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Abstract

The spectrum of excitations of a two-dimensional, planar honeycomb lattice of two-level
atoms coupled by the in-plane electromagnetic field may exhibit band gaps that can be
opened either by applying an external magnetic field or by breaking the symmetry be-
tween the two triangular sublattices of which the honeycomb one is a superposition. We
establish the conditions of band gap opening, compute the width of the gap, and char-
acterize its topological property by a topological index (Chern number). The topological
nature of the band gap leads to inversion of the population imbalance between the two
triangular sublattices for modes with frequencies near band edges. It also prohibits a
transition to the trivial limit of infinitely spaced, noninteracting atoms without closing
the spectral gap. Surrounding the lattice by a Fabry-Pérot cavity with small intermir-
ror spacing d < π/k0, where k0 is the free-space wave number at the atomic resonance
frequency, renders the system Hermitian by suppressing the leakage of energy out of
the atomic plane without modifying its topological properties. In contrast, a larger d
allows for propagating optical modes that are built up due to reflections at the cavity
mirrors and have frequencies inside the band gap of the free-standing lattice, thus clos-
ing the latter.
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1 Introduction

Interaction of light with an isolated atom is the strongest when the frequency of light is close to
one of the atomic resonance frequencies, corresponding to a transition between two quantum
states of the atom [1]. In a dense ensemble of a large number N of atoms, quantum states
of individual atoms hybridize to give rise to collective atomic states [2, 3]. Transitions of the
atomic ensemble between these collective states result in collective resonances at frequencies
that are different from those of isolated atoms [4, 5]. The problem of calculating collective
resonance frequencies of many-atom systems is particularly complicated when N ≫ 1 and in-
teratomic distances are of the order of the optical wavelength in free space λ0. Remarkable
progress has been achieved only under several simplifying assumptions. First, one assumes
that all atoms are identical and that each atom has only two energy levels of which the first
(generally, the lower one referred to as “ground state”) is nondegenerate (total angular mo-
mentum Jg = 0) while the second (the upper one referred to as “excited state”) is three-fold
degenerate (Je = 1). Second, the positions of atoms are assumed to be periodic in space giving
rise to a structure known as “photonic crystal” [6]. Three-dimensional (3D) photonic crystals
made of two-level atoms were predicted to give rise to photonic band gaps [7, 8]. More re-
cently, two-dimensional (2D) photonic crystals have been proposed as a useful playground for
studying topological physics of light [9–12]. At the same time, relaxing any of the two above
simplifying assumptions results in considerable complications. Whereas considering degener-
ate ground states leads to a need of dealing with large matrices of size growing exponentially
with N , breaking down the periodicity of the atomic configuration by introducing random-
ness in atomic positions leads to such new and still poorly explored physical phenomena as
Anderson localization of light [13,14] and photonic topological Anderson insulator [15].

In the present work we consider a 2D honeycomb lattice of two-level atoms coupled by the
electromagnetic field. This system can be seen as a photonic analog of graphene or as an (ar-
tificial) “photonic graphene” for short [16]: carbon atoms are replaced by the two-level atoms
that are now much further from each other (lattice spacing a ∼ tens of nm instead of a ∼ 1Å
in graphene) whereas chemical bonds between nearest-neighbor carbon atoms are replaced
by long-range electromagnetic coupling between all atoms via exchange of photons. Opening
of a topological gap in the spectrum of such a lattice by an external, static magnetic field has
been demonstrated in Ref. [9]. We extend the previous analysis in two different ways. First,
we include the possibility of breaking the inversion symmetry between atoms of the two tri-
angular sublattices that make up the honeycomb lattice. This provides possibilities of opening
a topologically trivial band gap in the spectrum of the lattice and of studying the competi-
tion between the time-reversal (due to the magnetic field) and inversion symmetry breakings.
Second, we study the effect of surrounding the atomic lattice by two plane-parallel reflecting
plates forming a Fabry-Pérot cavity. The advantage of such a configuration resides in suppres-
sion of energy leakage out of the atomic plane, which makes the system Hermitian. In addition,
it corresponds to an experimental setup used to study photonic topological phenomena with
resonant dielectric scatterers in place of atoms [17]. Although dielectric scatterers differ from
atomic ones in several respects (large size, existence of multiple electromagnetic resonances,
insensitivity to the magnetic field), our results may still be useful for interpretation of certain
microwave and optical experiments in dielectric systems under particular conditions.
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2 Honeycomb atomic lattice in the free space

2.1 The model

Figure 1: (a) Honeycomb lattice of two-level atoms with interatomic spacing a. The
lattice can be seen as a superposition of two triangular sublattices A (blue disks) and
B (red disks). The wavy line indicates coupling of each atom to all the others via
the electromagnetic field. The lattice is placed in a static magnetic field B perpen-
dicular to the atomic plane. a1, a2 and a3 are basis vectors of the lattice. (b) The
first Brillouin zone of the honeycomb atomic lattice. The purple path is followed to
construct the band diagrams in Fig. 2. The dashed circle delimits the free-space light
cone |k|< k0.

We consider a 2D honeycomb lattice of N ≫ 1 atoms (interatomic spacing a) located at
positions {rn} (n = 1, . . . , N) in the x y plane z = 0, see Fig. 1. The lattice can be seen as a
superposition of two triangular sublattices A and B, with atoms A and B having single-atom
ground and excited states |gn〉 and |enm〉 (m= 0,±1) with energies Eg and E(A,B)

e = Eg+ħhωA,B,
respectively. Here we assume that the total angular momenta Jg,e of the ground and excited
states have magnitudes Jg = 0 and Je = 1 (in units of the Planck constant ħh), respectively.
Thus, the excited state of an isolated atom is triply degenerate, with the three substates cor-
responding to projections m = 0,±1 of Je on the quantization axis z. If ωA ̸= ωB, then the
inversion symmetry is broken. In addition, the time-reversal symmetry can be broken by an
external magnetic field B perpendicular to the atomic plane. The ground state of the lattice is
unique (nondegenerate) and corresponds to all atoms in their respective single-atom ground
states. Propagation of a quasi-resonant excitation of the ground state can be described by an ef-
fective Hamiltonian obtained by extending the results of Refs. [9,18] to include the possibility
for atoms A and B to have different transition frequencies ωA ̸=ωB (see also Refs. [12,15]):

Ĥ=
N
∑

n=1

1
∑

m=−1

�

ħhωA,B +mgeµB|B| − i
ħhΓ0
2

�

|enm〉 〈enm|

+
3πħhΓ0

k0

N
∑

n̸=n′

1
∑

m,m′=−1

�

d̂eg Ĝ (rn, rn′) d̂
†
eg

�

mm′
|enm〉 〈en′m′ | , (1)

where k0 = ω0/c, ω0 = (ωA+ωB)/2, c is the speed of light in the free space, µB is the Bohr
magneton, ge is the Landé factor of the excited states (the same for atoms A and B), geµB|B|
is the Zeeman shift of energies of the single-atom excited states, Γ0 is the radiative line width
of an individual atom in the free space and Ĝ is the dyadic Green’s function describing the
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coupling of atoms by electromagnetic waves:

Ĝ(r, r′) = Ĝ(r− r′)

=
δ(r− r′)

3k2
0

13 −
eik0|r−r′|

4π|r− r′|

�

P(ik0|r− r′|)13 +Q(ik0|r− r′|)
(r− r′)⊗ (r− r′)
(r− r′)2

�

, (2)

with 13 the 3× 3 unit matrix, P(u) = 1− 1/u+ 1/u2 and Q(u) = −1+ 3/u− 3/u2. Equation
(1) also makes use of the matrix

d̂eg =





1p
2

ip
2

0
0 0 1
− 1p

2
ip
2

0



 , (3)

that transforms the Green’s function (2) into the basis of circular polarizations in the x y plane
while leaving the z component intact.

