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Abstract

In order to assess the relevance of higher order terms in the Standard Model effective
field theory (SMEFT) expansion we consider four new physics models and their impact
on the Drell Yan cross section. Of these four, one scalar model has no effect on Drell
Yan, a model of fermions while appearing to generate a momentum expansion actually
belongs to the vacuum expectation value expansion and so has a nominal effect on the
process. The remaining two, a leptoquark and a Z’ model exhibit a momentum expan-
sion. After matching these models to dimension-ten we study the how the inclusion of
dimension-eight and dimension-ten operators in hypothetical effective field theory fits
to the full ultraviolet models impacts fits. We do this both in the top-down approach,
and in a very limited approximation to the bottom up approach of the SMEFT to infer
the impact of a fully general fit to the SMEFT. We find that for the more weakly coupled
models a strictly dimension-six fit is sufficient. In contrast when stronger interactions
or lighter masses are considered the inclusion of dimension-eight operators becomes
necessary. However, their Wilson coefficients perform the role of nuisance parameters
with best fit values which can differ statistically from the theory prediction. In the most
strongly coupled theories considered (which are already ruled out by data) the inclusion
of dimension-ten operators allows for the measurement of dimension-eight operator co-
efficients consistent with theory predictions and the dimension-ten operator coefficients
then behave as nuisance parameters. We also study the impact of the inclusion of partial
next order results, such as dimension-six squared contributions, and find that in some
cases they improve the convergence of the series while in others they hinder it.
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1 Introduction

The Standard Model effective field theory (SMEFT) has become one of the most important
methodologies for studying physics beyond the Standard Model (SM) at the LHC. The SMEFT
is formed on the fundamental principle that, so long as new resonances are sufficiently heavy,
effective field theories yield the most general possible S-matrix consistent with the tenets of
quantum field theory [1]. This powerful statement comes with some caveats, for example:
there exists a region of validity based on the power counting and there is no reason (beyond
aesthetics and limited experience) that the heavy physics imprints on the leading operators of
the expansion.

In the field of the SMEFT, most studies are performed at dimension six or order 1/A2
where A is the heavy scale of new physics. However, there has been substantial interest in
understand beyond leading order effects in the SMEFT (or 1/A2) expansion. In some cases
this can be because of unique signals first generated beyond leading order, for example triple
neutral gauge couplings [2-7]. It has also been pointed out that many models generate similar
dimension-six EFTs, but this degeneracy is broken beyond leading order in the SMEFT expan-
sion [8]. This has motivated a shift toward including dimension-eight effects in the SMEFT
which has resulted in many tools for calculation [9-13] as well as many phenomenological
studies [14-36].

A natural question is: how relevant are terms of order 1/A%? Much of the community
neglects them arguing the new physics scale is sufficiently high their effects are negligible. This
approach is also pragmatic, in that it allows for dealing with far fewer parameters in a fit as
there are already a seemingly intractable number of parameters at dimension-six [37]. This can
be made tractable with assumptions such as minimal flavor violation [38] or flavor universality
[39], which presents some opportunity to begin consistent studies of the SMEFT to order 1/A%,
e.g. a fit including dimension-eight operators in [25]. If or when valid, truncation at order
1/A? offers further appeal — one can embrace the “Energy helps accuracy” paradigm [40]
where perceived growth of matrix elements due to the presence of dimension-six operator
effects allows for more stringent constraints from data. This naturally brings us back to the
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question posed at the beginning of this paragraph. Is it consistent to use high energy events
to further constrain the parameters of the SMEFT at order 1/A%? An expansion in a large
scale, while using high energy data, may naturally break down. An example of a more limited
study of the breakdown of a top-down SMEFT analysis at dimension-six can be found in [41].
However, this study did not discuss how including higher order operators impacts a fit or the
inclusion of additional operators in the IR which are not generated by the UV which we will
perform below. Other studies related to the convergence of vev expansion in the scalar singlet
extension of the SM can be found in for example [42] (SMEFT vs nonlinear EFTs) or [43] (D6
vs D8 SMEFT).

This article seeks to explore some concrete ultraviolet (UV) extensions of the SM, their
imprint on the SMEFT, and the possible breakdown of the expansion specifically for the Drell
Yan process at the LHC. As a study to dimension-eight naturally includes dimension-six-squared
contributions, we also explore the reliability of fits that include the squares of dimension-six
operators.

This article is organized as follows, in Section 2 we outline four new physics models of a
single new field (possibly a multiplet of the SM gauge group), in Section 3 we derive the EFT
for these models up to dimension ten (1/A®%), in Section 4 we consider how well the IR model
at a given mass dimension compares to the UV model prediction, and in Section 5 we give our
conclusions. The appendices include discussions of the U(1) mixing model considered in this
article, a parameterization of the SMEFT Drell Yan cross section, and additional tables. The
ancillary files include Mathematica notebooks employing Matchete [44] to derive the effective
Lagrangians used in this work.

In addition to the topics discussed in this article, we note that the foundation of any analysis
at a hadronic collider are the pdfs. The pdf determination can hide the UV dynamics as state
of the art pdf determinations include LHC data [45-49].

2 The models in the UV

We consider four different ultraviolet models that impact the Drell-Yan process. These include
two scalar models, ¢ and ®, a fermion y, and a vector V. These models are elaborated after
we establish our notation through reviewing the SM fields and Lagrangian.

For each model the Feynman Rules are generated using FeynRules [50], and the Drell Yan
process is calculated using FeynArts and Formcalc [51,52], then integrated in invariant mass
bins for the final state leptons using the Vegas algorithm against the NNPDF3.0 NLO parton
distribution functions (pdfs) with a; = 0.118. The factorization and renormalization scales
are taken to be the central value of a given invariant mass bin. We assume a 13 TeV LHC,
invariant mass bins are chosen according to the CMS Drell-Yan search with 140/fb integrated
luminosity [53]. Care is taken to conform to the {a, Gy, m,} input parameter scheme, however
this has a negligible effect on our results as the large mass of new particles required by the
EFT approach requires mixing with the SM to be small.

2.1 The Standard Model

For clarity we briefly introduce the field content and the Lagrangian of the SM. The SM scalar
and fermion fields and charges used in this article are:

H~(1,2);,
L~(1,2)1, Q~(3,2), (1

e'\’(l,].)_l, d~(3:1)_%: u~(3)1)%'

3
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Figure 1: Cross section as a function of invariant mass bin for the SM. The ratio of
the UV models with ®, y, or X to the SM. Assumed mass and coupling for the UV
model is given in the legend. In the SM plot, small jumps in the cross section are due
to a change in the bin widths used in [53].

Implicit in the above notation is that the fermionic SU(2); doublets are left handed, and the
fermionic singlets are right handed. For simplicity we will neglect fermion masses, and there-
fore set the SM Yukawa couplings to zero. The SM Lagrangian is then given by:

1 1 1

— A FA, I 1,
Low=—7G, G = W, W — 2B, B

+iLPL +iQPQ +iéPe + id Pd + iilpu

+(D,H) (D*H) + p*(H'H) — A(H'H)?. (2)
Where the B, W, and G fields are the familiar gauge fields of U(1)y, SU(2);, and SU(3). with
gauge coupling constants g, g,, and gs.

For the SM process calculation we use the input parameters used in previous studies of
dimension-eight effects in the SMEFT [24,29]:

1

%= 137.035999084(1—A,) )
Aa =0.0590, 4
Gp = 1.1663787 - 107> /GeV?, (5)
my; =91.1876 GeV. (6)

The cross section for the tree-level SM Drell Yan process as a function of invariant mass bin is
shown in Figure 1.

2.2 Scalar ¢

Next we consider the scalar ¢ with quantum numbers (1, 3), (referred to as E in [54]). This
model was chosen as at dimension-six it only generates operators which result in finite renor-
malizations of the SM vertices contributing to Drell Yan and the Z boson mass.

In this model we have, in addition to Lg; the terms:

ALy = 50,9 (D7) — JMA(H) +KH 0 HY" — 2yps (97 (HH) = 2 (67", (7
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As the heavy scalar ¢ does not couple directly to fermions, this model is a trivial example, i.e.
it will not have any affect on Drell Yan. This is still a meaningful example of when NP will not
affect a given process, albeit less interesting than those which follow. As the Drell Yan process
is unaffected no plot for this model is included in Figure 1.

2.3 Scalar &

We consider a scalar ¢ with quantum numbers (3, 2) 1 this is the IT; of [54]. This model was
chosen as at leading order in the SMEFT it generates just one four-fermion operator.
We write the terms additional to the SM Lagrangian as,

ALy =(D,®)'(D,®)—M?*®'® + Y, [d(®ioyL) +hc.]. (8)

For convenience we take Yy to be real, but this need not be the case. As the & particle doesn’t
mix with the SM particle content the input parameters are the same as in the SM, plus the new
parameter Y. In Figure 1 we show the ratio of the cross section in the presence of a 3 TeV ¢
with Yukawa coupling Y = 0.5 to the SM cross section. The scalar & contributes to the process
in the t—channel, and we can see from the plot that the disparity from the SM prediction is
most pronounced in the highest invariant mass bins. That is, it contributes to the momentum
expansion of the SMEFT.

2.4 Fermion y

We consider a vector-like fermion y with quantum numbers (1,1)_; (E of [54]). This model
is chosen as it generates only “Class 7” operators (y2H?D) at dimension-six.
In addition to the SM Lagrangian we have:

AL, =igPy—Mjiy—Y,[H 7L+hc.]. 9

Here we have the complication that the y and L fields mix, causing a shift in the definition
of Gy. This shift is suppressed by 1/M? and is numerically negligible. We include this shift,
nonetheless, and Fig. 1 shows a plot for a 3 TeV y with Yukawa coupling Y, = 0.4. Notice the
distinct difference from the case of ®. The largest difference here occurs in the low invariant
mass range, for higher m,, the shift is approximately constant. This is because we have simply
shifted the coupling to the leptons by a constant value. In the discussion of the theory in the in-

frared we will see this is directly attributable to the dimension six operator (H D WH )GLy*L),
and all other operators do not contribute (in the m, = 0 limit).

2.5 Vector X

Finally, we consider an additional gauge boson X. We begin with a vector V transforming
under a new U(1) gauge symmetry, which will, upon diagonalizing the mass matrix, result in
the vector X with which we will work. We do not assign any charge to the SM fermions under
this new U(1) and therefore the vector’s only interaction with the SM is through kinetic mixing
with the SM B field. This model is of interest as at each order in the heavy mass expansion it
only generates operators of the form (8HBW)82"(EPBP“). These are the (2n + 4) dimensional
analogues of the ¥ operator of [40]. The Lagrangian for this model is:

1 1 k
ALy = _ZV‘”VW + 5M2VMV“ - EB‘”VW’ (10)
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Making appropriate field redefinitions (See App. A) results in the alternate UV Lagrangian:

1 1
ALy = —ZXWX‘“’ + EM)ﬁxuxﬂ — leH/j(HTi(B)HH)X“ + g2 Y2BA(H H)X X"

— g1 > Yy By )X, an
Y

where Yy = 1/2 is the Higgs hypercharge, Yy is the hypercharge for a given SM fermion field
1y, and:

—k
S (12)
P 1—k2
M _ M 13
x = —z (13)

Note that part of this Lagrangian comes from transforming the B field in Lg; + ALy, and the
B field is not the “same” B field as in Lgy; + ALy when used. It is much easier to work with
the EFT resulting from Eq. 11 as this greatly reduces the number of operators which induce
unphysical poles in scattering amplitudes.’ This is discussed more in the IR section below.

In this case, there is significant mixing with the SM and the input parameters are difficult to
determine. We numerically solved for the corrections to input parameter relations and found
they were again negligible. Nonetheless we include them in the calculation of the cross section
in the UV An example of the ratio of UV to SM cross sections for My = 3 TeV with the value
of the parameter controlling the mixing k ~ —0.5 (8 = 0.6) is shown in Fig. 1. We note that
this model results in by far the largest deviation from the SM prediction, with this example
resulting in over 15% corrections in the highest invariant mass bins.

3 The models in the IR

In this section we discuss the matching of the models of Sec. 2 to order 1/A®. The state of the
art for matching onto the SMEFT is generally dimension-eight. Examples include [22, 24, 30,
56,57]. The process of matching at tree level to an effective Lagrangian beyond leading order
in the EFT expansion is in general not particularly difficult. However, the theory community
has focused on rewriting these effective Lagrangians in terms of non-redundant bases by uti-
lizing Integration By Parts (IBP) relations and field redefinitions. This step is fundamental to
the bottom up approach embraced in phenomenological searches for beyond the SM physics
as it removes redundancies in the operator basis and allows for a unified comparison between
various groups’ analyses. These steps are tedious and time consuming, rendering the process
of matching even to dimension eight largely impractical.

However, for the purpose of this article we are particularly interested in understanding
the implications of missing orders in the SMEFT power counting. As such we instead only
make use of IBP identities to simplify our calculation of the Drell Yan cross section as much as
possible.

Below we present the results of matching these models to the SMEFT up to order 1/A%.
The matching has been performed to order 1/A®, however the resulting effective Lagrangians
are generally not well suited for publication and so are relegated to the ancillary Mathematica
notebooks. The matching was performed by hand following the procedure in [58], but checked

For a discussion of how non-derivative field redefinitions in the UV relate to derivative dependent field redefi-
nitions in the IR see [55].
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using the Matchete package [44].? Integration by parts identities, when used, are applied
using Matchete, these were not checked by hand due to the sheer scope of the number of
identities required for some models.

In what follows we only write operators which affect the Drell Yan process. IBP identities
are used in an effort to distribute derivatives across fields. For example,

—(D,H)'H(D,D*H)'H +h.c.
= [H'(D*MH'(D*H) + (D,H)"(D*H)H'(D*D*H) + H'(D*H)(D,H)'(D*H) + h.c.] . (14)

Notice that after applying the IBP identity above we can neglect operators involving 3 or more
cases of derivatives of the Higgs field (or in other cases also field strength tensors), as they
require three or more bosons in an effective vertex and therefore will not contribute to the Drell
Yan process at tree level. So for the example above, only the first term needs to be retained.
This is also the method which allows the geoSMEFT to elaborate all operators which contribute
to two- and three-point functions and derive certain results to all orders in the SMEFT power
counting [10].

Predictions were made following the same routine outlined at the beginning of Sec. 2.
In the case of the X field, calculations involving four-fermion operators were performed by
hand as Feynarts/Feyncalc remains unable to implement the Feynman rules for four-fermion
operators with vector currents. In this section we give some interesting benchmark examples,
primarily focusing on when dimension-six terms fail to correctly reproduce the m,, distribu-
tion. We leave a more general exploration of the model parameter spaces for the next section.

To clarify our nomenclature, we write a general squared amplitude in the IR as:

c 1
IMP? = Mgy l? + 2A_62|MSMM6| + A4 (C€2>|M6|2 + 2C8|MSMM8|) oo (15)

We will generally refer to the leading term as the dimension-six term and occasionally as the
order 1/A? term. The order 1/A* term includes the dimension-six squared term (cé) as well as
the dimension eight term arising from the interference of the 1/A* amplitude with the SM. We
will also refer to results to order 1/A* as “(up) to dimension eight.” Similarly, but not written
above, the 1/A® terms include dimension-six amplitudes interfering with dimension-eight as
well as dimension-ten amplitudes interfering with the SM amplitude. In general there are other
contributions, such as three insertions of dimension-six operators in an amplitude interfering
with the SM. We make simplifying assumptions below which remove these additional terms
from consideration. We refer to calculations to order 1/A® in analogously to those to order
1/A%.

