SciPost Phys. Core 7, 048 (2024)

The NFLikelihood: An unsupervised DNNLikelihood
from normalizing flows

Humberto Reyes-Gonzalez!23*

and Riccardo Torre?®"

1 Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
2 INFN, Sezione di Genova, Via Dodecaneso 33, I-16146 Genova, Italy
3 Institut fiir Theoretische Teilchenphysik und Kosmologie,
RWTH Aachen, 52074 Aachen, Germany

* humberto.reyes@rwth-aachen.de, ¥ riccardo.torre@ge.infn.it

Abstract

We propose the NFLikelihood, an unsupervised version, based on Normalizing Flows,
of the DNNLikelihood proposed in Ref. [1]. We show, through realistic examples, how
Autoregressive Flows, based on affine and rational quadratic spline bijectors, are able
to learn complicated high-dimensional Likelihoods arising in High Energy Physics (HEP)
analyses. We focus on a toy LHC analysis example already considered in the literature
and on two Effective Field Theory fits of flavor and electroweak observables, whose sam-
ples have been obtained through the HEPFit code. We discuss advantages and disad-
vantages of the unsupervised approach with respect to the supervised one and discuss a
possible interplay between the two.
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1 Introduction

The distribution, preservation, and reinterpretation of experimental and phenomenological
Likelihoods arising in High Energy Physics (HEP) and astrophysics is an important and open
topic [2]. In Ref. [1] it was shown how deep learning can play a crucial role in this context,
by showing how the problem of encoding the Likelihood function into a Deep Neural Network
(DNN) can be formulated as a supervised learning problem of regression. In simple terms, the
values of the parameters x and of the corresponding Likelihood y = £(x) are used to train a
fully connected multilayer perceptron (MLP), which delivers a “pseudo-analytical” represen-
tation of the Likelihood function in terms of a DNN, therefore called DNNLikelihood.

In a recent paper, we have shown that Normalizing Flows (NFs) of the coupling and au-
toregressive type, are able to perform density estimation of very high dimensional probability
density functions (PDFs) with great accuracy and with limited training samples and hyper-
parameters tuning [3]. Moreover, trained NFs, can be used as sample generators with two
different approaches: on the one hand one can draw samples from the base distribution and
transform them through the generative direction of the NFs, obtaining samples distributed ac-
cording to the target PDF; on the other hand, the normalizing direction of the NFs can be used
to get a fast prediction of the density for a given sample, allowing one to use the NF to assist
and speed up traditional sequential Monte Carlo techniques [4-11]. Furthermore, NFs have
been found useful to address a variety of other challenges in HEP such as event generation,
unfolding, anomaly detection, etc. [12].

In this paper we show how Autoregressive Normalizing Flows (ANF) can be used to learn
complicated Likelihoods, doing density estimation starting from the x samples only and there-
fore offering an unsupervised approach to the DNNLikelihood.! We call the Likelihood en-
coded by NFs the NFLikelihood. The aim of this paper is twofold: on the one hand we want to
propose the NFLikelihood as an alternative DNNLikelihood, discussing advantaged and disad-
vantages of the unsupervised approach, with respect to the supervised one. On the other hand
we want to give explicit physics examples of the performances of the Autoregressive Flows
studied in Ref. [3], which only considered toy distributions based on mixtures of Gaussians,
by following a similar testing approach.

One important remark is that, since we are interested here in discussing the NF perfor-
mances in learning some physical complicated densities, we focused on learning the posterior
probability (not just the Likelihood), since these were the data we had at our disposal. Our
approach can of course be trivially extended to the Likelihood by removing the contribution
of the (known) prior used to sample the posterior.

The paper is organized as follows. In Section 2 we briefly describe the three phenomeno-
logical Likelihoods that we consider. Section 3 contains a discussion of the figures of merit
that we used in our analysis, while Section 4 presents the main results. Finally, we report our
conclusions in Section 5.

2 Likelihood functions for LHC analyses

In this analysis, we consider three Likelihoods of different dimensionality. We briefly describe
them in turn in the following subsections.