For atoms in the plane z = 0, the Green’s function (2) does not couple in-plane excitations
(i.e., those having only x and y components) to out-of-plane ones (i.e., those having only the
z component). In addition, the magnetic field has no effect on the m = 0 magnetic substate.
Thus, we consider only in-plane excitations (often referred to as transverse-electric or TE for
short) from here on and represent the state of the lattice by a vector |Ψ〉 composed of N/2 4-
component spinors |Ψn〉= {ΨA+

n ,ΨA−
n ,ΨB+

n ,ΨB−
n }

T , where ΨA±
n is the value of the wave function

on the atom A of the elementary cell n composed of a pair of atoms A, B (n = 1, . . . , N/2) for
m = ±1, respectively (and similarly for ΨB±

n ). The problem then reduces to the analysis of a
2N × 2N non-Hermitian effective Hamiltonian composed of 4× 4 blocks [9,12]

Ĥnn′ = δnn′

��

iImGmm(0)12 Ĝ(−a1)
Ĝ(a1) iImGmm(0)12

�

+ 2∆AB

�

12 0
0 −12

�

+ 2∆B

�

σ̂z 0
0 σ̂z

��

+ (1−δnn′)

�

Ĝ(rn − rn′) Ĝ(rn − rn′ − a1)
Ĝ(rn − rn′ + a1) Ĝ(rn − rn′)

�

, (4)

where rn and rn + a1 are positions of atoms A and B of the unit cell n, 12 is the 2 × 2 unit
matrix, σ̂z is the third Pauli matrix,

Ĝ(r) = −
6π
k0

d̂2DĜ{2}(r)d̂†
2D . (5)

Ĝ{2}(r) is the leading principal submatrix of order 2 [i.e., the 2 × 2 matrix in the upper-left
corner of the 3× 3 matrix Ĝ(r)], ∆B = geµB|B|/ħhΓ0, ∆AB = (ωB −ωA)/2Γ0 and

d̂2D =
1
p

2

�

1 i
−1 i

�

. (6)

Complex eigenavalues Λ of Ĥ yield frequencies ω and decay rates Γ of collective excitations
in the atomic lattice: Λ= −2(ω−ω0)/Γ0 + iΓ/Γ0.

Diagonal elements of the first term in Eq. (4) contain the imaginary part of the Green’s
function at the origin. It is proportional to the local density of states and describes the decay
rate of an isolated atom. Ĝ(r) is normalized in such a way that ImGmm(0) = 1 with m = ±1
[G++(0) = G−−(0) in the free space]. This corresponds to the decay rate Γ = Γ0. Gmm(0)
also has a divergent real part that corresponds to a frequency shift (Lamb shift) due to the
interaction of the atom with the electromagnetic vacuum. In our formalism, it is supposed to
be already included in the definition of the atomic transition frequencyω0 and thus we do not
include it explicitly in the Hamiltonian (4).
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2.2 Band diagram of a honeycomb lattice in the free space

For the infinite lattice without boundaries N →∞ and we can use Bloch theorem to look for
the components |Ψn〉 of |Ψ〉 in the form |Ψn〉= |ψ(k)〉eik·rn . Schrödinger equation Ĥ|Ψ〉= Λ|Ψ〉
then reduces to

Ĥ(k)|ψ(k)〉= Λ(k)|ψ(k)〉 , (7)

where

Ĥ(k) =







H++11 H+−11 H++12 H+−12
H−+11 H−−11 H−+12 H−−12
H++21 H+−21 H++22 H+−22
H−+21 H−−21 H−+22 H−−22






, (8)

and

Ĥ11(k) =
∑

rn ̸=0

Ĝ(rn)e
ik·rn +

�

i + 2∆AB + 2∆B 0
0 i + 2∆AB − 2∆B

�

, (9)

Ĥ12(k) =
∑

rn

Ĝ(rn + a1)e
ik·rn , (10)

Ĥ21(k) =
∑

rn

Ĝ(rn − a1)e
ik·rn , (11)

Ĥ22(k) =
∑

rn ̸=0

Ĝ(rn)e
ik·rn +

�

i − 2∆AB + 2∆B 0
0 i − 2∆AB − 2∆B

�

, (12)

are 2× 2 matrices.
Summations in Eqs. (9–12) are most efficiently performed in momentum space using Pois-

son’s summation formula [7,9]:

∑

rn ̸=0

Ĝ(rn)e
ik·rn =

1
A
∑

gm

ĝ(gm − k)− Ĝ(r= 0) , (13)

where A is the area of the unit cell of the lattice, gm are 2D reciprocal lattice vectors obeying
gm · rn = 2πm with an integer m,

ĝ(q⊥) =

∞
∫

−∞

dqz

2π
Ĝ(q) , (14)

q⊥ = {qx , qy} is the in-plane component of the 3D vector q: q = {q⊥, qz} and Ĝ(q) is Fourier
transform of Ĝ(r):

Ĝ(q) = −
6π
k0

d̂2DĜ{2}(q)d̂†
2D , (15)

Ĝ(q) =
∫

d3r Ĝ(r)eiq·r =
q⊗ q

q2k2
0

+
1− (q⊗ q)/q2

k2
0 − q2 + i0+

=
1− (q⊗ q)/k2

0

k2
0 − q2 + i0+

. (16)

Similarly,

∑

rn

Ĝ(rn ± a1)e
ik·rn =

1
A
∑

gm

ĝ(gm − k)e±ia1·(gm−k) . (17)
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Figure 2: Band diagrams of a honeycomb lattice of atoms coupled via the electro-
magnetic field for k0a = 2π × 0.05 [see Fig. 1(a)] and four different pairs of ∆B,
∆AB. Horizontal axis corresponds to the path shown in purple in the 2D Brillouin
zone in Fig. 1(b). Color code corresponds to the decay rate Γ of quasimodes capped
at Γ/Γ0 = 100 (i.e., all Γ/Γ0 ≥ 100 are shown in yellow). We label bands from bottom
to top by an index α = 1–4. Gray shaded areas are band gaps between the second
and third spectral bands, gray dashed lines delimit the free-space light cone |k| ≤ k0
where Γ > 0.