Scalar ¢

This theory only affects the Drell-Yan process through shifts in the Z-mass. However, we use
the Z-mass as an input parameter so these effects are absorbed into the definition of the Z-mass
and result in shifts in other vertices which do not contribute to Drell Yan. Because of its relative

2While Matchete is largely known for its utility in matching at one-loop, it is also an extremely powerful tool
for tree-level matching to higher orders in the EFT expansion as well as for IBP relations.
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Figure 2: Example diagrams of the how the UV imprints on the IR for each model.
These diagrams should be understood as an implicitly incomplete set, i.e. most dia-
grams are missing, and only used as qualitative guide. External vectors are sourced,
in these cases, by covariant derivatives. The external Higgses in the diagram should
be understood as (v) when contributing to the Drell-Yan process.

simplicity we can show the full result through dimension ten. The resulting Lagrangian is:

¢ K2 1 1 K2 20 prt M2
Lig=Lsy— Iy EQHD - ZQHDZ ~ M [|H[>(H'D*H) + h.c.]
P P Ap K>
oH 9 oH 9 oH hrrrtd
+ e 1HI"Qup — — = IH I Qupz + — [IHI*(H'D*H) + h.c.]
K2 )L¢K2 9 4 KZ 9 A¢Kz 4
K2 A'qsz SAiH .
— — H|®(H'D?H) +h.c.], 16
M8 |: 4M2 3 [l l ( ) c ] ( )
where we have defined:
Qup = (H'D,H)(D*H)'H, 17
Qup2 = (H'H)(D*H)'(D,H). (18)

Note that Qyp, is generally removed from the Warsaw basis in favor of (H'H)O(H'H). This
serves as an example where there is no effect on the Drell Yan process. If nature realizes the
¢ model, then from a bottom up perspective we would be able to consistently use energy
dependent distributions in the Drell Yan channel to constrain dimension-six operators in the
SMEFT.

Scalar ®

This model exhibits the derivative expansion of the SMEFT very nicely as there are no Higgs
boson dependent operators. It is important to note that (dL) is not gauge invariant, only the
full product (dL)(LA) is, otherwise one might attempt to simplify the derivatives into a form
like (dL)O(Ld) instead of (dL)D?(Ld).
o Y2 oo
L =Lsw+ 5 (dr)(Ld) (19)
YZr, - i . : B, . _
+ W[ (dp,L)(Lp*d)+(D,d )L (LD,d)+(dD,L)(D,L)d +(D,d)L(D,L)d].

The matching to dimension 10 can be found in the ancillary files. The result amounts to
distributing four covariant derivatives among the four fermions of the dimension-six operator.
Use of the Fierz identity,

(¥1PL2) (Y3Prepy) = —% (¢1YMPR¢4) (P3y"Prapsy) (20)

8
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recovers the dimension-six matching result of [54] which makes use of the Warsaw basis.
Performing the calculation in the UV, and for simplicity of writing the expressions, taking
the limit m; — 0, and denoting the partonic center of mass energy $, we find:

Al 2 4 S
o(dd —ete)=og(dd —»ete™)— aYZS (s —2M )+ M log(l - W)

48N, c2,$3
R 2M?)—2M?($+ M?)log (1+ ) o
647N $(8 + M2) '
In contrast, in the EFT we obtain:
i} - y?2 v2 §(2anAg +Y2c2 A2
o(dd = ete™) = ogy(dd —>e+e_)——%A6+— ( 8 zw 6)
M2 72N cy, M#4 1927N,cy,

v2 §2(16anAq g+ 15Y%c2 AgA
Y ( 10 wHe 8) , 22)

M6 19207N, c2,

where we have denoted the contribution from the insertion of any dimension-d operator by
A,. Notice that each subsequent order in the series essentially corrects the growth in §" by
a term with the opposite sign with growth in §"*!. That the order-by-order contributions
contribute with opposite signs can be understood from the number of derivatives present at
each order and that they source a factor of ip" in a given Feynman rule, i.e. a factor of 1
for dimension six, —p? at order 1/A* and p* at O(1/A®). Therefore, we expect that a fit
to only dimension six operators will misestimate the UV model as § increases. The degree
to which this occurs is controlled by the size of M and Y. We also note the inclusion of the
square of dimension-six amplitudes in calculations, for this specific model, while neglecting the
dimension-eight contribution results in an opposite sign term which corrects the dimension-six
term and results in better agreement as § grows. This will again fail at some § where the order
1/AS% terms are needed to again correct the growth.

Figure 3 shows three example plots of the convergence of the EFT expansion for Mg = 3
TeV and Y; = 0.5 and 1.0, as well as the higher mass My = 7 TeV with Y; = 1.0. These
plots are chosen deliberately to show examples where the dimension-six prediction fails by
more than 5% in the highest invariant mass bins. The plots nicely show how the opposite sign
contribution at a given order 1/A2"*2 corrects for the growth at order 1/A2", but eventually
overcorrects requiring the order 1/A%",

It is interesting to notice that the dimension-six squared contribution, which is of the same
order as, but neglects the dimension-eight operators’ contributions, outperforms the complete
order 1/A* contributions. We note that in the cases where M, = 3 TeV, the expansion fails to
reproduce the full model result to better than 5% even when the dimension-ten contributions
are considered. Unsurprisingly, we find as My tends to infinity, or Y3 to zero, the agreement
between the dimension-six prediction and the UV model converge.
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Figure 3: Ratios of the IR theory cross section prediction at a given order in the EFT
expansion to the full UV model predictions. The data is binned in invariant mass
of the leptons my, following the CMS analysis found in [53]. The titles, $(M, Y3),
indicate the mass M in TeV and the Yukawa coupling of & to the SM fields, Y3.

Fermion g

Integrating out the heavy fermion using the covariant derivative expansion, to dimension-
eight, we find:

Y2 ) ) )
L= Loy + iz—l\flz [(HL)y,(D,H)'L+(HL)y,(H'D,L)—h.c.]
YZ
- iT]\?}[(HL)YMYVYp(DuDVDpH)fL + (HL)YquYp(D,u,DvH)' (DpL)

+(HL)y, vy, (D,H)(D,D,L) + (HL)y,y,y,H'(D,D,D,L)
+(HL)y,vY,(D,D,H)(D,L) + (HL)y,Y,v,(D,H)'(D,D,L)

+(HL)Y 7Y, (D,H) (DD, L)+ (HL)y,v,Y,(D,D,H)'(D,L)— h.c.] . (23)

This derivative expansion appears to imply that we could expect growth of the process with
center of mass energy. However, by inspection we can see that most of the terms in Eq. 23 will
result in a Feynman rule containing 2 which will vanish for on-shell (massless) leptons. This
is not obvious for some of the operators, however a more careful manipulation of the operators
using IBP relations, removing terms generating rules with too many bosons, and deriving the
Feynman rules reveals all operators of dimension-eight and higher do not contribute to the
process. The only terms which remain after such an analysis are the dimension-six terms
which simply renormalize the SM-like AZ¢ and Z{{ vertices. This is consistent with the plot in
Fig. 1, where the dominant correction comes from the lower invariant mass bins.

To phrase this from a geometric perspective, the only operators affecting three-point func-
tions are those classified in the geoSMEFT. The only operator appearing above which appears
in the geoSMEFT is

_ 1 - 1 . -
i(HL)y,(D*H)'L —h.c.= g(HTi?uH)(Ly“L) + 5 iDLy, (24)
where the 7! are the generators of SU(2);, and

+.55° ot s +

H'iD ,UH =H lDHH (lDMH) H, (25)
5901 ta 0 . I\t

HlD“Hzle D,H—(iD,7' H)'H. (26)

10
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Therefore all other operators can be exchanged by equation of motion and IBP identities for
four and higher point functions.

Unfortunately this means this effective Lagrangian is not particularly interesting for our
purposes. That it has a dimension-six contribution to the Drell Yan process is a slight contrast
to the first example, ¢, where for our input parameter choice there is no effect on the dynamics.
In this case we again conclude a pure dimension-six analysis is sufficient. Although, looking at
electroweak precision data (EWPD) [24, 25,59-61] demonstrates that this model is severely
constrained by Z-pole physics and we should not expect to obtain more stringent bounds
from the Drell Yan process. We do not include a figure for this example as the dimension-six
contribution fully reconciles the UV and IR predictions.

Vector X

In the infrared the Lagrangian for X is by far the most complicated. As mentioned above, if
we had simply integrated out the V particle we would have obtained one operator at each
order, (3MBM)82“(EPBP #). In order to avoid complications in this model from higher poles in
the propagator resulting from the extra derivatives we made a field redefinition in the UV to
arrive at a Lagrangian depending on X field. This, and some IBP identities, allows us to arrive
at an effective Lagrangian free of this complication:

2 2 2p2 4
L A e
/32 2/54
M, (On*" —3%3") ¥, +2 MH (H'H)YH,, o
/52 2/54
2;\44 o, (O — 343", + —H(HTH)\IJ N
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81YyB ] )
= [AEH H)Qup + (H'H)Qup 2]
4Y4 4 ) )
+ gleHf [((H'H)*(H'D*H) +h.c.]
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We have made use of the following definitions to simplify the presentation:

H, = YH(H"”i?’MH) =iYy(H'D,H)—iYy(D,H)'H, (28)
= Z YWW/) ) (29)

Y
® = (H'H)’B,,B"", (30)
Q® = H'H)H "H)W] B, (31)
Q. = Wi mH T MWW (32)

Where Yy is the hypercharge of a given field F, and the sum over v is a sum over the SM
(chiral) fermionic fields.

This Lagrangian neatly exhibits the momentum expansion which is illustrated by terms
with the transverse projection operator On,,, —J,,d,. We can also see the vev expansion where
dimension-six terms are accompanied by corresponding dimension eight operators rescaled by
(H'H). The operators, le)?, QE??,V 5> and QE?I)/V,Z encode the corrections to the mixing between
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the X and B particles in the UV. We note these corrections start at dimension-eight and so
they would be missed by a leading order SMEFT study, which would therefore miss potentially
stringent EWPD constraints derived from the le)/VB operator’s contribution. The operator
H,H" is related to the operators Qyp and Qpp  occurring in the ¢ model, and generates a
shift in the Z-boson mass. Ultimately, as was found while determining the input parameters
in the UV model, these operators have a negligible effect, when compared with the effects
of the momentum expansion. That is, the cross section is dominated by the four-fermion
operators. As such, only the four-fermion operators are included in our calculations of the
cross sections. This is simply because these contributions dramatically slow the calculations
due to the complexity of the expression for the partonic cross section, not because they are too
cumbersome to implement.

Writing only the four-fermion operators, we can express the Lagrangian up to dimension
ten:

2p2 2p2 2p2
8P ., &P v 8P
— oz WV S e, —

X _
Lig = M6 W, I, WP (33)
where we have introduce I1,,,, = 07, — 9,,0,. The operators present in Eq. 27 and neglected

in Eq. 33 are generated by the following terms in the full UV model:
—e1 VuB(HTID JH)X" + g2V (HH)(XPX,). (34)

As mentioned, the contributions from the vev expansion are negligible in our analysis. For
example, for a 3 TeV X, and 8 = 3 these operators contribute with an approximately 0(1072)
effect in all invariant mass bins. This is contrasted with the momentum expansion where the
effect is @(1071%) in the lowest invariant mass bins to @(100) in the highest invariant mass
bins. As this example has the lowest mass and strongest mixing we expect all other potential
parameter combinations to lead to similar or even more disparate contributions (the Wilson
coefficients scale similarly, while the momentum dependence of the operators remains the
same). To simplify our analysis and isolate the momentum expansion relevant to this study
we will therefore only employ the IR Lagrangian of Eq. 33. We have tested that this has a
negligible effect on the studies below.

Comparing Eq. 19 and Eq. 33 we see that the expansion in p?/M )% in the case of X additively
corrects the IR prediction in contrast with & where we found that at each order the sign of the
contribution was flipped. This has dramatic effects for the dimension-six-squared contribution
as, depending on the combination of parameters, it may improve the convergence or make it
much worse. Figure 4 shows three benchmark examples for {M, 8} = {3,0.6}, {3,1.2}, and
{10,3.0}. The chosen benchmarks are chosen to demonstrate the convergence of the series,
but also that the dimension-six squared contributions sometimes fail and sometimes do much
better which is simply accidental and due to the choice of the free parameters.

4 Comparing the IR with UV

With the models in the infrared derived to order 1/A® we can compare the full UV model
prediction and that of the EFT. In this section, our primary goal is to explore how well the EFT
describes the Drell Yan processes order by order in its expansion. A complete SMEFT analysis
is not possible as we consider only Drell Yan, but in the later part of this section we do estimate
the impact of including additional operators not generated in the UV,
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Figure 4: Plots comparing the accuracy of the EFT expansion as a ratio of the EFT
to full UV theory cross section predictions. Benchmarks of M = 3 with § = 0.6
and f = 1.2, and M = 10 TeV with = 3.0 are shown. The left-most plot nicely
demonstrates the convergence of the expansion for a light mass and small mixing
parameter. The middle plot shows that for a larger mixing parameter the conver-
gence deteriorates. This plot shows a dramatic failure of the dimension-six squared
contribution, while showing that due to accidental cancellations between the param-
eters of the EFT the pure dimension-six term does remarkably well to high invariant
masses. The rightmost plot again shows the convergence for large mass and large
mixing parameter, but also shows an example of when the dimension-six squared
term accidentally makes a substantially better prediction than higher orders in the
expansion.

Validity of the truncation

In figures 3 and 4 we implied that the truncation breaks down at a given order in 1/M? by
showing that the cross sections differ at the order of a few percent. While this is interesting
theoretically, a more phenomenological approach requires us to consider if this breakdown is
experimentally measurable. Our first measure of this breakdown is to multiply the differential
cross sections by a given luminosity and comparing the number of events in the full UV model
to the number of predicted events for a given order in the EFT expansion. We perform this
analysis by:

1.

Considering the integrated luminosity 140/fb for the 13 TeV LHC. This value is taken
from the CMS paper cited above [53] from which we have taken the invariant mass
binning. We then consider the HL-LHC scenario of 3/ab, maintaining 13 TeV center of
mass energy.

. We assume the simulated “experimental search” measures the UV model (i.e. the UV
model is the signal), and that the error in a given bin is Poisson.

. We compare with the theoretical prediction in the IR, for which we assume there is no
theory error. This is consistent with how most global fits in the SMEFT are performed.

We already know the IR model as derived in Sec. 3. Admittedly, this is a rather weak
assumption given state of the art studies of the SMEFT are done from a bottom up per-
spective. We estimate the impact of broadening this assumption in the next section.

. We assume that the Wilson coefficients derived in the previous section are rescaled by a
constant ¢y with d the dimension of the operator. A given ¢, is a rescaling of all operators
generated at a given dimension. For example in the & model the dimension-six Wilson
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coefficient is rescaled as:

2 2
Yo | Yo
M2 em2
so a good fit should predict ¢ = 1. When more than one operator is obtained at a given
dimension, they are all rescaled by a common cy.