!We are aware of the paper [13] proposing a similar approach in a different context.
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2.1 The LHC-like new physics search Likelihood

As a first example we consider the toy LHC-like NP search, here after referred as the Toy
Likelihood, introduced in Ref. [14] and also considered in Ref. [1]. We refer the reader to
those references for a detailed explanation of the Likelihood construction, its parameters, and
its sampling. Here we limit ourselves to remind that the Likelihood depends on one signal
strength parameter u and 94 nuisance parameters 6.

2.2 The ElectroWeak fit Likelihood

The second Likelihood we consider is the one corresponding to the ElectroWeak fit presented
in Ref. [15], which includes the recent top quark mass measurement by the CMS Collaboration
[16] and W boson mass measurement by the CDF Collaboration [17]. Such Likelihood, that
we call EW Likelihood, depends on 40 parameters: 32 nuisance parameters and 8 parameters
of interest, corresponding to the Wilson coefficients of the relevant Standard Model Effective
Field Theory (SMEFT) operators. A sampling of the posterior probability distribution has been
obtained with the HEPFit code [18]. The complete list of parameters with their definitions is
reported in Appendix A.

In this case, the 1D marginal distributions of the parameters are all nearly Gaussian, with
the exception of two truncated Gaussians, so that we expect it to be relatively simple for a
NF with a Gaussian base distribution to learn the posterior. Nevertheless, the posterior shows
strong correlations among some pairs of parameters (see Figure 5 in Appendix A), which helps
to understand the ability of the NFs to accurately learn the correlation matrix.

2.3 The Flavor fit Likelihood

The third Likelihood we consider corresponds to the EFT fit to flavor observables related to
neutral current b — s transitions presented in Ref. [19]. This Likelihood, referred to as the
Flavor Likelihood, depends on 89 parameters: 77 nuisance parameters and 12 parameters of
interest, corresponding to the Wilson coefficients of the relevant SMEFT operators. A sampling
of the posterior probability distribution has been obtained with the HEPFit code documented
in Ref. [18]. The full list of parameters is reported in Appendix A. This Likelihood is clearly
more complicated than the previous two, since it features multimodal 1D distributions and
complicated correlations (see Figs. 3 and 4).

3 Evaluation metrics

We used as quality metrics the mean over dimensions of the p-values of 1D Kolmogorov-
Smirnov test (KS-test), with an optimal value of 0.5 and the Sliced Wasserstien distance
(SWD) [20,21], with optimal value 0. We briefly recall their definitions here for convenience:

* Kolmogorov-Smirnov Test (KS)
The Kolmogorov-Smirnov (KS) test serves as a statistical test for assessing if two one-
dimensional samples originate from the same underlying (unknown) probability density
function (PDF). The null hypothesis assumes that both sets of samples are derived from
the same PDE The KS metric can be expressed as:

Dy, =sup|F,(x)—F,(x)|, €h)

where F, ,(x) is the empirical cumulative distribution functions of the sample sets {y;}
and {z;}, while sup denotes the supremum function. The p-value for null hypothesis

3
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rejection is given by:
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where n, and n, indicate the sample sizes.

y
¢ Sliced Wasserstein Distance (SWD)
The SWD serves as a metric for comparing two multi-dimensional distributions, lever-
aging the one-dimensional Wasserstein distance. The one-dimensional Wasserstein dis-
tance between two empirical distributions is formulated as:

Wy, = fRdx |Fy, (x) — F,(x)] . 3

In our sliced approach, we randomly select N; = 2D directions, with D the dimension-
ality of the sample, uniformly distributed over the 47 solid angle.> We then project all
samples on such directions and compute the one-dimensional Wasserstein distance and
finally take the mean over the directions. For each SWD computation a new random
selection of directions is drawn. See Ref. [3] for a more detailed discussion of the SWD
in this context.

In order to include statistical uncertainty on the test and NF generated samples we compute
the above metrics 100 times, for independent batches of N;.;/100 points, and take the average.

With respect to the Ref. [3] we also consider here the metric given by the discrepancy on
the Highest Posterior Density Interval (HPDI). This is a very important metric for Bayesian pos-
terior inference, since it tells how well credibility intervals (CI) are reproduced by the NFLike-
lihood. In particular, we computed the HPDI relative error width (HPDIe) for 68.27%, 95.45%,
and 99.73% (CI) of each 1D marginal of the true and predicted distributions. For each dimen-
sion, we compute the mean of this quantity when more than one interval is present (which is
common for multimodal distributions). Finally, we take the median over all dimensions. We
choose the median to avoid that results on very noisy dimensions, particularly in the Flavor
Likelihood, have a large negative effect on the generally good value of the metric.