The integral in Eq. (14) and Ĝ(r = 0) both diverge but these divergences cancel out in
Eq. (13). To compute each of these two divergent terms separately, we introduce Gaussian
cut-offs 1/h in the momentum integrals for ĝ(q) and Ĝ(r = 0) and replace the latter by their
regularized versions

ĝ(reg)(q⊥) =

∞
∫

−∞

dqz

2π
Ĝ(q)e−h2q2/2

=
3π
k0

e−k2
0h2/2

q

k2
0 − q2

⊥

�

12 −
d̂2D(q⊥ ⊗ q⊥)d̂

†
2D

k2
0

�

�

i − erfi
�

h
2

Ç

k2
0 − q2

⊥

��

, (18)

Ĝ(reg)(r= 0) =

∫

d3q
(2π)3

Ĝ(q)e−h2q2/2

=

�

�

i − erfi
�

k0h/
p

2
��

e−k2
0h2/2 −

1/2− (k0h)2
p

π/2(k0h)3

�

12 . (19)

In practice, we use Eqs. (18) and (19) with a small h< 0.1a and sum over a sufficiently large
number of reciprocal lattice vectors gm in Eqs. (13) and (17) to ensure convergence. Using a
smaller h ensures better accuracy of results but requires taking into account a larger number
of gm for convergence of sums in Eqs. (13) and (17).
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Figure 3: Width of the gap between the second and third bands in the band di-
agram of Fig. 2 as a function of ∆B for three different values of ∆AB and fixed
k0a = 2π × 0.05. Symbols show ∆gap determined via numerical diagonalization
of the Hamiltonian Ĥ(k), gray dashed lines represent the analytical result (20).

We show representative examples of band diagrams obtained by diagonalizing Ĥ(k) in
Fig. 2. In the absence of symmetry breaking ∆B = ∆AB = 0, two of the four bands—the
second and third ones—cross at a degeneracy point K [see Fig. 2(a)] where dispersion is
roughly linear and (ω−ω0)/Γ0 ≃ 7. The same crossing takes place at the second degeneracy
point K ′ [see Fig. 1(b)] and three equivalent pairs of points K , K ′ exist in the Brillouin zone
(BZ), exactly as in the electronic band diagram of graphene [19]. Breaking the time-reversal
(∆B ̸= 0) or inversion (∆AB ̸= 0) symmetry opens a gap between the second and third bands of
the spectrum as we illustrate in Figs. 2(b) and (c). However, the gap closes if |∆B|= |∆AB| [see
Fig. 2(d)]. Analysis shows that the gap closing takes place either at K point when ∆B = −∆AB
as in Fig. 2(d) or at K ′ point when ∆B =∆AB (not shown).

For k inside the light cone |k|< k0 [see Fig. 1(b)], eigenvalues of Ĥ acquire an imaginary
part Γ/Γ0 shown in Fig. 2 by a color code. This is due to the possibility of electromagnetic wave
emission out of the atomic plane z = 0. As follows from Fig. 2, the decay rate Γ of collective
excitations corresponding to |k|< k0 can exceed the decay rate Γ0 of an isolated atom by several
orders of magnitude. This phenomenon is known as superradiance: many atoms synchronize
to emit energy very rapidly, during a time interval of the order of 1/Γ ≪ 1/Γ0 [20]. The atomic
array becomes an efficient source of light in this regime. Note that momentum conservation
forbids the emission of electromagnetic waves out of the atomic plane z = 0 for k outside the
light cone (i.e., for |k|> k0), and the eigenvalues Λ(k) of Ĥ(k) are real in this part of the band
diagram.

2.3 Width of the band gap

The width of the spectral gap ∆gap between the second and third bands in Fig. 2 is controlled
by three parameters: ∆B,∆AB, and k0a. It can be found by analyzing the Hamiltonian Ĥ(k) at
K , K ′ and Γ points of BZ. We provide the details of derivations in Appendix A and summarize
here the main results. Let us first consider the simplest case of ∆AB = 0. Four regimes can be
distinguished depending on the value of |∆B|. Defining three positive threshold values of |∆B|:
∆
(1)
B <∆

(2)
B <∆

(3)
B , we identify the following scenario of gap width evolution as |∆B| increases
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Figure 4: (a) Maximum width of the gap max(∆gap) between the second and third
bands in the band diagram of Fig. 2 as a function of ∆AB for three different values of
k0a. Solid lines show numerical results obtained for ∆B = 30. Dashed lines corre-
spond to the formula in the second line of Eq. (20). (b) Log-log plot of max(∆gap) as
a function of k0a at∆AB = 0. Symbols show numerical results obtained for∆B = 12.
Gray dashed line is a power-law fit max(∆gap) = A(k0a/2π)−3 for k0a/2π < 0.05
with the best-fit value A= 3.24× 10−3.

(see triangles in Fig. 3 for an illustration at k0a = 2π×0.05). First, for small |∆B|, a direct gap
opens at K and K ′ points and its width increases linearly with |∆B| for |∆B|<∆

(1)
B . Next, the

gap becomes indirect and its width ∆gap is determined by the frequency difference between
the frequency of the second band at K (or K ′) point and the frequency of the third band at Γ
point. ∆gap remains constant in this regime until |∆B| reaches ∆(2)B . Starting from this value
of |∆B| the gap becomes direct again and is equal to the frequency difference between the
second and third bands at Γ point. Its width decreases linearly with |∆B| until gap closing for
|∆B|=∆

(3)
B . The gap remains closed (∆gap = 0) for |∆B|>∆

(3)
B .

The above scenario can be generalized to the case of nonzero but still moderate ∆AB (see
Appendix A). The final result for the gap width is

∆gap = 2×



















||∆B| − |∆AB||, |∆B|<∆
(1)
B ,

|∆(1)B − |∆AB||, ∆
(1)
B < |∆B|<∆

(2)
B ,

|∆(1)B − |∆AB||+∆
(2)
B − |∆B|, ∆

(2)
B < |∆B|<∆

(3)
B ,

0, |∆B|>∆
(3)
B = |∆(1)B − |∆AB||+∆

(2)
B .

(20)

As follows from the derivations in Appendix A, the parameters ∆(n)B are functions of k0a
and |∆AB|. Fig. 3 illustrates the very good agreement between Eq. (20) shown by dashed lines
and numerical results (symbols).