(35)

6. Best fit values of the Wilson coefficient(s) are obtained by performing a y? fit of the IR
model to the simulated data (UV). The y? is given by:

NUV _ NIR \2
22(ce,Cs,C10) = M) , (36)
-2
with N the number of events in a given invariant mass bin in the IR or UV. Minimizing
the y2 with respect to the c; yields the best fit values. We determine their 1o errors
by holding all but one c; constant at their best fit values and solving for the values
of the remaining c; where y2 = sznin + 1. The fit is performed for full and partial
contributions at each orderin 1/M? up to 1/M®. The highest invariant mass bin included
is my, € {1820,1970} GeV. We note that such a cutoff is not always (or even usually)
employed in SMEFT studies, but we choose this to ensure the energy does not exceed
the cutoff of the IR theory.

7. If the UV model result is more than one standard deviation away from the IR prediction
we consider this a failure of the EFT truncation. That is, we need more terms in the EFT
to correctly predict the UV physics.

We do not perform showering or detector simulations, nor do we consider e.g. acceptance
cuts, this will serve to reduce the number of events and therefore hurt the statistics. However,
in [53] they find for example the acceptancexefficiency is worst in low invariant mass bins,
and best and approximately constant in high invariant mass bins (approximately 60%) for
Z's. Ultimately this does not affect our discussion of the convergence of the EFT expansion,
but inclusion of these effects would serve to slightly alter our limited discussion of significance
of measurements.

For the entirety of this article we only consider the processes at tree level. In [27] the
authors use MCFM to obtain the SM cross section [62]. In [63-66] the authors consider one-
loop contributions to the Drell Yan process at leading order in the SMEFT. However, as we will
later compare the number of events in the UV to the number of events in the effective field
theory, the missing contributions of the higher order corrections to the SM interfering with
the tree-level effects of the new physics are still unknown and beyond the scope of this article.
In absence of this, simply including the higher order corrections to the SM will not affect our
results as these corrections do not contribute to the new physics signal captured by the EFTs.
Inclusion of the SMEFT results beyond leading order without calculating the loop corrections
in the UV would not be consistent, and the one-loop corrections to processes in the SMEFT
have not been performed beyond order 1/A2. A comparison beyond leading order is beyond
the scope of this work, however it would provide useful insights into the effects of theory errors
on SMEFT analyses which are neglected in this work. Progress matching to higher orders in
1/A? at one loop has been published in [67-69].

We do not focus on whether a given benchmark is already ruled out by LHC data as our goal
is to understand the convergence of the series. In the case of the & model direct constraints
are fairly loose, of order 1-2 TeV, as they must be pair produced [70]. For Z’ models more
stringent constraints exist, requiring M, be larger than 3 or 4 TeV [70]. The case of our X
which has SM-like couplings to the fermions the constraints are more stringent. For the more
weakly interacting models considered, a next generation collider may be able to draw the same
conclusions as for the models with stronger interactions at the LHC.
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4.1.1 ¢ model

First we consider the theory of the extra ¢ field for M € {3, 10} TeV in bins of 1 TeV and with
Ys € {0.1,1.0} in steps of 0.1. Due to the simplicity of our study the difference between 140/fb
and 3/ab only results in different inferred 1o error ranges. Table 1 illustrates the results of
our study for 3 and 7 TeV with Y3 € {0.1,0.5, 1.0}, App. C contains the full set of benchmarks
in multiple tables.

In Tab. 1 we denote the (partial) order in the EFT expansion in the third column. The
entries “D6,” “D8,” and “D10” refer to the full result to order 1/M2, 1/M2 1/ Mg respectively.
While “D62,” and “D6D8” refer to the full result to order 1/ M§ or1/ Mg supplemented by the
partial results at order 1/M, g , 1/M (If’ . In this case we find that the dimension-six squared con-
tribution always outperforms the consistent dimension-six contribution. As discussed below
Eq. 22, this is because each subsequent order contributes with the opposite sign, so dimension-
six squared neatly approximates the full 1/A% contribution. The table also nicely demonstrates
the convergence of the EFT expansion. Unsurprisingly for smaller My and larger Y3 more terms
of the series are generally needed.

In the case of 140/fb the one-sigma error at dimension-six (6c¢g) is sufficiently large in
nearly all cases that the results are consistent with ¢, = 0 or 1 and no significant result is
obtained. The exception is My = 3 TeV with Y3 = 1, in this case the dimension-six fit is
consistent with ¢ = 0 and approximately 30 away from the true value 1. It is important
here to acknowledge that for this benchmark we would already have large deviations in the
measured Drell Yan differential cross section.

For 3/ab the error shrinks by a factor of approximately 5. In this case the benchmark
Mg = 3 TeV with Y5 = 0.5 could result in significant deviations. Considering this benchmark
we can follow the expansion order by order to see the effects of fitting to higher orders:

* At dimension-six the fit gives a value c¢g = 0.74 £ 0.22 This is just over 1o away from
the correct value. Fitting to only dimension-six is insufficient and can result in incorrect
inferences about the nature of the new physics. If this occurred for a global fit in the bottom
up approach one could envision that all measured Wilson coefficients are skewed in the same
manner and perhaps this results in just misjudging the relationship between the mass and
couplings of the new physics. However, in a more realistic example with multiple dimension-
six operators with arbitrary coefficients, if the results were skewed in random directions and
magnitudes away from the true values this could have more dire consequences. In this case
we could fail to infer the UV model due to the pattern of matching from UV models being
broken by our failure to expand to a sufficient order in the expansion. Largely related to this
concern is that we would fail to identify symmetries of the UV which are naturally imprinted
on the IR in the EFT approach.

* Partial results at dimension-six squared greatly improve the quality of the fit. The best
fit point 0.96 £ 0.30 is fully consistent with the predicted value. While this is true for all
benchmarks in the & model we will see below that it is not the case for the X model and
therefore we cannot assume that D62 terms will always help with the convergence.

* The full result at order 1/ Mg yields cg = 0.96 £ 0.30 and is consistent with the predicted
value. The Wilson coefficient of the dimension-eight operators is —0.28 + 2.3 and is consis-
tent with both 0 and 1. We conclude that the dimension-eight operators’ Wilson coefficients
are absorbing the failure of the series to fully replicate the higher invariant mass bins. That
is, they are playing a role of nuisance parameters instead of being measured as terms in the
EFT expansion.® This is an inference from the behavior of the fits considered in this article,

3This claim should be tested in the context of multiple observables. It is possible that including multiple ob-
servables will change this picture. This is, however, beyond the scope of this project.
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it is not a proof and should not be understood to refer to any formal definition of a nuisance
parameter.

* The full dimension-eight contribution supplemented by the interference of the dimension-
six and eight amplitudes continues to improve the convergence of the series. We also note
that in this case the dimension-eight Wilson coefficient is also moving toward the true value.

* The full dimension-ten result yields excellent agreement at dimension-six while the Wilson
coefficient of the dimension-eight result continues to move toward its true value. Adding
the dimension-ten operators results in the fit to their Wilson coefficients being far from the
true value (c;o = —0.43 = 10), but again gives the impression that these free parameters in
the fit are absorbing our ignorance of the higher order terms in the series.

For a 7 TeV ® the picture is largely the same, except that the relatively weaker influence
of the ® results in larger error bands. In the case of a top-like Yukawa coupling, Y3 = 1, the
measurement of cg has a significance of just over 2c0. Again, a fit only at dimension six results
in a best fit value of ¢ which is 20% below the true value.

In our simplified approach where we do not consider how the binning or possible cuts may
change with increased luminosity, the only effect of increasing the luminosity is that the error
in our measured Wilson coefficients shrink by 4/ L4/ L ew- For a result more than one-sigma
away from the SM (¢; = 0) in the My = 3, Y3 = 0.1 benchmark, we would need approximately
100/ab at the 13 TeV LHC. To notice the difference between truncating at dimension six versus
order 1/A* we would need nearly 20/zb. Such integrated luminosities are not possible even
at future hadronic colliders.

4.1.2 X model

The first thing to notice about the X model is that it is far more complicated than the & model.
Considering Fig. 4 we can see that depending on the parameters of the model the dimension-
six squared terms may hurt or improve the convergence of the series. The & particle only
couples to left handed leptons and right handed down quarks, while the X particle couples
to all SM currents with coupling proportional to g;Y,,3. For certain choices of  and My
accidental cancellations can cause the convergence of the series to behave poorly.

Another important aspect of the X model is that in the UV it corresponds to an s-channel
exchange. As such the number of events in the tails of the m,, distribution is higher. This results
in better statistics overall in this model. This also means that some of the benchmarks discussed
here may be ruled out by current data. We focus on the phenomenological implications and
the behavior of the series and not on viability of the models given current LHC measurements.

We checked the benchmark values of My € {3,8} TeV in bins of 1 TeV with 8 € {0.3,3}.
Recalling the definition of beta in terms of the mixing parameter k,

—k
i

the coupling of the X particle to a given chiral fermion v is g;Y,,3. For § = 3 this is roughly
2Y,,, meaning the coupling of the X is less than one for all fermions except the right handed
leptons for which it is 2. A selection of benchmarks from the results are included in Tab. 2,
while the full set can be found in App. C.

We can see similarities between the overall convergence between this example and that of
the ®. However, we notice that in the case of the low mass with small coupling
(B = 0.3 = k ~ —0.3) the fit to dimension-six results in a best fit point off by 10%, though
we note this is within the 1o errors. This is resolved already at dimension-eight. Interestingly,

B (37)
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Table 1: Abridged table of benchmark & models. The full tables can be found in
Appendix C. d¢; is the one-sigma error in the measured value of ¢;. The error in
parenthesis is for 3/ab, while the other is for 140/fb. The value of xiin indicates
the minimum value of y2 obtained from the fit indicating that the goodness of fit
improves order by order in the series. All numbers are rounded to two significant
digits.

My Yy dim Cq Ocg Cg Ocg €10 6¢1o xiin
3 0.1 D6 0.93 26 (5.6) - - - - 1074
- - D6* | 094 28 (5.7) - - - - 107%
- - D8 0.99 28 (5.8) 0.74 270 (57) - - 107
- - D6D8 | 1.0 28 (5.7) 0.81 280 (61) - - 107°
- - D10 1.0 28 (5.7) 0.97 280(61) | 0.58 1.2k (250) | 1078
3 05 D6 0.74 1.0 (0.22) - - - - 10°
- - D62 | 0.96 1.2 (0.30) - - - - 1071
- - D8 0.96 1.2(0.30) | -0.28 11 (2.3) - - 1072
- - D6D8 | 0.99 1.2(0.31) | 0.60 13 (2.8) - - 1072
- - D10 1.0 1.2(031) | 0.72 13(2.8) |-043 47(10) |107*
3 10 D6 0.16 0.26 (0.057) - - - - 102
- - D6% | 0.84 0.14 (0.030) - - - - 10!
- - D8 0.87 0.13(0.029) | -0.62 2.8 (0.62) - - 10!
- - D6D8 | 0.97 0.14 (0.029) | 0.61 0.52(0.11) - - 10!
- - D10 | 0.98 0.13(0.027) | 0.38 0.52(0.11) | 6.6 15(2.8) | 107!
7 0.1 D6 0.99 141 (31) - - - - 1077
- - D62 | 0.99 152 (31) - - - - 1077
- - D8 1.0 152 (31) 0.96 7.9k (1.7k) - - 1077
- - D6D8 | 1.0 152 (31) 0.98 8.0k (1.7k) - - 1077
- - D10 1.0 152 (31) 1.1 8.0k (1.7k) | 2.6 190k (40k) | 1077
7 0.5 D6 094 5.6(1.2) - - - - 1073
- - D6% 099 6.3(1.3) - - - - 1074
- - D8 1.0 6.3 (1.3) 0.64 320 (68) - - 107
- - D6D8| 1.0  6.3(1.3) | 0.97 440 (94) - - 107°
- - D10 1.0 6.3 (1.3) 0.99 440 (94) | 0.34 7.5k (1.6k) | 1078
7 1.0 D6 0.80 1.4 (0.30) - - - - 10°
- - D62 | 0.99 1.6 (0.41) - - - - 1073
- - D8 0.99 1.6(0.41) |-0.16 79 (17) - - 1073
- - D6D8 | 1.0 1.6 (0.41) | 0.90 160 (36) - - 1073
- - D10 1.0 1.6(0.41) | 0.94 160 (36) | -0.66 1.9k (400) | 1077

for the more strongly mixed case of § = 1.2 with My = 3 TeV, the best fit value to dimension-
six only performs better than the dimension six-squared fit. This is in contrast, for example
with My = 5 TeV with 8 = 3.0 where the dimension-six squared fit performs better than the
dimension-six only and even the full dimension-ten fit. We also note that the dimension-eight
operator coefficient again plays a role similar to nuisance parameters, however since there are
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more events for the s-channel process cg is usually closer to one since there are better statistics
even in the weaker coupling limit.

Interestingly, a 5 TeV X which strongly mixes (8 = 3.0) with the SM B field results in a
sufficient number of events to precisely measure the dimension-six operator coefficient and
for 3/ab integrated luminosity the dimension-eight operator coefficient can be measured with
some degree of precision as well. In this case we see, in direct analogue with dimension-six vs
dimension-eight fits, that the inclusion of the dimension-ten operators improves the agreement
between the best fit point for cg and the theory prediction. This is interesting academically,
however this model is likely ruled out already by the relatively fewer events observed in Run III
of the LHC. An X which strongly mixes into the SM with mass 8 TeV may still evade constraints
from current measurements, however in this case the error on the dimension-eight Wilson
coefficients is too large for a measurement with any meaningful significance to be achieved.

4.2 Fitting the SMEFT

As mentioned in the last section, our analysis so far is strictly top down. In order to attempt
to understand how a bottom up EFT analysis such as the state of the art SMEFT global fits
would perform, we now perform a similar analysis but include additional operators from the
SMEFT. As we will see, this proves difficult for the limited amount of data coming from con-
sidering a single process so we will focus primarily on including only one additional operator
at dimension six.

The following four-fermion operators contribute to the Drell-Yan process at tree level and
order 1/A? in the SMEFT:

Lafem = (SO(Ly, L)Qr"Q) + ¢ (Ly, T L)(Qr" Q)
+ coy(8y ) (@ru) + coq(Ey e)(dy*d)
+cpu(Ly L)@y u) + e (Ly, L)(dy"d) + cqe(QruQ)(ey"e)
+creaq(Le)(dQ) +cpequlle)io(Qu). (38)

The operators appearing in the first line have chiral currents of the form LL, followed by RR,
and LR, the final lines are scalar currents which will mix chiralities. The flipped chirality
requires mass insertions and so we neglect the terms in the final line.*

Neglecting operators such as those in Eq. 24 we find for the contribution to the spin- and
color-averaged partonic cross section in the m; — 0 limit from interference between the SM
amplitude and the 1/A? amplitude:

2

0@l = zg
c

1
[ (82182 + eZQqu) (CEIQ) T ZC%) + (gggg + equQe) CQe
+(gpgs +e2QuQ.) crq + (ghgs +€°Q,Q.) ceq] , (39)

where the minus (plus) sign is for up (down) quarks, and lower-case g should be taken to
correspond to the right-handed u or d chiral quarks. This contribution, occuring at order
1/A2, is a constant with respect to the square of the partonic center of mass energy, 5. The

“Notice that Fierz identities such as the one appearing in Eq. 20 do not rectify this situation. The on-shell
fermions will have opposite chiralities and therefore the interaction will select out mass terms from spin sums over
on-shell spinors. This does not happen in the case of the IR theory of Eq. 19 as the fermion bilinears occurring in
the operators are products of quark-lepton instead of quark-quark and lepton-lepton.
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Table 2: Abridged table of benchmark X models. The full tables can be found in
Appendix C. d¢; is the one-sigma error in the measured value of ¢;. The error in
parenthesis is for 3/ab, while the other is for 140/fb. The value of sznin indices
the minimum value of y2 obtained from the fit indicating that the goodness of fit
improves order by order in the series. All numbers are rounded to two digits.

