated from the Hamiltonian of Eq. (4). With the use of Eqs. (15) and (2)
we obtain

Ĵ Lz
y =

vFm0(q)ħh
µB







0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0






, (16)

Ĵ Lz
x =

vFm0(q)ħh
µB







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0






, (17)

which shall be used to calculate the OHE for the Kek-O distorted graphene.

5 Orbital Hall effect

In the previous section, we have shown that the orbital current density given by Eq. (2) is
well-defined even for models that present strong valley mixing terms. Here, we use Eqs. (16,
17) to calculate the orbital Hall conductivity of the Kek-O distorted graphene and show that
it presents an orbital Hall insulating phase. Considering that the system is subject to a driven
electric field applied in the x-direction, an orbital current will flow in the y-direction. This
phenomenon is governed by J Lz

y = σ
Lz
OHEx where orbital Hall conductivity is given by,

σ
Lz
OH = e
∑

n,b

∫

d2q
(2π)2

fn,b(q)Ω
Lz
n,b(q) , (18)

where fn,b(q) = Θ(EF − En,b(q)) is the Fermi-Dirac distribution at zero temperature, EF is the
Fermi energy, and ΩLz

n,b(q) represents the orbital-weighted Berry curvature given by

Ω
Lz
n,b(q) = 2ħh
∑

n′ ̸=n

∑

b′ ̸=b

Im





〈un,b(q)| v̂x(q) |un′,b′(q)〉 〈un′,b′(q)| Ĵ
Lz
y (q) |un,b(q)〉

�

En,b(q)− En′,b′(q)
�2



 . (19)

Using Eqs. (5-10) it is possible to obtain [48]

Ω
Lz
n,v(c)(q) = ±
�

e
ħhµB

�

∆2ħh4v4
F

4
�

∆2 + q2ħh2v2
F

�5/2
, (20)

where, we use the + and the − signs for the valence and conduction bands, respectively.
Substituting this expression in Eq. (18), we can find analytical expressions for orbital Hall
conductivity. Writing σLz

OH(EF) =
∑

n,bσ
n,b
OH(EF), we obtain:

σ
n,v
OH(EF) =

gs

2

�

e2

2πħhµB

�

∆2ħh2v2
F

6
�

∆2 + q2
F,vħh

2v2
F

�3/2
, (21)

and

σ
n,c
OH(EF) = −

gs

2

�

e2

2πħhµB

�





ħh2v2
F

6∆
−

∆2ħh2v2
F

6
�

∆2 + q2
F,cħh

2v2
F

�3/2



 , (22)
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Figure 3: Orbital Hall conductivity calculated as a function of Fermi energy for dis-
tinct values of parameters ∆. We used ∆ = 0.05 eV (black solid), ∆ = 0.10 eV (red
dotted), and the value obtained in the experiment reported in Ref. [53],∆= 0.19 eV
(blue dashed). The Fermi velocity of graphene is vF = 3at/(2ħh), where a = 1.42Å
and t = 2.8 eV.

where gs = 2 is the spin-degeneracy. Here qF,v(c) denotes the Fermi momentum for the valence
(v) and conduction (c) bands

qF,v =

¨q

E2
F −∆2/(ħhvF) , for EF < −∆ ,

0 , otherwise,
(23)

and

qF,c =

¨q

E2
F −∆2/(ħhvF) , for EF > +∆ ,

0 , otherwise.
(24)

Fig. 3 shows the orbital Hall conductivity calculated as a function of EF for different values of
the Kek-O coupling∆. Particularly, in the dashed blue curve, we used the value of∆ obtained
in the experiment reported in Ref. [53] using graphene intercalated with lithium atoms.

We note that when the EF lies inside the insulating bandgap, the orbital Hall conductivity
shows a plateau with height

σ̄
Lz
OH =
ħh2v2

F

6∆

�

gse
2

2πħhµB

�

=
2
3

µ∗B
µB

� e
2π

�

, (25)

where µ∗B = (eħh)/(2m∗) in the second equality is an effective Bohr magneton, written in terms
of the effective mass of Bloch electron m∗ =∆/v2

F . Eq. (25) coincides with results obtained in
graphene endowed with sublattice potential [48] and transition metal dichalcogenides [49].
The height of the orbital Hall insulating plateau should be robust against dilute disorder due
to the absence of a Fermi surface [21,22,66].

6 Final remarks and conclusions

We have demonstrated the unambiguous definition of an orbital current density operator for
models featuring inter-valley coupling, using Kek-O distorted graphene as a case study. We
also analytically obtained the orbital Hall insulator plateau for this model and examined its
dependence on the intervalley mixing coupling term. Attempting a similar procedure using
a valley current description would encounter challenges stemming from the intervalley cou-
pling term, which produces eigenstates with significant superposition across different valleys.
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Althugh it is still possible to use a pseudo-spin defined in terms of a linear combination of
valleys, the superposition would forbid simple valley-projection procedures commonly used in
the valleytronic community and the definition of the sign of the associated magnetic moment
is not straighforward.

Ref. [67] argues for the existence of the valley Hall insulator phase in the presence of
an intervalley coupling term. However, it does not present the formal construction of the
valley current operator or the calculation of the valley Hall conductivity. The valley-polarized
transport in a system with intervalley coupling is carefully studied in Ref. [68]. However, the
authors do not adopt a bulk perspective but instead use a device-based approach employing
the transmission coefficient formalism. In this scenario, the difficulty associated with defining
the valley current equation is overcome, albeit at the cost of losing the bulk description.

The possibility of studying orbital magnetic moment transport in models with strong in-
tervalley mixing strengthens the proposal that the orbital Hall approach is more suitable to
describe this response than the VHE [48]. This may open the door to a review of the conun-
drum surrounding recent studies of the valleytronic community [46].
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