From the point of view of experimental observation of phenomena discussed in this work,
of particular importance is the maximum width of the gap that can exist in the considered
atomic system. As follows from Fig. 3, the maximum of ∆gap is reached when the latter

plateaus for ∆(1)B < |∆B| < ∆
(2)
B . We show the maximum gap width max(∆gap) as a func-

tion of∆AB for several values of k0a and as a function of k0a for∆AB = 0 in Figs. 4(a) and (b),
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respectively. Numerical results are compared to the second line of Eq. (20) in Fig. 4(a) and
are fitted by a power law max(∆gap)∝ (k0a)−3 in Fig. 4(b). The fact that the latter fit is of
good quality has been already noticed in Ref. [9]. It testifies of the importance of near-field,
dipole-dipole coupling between atoms for gap opening since the same scaling (k0r)−3 is a
characteristic feature of the Green’s function (2) for k0r ≪ 1.

2.4 Topological properties of the band structure

The band structures shown in Figs. 2(b) and (c) look very similar and the widths of the band
gaps are exactly the same. However, there is a profound difference between these band struc-
tures, which can be made explicit by studying their topological properties. To this end, we
compute the Chern number C of a band α (α= 1–4, see Fig. 2) as

Cα =
1

2π

∫

BZ

Ωα(k)d
2k , (21)

with the Berry curvature

Ωα(k) = i

��

∂ψα(k)
∂ kx

�

�

�

�

∂ψα(k)
∂ ky

�

−
�

∂ψα(k)
∂ ky

�

�

�

�

∂ψα(k)
∂ kx

��

. (22)

It should be noted here that the non-Hermitian nature of the considered physical system might
suggest a richer topological structure than the one captured by the Chern number defined by
Eq. (21) that formally coincides with the definition used for Hermitian Hamiltonians [21].
However, the non-Hermiticity that we are dealing with here arises merely from the leakage
of energy out of the atomic array and does not break any relevant symmetry. Thus, we do
not expect it to give rise to any new interesting topological aspects. The eigenvalues acquire
nonvanishing imaginary parts only within a rather limited part of the band diagram (i.e., for
|k|< k0), the gap between the second and the third bands in the spectrum of the system on the
complex plane (not shown) can be classified as a real line gap according to Ref. [21], and the
two bands surrounding the gap are separable [22]. Under these conditions, the Chern number
(21) is the appropriate topological invariant to consider [21,22].

Direct numerical evaluation of the integral in Eq. (21) by discretizing BZ faces several diffi-
culties discussed, in particular, in Ref. [23]. To circumvent them, one introduces a rectangular
lattice of points kn = {knx , kny} that cover BZ [see Fig. 5(b)] and defines link variables [23]

U (µ)α (kn) =
〈ψα(kn)|ψα(kn + uµ)〉
|〈ψα(kn)|ψα(kn + uµ)〉|

, µ= x , y, (23)

where uµ is a vector connecting the neighboring points of the lattice along µ axis. A lattice
field strength is defined by

Fα(kn) = ln
�

U (x)α (kn)U
(y)
α (kn + ux)U

(x)
α (kn + uy)

−1U (y)α (kn)
−1
�

, (24)

−π <
1
i

Fα(kn)≤ π . (25)

Finally, the Chern number is [23]

Cα =
1

2πi

∑

n

Fα(kn). (26)

It can be demonstrated that Cα defined by Eq. (26) takes integer values and coincides with
the result of the direct evaluation of the Chern number using Eq. (21) provided that the lattice
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Figure 5: (a) Chern number of the spectral gap C as a function of ∆B and ∆AB for
k0a = 2π× 0.05: C = 0 means that the gap is trivial, C = ±1 means that the gap is
topological. The set of discrete values ∆B, ∆AB used to create this graph is chosen
to avoid the exact equality |∆B| = |∆AB| for which there is no spectral gap between
the second and third bands in Fig. 2(a) and the two bands cannot be separated un-
ambiguously. (b) Discrete lattice of points kn used to compute the Chern number
Cα of spectral bands. Summation in Eq. (26) is performed over kn corresponding to
blue dots whereas red dots belong to adjacent Brillouin zones and are not included
in the sum.

in k samples BZ finely enough [23]. The advantage of Eq. (26) with respect to the direct
numerical integration of Eq. (21) is that it yields proper results at much larger discretization
steps ux , uy than those needed for accurate numerical integration in Eq. (21) and does not
require specifying a particular gauge. Therefore, Eq. (26) allows for an accurate calculation
of Chern numbers with a reasonable numerical effort. It is noteworthy that neither the large
values of Γ for |k| ≤ k0 nor the large (or even potentially diverging, see Refs. [11] and [15])
negative frequency shifts of the lower frequency band at |k| = k0 perturb the computation
of Chern number even though the analysis of Berry curvature Ωα(k) reveals that the latter
becomes different from zero for |k|= k0.

Topological properties of a spectral gap can be characterized by the Chern number of the
gap C equal to the sum of Cα for the two bands below the gap: C = C1 + C2 if the bands
are numbered starting from the bottom as shown in Fig. 2. We fix k0a = 2π × 0.05 as in
Fig. 2 and compute C as a function of ∆B and ∆AB. The results are shown in Fig. 5(a). We
see that the gap is topological when |∆B| > |∆AB| and trivial otherwise. This condition is
quite remarkable because the two parameters ∆B and ∆AB measure the strengths of, respec-
tively, time-reversal and inversion symmetries breakdowns. Thus, the gap in the spectrum of
the atomic lattice turns out to be topologically nontrivial if and only if the breakdown of the
time-reversal symmetry (quantified by |∆B|) is stronger than the breakdown of the inversion
symmetry (quantified by |∆AB|).

Some insight into topological properties of the band structure can be obtained even with-
out computing topological indices by exploring the relative weight of quasimodes on sites of
sublattices A and B (mode “polarization”). In our lattice, the weights of the wave function
ψα(k) on sublattices A and B are

W A
α (k) =
�

�ψA+
α (k)
�

�

2
+
�

�ψA−
α (k)
�

�

2
, (27)

W B
α (k) =
�

�ψB+
α (k)
�

�

2
+
�

�ψB−
α (k)
�

�

2
, (28)
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Figure 6: Topological (a) and trivial (b) band structures color-coded as a function
of the weight of the quasimodes on the atomic sublattice A, W A

α (k). Horizontal axes
correspond to the path shown in purple in the 2D Brillouin zone in Fig. 1(b). (c)
and (d) show the second band as a function of k in the 2D Brillouin zone for band
diagrams in panels (a) and (b), respectively.

with a normalization condition W A
α (k) +W B

α (k) = 1. We show typical band diagrams color-
coded as functions of W A

α (k) in Figs. 6(a) and (b).
The bottom (α = 1) and top (α = 4) bands exhibit W A

α (k) ∼ 0.5 without any significant
dependence on k. In contrast, the second and third bands show interesting and opposite
polarizations in the vicinity of K point. More precisely, when the band gap is trivial as in
Fig. 6(b), the excitations of the second (lower with respect to the spectral gap) band are
localized on the atoms of B sublattice whereas the excitations of the third (upper) band are
localized on the atoms of A sublattice. This property is common for both K and K ′ points of BZ
as can be seem from Fig. 6(d). In contrast, when the band gap is topological as in Fig. 6(a), a
band inversion phenomenon takes place: the second (lower with respect to the spectral gap)
band is now due to excitations localized on the sublattice A whereas the third (upper) band—
to excitations localized on the sublattice B. For ∆B > 0, band inversion takes place only in
K points of BZ whereas K ′ points exhibit the same band polarization as in the topologically
trivial case, see Fig. 6(c). The situation is the opposite for ∆B < 0 (not shown in Fig. 6).