My P dim Ce Ocg Cg Ocg C10 Ocyg xim
3 03 D6 1.1 1.6 (0.35) - - 107!
- - D62 1.1 1.7 (0.36) - - 107!
- - D8 0.98 1.7 (0.36) 1.5 11 (2.4) - 1072
- - D6D8 | 0.98 1.7 (0.36) 1.5 11 (2.4) - 1072
- - D10 1.0 1.7 (0.36) 0.85 11 (2.4 1.9 38(8.1) |107*
3 12 D6 1.0 0.096 (0.021) - - 10°
- - D62 1.1  0.11 (0.024) - - 10!
- - D8 1.0  0.11 (0.024) | 0.62 0.58 (0.13) - 10°
- - D6D8 | 1.0  0.11 (0.025) 1.1  0.94 (0.20) - 10°
- - D10 | 0.99 0.11 (0.025) 1.3 0.94(0.20) | -0.22 1.9 (0.41) | 107!
5 0.3 D6 1.0 4.6 (0.98) - - 1073
- - D62 1.0 4.6 (0.99) - - 1073
- - D8 1.0 4.6 (0.99) 1.1 86 (19) - 107°
- - D6D8 | 1.0 4.6 (0.99) 1.1 87 (19) - 107°
- - D10 1.0 4.6 (0.99) 0.83  87(19) 2.2 820(180) | 10™°
5 1.2 D6 1.0  0.28 (0.060) - - 1072
- - D62 1.0 0.29 (0.064) - - 10°
- - D8 1.0  0.29(0.064) | 0.93  5.1(1.1) - 1074
- - D6D8 | 1.0  0.30 (0.064) 1.1 5.9(1.3) - 1074
- - D10 1.0 0.30 (0.064) 1.0  59(1.3) | 0.77 47(10) |10
5 3.0 D6 0.81 0.041 (0.0089) - - 10°
- - D62 | 0.99 0.057 (0.012) - - 10!
- - D8 1.0  0.057 (0.012) | -0.13 0.70 (0.15) - 10°
- - D6D8 | 0.98 0.058 (0.012) | 0.84 2.1 (0.46) - 10°
- - D10 | 0.98 0.057(0.012) | 0.98 2.1(0.46) | -20 6.6(1.4) | 1072
8 1.5 D6 1.0  0.46 (0.010) - - 1073
- - D62 1.0 0.48 (0.10) - - 1072
- - D8 1.0 0.48 (0.10) 092 22 (4.7) - 107°
- - D6D8 | 1.0 0.48 (0.10) 1.0 24 (5.2) - 107°
- - D10 1.0 0.48 (0.10) 096 24 (5.2) 1.3 530(110) | 107°
8 3.0 D6 0.92  0.11 (0.024) - - 10!
- - D62 | 0.99 0.13 (0.027) - - 107!
- - D8 0.98 0.13(0.027) | 0.47 5.0(1.1) - 1072
- - D6D8 | 0.98  0.13(0.027) | 0.78 7.4 (1.6) - 1072
- - D10 | 0.98 0.13(0.028) | 0.85 7.4(1.6) | -1.0 120(25) | 10™°
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couplings of the Z-boson to the fermions are given by

g¥ = %Z(zawsiv —03), (40)
gy = g,Qus%,, (41)

and receive no corrections from the SMEFT under our simplifying assumption that only four-
fermion operators contribute. We have also used g, = g,/c,° and o5 corresponds to twice
the weak isospin projection of a given left-handed fermion. For the dimension-six squared
contribution we find that the partonic cross section grows proportional to $:

o(®)lpge = — @ 1(‘°’)2+( )+ (c1q)” + (ceg)” (42)
D62 487'CNC CLQ F 4CLQ CQe CLq Ceq .

This result neatly shows that in the massless fermion limit the different fermion chiralities do
not interfere. Comparing Egs. 39 and 42 we see that the inclusion of the squares of dimension-
six contributions allows for some degree of distinguishing the Wilson coefficients when binning
in the invariant mass of the leptons. We stress that such an approach is inconsistent with
the bottom-up EFT approach as it is not the complete 1/A* contribution, but as discussed
elsewhere in this article it is common in the field and we include it for the sake of discussion
and as we will include some dimension-eight operators in the following.

To make a comparison with the pseudo-data resulting from our UV scenarios, we integrate
the full partonic cross sections folded with the pdfs. In doing so we do not take the limit
my; — 0 as in Egs. 39 and 42. We use a parameterization of the full result as described in
App. B.

A fit to all Wilson coefficients for the operators of Eq. 38 is technically possible with the
(pseudo)data we have generated. For this we employ the same y? methodology outlined in
Sec. 4.1. However, combinations of the Wilson coefficients can be used to approximate the SM
to a great degree.

To start, we consider the SM Drell Yan process. That is, our signal is now simply the SM,
and the constraints on the SMEFT should be consistent with all Wilson coefficients 0. We take
the normalization of each Wilson coefficient to be,

Ci

‘7 (BTevy’ “

and naively applying a Mathematica minimization routine, we obtain the following limits on
the c; of the SMEFT to order 1/A? for 3/ab integrated luminosity:

c{y =0.201), &) =—0.10(1),
Cou =—0.023(2), g = 0.04(1), (44)
¢y = 0.57(3), ¢a =0.57(3),  coe=—0.38(1),

where we have retained the number of digits out to the 10 error which is indicated by paren-
thesis. Considering this is for 3/ab, the results appear to indicate a significant deviation from
the SM. The value of y2 at the minimum is @(1072°). Since we have not added random noise
into our data, the value of y? for all Wilson coefficients set to zero is identically zero. While
the parameter space does indeed close, the limits on the Wilson coefficients are highly corre-
lated and there exist narrow regions in the parameter space which are allowed within the 1o
bounds. Our method of obtaining the error in a given Wilson coefficient does not take this into

°In the general SMEFT this relationship is modified by operators such as c;p.
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accounting making the values above appear significant when they are not. This will prove a
problem when we consider UV models below.

If we instead use a search specifying the SM point as the starting point the numerical search
does not miss the true minimum and we obtain:

g=0%7-10"°, cJ=0+8-1072,
Cu=0£2-1073,  ¢4=0£1-1072, (45)

cu=0%£9-10"%, ¢4 =0%£3-10"2, o =0+£1-10"2.

Including the contributions of the squares of the dimension-six operators the absolute mini-
mum is approximated well with best fit points of order 107® and we reproduce the errors of
Eq. 45. This is a direct consequence of the quadratic terms in Eq. 42 which largely remove
the narrow regions in parameters space where the Wilson coefficients’ contributions add to
approximately zero.

At dimension-six issues with these narrow regions may be assuaged through a global fit
where these operators are further constrained by other data, such as Z-pole data. However,
four-fermion operators are generally neglected on the Z-pole as their contribution is subdomi-
nant to others. We should note, in a more realistic fit to the SMEFT one would need to include
bosonic operators which contribution through renormalization of the kinetic and mass terms
of the SMEFT which would prevent the fit from being closed.

In what follows we consider a few interesting benchmarks from the ® and X models.

4.2.1 & model

Instead of using the SM Drell Yan results for our data, we next consider the ® model. We further
want to see the impact of including dimension-eight operator contributions on the fit. To
achieve this we will consider more than one operator at dimension-six and the dimension-eight
operators, with a single Wilson coefficient, derived in Sec. 3 for the ® model. All dimension-six
Wilson coefficients are normalized according to:

2
C; ch

‘7 BTev’ “o

with the exception of the dimension-eight Wilson coefficient which is normalized such that
the theory value is 1. Table 3 shows the result for considering the combination of c;4, the
single dimension-six operator generated by the UV, with any of the other Wilson coefficients
of Eq. 39. We consider the cases of M = 3 TeV and Y3 = {0.1,0.5} in order to exaggerate the
effects of the fit. In the table we split results based on including or excluding dimension-six
squared effects and including or excluding the dimension-eight operators. We only consider
the dimension-eight operators generated by the UV. This is again a very over-simplified as-
sumption, but our single-process analysis is too limiting to consider further dimension-eight
operator contributions. When the dimension-eight operators are included we always include
the dimension-six squared contribution for c; 4.

In the case of Y = 0.1 we find the errors are so large that the model is always consistent
with the SM prediction of ¢; = 0. Nonetheless, we see that the inclusion of the dimension eight
operator combination appearing in Eq. 19, cg # 0, improves the central values of the model:
the operator coefficient c; ; always moves toward 1, while the other operator coefficient moves
toward 0. The most dramatic case is the fit to both c; 4 and c,; where the best fit point for c; 4
is close to zero, while c,4 is closer to one-half. With the inclusion of dimension-eight operators
the central values neatly move to be closer to their theory values {c;4 = 1,c,q = 0}. The
inclusion of dimension-six squared contributions does nominally improve all fits, although in
some cases the effect is smaller than the rounding employed.
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Table 3: Example fits to two dimension-six operators for the ® model. We consider
M = 3 TeV and Y3 = {0.1,0.5}. We also consider the impact of the inclusion of
dimension-six squared (Left vs Right) as well as the inclusion of the dimension-eight
operators generated in integrating out the ® (top vs bottom within a given row de-
lineated by horizontal rules). When the dimension-eight operators are included, the
dimension-six squared contribution from c; 4 is always included. Results are rounded
to one or two significant figures depending on how many decimal places are required
to be nonzero. The use of * indicates that the differences from the model prediction
of 1 or O for a given Wilson coefficient is greater than one sigma when not rounded.

M =3TeV Y; =0.1
excluding d62 including d62
=0 cg=12%56 (1)—008:|:13 cqg=12%58 (1)—006:|:13
cg#0 | ¢;q=11+£58 cLQ 0.02+1.3 crg=11£58 cLQ 0.02+1.3
=0 c;q=21%56 | (¥ =-03+17 || ¢;y=17%58 | ¥ =—02+17
s #0 | q=09%57 | ¢¥=001£17 | ¢, q=1.0%57 | & =001+17
cg=0| ¢;g=16%56 | cpy=—005%0.40 || c;q=15+56 | c,, =—0.03+0.4
g#0 | ¢, g=1.0%57 | ¢, =0.003+0.40 || c,y=1.0£57 | c,, =0.003+0.4
cg=0 | c;g=0.09%56 | cq=041+27 | c;q=0.02£56| c,q=044+2.7
g#0 | c;g=091%57 | ¢y=0.04+27 | c;q=091+57| c,q=004£2.7
cg=0]| ¢cgq=15%£5.6 c;,=019%+1.8 c;q=15%£5.8 c;,=0.13%£1.8
cg#0 | ¢ q=11%58 | ¢;,=004+18 | ¢c;q=11+58 | ¢, =004+18
cg=0| cgq=22%£5.6 Cqe =0.5£2.2 c;g=16%£5.8 Cqe =0.4£2.1
cg#0 | cpg=13%58 | ¢ =0.1%22 cLa=12%£58 | o =0.1%22

M=3TeV, Y, =0.5

excluding d62 including d62
cg=0| c,g=1.9%02 | ¢y =029%40.05 | c,q=09+03 | clp=—0.01%0.05

cg#0 | c;g=13%0.3" c§§ 0.1140.05 || ¢,y =1.3+0.3" | ¢l =0.11+0.05
6=0| c,g=49%02 | cI=-12%01 || c;g=09%+03 | c4=0.01£0.07
s #0 | ¢;q=07%03" | &)=01+01" | ¢;q=07%03" cﬁz =0.08£0.07
=0 ¢, g=33%02 | cy=-018+0.02 | ¢;4=093+02 | c, =0.00%0.02
cg#0 | ¢;4=0.8+£0.3 Cey =0.01£0.02 c1g =0.8+£0.3 Cey = 0.01 £0.02
=0 |cg=—-25+02| c,y4=16%0.1 ¢4 =09%0.3 | c,g=0.02+0.11
cg#0 | ¢;4q=0.5+£0.3 Ceg =0.2£0.1 c1g =0.5+£0.3 Ceg =0.23%£0.11
=0 ¢,q=29+02 | ¢,=07%0.1 14 =0.9%0.3 | ¢;, =—0.01+0.07
cg#0 | ¢ q=16+0.2 ¢y =0.2%£0.1 crg =1.6+£0.2 ¢y =0.2%0.1

g=0] c;q=55%02 | co=19%0.1 g =0.9%0.3 | cq =—0.01£0.09
cg#0 | ¢ q=23£0.2 Cge =0.6+0.1 g =15+£0.3 Cge =0.2£0.1

It is more interesting to consider the case of Y3 = 0.5 as there are far more signal events,
and the errors in the best fit values for the Wilson coefficients are substantially smaller. In
this case we see that the inclusion of dimension-six squared contributions has a much larger
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CLd

Figure 5: Plots of one-, two-, and three-sigma allowed regions of the Wilson coeffi-
cients ¢y 4, Cq, and cg using the ® model with M = 3 TeV and Y5 = 0.5. The best fit
point is labeled with * and the theory prediction with e (red). The dashed line (red)
indicates the theory prediction ¢; 4 = 1.

effect. When neglecting dimension-six squared contributions from the extra operator, we still
find improvement in the fits. However, In contrast to the case Y; = 0.1, we find that the
fits including the squared contributions of the extra dimension-six operator as well as the
dimension-eight operators actually performs worse than when retaining the partial 1/A* con-
tributions and neglecting the dimension-eight operator coefficients. The reason for this is that
the dimension-eight operator and extra dimension-six operator are both absorbing part of the
signal that is missed by truncating at O(1/A%), i.e. the extra dimension-six operator coeffi-
cient and the dimension-eight operators’ coefficient are both playing the role of a nuisance
parameter. This was not a problem for the more weakly interacting model with Y5 = 0.1 as
the truncation is more stable here.

Figure 5 shows a plot of the correlation between the dimension-eight operator coefficient,
cg, €14, and cq, for Y5 = 0.5 and including the dimension-six squared contributions from cg,.
The theory prediction, {c;4 = 1,cq, = 0,cg = 1} (red dot), is well outside the one-sigma
contours. However, ¢;; = 1 (red dashed line) appears to be nearly consistent with the 1o
contours for values of cq, and cg differing from the best fit point. Indeed, taking cg = 1 and
cqe = 0 we have ¢; 4 = 0.95 +0.29 with Ay? = 0.35, well within the one-sigma bound.

In this oversimplification of a full SMEFT fit, the extra dimension-six operator also plays the
role of a nuisance parameter. This could be a potential hazard in a strictly dimension-six fit to
a single channel. However, the majority of SMEFT bottom-up studies are global fits which use
as much data as possible. If we imagine that our Drell-Yan measurement was complemented
by another measurement constraining the extra dimension-six operator one would expect this
would help to drive the Wilson coefficient to its theory value. If we reperform the same fit, but
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Table 4: Example fits to two dimension-six operators for the & model as described
in Tab. 3 but now including a fictitious constraint on the extra Wilson coefficient as
described in the text.