4 The NFLikelihood

The results of this analysis have been obtained using the TENSORFLOW2 NF implementation
from Ref. [3]. All models were trained with Masked Autoregressive Flow (MAF) architectures
[23]. The difference is the type of bijector used. For the Toy Likelihood, we employed affine
bijectors as in the original MAF paper. Here on, we referred to this specific architecture as MAE
For the EW and Flavor Likelihoods we implemented the Rational Quadratic Spline bijector [24]
structure. We denote the corresponding architecture as A-RQS. We always trained with a log-
probability loss function. For all three cases the training data was standardized (to zero mean
and unit standard deviation) before training and a small scan over the flow’s hyper-parameters
was performed. Here we only present the optimal results obtained for each distribution. All
training iterations were performed with an initial learning rate of 0.001, reduced by a factor of
0.2 after a patience number of epochs without improvement on the validation loss. Training
was early stopped after 2 - patience number of epochs without improvement. The value of
patience and of the other relevant hyper-parameters will be reported separately for each of
the Likelihoods. All models have been trained on Tesla V100 Nvidia GPUs.

2This is achieved by normalizing an N-dimensional vector whose components are sampled from independent
standard normal distributions [22].
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Table 1: Hyperparameters leading to the best determination of the Toy Likelihood.

Hyperparameters for Toy Likelihood

# of train hidden algorithm  # of spline range L1 factor patience max # of
samples layers bijec.  knots epochs

2-10° 3x64 MAF 2 - - 0 20 200

Table 2: Best results obtained for the Toy Likelihood.

Results for Toy Likelihood

# of test Mean Mean HPDIe,, HPDle,, HPDIe,, time (s)
samples KS-test SWD

2-10° 0.4893+.0292 0.03947+.0019 0.02073 0.01207 0.01623 133

Table 3: Results for the POI in the Toy Likelihood.

Results for Toy Likelihood POI

POl KS-test HPDle,, HPDIe,, HPDle,,

u 0.54 0.02742  0.01359 0.01786

4.1 The Toy Likelihood

The hyperparameters that lead to the best estimation of the Toy Likelihood are shown in Table
1. The corresponding NF architecture is made of two MAF bijectors and one reverse permuta-
tion between them. Each MAF has an autoregressive network with 3 hidden layers made of 64
nodes each. The training was performed for a maximum of 200 epochs, with patience = 20
and 2 - 10° training samples. The NF model was tested with 2 - 10° test samples.

The resulting quality metrics are shown in Table 2. In particular, we obtained an optimal
KS-test of ~ 0.49 and HPDIe of the order of 1072, which guarantee that, within the considered
statistical uncertainty, the NF generated samples are indistinguishable from those generated
with the true pdf. The training time was about 133s. Since, when doing inference from
a Likelihood function or posterior distribution, one is usually specially interested in the so-
called parameters of interests (POIs), we show in Table 3 the results obtained for u. Here
the KS-test is again ~ 0.5 and HPDIes of the order of 1072. The accuracy of the NF model
is visually shown in Figure 1, which presents a corner plot of a selection of 10 parameters,
including u. In the Figure, the true distribution is shown in red, while the NF distribution in
blue. The HPDIs corresponding to 68.27% (10), 95.45% (20), and 99.73% (30) probabilities
are shown as solid, dashed and dashed-dotted lines, respectively. The selected parameters
include those considered in Ref. [1], therefore allowing for a direct comparison. In particular,
comparing with what in Ref. [1] is called the Bayesian DNNLikelihood, we find that both
approaches gives extremely accurate results: the NF approach seems to perform slightly better.
However, the main difference seems to be in the training time, which is much larger for the
DNNLikelihood. The advantage of the DNNLikelihood with respect to the NFLikelihood comes
when the so-called Frequentist Likelihood is considered: in this case one is not particularly
interested in learning the Likelihood (or the posterior) as a PDE but is instead interested in
learning it as a function close to its absolute and local (profiled) maxima. This highlights the
main difference between the DNNLikelihood and the NFLikelihood. The first is more suitable
to encode Likelihoods to be used for frequentist analyses, while the second for Likelihoods (or
posteriors) to be used in Bayesian analyses. Obviously one can combine the two approaches
to obtain a general and flexible representation of the Likelihood suitable for both frequentist
and Bayesian inference. We defer this generalization to future work.