Whereas modifications of band polarization due to the opening of a topological band gap
and band inversion are common for topologically nontrivial systems (see, e.g., Refs. [24–27]
for examples in topological photonics), Figs. 6(c) and (d) also exhibit another interesting
difference between W A

α (k) for the topological (c) and trivial (d) band structures inside the
light cone |k| < k0. Namely, Fig. 6(c) features a spiral structure for |k| < k0, which is very
different from the three-lobe structure in Fig. 6(d). Because |k| < k0 corresponds to leaky
quasimodes, this part of the band diagram should have visible consequences on the properties
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of light emitted by the atomic lattice. In particular, the spiral structure of Fig. 6(c) may lead
to emission of light with a non-zero angular momentum, similarly to the emission of circularly
polarized light by topologically nontrivial modes observed in Ref. [28] for a different photonic
system.

3 Honeycomb atomic lattice in a Fabry-Pérot cavity

In Sec. 2, we have considered a 2D atomic lattice suspended in the 3D free space. The effective
Hamiltonian describing such a lattice is non-Hermitian and thus the formal application of
standard methods developed to characterize topological properties of excitations in Hermitian
systems (see Sec. 2.4) may be questioned. In addition, we show that the decay rate Γ of
quasimodes inside the light cone |k| < k0 can be very high (see Fig. 2). If we interpret Γ as
an uncertainty of ω, gaps in the spectrum of the lattice in Fig. 2 may become undetectable in
practice. All these problems can be eliminated by placing the atomic lattice inside a Fabry-Pérot
cavity that cuts the leakage of energy out of the atomic system and renders the Hamiltonian
Hermitian. Placing resonant scatterers (though not atoms) between plane-parallel reflecting
plates is also a common strategy in microwave experiments in the field of topological photonics
[17], so that considering such a configuration seems interesting and important. This is what
we do in the present section.

3.1 Green’s function in a Fabry-Pérot cavity

Interaction of atoms via the electromagnetic field is expressed in the Hamitonian (1) with the
help of the dyadic Green’s function Ĝ(r, r′). Section 2 deals with this Hamiltonian for atoms in
the free 3D space and makes use of explicit expressions (2) and (16) for Ĝ(r, r′) = Ĝ(r−r′) and
its Fourier transform Ĝ(q), respectively. It is easy to convince oneself that the same Hamilto-
nian (1) still holds if the atoms are placed in a different environment that modifies the Green’s
function. The analysis of Sec. 2 then has to be repeated with a different Ĝ(r, r′).

We assume that a 2D atomic lattice is placed in the middle of a Fabry-Pérot cavity of spacing
d between perfectly reflecting mirrors at z = ±d/2. For TE excitations, the electric field is
parallel to the mirrors and should vanish on them (we assume that the mirrors are made of a
perfect electric conductor material). For a point source at r′ = {ρ′, z′ = 0} in the atomic plane,
these boundary conditions can be satisfied by the image method. Namely, we place fictitious
point sources of alternating signs at r′n = {ρ

′, nd}= r′ + ndez and write

ĜFP(r, r′) =
∞
∑

n=−∞
(−1)nĜ(r, r′n) , (29)

where we use a subscript ‘FP’ to distinguish the Green’s function in a Fabry-Pérot (FP) cavity
from that in the free space and the term corresponding to n= 0 accounts for the real source at
r′0 = r′. Note that only the leading principal submatrix of order 2 of the 3×3 matrix defined by
Eq. (29)—the one describing coupling between in-plane x and y components of atomic dipole
moments—makes physical sense because different boundary conditions have to be applied for
the z component. It is the only part of ĜFP that will be used in what follows. In general, the
cavity breaks the translational invariance and GFP is not a function of a single variable r− r′

anymore. However, the translational invariance still exists in the atomic plane z = 0 and GFP
becomes a function of r− r′ only when both r and r′ are in the plane z = 0.
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The Fourier transform of Eq. (29) is

ĜFP(q, r′) =

∫

d3r ĜFP(r, r′)eiq·r =
∞
∑

n=−∞
(−1)n
∫

d3r Ĝ(r, r′n)e
iq·r

=
∞
∑

n=−∞
(−1)n
�∫

d3∆rn Ĝ(∆rn)e
iq·∆rn

�

eiq·r′n =
∞
∑

n=−∞
(−1)nĜ(q)eiq·r′n , (30)

where ∆rn = r− r′n.
Equation (18) becomes

ĝ(reg)
FP (q⊥) =

∫

dqz

2π
ĜFP(q, r′ = 0)e−h2q2/2 =

∞
∑

n=−∞
(−1)n
∫

dqz

2π
Ĝ(q)eiqz nd e−h2q2/2

= ĝ(reg)(q⊥) + 2
∞
∑

n=1

(−1)n
∫

dqz

2π
Ĝ(q) cos(qznd)

= ĝ(reg)(q⊥)−
6π
k0

∞
∑

n=1

(−1)n
e−nd
q

q2
⊥−k2

0

q

q2
⊥ − k2

0

�

12 −
d̂2D(q⊥ ⊗ q⊥)d̂

†
2D

k2
0

�

= ĝ(reg)(q⊥) +
6π
k0

1

1+ ek0d
p
(q⊥/k0)2−1

×
12 −
�

d̂2D(q⊥ ⊗ q⊥)d̂
†
2D

�

/k2
0

q

q2
⊥ − k2

0

, (31)

where we separate the term corresponding to n= 0 and yielding the free-space result ĝ(reg)(q⊥)
given by Eq. (18) and use the fact that

∑∞
n=1(−1)ne−nx = −1/(1+ ex).