M =3Te\ Y; =0.5

including d62
cg=0| c;g=09+03 | c{Y)=—0.01%0.05
g #0 | c,q=1.0%03 | clp)=0.00%0.05
g=0| c,q=09%03 | {2 =0.01%0.07

s #0 | ¢;q=1.0%03 | ¥ =0.00%0.07
cg=0| ¢ 4=0.93+0.2 | c, =0.000.02
cg#0 | ¢;q=1.0£03 Cey = 0.00 £0.02
cg=0]| ¢c;4q=09+0.3 Ceqg =0.021+0.11
cg#0 | ¢;q=1.0£0.3 C.q =0.00+0.11
=0 ¢,q=09%0.3 | ¢;, =—0.01+0.07
cg#0 | ¢;q=1.0£0.2 ¢ry = 0.00 £0.07
cg=0| c;g=0.9%0.3 | cg =—0.01£0.09
cg#0 | c;q=1.0%0.3 | cq=0.00%0.09

add an extra term to the y2? with a best fit value zero and error twice that coming from the
dimension-six squared fit (neglecting the D8 operator) we find the results in Tab. 4. To clarify,
the fit containing {c; 4, cgg} results in a best fit value for c(l) of —0.01£0.05 so we modify our
22 as:

2 5424 ((1)—0)2 47)
XX T 20052
With this added “data” we find in all cases the extra dimension-six operator is driven to be
consistent with the theory prediction, despite the relatively loose error assumed. We also find
the best fit point c; 4 coincides with the theory prediction.

We also perform a fit to all seven dimension-six Wilson coefficients simultaneously. As there
are too many parameters the correct minimum cannot be found using Mathematica’s limited
minimization routines without the inclusion of dimension-six squared contributions, so we
only consider this case. Including the squares of all dimension-six operators and neglecting
dimension-eight operators we find:

(” =0.1£0.1, (3) —0.4+0.1,
=-0.104£0.02, c,y=-04%0.1, (48)
=—0.2+0.1, g =05%0.3, g =—002£0.1.

And adding the dimension-eight operators to this:

“) =0.1£0.1, (3) —0.3£0.1,
oy =—0.09£0.02, c,g=—04%0.1, (49)
1y =0.0%0.1, cLg=0.65£0.29,  co, =—0.01£0.08.
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Finally adding fictitious constraints as described above for all extra dimension-six operators
we obtain:

h=00%01,  cI=00%0.1,
Coy = 0.0£0.02, Ceg =0.0£0.1, (50)
1, =0.0£0.1, cq=1.0%£03, 5 =0.0%£0.1.

So we observe that for the inclusion of all seven operators we see the same behavior as in
considering only one additional dimension-six operator. The inclusion of squares results in a
fit that is not consistent with the UV theory. This result would seem to indicate an entirely
different theory in the UV. Inclusion of the dimension-eight operators yields a largely similar
fit as the extra parameters are all behaving as nuisance parameters, and finally the fictitious
data meant to mimic a global fit results in excellent agreement with the theoretical prediction.

An important question to address is if the inclusion of the fictitious data without the
dimension-eight operators performs just as well. Removing the dimension-eight operators
yields the results:

g =00%01,  c=00+0.1,
Cu=0.0£0.02, g =0.0%0.1, (51)
cu=00%+0.1,  ¢4=09%03, o =0.0%0.1.

So the dimension-six operators which are not generated by the UV theory are still driven to
their theory values, while the best fit value for c;4 is slightly pulled away from the theory
value. This is consistent with the interpretation of the inclusion of dimension-eight operators
as performing the role of nuisance parameters. The same analysis for Y3 = 10 yields similar
results.

Overall the results of our simplified analysis indicate:

1. Analyses of a single channel at dimension-six may result in results inconsistent with the
actual UV realization as dimension-six operators not generated in the UV may mislead-
ingly be playing the role of nuisance parameters. This appears be mitigated through
global fits. This is already the practice in state of the art SMEFT bottom-up studies.

2. The dimension-six squared results may break approximate degeneracies in the parameter
space allowing the fit to converge to the true values of the Wilson coefficients. This comes
with a major caveat: recall that in the U(1) mixing model dimension-six squared terms
could actually hurt the convergence of the series (see Fig. 4).

3. Dimension-eight operators play the role of nuisance parameters which absorb our ig-
norance of higher order terms in the EFT expansion. As dimension-six squared terms
improve the convergence for the ® model this has a small impact relative to the size of
the error in the measured Wilson coefficients.

4.2.2 X model

Unfortunately, it is very difficult to perform a similar analysis for the X model as it generates
all of the operators of Eq. 38 except that corresponding to the Wilson coefficient Q(Lrg (and
the chiral flip operators). As such the most obvious approach would be to start with a six
parameter fit which suffers from the same issue as the multiparameter fits for the SM and .
That is, our minimization technique fails to converge to a minimum resembling the UV physics.
Instead it picks a configuration in which various cancellations between the Wilson coefficients
drives the best fit values away from the theory prediction and again falsely appears to predict
a very different new physics scenario.
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Instead we perform a two parameter fit where the dimension-six four-fermion operators
appearing in Eq. 33 have a common Wilson coefficient and we also include c%) Again we
normalize the predicted operators so their Wilson coefficient cg should be 1, while we take:

2 .(3)
RO 8P 1P Ge
La 2M2

We start with My = 3 TeV and 8 = 0.3 (Fig 6). Performing a fit excluding dimension-six
squared contributions we find:

(52)

6=3.4%04, D=-92+14. (53)

Again both Wilson coefficients appear to be statistically significant, but are also statistically far
from their theory values. If we include the dimension-eight operators of Eq. 33 with a single
coefficient we find:

6=054+036, cy=17+14. (54)

The inclusion of the dimension-eight operator (and implicitly the dimension-six squared con-
tributions for cg) has ameliorated the situation slightly, but cg is still over one-sigma away from

the theory value and cg also appears statistically nonzero. As was the case for ® we infer that

CEQ) and cg are working in tandem as nuisance parameters.
Including the dimension-six squared contributions for cg‘g while neglecting the dimension-
eight operator gives:

6=23%04, cD=-47+14. (55)

We see a slight improvement of the fit from Eq. 53 where no quadratic terms were included.
This is in contrast with Tab. 2 and Fig. 6 where the dimension-six squared contribution slightly
hurt the fit. This supports the idea that the extra dimension-six operator is behaving as a
nuisance parameter absorbing some of the physics neglected by truncation. However, it should
be noted this two-parameter fit is overall much worse than the one-parameter fit in the table.
This can be understood as cgg does not have the correct kinematics to absorb these effects.
Adding the dimension-eight operator then gives:

6=0.54+036, c)=17+14. (56)

The fit has vastly improved, although cg and c% are still just over one-sigma away from their
theory values. This improvement can be attributed to the fact the dimension-eight operator has
some of the missing kinematics allowing its Wilson coefficient to absorb the physics neglected

by truncating the EFT expansion. However, cgg and cg are competing to absorb that physics

resulting in the skewing of ¢ and c%) away from their theory values. Notice that this fit
gives the same results (with our rounding, slightly better when including further digits) as
Eq. 54 indicating for this model inclusion of the dimension-eight operator is in fact driving the
improvement.

Supposing some other experiment provides the constraint c(g) = 0 £ 2.8. This vastly im-
proves our result to,

6=10£04, cD=0+14, (57)

indicating any interpretation of the SMEFT should be made from a global fit, and not based
on individual channels.

We can contrast the above with the case My = 3 TeV with § = 1.2. In this case, shown in
Fig. 4, the dimension-six squared contribution actually hurts the fit. Fitting first only linearly
in the dimension-six operators:

6 =0.99£0.02,  cJ)=0.09+0.08. (58)
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Figure 6: Ratio of X model prediction to the SM for My = 3 TeV with § = 0.3. See
caption of Fig. 4 for further details.

This agrees excellently with the theory prediction, we will see it actually is the best fit we
obtain without including some (fictitious) extra measurement of c% The inclusion of the
dimension-eight operators yields:

6=15+0.03, cJ=-18+01. (59)
The best fit point for both Wilson coefficients have moved significantly away from the theory

values. Adding the square of c%) while neglecting dimension-eight contributions does not
improve the fit:

6=059%0.02, cy=18%0.1. (60)
Nor does the inclusion of both order 1/A* contributions:
6=1.5%0.02, cJ=-18+01. (61)

(3)

0= 0 £ 0.2 we would obtain:

However, if an experiment were to measure ¢

6=1.021£0.024, i) =0£01, czg=0.6+0.1. (62)

This is in good agreement with the theory results for the dimension-six operators. We have
included the dimension-eight operator coefficient constraints in the case to show that the re-
sult appears significant. However, we must bear in mind that the dimension-eight operator is
behaving as a nuisance parameter and therefore this seemingly significant result should be ne-
glected. The case My = 3 TeV with 3 = 1.2 stands in stark contrast with the other benchmark
as well as the case of . By some accident the dimension-six operator fit actually outperforms
all other considered fits. This can be understood immediately from Fig. 4 where we see that
the dimension-six contribution more closely reproduces the full result than any of the other
orders in 1 /M)% considered. This example also further demonstrates the need to take care
when including partial orders in 1/M? in fits to the SMEFT.

5 Conclusions
We considered four separate ultraviolet extensions of the SM and matched them to dimension-

ten. This was facilitated by remaining agnostic to the operator basis. We found that the case
of the (1, 3), scalar, ¢, does not affect the Drell Yan process and is an example of a UV Model
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where the truncation at dimension-six or inclusion of dimension-six squared contributions to
the cross section has no impact on the fit procedure. The fermion, y, with charges (1,1)_;
appeared to generate a momentum expansion. However, use of the EOM or field redefinitions
allows all of these operators to be traded for operators in the vev expansion. As such, this model
only affects low invariant mass bins for the Drell Yan process and therefore we concluded it is
best constrained by EWPD. The cases of & = (3,2),; /6 and the U(1) mixing model (X) nicely
exhibited a momentum expansion.

Next we studied the convergence of the ® and X models from a strictly top down perspec-
tive. We calculated the cross section as a function of invariant-mass bin for both the full UV
model and the IR model truncated at a given order, including partial orders. We then com-
pared the results of the two by performing a simple y? fit at a given order in the EFT expansion.
We found that in the more strongly interacting cases and for lower masses the truncation at
dimension-six fails. The inclusion of dimension-six squared contributions always helped the
convergence in the case of ® as it has the same sign contribution as the dimension-ten opera-
tor contribution which is opposite that of the purely 1/A? contribution. In contrast, in the X
model the parameters can conspire such that the dimension-six squared term helps or hurts
the fit. The parameters in a given benchmark model can actually cause the dimension-six term
to better reproduce the full UV result than even the inclusion of terms up to dimension-ten.
We also found that when a given order was insufficient to correctly determine the Wilson coef-
ficients, the next order in the expansion performed the role of nuisance parameters absorbing
our ignorance of the higher order terms contributing. This was most clearly demonstrated
in the strongest interacting models where the determination of the dimension-eight opera-
tor coefficient was statistically significant, but the best fit point did not agree with the theory
value.

Next we found that, even after limiting ourselves to strictly four-fermion operators, a bot-
tom up SMEFT analysis of our UV models was difficult. This is because when fitting the SMEFT
to our UV models the dimension-six operators exist in a strongly correlated parameter space
and the minimization methods tested (those standard in Mathematica) appear to fail to find the
true minimum. As a result, we largely limited ourselves to two-parameter fits which included
the operator(s) generated in the UV with a single common Wilson coefficient and an addi-
tional SMEFT operator. When comparing the inclusion or exclusion of dimension-six squared
as well as dimension-eight operators, we found that these additional operators filled the role
of nuisance parameters. This had the effect that, in order to fit the new physics not accounted
for at a given order in the expansion, our best fit values were skewed from the theory values
(including the dimension-six operator generated in the UV). Dimension-six squared contribu-
tions again helped in the case of ® but were not as dependable in the two benchmark X models
considered. Our method of determining the one-sigma error in the operator coefficients gave
the impression that the theory values of the Wilson coefficients were not within one-sigma of
the best fit point. However, in the case of the & model with Mg = 3 TeV with Y3 = 0.5 a more
careful analysis demonstrated that this was a reflection of the strongly correlated parameter
space, and the theory values were indeed consistent. The simple addition of a fictitious mea-
surement of the operator not generated by the UV model with central value 0 and error twice
the size of that resulting from the dimension-six squared fit immediately moved the best fit
values to the theory values. This is promising as this issue with the central values appearing
to differ significantly from the theory values may not be present for global fits.

Based on the discussion above and throughout the article we highlight some considerations
that should be kept in mind for future work in the SMEFT.

1. For more weakly interacting and/or more strongly decoupled theories a strictly
dimension-six fit appears to converge well to the theory values, given the large uncer-
tainties.
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2. Analyses which choose to include partial 1/A* results, i.e. dimension-six squared con-
tributions, should be accompanied by analyses properly truncated at a given order. The
“consistency” of these contributions with UV physics is model dependent.

3. From a top down perspective, the highest order in the EFT considered appears to be-
have as nuisance parameters. In this context, a strictly dimension-six analysis behaves
as a SM fit with errors defined consistent with the SMEFT approach. Notice that with a
higher integrated luminosity, while not possible at the LHC, the error in our fits would
shrink and the skewed dimension-six results would fail. Similarly, a dimension-eight
analysis behaves as a dimension-six fit with the dimension-eight operator coefficients
behaving as nuisance parameters which absorb our ignorance of higher order terms in
the expansion. From a bottom up perspective, lower dimensional operators not gener-
ated by the ultraviolet physics also behave as nuisance parameters and this may skew
the leading order results. For the more viable models considered which have weaker
interactions/higher masses, issues with truncation could become a problem for a next
generation precision experiment.

4. Single channel analyses may suffer as a result of the previous point. The results may
be skewed from their theory values and the results may appear significant. Global fits
are an industry standard for phenomenological studies and our simplified attempt to see
the effects of including additional data (fictitious in our examples) appears to indicate
that this problem will not persist in the context of global fits. It is important to note that
as experimental analyses begin to perform detailed SMEFT analyses this issue could be
present. Analyses of individual experimental channels should not be interpreted alone,
but in the context of a global fit. Further, it is absolutely crucial that correlation matrices
be included in experimental results (or any single/few channel determination) as the
theory value which is not consistent with individual Wilson coefficient limits may be
perfectly consistent when correlations are included.

While beyond the scope of this article, some future considerations that would further im-
prove our understanding of the convergence of the SMEFT expansion include adding addi-
tional channels (for example foward-backward asymmetries in Drell Yan, EWPD, or other
channels unrelated to Drell Yan), optimizing binning in the kinematic variables, exploring
other distributions [65,66], and the inclusion of pdf fits as proposed in [45]. The inclusion of
other distributions may have an interesting impact on the interpretation of higher dimension
operators as nuisance parameters as at a given order they may not be able to as readily absorb
affects such as angular distributions. Further, including loops in the UV and IR would not only
result in more events and better statistics, it could also elucidate the role of the loop expansion
in SMEFT analyses for realistic UV models. Such an analysis would have to include far more
free parameters making such a study very difficult.
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A Field redefinitions of the U(1) mixing model

The B and V dependent Lagrangian (neglecting covariant derivative dependence on B) is:

1 1 k 1
Lpy = _ZB‘”BW - vavﬁ” — 5B XM 4 EMzV“VH (A1)
T
1( B 1 k B®Y 1.5
=) ) )« e -

The transformation,

B a 0 B’
(v )-(5 )% ). =

diagonalizes the kinetic mixing given,

1

= (A9
—k
b= (A-5)

This transformation results, however, in mass mixing of the form:
VIV, — V'V +2BVMB; + 2B, B (A.6)

Another field redefinition of the form,

Ll- K (A.7)
/ 2 >
( VH —s C Vu
then diagonalizes the mass mixing for s = —k and ¢ = v 1 — k2. Note this rotation commutes
with that of Eq. A.3 and therefore does not affect the diagonalization of the kinetic terms. This
results in a mass for V",
M2
M2, =—Y2
1—k2’
while leaving the B” field massless (above EWSB). In the main text we refer to V' as X.