https://scipost.org
https://scipost.org/SciPostPhysCore.7.3.048

SCll SciPost Phys. Core 7, 048 (2024)

m— true
I pred
—— HPDIy,
---- HPDIy
o —-— HPDI5q

<))
N

© —

® €
Yolclcol—

Faisi—
)
=
2

5% 0 00 PEV 0o PEV 0o WV 0O FYV 0O ¥

N
‘0

N
N

©

/Q%%Lp\/@/u;pg VA0 X XA BKA0L X X101 uﬁg},{%,@ ?’/@9/\,?69«,?’ /\1%9\:;%9 MO

\5‘0'0

N
OJ

693

5,

ofodrojfoiolofofollol=—

259,25

N

PO O6 -
POPEOO 6

NoeQ

Figure 1: Corner plot of the 1D and 2D marginal posterior distributions of a represen-
tative selection of the Toy Likelihood parameters. The true distribution is depicted in
red, while the predicted distribution is shown in blue. The solid, dashed and dashed-
dotted line over the 1D marginals denote the 68.27%, 95.45%, and 99.73% HPDIs,
respectively. The rings on the 2D marginals describe the corresponding probability
levels.

4.2 The EW Likelihood

The hyperparameters corresponding the best NF model describing the EW Likelihood are
shown in Table. 4. The chosen NF architecture is made of two A-RQS bijectors with 4 spline
knots defined in a [—6, 6] range, and one reverse permutation between them. Each A-RQS has
an autoregressive network with 3 hidden layers made of 128 nodes each. The training was
performed for a maximum of 800 epochs and a patience of 20 with 2 - 10° training samples.
The NF model was tested with 2-10° samples. Finally, given the presence of truncated dimen-
sions, the distributions was soft clipped, with a hinge factor of 10™* at the truncations, within
the range of the training data®.

A summary of the values obtained for the evaluation metrics is reported in Table 5. We
obtained a mean KS-test of ~ 0.4 and HPDIes of the order of 102 or smaller. The training time
was about 7200s, that is a couple of hours. Furthermore, Table 6 shows the metrics obtained
for the Wilson coefficients (POIs). We find that most of the POIs are pretty well described,
albeit small discrepancies found for C;Z, Czl and Cj; which can be likely fixed after fine-tuning

3This was done via the soft-clip bijector from TENSORFLOW-PROBABILITY [25]. The hinge factor was chosen to
be <« 1 to obtain an approximate identity mapping within the defined range. Note however that this may lead to
numerically ill-conditioned boundaries if the discrepancy between distributions is significant.

6
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Table 4: Hyperparameters leading to the best determination of the EW Likelihood.

Hyperparameters for the EW Likelihood

# of train hidden # of algorithm spline range L1 factor patience # of
samples layers  bijec. knots epochs
2-10° 2 3x128 A-RQS 4 -6 0 20 800

Table 5: Best results obtained on the EW Likelihood.

Results for the EW Likelihood

# of test Mean Mean HPDIe,, HPDIe,, HPDle,, time (s)
samples KS-test SWD

2-10° 0.4307+£0.06848 0.003131+0.00053 0.000339 0.0008664 0.006973 7255

Table 6: Results for the Wilson coefficients in the EW Likelihood.

Results for EW Likelihood

POI KS-test HPDIle,,  HPDle,, HPDIe,,
¢l 0.1901 0.08384  0.09787  0.437

1o 0.2078 0.0346 0.1039 0.4967

cl 0.4581  0.02279 0.01131  0.04866

I 0.4989  0.01219 0.01439 4.1017

0.5221  0.01713 0.03808  0.09952

0.4885  0.01453 0.2146 0.1401

c 0.5259 0.005409 0.005082 0.341

¢;  0.2193 0.1667 0.08047 0.0713

the hyper-parameters, increasing the number of trainable parameters or adding more training
points.