In its turn, Eq. (19) becomes

Ĝ(reg)
FP (r= 0) =

∫

d3q
(2π)3

ĜFP(q, r′ = 0)e−h2q2/2 =
∞
∑

n=−∞
(−1)n
∫

d3q
(2π)3

Ĝ(q)eiqz nd e−h2q2/2

= Ĝ(reg)(r= 0) + 2
∞
∑

n=1

(−1)n
∫

d3q
(2π)3

Ĝ(q) cos(qznd)

= Ĝ(reg)(r= 0)−
6π
k0

∞
∑

n=1

(−1)n
∫

d2q⊥
(2π)2

e−nd
q

q2
⊥−k2

0

q

q2
⊥ − k2

0

�

12 −
d̂2D(q⊥ ⊗ q⊥)d̂

†
2D

k2
0

�

= Ĝ(reg)(r= 0)−12 × 3
∞
∑

n=1

(−1)n
nk0d(nk0d − i)− 1

(nk0d)3
e−ink0d

= Ĝ(reg)(r= 0) +12 × 3
�

1
k0d

ln
�

1+ e−ik0d
�

+
i

(k0d)2
Li2
�

−e−ik0d
�

+
1

(k0d)3
Li3
�

−e−ik0d
�

�

, (32)

where Lin(z) =
∑∞

k=1 zk/kn is the polylogarithm function and the free-space result Ĝ(reg)(r= 0)
obtained from n = 0 term in the sum, is separated from the rest of the equation. Note that
we do not need the Gaussian cut-off in the integrals for n ̸= 0 in Eqs. (31) and (32) where we
therefore put h= 0.

3.2 Atom in a Fabry-Pérot cavity

Before studying collective excitations in a lattice of many atoms inside a Fabry-Pérot cavity, it
is instructive to recall some of the results concerning the impact of a cavity on the properties of
a single atom. The impact of environment, including mirrors, on the transition frequency and
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Figure 7: Shift of the resonance frequency (a) and decay rate of the excited state (b)
of a single atom in the middle of a Fabry-Pérot cavity for the dipole moment of the
atomic transition parallel to the mirrors (red solid lines). Dashed lines show results
of Ref. [33]. Dotted lines in (b) show Eq. (35).

the spontaneous decay rate of atoms has been extensively studied in the framework of cavity
quantum electrodynamics [29] even though the problem is of essentially classical nature [30].
Experimental results are available since many years [31, 32]. In fact, the real and imaginary
parts of the Green’s function at the origin Ĝ(reg)

FP (r = 0) given by Eq. (32) yield the frequency
shift of the atomic resonance∆ω and the decay rate Γ of an atom in the presence of the cavity:

∆ω

Γ0
= −

1
2

Re
�

Ĝ(reg)
FP (r= 0)− Ĝ(reg)(r= 0)

�

, (33)

Γ

Γ0
= Im
�

Ĝ(reg)
FP (r= 0)
�

. (34)

We show the dependence of ∆ω and Γ on the distance d between cavity mirrors in Fig. 7.
Both ∆ω and Γ exhibit sharp variations at k0d = (2n+ 1)π with integer n = 0,1, . . . due to
the sudden emergence of new TE modes in the Fabry-Pérot cavity at these values of k0d. New
modes also appear at k0d = 2nπ but they provoke no effect because they have nodes in the
plane z = 0 where the atom is located. Thus, the atom does not couple to these modes. ∆ω
remains small except for the limit d → 0 and for logarithmic divergences at k0d = (2n+ 1)π.
The modification of Γ by the cavity is more important. First, Γ = 0 for k0d < π. No TE modes
exist in the cavity for such small d and thus the atom cannot emit a photon and remains excited
for an infinitely long time 1/Γ →∞. For k0d = (2n+ 1)π, Γ exhibits sharp jumps between
values shown by dotted lines in Fig. 7(b):

Γ

Γ0

�

�

�

�

k0d=(2n+1)π±0+
= 1+

1
2

�

1
(2n+ 1)2

±
3

2n+ 1

�

. (35)

The values of Γ/Γ0 for k0d = 2nπ are close to 1:

Γ

Γ0

�

�

�

�

k0d=2nπ
= 1−

1
(4n)2

. (36)

As could be expected, the impact of the cavity decreases and ∆ω→ 0, Γ → Γ0 as d increases.
Figure 7 also compares our results with a previous solution to the same problem by Milonni

and Knight [33] shown by dashed lines.1 The results for Γ coincide exactly whereas those for

1For the atomic transition dipole moment parallel to the cavity mirrors, Ref. [33] provides an explicit expression
only for the decay rate but not for the frequency shift. We derived the latter using the same formalism and by
analogy with the case of the dipole moment perpendicular to the mirrors that is treated in more detail in that
work.
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Figure 8: Same as Fig. 2 but for a honeycomb atomic lattice placed in the middle of
a Fabry-Pérot cavity of width k0d = 2. The band diagrams of Fig. 2 are also shown
for comparison (gray points).

∆ω exhibit a slight discrepancy for k0d < π. Close examination allows us to conclude that
the discrepancy arises from the neglect of the longitudinal electromagnetic fields in Ref. [33].
Indeed, we are able to reproduce the dashed line in Fig. 7 by repeating our calculations without
the longitudinal part (q⊗ q)/(q2k2

0) of the dyadic Green’s function (16).

3.3 Band diagram of a honeycomb lattice in a Fabry-Pérot cavity

To obtain a band diagram of the honeycomb atomic lattice placed in the middle of a Fabry-Pérot
cavity, we diagonalize the 4 × 4 Hamiltonian (8) with entries given by Eqs. (9)–(12) where
the sums over rn are calculated using Eqs. (13) and (17) with ĝ(q⊥) and Ĝ(r= 0) replaced by
ĝ(reg)

FP (q⊥) and Ĝ(reg)
FP (r= 0) given by Eqs. (31) and (32), respectively. In addition, we account

for the modification of single-atom transition frequency and decay rate discussed in Sec. 3.2
by replacing i on the diagonals of the second terms on the right-hand sides of Eqs. (9) and
(12) by Ĝ(reg)

FP (r= 0)−ReĜ(reg)(r= 0). The resulting band diagrams are shown in Figs. 8 and
9 for k0d = 2 and 11, respectively, and the same values of k0a, ∆B and ∆AB as in Fig. 2.

The first observation following from Figs. 8 and 9 is that the imaginary part of the eigenval-
ues Λ(k) of Ĥ(k) vanishes in the presence of the Fabry-Pérot cavity. In fact, the numerical diag-
onalization of Ĥ(k) still yields Λ(k)with small but non-zero imaginary parts for some values of
k, but we can show that this is due to the insufficiently small cut-off lengths h used to compute
the regularized Green’s functions (18) and (19). Decreasing h reduces ImΛ(k) = Γ (k)/Γ0 and
we find a relation maxk[Γ (k)/Γ0]∝ (k0h)2 as illustrated in Fig. 10(a). Thus, Γ (k) = 0 in the
physically relevant limit h→ 0.

The second observation following from Figs. 8 and 9 is that the band diagrams of the atomic
lattice inside a cavity are very similar to the one for the same lattice in the free space, except
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Figure 9: Same as Fig. 8 but for k0d = 11. The band diagrams of Fig. 2 are also
shown for comparison (gray points in the background).

for the vicinity of Γ point |k|< k0. It might be expected that the cavity has the strongest impact
inside this light cone because this is where the emission of electromagnetic waves into the free
space is suppressed by the cavity. However, it is less obvious that the cavity has virtually no
effect outside the light cone.