Taking a + sign convention for the covariant derivative and V" — X, this transformation
gives:

(A.8)

(D,uH) - (D‘uH) + ileH/quH: (A9)
(D,H)'(D,H) — (D,H)'(D,H)— glyHﬁ(HTi(FuH)X“ +gIY2ABA(HTH)X, X",  (A.10)
D) = (D) +ig Yy XY, (A.11)
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B Parameterization of SMEFT four-fermion operator contributions

We parameterize the full cross section bin-by-bin in m,, as follows:

d 2 (1)
o =00+[8} (048] 0z + 0428} 0uz) + €2Qe (034QuT da + 1aQu0ua) ] CrqQ

B
‘LQ

+18; (adzgf%z a,z8;0 uZ)+e Q. (agaQq0 ga— auAQuO'uA)] 4

+

angRgR uZ +auAe Q QuGuA] Ceu + [angRgRO-dZ + agae Q QdadA] Ced

+

+ [auszgR Ouz + aune’Q, QuUuA] Crut+ [adzgigﬁcdz + adAeZQeQdOdA] CrLd
[g (adzgfadz + auzgfauz) +€%Q, (agaQq0ga + auAQuUuA)] CQe

16 LQ LQ LQ

1 3 IHE]
+|(bgog;+ b ous)( (Q) + —c( ))+(bd0'd§—bu0'u§) cBe® 4 ausc + by04sC ed]
+ [buougcfu + bdodgcfd + (b0, +by04:) cée] , (B.1)

where o is the SM cross section for a given invariant mass bin. The o, for ¢ = {u,d}
correspond to the pdf integration for the lowest invariant mass bin of,

Al A 2
2 $(§—m
(A)-qZ = ( 2 Z) > (B'z)
487N, (8—m2)" +12m2
the 04, correspond to the integration of the partonic cross section,
2
Cgp=——, B.3
7 481N, (B-3)
and the oy correspond to the integration of,
$
Gpe = . B.4
© 487N, B4

These correspond to, up to their normalization, the kinematic part of the 1/A% and 1/A*
squared amplitudes. This choice of normalization, along with the explicit SM coupling depen-
dence of Eq. B.1 requires that the a; and b are identically one for the lowest invariant mass.
The a; and b are then determined for each subsequent bin. Due to the normalization to the
o; this demonstrates how each bin compares with the bin with lowest m;,. The a; and b for
each bin can be found in Tab. 5. Please note: the table does not contain nearly enough
significant digits for the applications described in the main text. The full tables used
including error in the integration can be requested from the author.

31


https://scipost.org
https://scipost.org/SciPostPhysCore.7.3.053

SciPost Phys. Core 7, 053 (2024)

Table 5: Values of the a; and the b; for a given invariant mass bin m,,.

my oo a4z g Gyz au by by my oo a4z Aga Gz ayn by by

200—220 0.69 1 1 1 1 1 1 810—840 | 2.0-1073 0.036 0.044 0.045 0.054 0.68 0.84
220—240 0.46 0.78 0.81 0.79 0.82 0.98 0.99 840—870 | 1.6-1072 0.032 0.040 0.040 0.049 0.66 0.81
240 —260 0.31 0.63 0.67 0.64 0.69 0.95 0.97 870—900 | 1.4-1073 0.029 0.036 0.036 0.044 0.63 0.80
260 —280 0.22 0.51 0.56 0.53 0.58 0.93 0.96 900—950 | 1.8-1073 0.042 0.052 0.053 0.065 1.0 1.3
280—300 0.16 0.43 0.47 0.44 0.49 0.90 0.94 950—1000 | 1.4-1072 0.036 0.044 0.045 0.056 0.94 1.2
300—320 0.12 0.36 0.40 0.38 0.42 0.88 0.93 || 1000—1050 | 1.1-1072 0.030 0.037 0.039 0.048 0.89 1.1
320—340 0.091 0.30 0.35 0.32 0.37 0.86 0091 1050—1100 | 8.6-10* 0.026 0.032 0.034 0.041 0.83 1.1
340—360 0.070 0.26 0.30 0.28 0.32 0.84 0.89 || 1100—1150 | 6.8-10~* 0.022 0.027 0.029 0.036 0.78 1.0
360—380 0.054 0.23 0.26 0.24 0.28 0.81 0.88 || 1150—1200 | 5.4-10~* 0.019 0.023 0.025 0.031 0.74 0.97
380—400 0.043 0.20 0.23 0.21 0.25 0.79 0.86 || 1200—1250 | 4.3-10~* 0.017 0.020 0.022 0.027 0.69 0.92
400 — 420 0.034 0.17 0.20 0.19 0.22 0.77 0.85 || 1250—1310 | 4.1-10~* 0.017 0.021 0.023 0.028 0.77 1.0
420 —440 0.028 0.15 0.18 0.17 0.20 0.75 0.83 || 1310—1370 | 3.2-107* 0.014 0.018 0.019 0.024 0.72 0.97
440 — 460 0.022 0.13 0.16 0.15 0.18 0.73 0.81 1370—1430 | 2.5-107% 0.012 0.015 0.017 0.021 0.66 0091
460 — 480 0.018 0.12 0.14 0.13 0.16 0.71 0.80 || 1430—1490 | 2.0-10~* 0.010 0.013 0.014 0.018 0.62 0.85
480—500 0.015 0.11 0.13 0.12 0.14 0.70 0.78 || 1490—1550 | 1.6-10~* 8.8-10~> 0.011 0.012 0.015 0.57 0.80
500—520 0.013 0.096 0.11 0.11 0.13 0.68 0.77 || 1550—1680 | 2.4-10~* 0.015 0.019 0.021 0.026 1.1 1.6
520—540 0.011 0.086 0.10 0.099 0.12 0.66 0.75 || 1680—1820 | 1.6-107* 0.012 0.014 0.017 0.021 0.99 14
540—560 | 8.9-107° 0.078 0.094 0.090 0.11 0.64 0.74 || 1820—1970 | 1.0-107* 8.7-107° 0.011 0.013 0.016 0.87 1.3
560—580 | 7.6-107° 0.071 0.085 0.082 0.099 0.63 0.72 || 1970—2210 | 9.1-10~°> 8.8-107° 0.011 0.014 0.017 1.1 1.7
580—600 | 6.5-107° 0.064 0.077 0.075 0.090 0.61 0.71 || 2210—6070 | 8.5-107° 0.011 0.014 0.021 0.037 2.2 4.7
600—630 | 7.9-107° 0.086 0.10 0.10 0.12 0.89 1.0

630—660 | 6.4-107° 0.075 0.090 0.088 0.11 0.85 1.0

660—690 | 5.1-107° 0.066 0.080 0.078 0.095 0.82 0.98

690—720 | 42-10™% 0.058 0.070 0.069 0.084 0.79 0.95

720—750 | 3.4-10~% 0.051 0.062 0.062 0.075 0.76 0.92

750—780 | 2.8-10~% 0.045 0.055 0.055 0.067 0.74 0.89

780—810 | 2.3-10~% 0.040 0.049 0.050 0.060 0.71 0.87
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C Full tables

Table 6: Table of fit y? fit values for the & model as described in Sec. 4 and Tab. 1.
Table is continued below.

Mg Yy dim Ce Sce cg Scg Cc10 Scio xém
3 1 D6 0.93424 5.60594 - - - - 104
- - D62 0.9448 5.74959 - - - - 1074
- - D8 0.993788 5.75154 0.743965  57.4362 - - 107°
- - D6D8 | 0.995559 5.73829 0.806826  61.2331 - - 10~°
- - D10 0.999841 5.73613 0.967029  61.2505 0.579804 252,998 | 108
3 2 D6 0.909417 1.40087 - - - - 1072
- - D62 0.951751 1.52662 - - - - 1072
- - D8 0.989425 1.52705 0.587535  14.3434 - - 1074
- - D6D8 | 0.996651 1.51446 0.840976  18.9536 - - 1074
- - D10 0.9988 1.5134 0.924136  18.9663 0.24698 63.169 | 107°
3 3 D6 0.86835 0.622225 - - - - 1071
- - D62 0.963071  0.744628 - - - - 1073
- - D8 0.982763  0.742972 | 0.347476  6.36636 - - 1072
- - D6D8 | 0.999257 0.733219 | 0.929252  12.9978 - - 102
- - D10 0.998047 0.733737 | 0.871944  12.9849 | -0.137005 28.0337 | 10~°
3 4 D6 0.810801  0.349784 - - - - 1071
- - D62 0.971767  0.457819 - - - - 1072
- - D8 0.973297  0.45712 0.045924  3.57801 - - 1072
- - D6D8 | 0.991193  0.458877 | 0.649279  9.14815 - - 1072
- - D10 0.996819 0.457252 | 0.801076 9.09787 | -0.429437 15.7581 | 10~
3 5 D6 0.737046  0.223775 - - - - 10°
- - D62 0.957963  0.295181 - - - - 107t
- - D8 0.961134  0.300567 -0.28196  2.29139 - - 102
- - D6D8 | 0.992251 0.311135 | 0.601045  2.78106 - - 1072
- - D10 0.995231  0.312243 | 0.717649  2.76599 | -0.427874 10.1 1074
3 6 D6 0.647671  0.155423 - - - - 10!
- - D62 0.916583  0.185084 - - - - 107!
- - D8 0.946374 0.189307 | -0.592875 1.59667 - - 107!
- - D6D8 | 0.993485 0.205298 | 0.636112 1.0534 - - 107!
- - D10 0.993361 0.205093 | 0.628639 1.0536 0.0488359 7.0515 | 1073
3 7 D6 0.543721 0.114306 - - - - 10t
- - D62 0.875785  0.114358 - - - - 10°
- - D8 0.929116  0.112274 | -0.836343  1.18199 - - 107t
- - D6D8 | 0.991343  0.124374 | 0.647188 0.503273 1071

- - D10 0.991152 0.121127 0.540727  0.503405 1.11525 5.23869 | 1072

3 8 D6 0.426885 0.0877142 - R R R 102
- - D62 0.851512 0.0708649 - - - - 10°
- - D8 0.909601 0.0672631 | -0.957877 0.916951 - - 10°

- - D6D8 | 0.985744 0.0733825 0.639042 0.278839 - -
- - D10 0.988637 0.0695142 0.462873 0.277806 2.75038 4.08696 | 1072

3 B D6 0.299459 0.0695681 102

- - D62 0.841054 0.0448985 - - - - 10°
- - D8 0.888191 0.0425246 | -0.903184  0.73905 - - 10°
- - D6D8 | 0.979356 0.0450526 | 0.623438 0.170961 - - 10°
- - D10 0.985899 0.0419425 | 0.404659 0.169595 4.7407 3.3208 | 1072
3 10 D6 0.164122  0.056661 - - - - 102

- - D62 0.838137 0.0295516 - - - - 10!

- - D8 0.865272 0.0285521 | -0.621193 0.615176 - - 10!

- - D6D8 | 0.97485 0.0292257 | 0.611437  0.11285 - - 10!

- - D10 0.982939 0.0270792 | 0.376095  0.11177 6.61241 2.79402 | 107!
4 1 D6 0.960669 9.96675 - - - - 10—°
- - D62 0.966612 10.1325 - - - - 10—°
- - D8 0.997753 10.1338 0.839327  181.555 - - 1077
- - D6D8 | 0.99835 10.1256 0.877693  188.152 - - 1077
- - D10 1.00011 10.1247 0.994565  188.164 0.773141  1421.77 | 1078
4 2 D6 0.945321 2.49102 - - - - 1073
- - D62 0.969123 2.62174 - - - - 1074
- - D8 0.996166  2.62254 0.7365 45.3568 - - 10~°
- - D6D8 | 0.99857 2.6146 0.8894 52.6731 - - 10-°
- - D10 0.999855 2.61396 0.975652  52.6839 0.51242  355.143 | 1077
4 3 D6 0.919782 1.10667 - - - - 1072
- - D62 0.973352 1.23226 - - - - 1072
- - D8 0.993603 1.23218 0.572117  20.1385 - - 10~°
- - D6D8 | 0.999081 1.22494 0.915512 28.996 - - 105
- - D10 0.999549 1.22472 0.948031  29.0017 0.160245 157.659 | 1077
4 4 D6 0.883971 0.6222 - - - - 10!
- - D62 0.978711  0.744754 - - - - 10732
- - D8 0.989971  0.743771 0.355433  11.3164 - - 107%
- - D6D8 | 0.999731 0.738418 | 0.960993 23.114 - - 1074

- - D10 0.999171 0.738616 0.916416 23.1034 -0.187235 88.5858 | 10°°
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Table 7: As described in Tab. 6.