The true and NF distributions are visually compared in Figure 2, which shows a corner plot
over the POIs plus four representative nuisance parameters (a total of twelve parameters). As
before, the distribution is represented in red, while the NF distribution in blue. The HPDIs
corresponding to 68.27%, 95.45%, and 99.73% probabilities are shown as solid, dashed and
dashed-dotted lines, respectively. We see that in general, the NF distributions matches pretty
well the true one. Something worth emphasizing is the NF ability to learn even large cor-
relations between dimensions. This is not expected in the case of the DNNLikelihood, since
regression becomes inefficient when large correlations between parameters are present.

4.3 Flavor Likelihood

The optimal hyperparameters found for learning the Flavor Likelihood are shown in Table 7.
The chosen NF architecture is made of two A-RQS bijectors with 8 spline knots defined in the
[—5, 5] range, and one reverse permutation between them. Each A-RQS has an autoregressive
network with 3 hidden layers made of 1024 nodes each and an L1 regularization factor of
10, The training was performed for a maximum of 12000 epochs with a patience of 50.
The model was trained with 10® samples and tested with 5 - 10° samples. Furthermore, since
the Likelihood function presents several truncated dimensions, the NF model was soft-clipped,
with an hinge factor of 1-10™%, within the range of the training data.


https://scipost.org
https://scipost.org/SciPostPhysCore.7.3.048

SC|| SciPost Phys. Core 7, 048 (2024)

I pred
. true
e —— HPDIy,
--- HPDly
—-— HPDI3,

%

@@abﬁ@@@@@@a

o, Yo
% %

o, @

%

Yo
s

Yo
o

AABDAN
/80 0DDd |
oo\c>>o*

TSI IS IS EP S e

@
®
N @
© ¢ il
mmmm@@m‘%
\ A
g

Figure 2: Corner plot of the 1D and 2D marginal posterior distributions of the POIs
plus four representative nuisance parameters of the EW Likelihood. The true distri-
bution is depicted in red, while the predicted distribution is shown in blue. The solid,
dashed and dashed-dotted line over the 1D marginals denote the 68.27%,95.45%,
and 99.73% HPDIs, respectively. The rings on the 2D marginals describe the corre-
sponding probability levels.

A summary of the evaluation metrics is shown in Table 8. We obtained a good KS-test of
~ 0.42 and HPDIes of the order of 1072 or smaller. Training took about 1 - 10%s, i.e. around
2.7 hours. The Flavor Likelihood includes 12 Wilson coefficients as POIs, and Table 9 shows
the results obtained for each of them. The majority of the KS-tests are above 0.4, with a few
exceptions where the value is still above 0.3. In turn, the HPDIes are generally of the order
1072 or smaller, with some exceptions, that we believe may be improved by again finely-tuning
the architecture, increasing the number of trainable parameters or by adding more training
points.

It is important to stress the complexity of the Flavor likelihood. As can be seen from Fig-
ures 3 and 4, depicting a corner plot of the Wilson coefficients and the 1D marginal distribu-
tions of all dimensions, respectively, the posterior features multimodal 1D marginals, complex
correlations and noisy dimensions, offering a very realistic prototype of a complicated high
dimensional HEP Likelihood. Nonetheless, we find that the NF model is able to reproduce it
with a very good accuracy.
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Table 7: Hyperparameters leading to the best determination of the Flavor Likelihood.

Hyperparameters for the Flavor Likelihood

# of train hidden # of algorithm spline range L1 factor patience max # of
samples layers  bijec. knots epochs
10° 3x1024 2 A-RQS 8 -5 le-4 50 12000

Table 8: Best results obtained for the Flavor Likelihood.

Results for the Flavor Likelihood

# of test Mean Mean HPDIe,, HPDIe,, HPDle,, time (s)
samples KS-test SWD

5-10° 0.4237 £0.03405 0.02717+£0.002374 0.00867 0.007346 1.419e-07 9550

Table 9: Results for the Wilson coefficients in the Flavor Likelihood.