Figure 8 is obtained for k0d < π, when the cavity does not support propagating TE modes.
Thus, the atoms are coupled by near fields only and the coupling is necessarily short-ranged.
The fact that the band diagram is still similar to the one obtained for the atomic lattice in the
free space (at least, for |k| > k0) even under such extreme conditions, shows that the near-
field coupling plays the central role even in the free space, despite the presence of TE modes
able to couple distant atoms. Note that Fig. 8 does not exhibit divergences of ω at |k| = k0,
in contrast to Fig. 2 in the free space. This is also due to the absence of long-range coupling
between atoms.

For large enough distances d between mirrors of the Fabry-Pérot cavity, the band diagram
becomes identical to that of the atomic lattice in the free space for all |k|> k0 but very different
from the latter inside the light cone |k| < k0 (see Fig. 9 for k0d = 11). The main difference
is, of course, that Γ = 0 for all k, even for large d. Instead of carrying energy out of the
atomic system and giving rise to large Γ , modes with |k| < k0 are now stuck in between the
cavity mirrors and feature very steep dispersion curvesω(k) diverging at |k|= k0 and evolving
rapidly with k0d. To understand the origin of these new modes, we note that the spectrum
of excitations of a 2D atomic lattice in the middle of a Fabry-Pérot cavity is identical to that
of a periodic stack of identical lattices along z axis, with a spacing d and with alternating
signs of the wave function Ψ in consequent atomic planes. The modes inside the light cone
|k| < k0 in Fig. 9 are those involving different atomic planes whereas the modes outside the
cone are confined in individual planes. The modes inside the light cone close spectral gaps
in Fig. 9(b) and (c). However, the proper analysis of these modes requires going beyond 2D
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Figure 10: (a) Maximum decay rate for the band diagram of Fig. 8 as a function of
cut-off length h (red circles). Blue dashed line shows a parabolic fit to the numerical
data. (b) Width of the gap between the second and third bands of the spectrum of
a honeycomb atomic lattice in the middle of a Fabry-Pérot cavity (k0d = 2), as a
function of lattice spacing a, for a system that is topologically trivial (upper line) or
not (lower line). Color code shows Chern number of the gap: C = 0 (blue) or C = 1
(red). Horizontal dashed line shows the gap width in the limit a→∞.

and considering a 3D band structure taking into account the out-of-plane (z) component of
the wave number k on the same footing as the in-plane ones.

3.4 Topological properties of the band structure

To explore the topological properties of the band structures obtained for the atomic lattice
placed in a Fabry-Pérot cavity, we repeat calculations described in Sec. 2.4. We find that the
conclusions reached in Sec. 2.4 still hold for the lattice in the cavity as long as k0d < π. For
larger k0d, the proper calculation of the Chern number is made impossible by the modes in-
side the light cone that close the gap and require extending the analysis to 3D in order to
be accounted for properly. We thus focus on k0d < π and further demonstrate the differ-
ence between trivial (for |∆AB| > |∆B|) and topological (for |∆AB| < |∆B|) gaps by study-
ing the evolution of the gap width and of its Chern number with the interatomic spacing
a. Four eigenvalues of Ĥ in the limit of a → ∞ readily follow from Eqs. (8) and (33):
Λ = Re
�

Ĝ(reg)
FP (r= 0)− Ĝ(reg)(r= 0)

�

± 2∆AB ± 2∆B. When ∆B = 0 or ∆AB = 0, there are

two pairs of doubly degenerate eigenvalues Λ = Re
�

Ĝ(reg)
FP (r= 0)− Ĝ(reg)(r= 0)

�

± 2∆AB or

Λ = Re
�

Ĝ(reg)
FP (r= 0)− Ĝ(reg)(r= 0)

�

± 2∆B, respectively. The band gap ∆gap = 2|∆AB| or
2|∆B| between the corresponding frequencies is, of course, topologically trivial. An interest-
ing question is how this trivial limit can be reached starting from the dense atomic lattice with
small a. A continuous transition from small a to large a is illustrated in Fig. 10(b). When the
gap is trivial (C = 0) for small a, increasing a leads to a slight reduction of the gap width that
finally converges to its value in the lattice with an infinitely large spacing a shown by a dashed
line in the figure. In contrast, when the gap is topological (C = 1 for small a), the gap width
decreases rapidly with a until a complete gap closing [for k0a/2π≃ 0.1 in Fig. 10(b)]. Further
increase of a reopens a topologically trivial gap (C = 0) with a width slowly converging to its
infinite-a limit as a increases.
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Figure 10(b) provides a nice visual illustration of the fact that different states of a physical
system (here, the many-body state for small a and the two-atom state for infinite a) that are
characterized by the same value of a topological invariant (here, Chern number C = 0), can be
connected by a path in the parameter space (here, the path goes along the axis a at constant
∆AB and ∆B) that keeps a spectral gap always open. In contrast, a path connecting two states
characterized by different values of C (C = 1 for small a and C = 0 for large a) necessarily
implies closing of the gap.

4 Conclusion

We provide a complete characterization of the band structure of a 2D honeycomb lattice of
atoms interacting via the electromagnetic field polarized in the plane of the lattice (TE modes).
Atoms are assumed to have a nondegenerate ground state (total angular momentum Jg = 0)
and a triply degenerate excited state (Je = 1), which leads to a band structure composed of
four bands. The lattice embedded in the free 3D space and the lattice placed in the middle of a
Fabry-Pérot cavity of spacing d < π/k0 have very similar properties, except for the large decay
rates Γ of modes of the lattice in the free space for 2D wave vectors k inside the light cone
|k| < k0. The cavity blocks the emission of electromagnetic energy in the infinite free space,
leading to Γ = 0 for all modes. If the lattice spacing a is small enough (k0a ≲ 0.1), a gap can be
opened between the second and third spectral bands by breaking either the time-reversal (by
an external magnetic field leading to a Zeeman shift∆B in units of the decay rate of the excited
state Γ0) or the inversion (by assigning different resonant frequencies ω0 ∓∆ABΓ0 to atoms A
and B forming the two-atom unit cell of the honeycomb lattice) symmetry. We characterize
the topological property of the spectral gap by its Chern number C . The gap is topological
(C ̸= 0) when the breakdown of the time-reversal symmetry is stronger than the breakdown
of the inversion symmetry: |∆B| > |∆AB|. The gap is trivial (C = 0) in the opposite case. The
topological character of the gap for |∆B| > |∆AB| leads to a characteristic band inversion: the
population disbalance between A and B sublattices for states near band edges is opposite to that
in the case of a trivial band gap. In addition, reaching the trivial limit of noninteracting atoms
by increasing the lattice spacing a requires closing of the topological gap and then reopening
of a trivial one, in contrast to the case of the topologically trivial gap that remains open all
the way from small to large a. The topological gap ∆gap is the largest for a range of |∆B|
between two values determined by the dimensionless lattice spacing k0a and the inversion
symmetry breaking strength |∆AB|. Near-field dipole-dipole interactions between atoms play
a crucial role in the opening of the topological spectral gap, leading to its maximum width
max(∆gap)∝ (k0a)−3 for ∆AB = 0.