My, Yo dim Ce Sce cg Scg C10 Scio X min
4 5 D6 0.838033 0.39802 - - - - 10!
- - D62 0.983155 0.51164 - - - - 1073
- - D8 0.985459  0.510922 0.100735 7.23776 - - 1073
- - D6DS8 | 0.997768  0.510438 0.847198 19.7422 - - 103
- - D10 0.998921  0.509894 0.88296 19.7399 | -0.461172 56.6657 | 10~°
4 6 D6 0.781973  0.276306 - - - - 10°
- - D62 0.981025 0.36903 - - - - 1072
- - D8 0.97989 0.370955 -0.17615 5.02723 - - 1072
- - D6D8 | 0.996654 0.37538 0.724048 8.93017 - - 1072
- - D10 0.998524  0.375524 0.841921 8.89957 | -0.566179 39.3804 | 10—°
4 7 D6 0.716039  0.202982 - - - - 10°
- - D62 0.966841 0.264586 - - - - 1072
- - D8 0.973301 0.26889 -0.453938 3.69954 - - 102
- - D6D8 | 0.997358  0.277802 0.744921 3.74595 - - 102
- - D10 0.998017 0.278291 0.796493 3.74167 | -0.392955 29.0139 | 10~ %
4 8 D6 0.640663  0.155459 - - - - 10t
- - D62 0.944611  0.184996 - - - - 10—t
- - D8 0.965726  0.187392 -0.708307 2.84308 - - 107t
- - D6D8 | 0.997508 0.198147 0.761652 1.86648 - - 10!
- - D10 0.9974 0.197947 0.74912 1.86679 0.146217 22.3425 | 10~ %
4 ° D6 0.556532  0.122942 - - - - 10!
- - D62 0.924373  0.126767 - - - - 10t
- - D8 0.957261 0.125719 -0.912706 2.26109 - - 10t
- - D6DS8 | 0.996908  0.134364 0.768091 1.05707 - - 10t
- - D10 0.996738 0.13326 0.702948 1.05732 1.09674 17.8252 | 102
4 10 D6 0.46456  0.0997459 - - - - 10t
- - D62 0.911049 0.0864334 - - - - 101
- - D8 0.947969  0.084098 -1.03874 1.84983 - - 10!
- - D6D8 | 0.995492 0.0894328 | 0.765825  0.655434 - - 10t
- - D10 0.996018 0.0879801 0.660509  0.654981 2.45085 14.649 | 1073
5 1 D6 0.973751 15.5735 - - - - 10~°
- - D62 0.977546 15.767 - - - - 107
- - D8 0.998565 15.7679 0.884563 443.287 - - 108
- - D6D8 | 0.998816 15.7625 0.90997 453.477 - - 10—®
- - D10 0.999705 15.762 1.00184 453.486 0.961592 5424.16 | 108
5 2 D6 0.96382 3.89269 - - - - 10—*
- - D62 0.979031 4.0301 - - - - 1074
- - D8 0.998482 4.0308 0.823035 110.768 - - 1077
- - D6DS8 | 0.999501 4.0254 0.925387 121.646 - - 1077
- - D10 1.00025 4.02503 1.00314 121.655 0.760778 1355.25 | 107
5 3 D6 0.946589 1.7296 - - - - 1073
- - D62 0.980829 1.85773 - - - - 104
- - D8 0.997221 1.85805 0.704869 49.1945 - - 10—°
- - D6D8 | 0.999515 1.85292 0.932768 61.4015 - - 10°¢
- - D10 0.999978 1.8527 0.981674 61.4084 0.42552 601.812 | 107
5 4 D6 0.922452 0.97255 - - - - 1072
- - D62 0.983284 1.09788 - - - - 107+
- - D8 0.995507 1.09768 0.547838 27.6484 - - 10—°
- - D6D8 | 0.999605 1.09313 0.948863 42.214 - - 10—°
- - D10 0.99971 1.09308 0.9603 42.2161 | 0.0842902 338.19 | 107
5 5 D6 0.891531 0.622187 - - - - 102
- - D62 0.98626 0.744806 - - - - 1073
- - D8 0.993505  0.744163 0.358444 17.6807 - - 1074
- - D6DS8 | 0.999927 0.74078 0.977124 36.1198 - - 1074
- - D10 0.999659  0.740866 0.944658 36.1119 | -0.212014 216.257 | 107
5 6 D6 0.853728 0.43191 - - - - 10!
- - D62 0.988748  0.548177 - - - - 1073
- - D8 0.991025 0.547612 0.142171 12.2717 - - 1032
- - D6DS8 | 0.999441  0.546618 0.936311 33.0775 - - 102
- - D10 0.999565  0.546457 0.925456 33.079 -0.462527 150.115 | 10°°
5 7 D6 0.809113 0.317224 - - - - 10°
- - D62 0.988894 0.42023 - - - - 10—3
- - D8 0.988098 0.420805 | -0.0911835 9.01592 - - 1073
- - D6D8 | 0.998488  0.422669 0.815106 20.2035 - - 1073
- - D10 0.999452  0.422572 0.903282 20.174 -0.608631 110.33 | 10°°
5 8 D6 0.757763  0.242835 - - - - 10°
- - D62 0.984161  0.324698 - - - - 1072
- - D8 0.984653  0.327061 -0.330407 6.90866 - - 1072
- - D6D8 | 0.998631  0.331679 0.812342 9.62964 - - 1072
- - D10 0.999216 0.331896 0.876372 9.61919 | -0.572289 84.6071 | 10~°
5 ° D6 0.699942  0.191881 - - - - 10°
- - D62 0.974035 0.247576 - - - - 1072
- - D8 0.980815 0.250563 -0.562432 5.46985 - - 102
- - D6D8 | 0.998842  0.257434 0.825855 5.02087 - - 1072
- - D10 0.999024  0.257616 0.850135 5.01933 | -0.316331 67.0724 | 10—°
5 10 D6 0.63592 0.155481 - - - - 10t
- - D62 0.961377 0.184817 - - - - 10—t
- - D8 0.976548  0.186309 -0.773073 4.44659 - - 102
- - D6D8 | 0.998865 0.193824 0.834855 2.91539 - - 102
- - D10 0.998805 0.193707 0.823539 2.91565 0.206568 54.6306 | 10~°
6 1 D6 0.982203 22.4263 - - - - 10°¢
- - D62 0.984844 22.6536 - - - - 107°
- - D8 1.00049 22.6543 0.947624 919.245 - - 1077
- - D6D8 | 1.00062 22.6503 0.966506 ©33.852 - - 107
- - D10 1.00155 22.6498 1.10589 ©933.866 2.11512 16197.4 | 107
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Table 8: As described in Tab. 6.

Mg Ye dim ce Sce cs Scg c10 Scio X2in
6 2 D6 0.974148  5.60586 - - - - 10°°
- - D62 0.984688 5.75152 - - - - 10—°
- - D8 0.998934  5.75208 0.865913 229.731 - - 1077
- - D6D8 | 0.999426 5.74824 0.937829 244.981 - - 107
- - D10 0.999703 5.7481 0.979229 244.985 0.599885 4047.63 | 107
6 3 D6 0.961997  2.49098 - - - - 10—
- - D62 0.985733 2.62242 - - - - 104
- - D8 0.998539  2.62279 0.785238 102.047 - - 1077
- - D6D8 | 0.999657  2.61905 0.947009 118.529 - - 1077
- - D10 0.999929  2.61892 0.988007 118.534 0.548514 1797.77 | 10°8
6 4 D6 0.944843 1.4008 - - - - 1073
- - D62 0.987058 1.52791 - - - - 10—*
- - D8 0.997768  1.52802 0.670093 57.3627 - - 10—
- - D6D8 | 0.999766 1.5245 0.955444 75.8753 - - 10—
- - D10 0.99993 1.52442 0.98067 75.8792 0.300588 1010.44 | 107
6 5 D6 0.922785 0.896236 - - - - 102
- - D62 0.988726  1.02133 - - - - 107%
- - D8 0.996812  1.02112 0.528235 36.6856 - - 10—°
- - D6D8 | 0.999972  1.01802 0.97194 58.439 - - 10—°
- - D10 1.00003 1.018 0.980591 58.4407 | 0.0891306 646.156 | 107
6 6 D6 0.895717  0.62218 - - - - 102
- - D62 0.990433 0.744833 - - - - 10—%
- - D8 0.995475  0.74438 0.359762 25.4593 - - 10—%
- - D6D8 1. 0.742051 0.985516  52.0144 - - 1074
- - D10 0.999858 0.742094 0.960871 52.0083 -0.231166  448.412 | 1077
6 7 D6 0.863775 0.456966 - - - - 107t
- - D62 0.991938 0.574728 - - - - 10—%
- - D8 0.993968 0.574295 0.173361 18.6962 - - 10~*
- - D6D8 | 0.999859 0.573295 0.971486  49.0246 - - 10—%
- - D10 0.999807 0.573248 0.949791 49.0231 -0.450538  329.325 | 1077
6 8 D6 0.826949 0.349769 - - - - 10—t
- - D62 0.992431  0.45827 - - - - 102
- - D8 0.992223 0.458373 | -0.0262067 14.3129 - - 1072
- - D6D8 | 0.999277 0.459095 0.881243 36.3069 - - 103
- - D10 0.999715 0.458989 0.934032 36.2908 -0.603806  252.184 | 10~ °©
6 =] D6 0.785327  0.27631 - - - - 10°
- - D62 0.990882 0.370067 - - - - 102
- - D8 0.990278 0.371204 | -0.232293 11.314 - - 1073
- - D6D8 | 0.999255 0.373643 0.859793 20.0073 - - 1073
- - D10 0.999664 0.373705 0.92004 19.9924 | -0.648599 199.452 | 10~°
6 10 D6 0.738976 0.2238 - - - - 10°
- - D62 0.98643 0.297869 - - - - 1072
- - D8 0.98807 0.299946 | -0.437665 9.17532 - - 103
- - D6D8 | 0.999332 0.304039 0.866607 11.0054 - - 1073
- - D10 0.999543 0.304166 0.902511 11.0012 -0.524536 161.888 | 10°°
7 1 D6 0.986938 30.525 - - - - 1077
- - D62 0.988875  30.7921 - - - - 1077
- - D8 1.00054 30.7926 0.96156 1703.07 - - 107
- - D6D8 | 1.00061 30.7896 0.97554 1722.87 - - 107
- - D10 1.00122 30.7893 1.09923 1722.88 2.56513 40845.3 | 107
7 2 D6 0.98076 7.63053 - - - - 10—°
- - D62 0.988493  7.78603 - - - - 10~°
- - D8 0.999242  7.78648 0.888092  425.655 - - 1077
- - D6D8 | 0.999505  7.78363 0.940939  446.086 - - 1077
- - D10 0.999506  7.78363 0.941212  446.086 | 0.00547358 10208. | 107
7 3 D6 0.971765  3.39083 - - - - 10—
- - D62 0.98919 3.52639 - - - - 10—°
- - D8 0.999345  3.52674 0.843669 189.101 - - 1077
- - D6D8 | 0.999962  3.52389 0.965659 210.715 - - 1077
- - D10 1.00022 3.52376 1.01836 210.721 0.997397 4534.62 | 1077
7 4 D6 0.958937  1.90695 - - - - 1073
- - D62 0.989928  2.03613 - - - - 10—°
- - D8 0.998905  2.03633 0.754454 106.312 - - 10—
- - D6D8 1. 2.03359 0.96967 129.779 - - 10—
- - D10 1.00021 2.03349 1.01176 129.784 0.732708 2549.09 | 1077
7 5 D6 0.942347  1.22015 - - - - 103
- - D62 0.990765  1.34668 - - - - 10—%
- - D8 0.998204  1.34669 0.639728 67.9983 - - 10°°
- - D6D8 | 0.999915  1.34415 0.970715 94.2612 - - 10—
- - D10 1.00002 1.34411 0.992323 94.2648 0.336998 1630.26 | 108
7 6 D6 0.922167 0.847092 - - - - 102
- - D62 0.991865 0.971958 - - - - 10~*
- - D8 0.997547 0.971774 0.510155  47.1918 - - 10°°
- - D6D8 | 1.00003 0.969544 0.983115 77.6058 - - 10—°
- - D10 1.00005 0.969535 0.988123 77.6068 | 0.0687991 1131.34 | 1077
7 7 D6 0.898246 0.622176 - - - - 102
- - D62 0.992948 0.744845 - - - - 10~
- - D8 0.996654 0.744511 0.360327  34.6522 - - 10—5
- - D6D8 | 1.00001  0.742807 0.991074 70.7971 - - 10—°
- - D10 0.999938  0.742829 0.973345 70.7927 -0.226011 830.718 | 1077
7 8 D6 0.870661 0.476223 - - - - 10t
- - D62 0.993897 0.594926 - - - - 10+
- - D8 0.995647 0.594592 0.196872 26.52 - - 104
- - D6D8 | 0.999904 0.593708 0.981212 67.6682 - - 10~
- - D10 0.99984  0.593695 0.959344  67.6651 -0.444864  635.812 | 107
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Table 9: As described in Tab. 6.

Mgy Yo dim Ce Sce cg Scg C10 Scio X min
7 ° D6 0.839479 0.376183 - - - - 101t
- - D62 0.994443 0.487958 - - - - 104
- - D8 0.994606 0.487896 | 0.0242301 20.9511 - - 107
- - D6D8 0.9997 0.488088 | 0.929098 56.1551 - - 107
- - D10 0.999885 0.488016 0.95529 56.1499 | -0.595993 502.404 | 107
7 10 D6 0.804648 0.304652 - - - - 10°
- - D62 0.993948 0.405634 - - - - 103
- - D8 0.993373 0.406158 | -0.155669 16.9743 - - 1073
- - D6D8 | 0.999574  0.40747 0.895448  35.6145 - - 1073
- - D10 0.999831 0.407469 | 0.944221 35.5994 | -0.661499 407.199 | 107
8 1 D6 0.989651  39.8697 - - - - 1077
- - D62 0.99113 40.1825 - - - - 107
- - D8 0.999735  40.1829 0.926302 2905.42 - - 107
- - D6D8 | 0.999774  40.1807 0.936565 2931.2 - - 107
- - D10 1.0002 40.1805 1.04937 2931.21 3.06346 91013.2 | 1077
8 2 D6 0.985085 9.9667 - - - - 10-°
- - D62 0.991 10.1336 - - - - 10~°
- - D8 0.999355  10.1339 0.900847  726.205 - - 1077
- - D6D8 | 0.999509 10.1317 0.941463  752.621 - - 107
- - D10 0.999564  10.1317 0.956 752.623 0.384795 22747.6 | 107
8 3 D6 0.97811 4.42911 - - - - 105
- - D62 0.991433  4.56954 - - - - 10—°
- - D8 0.999465  4.56984 0.86929 322.652 - - 108
- - D6D8 | 0.999823 4.56764 0.962466  350.213 - - 1078
- - D10 0.999962  4.56757 0.99942 350.217 0.936345 10106. 10—®
8 4 D6 0.968243  2.49097 - - - - 107%
- - D62 0.991944 2.62267 - - - - 10—°
- - D8 0.999337  2.62288 0.805992  181.413 - - 107
- - D6D8 | 0.99998 2.62072 0.97182 210.724 - - 1077
- - D10 1.0001 2.62066 1.00395 210.728 0.764383 5681.68 | 107
8 5 D6 0.955466  1.59391 - - - - 103
- - D62 0.992516  1.72194 - - - - 10—°
- - D8 0.999046  1.72204 0.721846 116.046 - - 107°
- - D6D8 | 1.00007 1.71997 0.981244  147.899 - - 10—°
- - D10 1.00023 1.71989 1.0256 147.906 0.970839 3634.1 107
8 6 D6 0.939784  1.10663 - - - - 102
- - D62 0.993134 1.23278 - - - - 1074
- - D8 0.998564  1.23275 0.615123  80.5432 - - 107°
- - D6D8 | 1.00002 1.23084 0.982674 116.017 - - 107°
- - D10 1.00008 1.23082 0.99788 116.019 0.300343 2522.09 | 1077
8 7 D6 0.921244 0.812837 - - - - 102
- - D62 0.993822 0.937502 - - - - 10~
- - D8 0.997995 0.937343 | 0.493329 59.1427 - - 105
- - D6D8 | 0.999975  0.93568 0.985574  99.6911 - - 105
- - D10 0.999973 0.935681 | 0.984953 99.691 | -0.0109677 1851.87 | 108
8 8 D6 0.899895 0.622173 - - - - 102
- - D62 0.994585 0.744852 - - - - 10—%
- - D8 0.997419 0.744595 | 0.360089 45.2594 - - 10—
- - D6D8 | 1.00001 0.743297 | 0.993138 92.4681 - - 105
- - D10 0.999963 0.743309 | 0.980253 92.4648 | -0.214335 1417.14 | 107
8 B D6 0.875709 0.491475 - - - - 10t
- - D62 0.995279 0.610833 - - - - 104
- - D8 0.996787 0.610569 | 0.216587 35.7478 - - 107%
- - D6D8 | 1.00002 0.609804 | 0.993614 89.0923 - - 107%
- - D10 0.999969 0.609801 | 0.974937 89.0889 -0.42456 1119.39 | 10~ 8
8 10 D6 0.84869  0.398008 - - - - 10!
- - D62 0.995711 0.511905 - - - - 10~
- - D8 0.996071 0.511789 | 0.0641191 28.9509 - - 10~%
- - D6D8 | 0.999906 0.51173 0.961513  78.9495 - - 107%
- - D10 0.999976 0.511688 | 0.970967  78.9489 -0.58538 906.709 | 107
° 1 D6 0.992295  50.4604 - - - - 1077
- - D62 0.993465  50.8251 - - - - 1077
- - D8 1.0008 50.8254 0.999832  4653.98 - - 107
- - D6D8 | 1.00083 50.8236 1.00863 4686.59 - - 107
- - D10 1.00137 50.8233 1.18949 4686.61 6.22714 184513. | 107
° 2 D6 0.988606  12.6144 - - - - 10°
- - D62 0.993286  12.7943 - - - - 10—°
- - D8 1.00037 12.7946 0.965824 1163.3 - - 1077
- - D6D8 | 1.00048 12.7927 1.00082 1196.54 - - 1077
- - D10 1.00113 12.7924 1.21951 1196.56 7.37889 46119. | 1077
° 3 D6 0.982512  5.60584 - - - - 10—
- - D62 0.993028 5.75187 - - - - 10—
- - D8 0.999467  5.75213 0.880738 516.887 - - 107
- - D6D8 | 0.999684  5.75039 0.953195 551.208 - - 1077
- - D10 0.999602  5.75043 0.925523 551.205 | -0.902349 20490.7 | 1077
° 4 D6 0.974543  3.15288 - - - - 107%
- - D62 0.993243 3.28751 - - - - 10—°
- - D8 0.999272  3.28771 0.828786  290.646 - - 107
- - D6D8 | 0.999663 3.286 0.957701 326.642 - - 107
- - D10 0.999643  3.28601 0.951186 326.641 | -0.202258 11521.1 | 107
] 5 D6 0.964463  2.01751 - - - - 103
- - D62 0.993704  2.14727 - - - - 10—°
- - D8 0.999251 2.1474 0.769484  185.935 - - 1077
- - D6D8 | 0.999876  2.14572 0.973086 224.313 - - 107
- - D10 0.999922 2.1457 0.988786 224.315 0.456807 7369.8 | 107
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Table 10: As described in Tab. 6.