Results for Flavor Likelihood POIs

POI  KS-test HPDIle,, HPDIle,,  HPDIe,,

el 04346 0.007251 1.83e-05  4.731e-08

cadl 04736 0.01249  0.00162  0.03575

¢k, 0486  0.01466 0.006628  0.002338

cid, 04138  0.0513  0.02446  2.398e-08

i@ 05362 0.00738  0.004683  5.387e-08

9% 0.5161  0.02799  0.001639  2.155e-09

¥, 0.4476 0.01389  0.007458 1.419e-07

¢, 0382 0.02132  0.02496  0.0004609

ctd,, 04789 0.04076  0.00333  5.602e-08

cid,, 04436 0.008685  0.016  1.502e-08

;9% 03203 0.09194 0.007041  8.011e-08

5% 0.4157  0.03001  0.008749  4.374e-08

5 Conclusion

The publication of full Likelihoods is crucial for the long lasting legacy of the LHC, and for any
other experiment involving complicated analyses with a large parameter space. However, this
is not always a straightforward matter since Likelihoods are often high dimensional complex
distributions, sometimes depending on Monte Carlo simulations and/or numeric integrations,
which make their sampling a very hard task. Furthermore, one requires precise, compact, and
efficient representations of them so that they can be easily and systematically reused. As it
was first shown in Ref. [1], Neural Networks, being universal interpolators, offer a promising
approach to encode, preserve, and reuse Likelihood functions. In this work we extended this
approach to unsupervised learning, proposing the use of Normalizing Flows for this endeavour.
Indeed, Normalizing Flows are powerful generative models which, by construction, also pro-
vide density estimation. We tested our proposal on three posterior distributions of increasing
complexity, corresponding to three different Likelihood functions: a 95-dimensional LHC-like
new physics search Likelihood, a 40-dimensional ElectroWeak EFT fit Likelihood, and an 89-
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Figure 3: Corner plot of the 1D and 2D marginal posterior distributions of the Wilson
coefficients of the Flavor Likelihood. The true distribution is depicted in red, while
the predicted distribution is shown in blue. The solid, dashed and dashed-dotted line
over the 1D marginals denote the 68.27%,95.45%, and 99.73% HPDIs, respectively.
The rings on the 2D marginals describe the corresponding probability levels.

dimensional Flavor EFT fit Likelihood. We found that Autoregresive Normalizing Flows are
capable of precisely describing all the above examples, including all the multimodalities, trun-
cations, and complicated correlations. In fact, we see that, given the way they are constructed,
Autoregressive Flows can easily learn the covariance matrices of the distributions. Both the
code used for this project [26] and a user-friendly TENSORFLOW2 framework for Normalizing
Flows (still under development) [27] are available on GitHub. The training and generated
data, as well as the trained NF models, are available on Zenodo [28].

The 95-dimensional LHC-like new physics search Likelihood, which was also studied in
the context of the DNNLikelihood of Ref. [ 1] was also used to make a comparison between the
two approaches. Such comparison leads to the conclusion that the two approaches are com-
plementary and could, in the future, be merged to get an even more flexible representation of
the Likelihood. Indeed, while the DNNLikelihood approach focuses on learning the Likelihood
as a multivariate function, and is agnostic about its probability interpretation, the NF approach
leverages the latter. This implies that the DNNLikelihood approach is more suitable to learn
Likelihood functions to be used in Frequentist analyses, where the region of profiled maxima is

10
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Figure 4: 1D marginal posterior distributions of all the parameters of the Flavor
Likelihood. The true distribution is depicted in red, while the predicted distribution is
shown in blue. The solid, dashed and dashed-dotted lines over the marginals denote
the 68.27%, 95.45%, and 99.73% HPDIs, respectively.

the important part to learn, while the NFLikelihood approach is more suitable for Likelihoods
(or posteriors) to be used in Bayesian analyses, where is crucial to learn the distribution as a
statistical PDF and not just a multivariate function. We defer to future work the study of the
best approach to merge the DNN and NF Likelihoods into a unique object.

As a follow-up, we also plan to explore the possibility of learning full statistical models,
i.e. functions of both the data and the parameters. A promising way to do this is by means of
the so-called conditional Normalizing Flows [29].
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A Details of the EW and Flavor Likelihoods

The list of parameters and their description for the EW Likelihood is given in Table 10, while
Figure 5 gives a pictorial representation of the data correlation matrix. The list of parameters
and their description for the Flavor Likelihood is given in Table 11.

Table 10: Parameters of the EW Likelihood.