The band diagram of the atomic lattice placed in the middle of a Fabry-Pérot cavity of
spacing d > π/k0 differs form the diagram for d < π/k0 only slightly. The difference is
concentrated inside the light cone |k| < k0 where new modes arise due to reflections of light
from cavity mirrors. These new modes still have Γ = 0, so that the spectrum remains real-
valued. They close the band gap that would be present for d < π/k0 and complicate the study
of the topological properties of the band diagram. The proper study of the latter properties
requires extending our analysis to 3D, which is beyond the scope of the present work.

We believe that the recent progress in manipulating cold atoms and, in particular, the re-
markable achievements on the way towards arranging them in regular lattices with lattice
spacings well below the optical wavelength [34–36], give our theoretical results a direct ex-
perimental relevance. In addition, our theoretical model can also be used for an approximate
description of electromagnetic wave propagation in 2D arrays of small dielectric scatterers
(or pillars or rods, to use the standard terminology), both in microwave and optical spec-
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tral ranges, at frequencies near an isolated single-scatterer resonance of electric-dipolar na-
ture. Topological photonics of arrays of dielectric resonators is an active research field (see
Refs. [17, 24–27] for recent reviews). Even though in most of the existing works one re-
lies on isotropic s-modes of individual pillars, corresponding to magnetic-dipolar resonances,
p-modes and the corresponding electric-dipolar resonances have also been studied in the lit-
erature [17,37]. For such resonances, considering a pillar as point-like would allow for using
the theoretical framework developed in this work to obtain a description of a lattice composed
of many identical pillars that become “atoms” of our model. Though only approximate, such
a description should be much less computer-resource consuming than the direct numerical so-
lution of Maxwell equations and may be helpful in understanding the basic physical processes
at play.
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A Derivation of the formula for the width of the spectral gap

Analysis of band diagrams ωα(k) of the Hamiltonian Ĥ(k) given by Eqs. (8)–(12) shows that
the width of the gap between the second and third bands is determined by the values of ω2
and ω3 at very specific points of BZ: Γ , K and K ’ points. At these points, Ĥ(k) takes quite
simple forms facilitating its diagonalization. In particular, at K point we have

Ĥ(kK) = c014 + 2







∆AB +∆B 0 0 Ω

0 ∆AB −∆B 0 0
0 0 −∆AB +∆B 0
Ω 0 0 −∆AB −∆B






, (A.1)

where

c0 = i +
∑

rn ̸=0

G++(rn)e
ikK ·rn = i +

1
A
∑

gm

g++(gm − kK)− G++(r= 0)

=
1
A
∑

gm

g++(gm − kK)−ReG++(r= 0) , (A.2)

Ω =
∑

rn

G+−(rn + a1)e
ikK ·rn =

1
A
∑

gm

g+−(gm − kK)e
ia1·(gm−kK ) , (A.3)

are functions of k0a and kK = {K , 0} is the value of k = {kx , ky} at the K point of BZ with
K = 4π/3

p
3a. For k0a≪ 1, we find |Ω| ≫ |c0|. The four eigenvalues of Ĥ(kK) are real:

ΛK = c0 ± 2
Æ

(∆B −∆AB)2 +Ω2/4≃ c0 ±Ω , (A.4)

and

ΛK = c0 ± 2(∆AB +∆B) . (A.5)
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The result at K ′ point k′K = −kK is obtained by changing the sign in front of ∆B in the above
expressions.

At the Γ point kΓ = 0 we find

Ĥ(0) = (c1 + ic3)14 + 2







∆AB +∆B 0 (c2 + ic3)/2 0
0 ∆AB −∆B 0 (c2 + ic3)/2

(c2 + ic3)/2 0 −∆AB +∆B 0
0 (c2 + ic3)/2 0 −∆AB −∆B






, (A.6)

where c1, c2 and c3 are real-valued functions of k0a and are defined by the following relations:

c1 + ic3 = i +
∑

rn ̸=0

G++(rn) = i +
1
A
∑

gm

g++(gm)− G++(r= 0)

=
1
A
∑

gm

g++(gm)−ReG++(r= 0) , (A.7)

c2 + ic3 =
∑

rn

G++(rn + a1) =
1
A
∑

gm

g++(gm)e
ia1·gm . (A.8)

The four complex eigenvalues of Ĥ(0) are given by

ΛΓ = c1 + ic3 ± 2∆B ± 2
q

∆2
AB + (c2 + ic3)2/4 , (A.9)

with the four possible combinations of ± signs.
Further analysis reduces to following the eigenvalues ΛK , ΛK ′ and the real part of ΛΓ as∆B

varies at fixed k0a and ∆AB. At each value of ∆B, we sort ΛK and ReΛΓ in descending order
and find the width of the gap between the second and third bands as

∆gap =
1
2

min
¦

Λ
(2)
K −Λ

(3)
K ,Λ(2)K −ReΛ(3)Γ , ReΛ(2)Γ −Λ

(3)
K , ReΛ(3)Γ −ReΛ(2)Γ ,

Λ
(2)
K ′ −Λ

(3)
K ′ ,Λ

(2)
K ′ −ReΛ(3)Γ , ReΛ(2)Γ −Λ

(3)
K ′

©

. (A.10)

As a result of such an analysis, we find that the width of the spectral gap depends only on
the absolute values of ∆B and ∆AB and identify three threshold values of |∆B| at which the
functional dependence of∆gap on parameters changes because a different term starts to control
the minimum in Eq. (A.10):

∆
(1)
B =

1
4
|c0 − c1 + S + 2|∆AB|| , (A.11)

∆
(2)
B =

1
4
|c0 − c1 − S − 2|∆AB|| , (A.12)

∆
(3)
B =

S
2

, (A.13)

where

S = 2Re

√

√

∆2
AB +

1
4
(c2 + ic3)2 . (A.14)

The result for the width of the gap is

∆gap =



















2||∆B| − |∆AB||, |∆B|<∆
(1)
B ,

�

�

1
2(c0 − c1 + S)− |∆AB|

�

� , ∆
(1)
B < |∆B|<∆

(2)
B ,

S − 2|∆B|, ∆
(2)
B < |∆B|<∆

(3)
B ,

0, |∆B|>∆
(3)
B .

(A.15)

Equations (A.15) can also be rewritten in terms of ∆(n)B only, without using the parameters cn.
This is done in Eq. (20) of the main text.
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