# | Parameter | Description || # | Parameter | Description
1 | ag(My) SM input 21 | Cyy Wilson coefficient
2 Aag)d(M ) | SM input 22 | Cy Wilson coefficient
3 | M, SM input 23 | PP ol Observable
4 | my SM input 24 | My, Observable
5 | my SM input 25 | Ty Observable
6 | o, SM input uncertainty 26 | BRy 3, Observable
7 | Omy, SM input uncertainty 27 | A, Observable
8 |6 RO SM input uncertainty 28 | Ry, Observable
9 | o RO SM input uncertainty 29 | sin? G4 Observable
10 | 6 RO SM input uncertainty 30 | Ty Observable
11 | 042 0,5 SM input uncertainty 31 02 Observable
12 | Ogp2 0,1 SM input uncertainty 32 R(l) Observable
13 | Ogin2 g4 SM input uncertainty 33 Ag’é Observable
14 09 SM input uncertainty 34 | A Observable
15 | ¢}, Wilson coefficient 35 | R) Observable
16 ng Wilson coefficient 36 | R? Observable
17 | C ; q Wilson coefficient 37 Ag’é’ Observable
18 Cg q Wilson coefficient 38 Ag’g Observable
19 | Cyuq Wilson coefficient 39 | 4, Observable
20 | Cy, Wilson coefficient 40 | A, Observable
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Figure 5: Correlation matrix of the ElectroWeak fit data.
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Table 11: Parameters of the Flavor Likelihood.

# | Parameter | Description || # | Parameter | Description || # | Parameter | Description
1 Ihéo) | Nuis 31 | af Nuis 61 | a A Nuis
2 | K9 Nuis 32 | a) Nuis 62 a’z‘% Nuis
3 | h Nuis 33 | ol Nuis 63 | ajl Nuis
4 arg(hgo) ) Nuis 34 | al® Nuis 64 a;‘f Nuis
5 | arg(h?) Nuis 35 | ay Nuis 65 | al ;, Nuis
6 | arg(h®) Nuis 36 | af° Nuis 66 | aj i Nuis
7 IhE)l) | Nuis 37 | a! Nuis 67 | al f Nuis
8 | In Nuis 38 | ait2 Nuis 68 | a, Nuis
9 | In Nuis 39 | al Nuis 69 | boy, Nuis
10 | arg(h{") Nuis 40 | al? Nuis 70 | by, Nuis
11 | arg(h(?) Nuis 41 | af® Nuis 71 | by, Nuis
12 | arg(h™) Nuis 42 | af Nuis 72 | by, Nuis
13 | |n? Nuis 43 | af° Nuis 73 | by, Nuis
14 | |h®)] Nuis 44 | ot Nuis 74 | by, Nuis
15 | arg(h'®) Nuis 45 | ag® Nuis 75 | by, Nuis
16 | arg(h®) Nuis 46 | al’ Nuis 76 | by, Nuis
17 | [h$"™] Nuis 47 | al? Nuis 77 | by, Nuis
18 arg(héMP)) Nuis 48 | al® Nuis 78 | 2} Wilson coefficient
19 |h(1MP)| Nuis 49 a;/ Nuis 79 C;ZQZ%,’ Wilson coefficient
20 arg(h(lMP)) Nuis 50 a’g(; Nuis 80 | cid, Wilson coefficient
21 |h(2MP) | Nuis 51 a{}};5 Nuis 81 | ki, Wilson coefficient
22 arg(h(lMP)) Nuis 52 | af ; Nuis 82 | ched@ Wilson coefficient
23 | Fg,/Fpq Nuis 53 | a] ;3 Nuis 83 | ci@ Wilson coefficient
24 | 6Gsg, Nuis 54 | af ¢ Nuis 84 c§3en Wilson coefficient
25 | Fy, Nuis 55 | ay, Nuis 85 | ¢, Wilson coefficient
26 | Ag Nuis 56 a’l"1¢ Nuis 86 | ct,, Wilson coefficient
27 | a;(K*) Nuis 57 a’l*}; Nuis 87 | ¢, Wilson coefficient
28 | a,(K*) Nuis 58 | al ; Nuis 88 ﬁedQ Wilson coefficient
29 | ay(¢) Nuis 59 | af i Nuis 89 cgéedQ Wilson coefficient
30 | a,(K) Nuis 60 alij Nuis
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