My Yy dim ce Scg cg Scg C10 Scio xfﬂn
9 6 D6 0.952123  1.40079 - - - - 1072
- - D62 0.99426 1.52813 - - - - 10~°
- - D8 0.999187 1.52818 | 0.694104 129.061 - - 10°°
- - D6D8 | 1.00011 1.52657 | 0.989926 170.732 - - 10°°
- - D10 1.00019 1.52653 1.01798 170.736 0.752688 5115.09 | 1078
) 7 D6 0.93734 1.02894 - - - - 1072
- - D62 0.994685  1.15479 - - - - 10~°
- - D8 0.998782  1.15474 | 0.592083 94.7737 - - 10°°
- - D6D8 | 1.00003 1.15327 | 0.988138 140.922 - - 10°°
- - D10 1.00007 1.15325 1.00163  140.924 0.329028 3755.93 | 1078
9 8 D6 0.920304 0.78761 - - - - 1072
- - D62 0.995174 0.912112 - - - - 104
- - D8 0.998365 0.911974 | 0.48056  72.5267 - - 107°
- - D6D8 | 0.999986 0.910686 | 0.989533 124.691 - - 107°
- - D10 0.999983 0.910687 | 0.988484 124.691 | -0.0231992  2874.14 | 1078
) 9 D6 0.901044 0.622172 - - - - 1072
- - D62 0.995732  0.74486 - - - - 1074
- - D8 0.997972 0.744657 | 0.360517 57.2809 - - 107°
- - D6D8 | 1.00003 0.743632 | 0.996549 117.031 - - 10—°
- - D10 1. 0.743639 | 0.987559 117.029 -0.189147 2269.97 | 1077
9 10 D6 0.879495 0.503851 - - - - 101!
- - D62 0.996208 0.623678 - - - - 1074
- - D8 0.997503 0.623466 | 0.231618 46.3826 - - 10—°
- - D6D8 | 1.00002 0.622811 | 0.996653 113.328 - - 10~°
- - D10 0.999982 0.622811 | 0.98118 113.325 -0.407428 1838.18 | 1078
100 1 D6 0.993549 62.297 - - - - 1077
- - D62 0.994497  62.7196 - - - - 1078
- - D8 1.0008 62.7199 1.06003  7093.48 - - 1078
- - D6D8 | 1.00082 62.7183 1.06755 7133.69 - - 1078
- - D10 1.0012 62.7181 1.22298 7133.7 6.61533 347198. | 1078
10 2 D6 0.990706  15.5735 - - - - 10°°
- - D62 0.994495  15.7679 - - - - 1077
- - D8 1.00035 15.7681 | 0.985429 1773.13 - - 1078
- - D6D8 | 1.00042 15.7666 1.01394 1813.96 - - 1078
- - D10 1.00079 15.7664 1.1659 1813.97 6.36299 86785.3 | 1078
10 3 D6 0.985607  6.92102 - - - - 107°
- - D62 0.994117 7.07335 - - - - 10°°
- - D8 0.999337  7.07357 | 0.880505 787.887 - - 1078
- - D6D8 | 0.999477 7.07218 | 0.938416 829.77 - - 1078
- - D10 0.999427 7.0722 0.917419 829.768 -0.855342 38561. | 1078
10 4 D6 0.979654  3.89265 - - - - 1074
- - D62 0.994815  4.03078 - - - - 10°°
- - D8 1.0001 4.03097 | 0.893974 443.056 - - 1077
- - D6D8 | 1.00037 4.0295 1.00552  486.609 - - 1077
- - D10 1.00062  4.02938 1.10805 486.621 4.01508 21682.9 | 1078
10 5 D6 0.971129  2.49097 - - - - 1074
- - D62 0.994808  2.62277 - - - - 107°
- - D8 0.999612 2.62291 | 0.818614 283.455 - - 1077
- - D6D8 | 1.00003  2.62151 0.98696  329.256 - - 1077
- - D10 1.0001 2.62147 1.01644  329.26 1.09605 13871.1 | 1078
10 6 D6 0.961023  1.72957 - - - - 1072
- - D62 0.995134  1.85822 - - - - 107°
- - D8 0.999501 1.8583 0.751808 196.764 - - 1077
- - D6D8 | 1.00011 1.85694 | 0.994318 245.626 - - 1077
- - D10 1.0002 1.8569 1.03128 245.631 1.28776 9628.09 | 1077
10 7 D6 0.948945  1.27048 - - - - 1072
- - D62 0.995368 1.39733 - - - - 107°
- - D8 0.999135  1.39735 | 0.659486 144.499 - - 10-°
- - D6D8 | 0.999944  1.39608 | 0.980288 197.418 - - 107°
- - D10 0.999964  1.39607 0.98884 197.419 0.275652 7070.13 | 1078
10 8 D6 0.935095 0.972527 - - - - 1072
- - D62 0.995734  1.09813 - - - - 107°
- - D8 0.99891 1.09808 | 0.570479 110.583 - - 107°
- - D6D8 | 0.999973  1.09691 | 0.987468 168.874 - - 107°
- - D10 0.999988 1.0969 0.993603 168.875 0.181087 5410.37 | 1078
10 9 D6 0.919405 0.768265 - - - - 1072
- - D62 0.996141 0.892628 - - - - 107°
- - D8 0.998658 0.892509 | 0.470451 87.3373 - - 107°
- - D6D8 | 1.00001 0.891482 | 0.993735 152.599 - - 107°
- - D10 1.00001 0.891482 | 0.993769 152.599 | 0.000898094 4272.91 | 1077
10 10 D6 0.901816  0.62217 - - - - 1072
- - D62 0.996482 0.744854 - - - - 10—°
- - D8 0.998283 0.744691 | 0.357783 70.7167 - - 10~°
- - D6D8 | 0.999924 0.743874 | 0.985524  144.47 - - 107°
- - D10 0.999892 0.743882 | 0.970747 144.466 -0.383684 3459.76 | 1077
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Table 11: Table of fit y fit values for the X model as described in Sec. 4 and Tab. 2.
Table is continued below.

My B dim 6 Sce cs Scg €10 S¢10 Ximin
3 3 D6 1.12788 0.353318 - - - - 1071t
- - D62 1.13203 0.356668 - - - - 1071t
- - D8 0.980971 0.356442 1.45476 2.38857 - - 1072
- - D6D8 | 0.979411 0.357435 1.49589 2.44542 - - 1072
- - D10 1.00498 0.357087 0.850995 2.44694 1.8517 8.11232 1074
3 6 D6 1.10815 0.0870852 - - - - 10°
- - D62 1.12538 0.0905217 - - - - 10°
- - D8 0.987427 0.0903332 1.29106 0.572319 - - 1072
- - D6D8 | 0.981081 0.0913225 1.45242 0.631675 - - 1072
- - D10 1.00166 0.0910396 0.943074 0.633042 1.34751 1.92171 1074
3 9 D6 1.07091 0.0378047 - - - - 10!
- - D62 1.11237 0.0413785 - - - - 10!
- - D8 1.00085 0.0412695 1.00748 0.238168 - - 1072
- - D6D8 | 0.986527 0.0422007 1.35066 0.303184 - - 1072
- - D10 0.997849 0.0420497 1.07877 0.304116 0.622311 0.787609 1073
3 12 D6 1.00923 0.0206546 - - - - 10°
- - D62 1.08999 0.0243725 - - - - 10!
- - D8 1.02154 0.0243805 0.616649 0.12527 - - 10°

- - D6D8 | 0.997353 0.0251004 1.14917 0.202589 - -
- - D10 0.992205 0.0251541 1.26864 0.201985 -0.222281 0.411097 | 10!

3 15 D6 0.926368 0.0129133 - - - - 102
- - D62 1.06471  0.0167086 - - - - 10!
- - D8 1.04683  0.0167598 | 0.180373 0.0785712 - - 10!
- - D6D8 | 1.01233  0.0171405 | 0.866336  0.179652 - - 10!
- - D10 0.984882  0.0171841 1.49054 0.174775 | -0.983607  0.26331 10°
3 18 D6 0.842816 0.00888742 - - - - 10°
- - D62 1.05498 0.0126621 - - - - 102
- - D8 1.06967  0.0125303 -0.20599  0.0574116 - - 102
- - D6D8 | 1.01002  0.0127117 1.18099 0.169176 - - 102
- - D10 0.977171  0.0122382 1.69327 0.166058 -1.47187  0.203686 | 10!
3 21 D6 0.771161 0.00654558 - - - - 10°
- - D62 1.06933 0.0101629 - - - - 10®
- - D8 1.08616 0.00970972 | -0.508954 0.0464134 - - 102
- - D6DS8 | 0.993852 0.00885815 | 2.06728 0.119261 - - 102
- - D10 0.96982  0.00879942 | 1.84537 0.122417 -1.65923  0.177694 | 10!
3 24 D6 0.710911 0.00505784 - - - - 10*
- - D62 1.10199 0.0082592 - - - - 10%
- - D8 1.09643  0.0076162 | -0.744376 0.0398252 - - 10°

- - D6D8 | 0.972171 0.00620991 2.37603 0.0755521 - =
- - D10 0.962486 0.00644627 1.94384 0.0768416 -1.62891 0.165102 10!

3 27 D6 0.658785 0.00405035 - - - - 10*
- - D62 1.13855  0.00654542 - - - - 10®
- - D8 1.10128 0.00600319 | -0.934216 0.0354559 - - 10°
- - D6DS8 | 0.957567 0.00465887 | 2.35815  0.0502491 - - 10°
- - D10 0.954571 0.00486197 | 1.98925 0.050523 -1.51136  0.158513 | 10?2
3 30 D6 0.612118 0.00333483 - - - - 10*
- - D62 1.16495 0.00506135 - - - - 10%
- - D8 1.10119 0.00476017 | -1.09737 0.0323498 - - 10°

- - D6D8 | 0.946954 0.00364767 2.27092 0.0356695 - =
- - D10 0.945524 0.00379038 1.97817 0.0357588 -1.49372 0.154855 102

4 3 D6 1.06432 0.629608 - - - - 1072
- - D62 1.06679 0.632873 - - - - 1072
- - D8 0.997294  0.632768 1.19634 7.6072 - - 1074
- - D6D8 | 0.996878  0.633219 1.21572 7.7096 - - 1074
- - D10 1.00371 0.633126 0.908069 7.71031 1.5892 46.0403 | 107°
4 6 D6 1.05434 0.15631 - - - - 10!
- - D62 1.06434 0.159615 - - - - 107!
- - D8 0.997126  0.159518 1.14089 1.86438 - - 1073
- - D6D8 | 0.995423  0.159976 1.21881 1.96918 - - 1072
- - D10 1.00099 0.159899 0.969922 1.96979 1.23001 11.2285 | 107°
4 9 D6 1.03827  0.0686636 - - - - 10°

- - D62 1.06135 0.072045 - - - - 10°

- - D8 0.999435  0.0719638 1.02919 0.802011 - - 1074
- - D6DS8 | 0.995538  0.0724228 1.20253 0.911658 - - 1074
- - D10 1.00004  0.0723604 1.00338 0.912217 | 0.911276 4.7932 107°
4 12 D6 1.01404  0.0379978 - - - - 107!
- - D62 1.05654  0.0414815 - - - - 10°

- - D8 1.00303  0.0414276 | 0.870016  0.431865 - - 1072
- - D6DS8 | 0.996004  0.0418767 1.17039 0.549872 - - 1072
- - D10 0.998972  0.0418359 1.04102 0.55031 0.528222  2.55695 | 107*
4 15 D6 0.979859  0.023833 - - - - 10°

- - D62 1.04913 0.0274298 - - - - 10!

- - D8 1.00774  0.0274152 | 0.666482 0.26301 - - 107!
- - D6D8 | 0.996731  0.0278271 1.11312 0.395232 - - 107!

- - D10 0.997378  0.0278188 1.08536 0.395355 0.0971082 1.544 1072
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Table 12: As described in Tab. 11.

Mx f dim Ce Sce cg Scg c10 &cio ,’y;in
4 18 D6 0.934817  0.016197 - - - - 10!

- - D62 1.03896 0.0198842 - - - - 10t

- - D8 1.01327  0.0199112 0.426714 0.174712 - - 10°
- - D6D8 | 0.997761  0.0202352 1.01528 0.330998 - - 10°
- - D10 0.994955  0.0202625 1.1344 0.330258 | -0.347859  1.02276 | 1072
4 21 D6 0.881011 0.0116809 - - - - 102
- - D62 1.0278 0.0153866 - - - - 10!

- - D8 1.01883  0.0154218 0.167914 0.125567 - - 10!

- - D6D8 | 0.99813  0.0156184 0.898149 0.316049 - - 10t

- - D10 0.991452  0.0156319 1.18145 0.313794 | -0.771298 0.742141 | 10~}
4 24 D6 0.824176  0.0088429 - - - - 103

- - D62 1.01956 0.0124572 - - - - 10t

- - D8 1.02311 0.0124232 | -0.0876536 0.0974413 - - 10t

- - D6D8 | 0.991305 0.0125123 1.05743 0.29586 - - 10!

- - D10 0.986642  0.0124081 1.21565 0.295296 -1.16688 0.591249 | 10!
4 27 D6 0.769791 0.00696577 - - - - 103

- - D62 1.01711 0.0103706 - - - - 102
- - D8 1.02478  0.0102001 -0.326512  0.080718 - - 10!

- - D6D8 | 0.977765  0.0100053 1.52128 0.221022 - - 10!

- - D10 0.980274 0.00996182 1.22494 0.220395 -1.59332  0.510147 | 10!
4 30 D6 0.719886 0.00566208 - - - - 10°

- - D62 1.01993  0.00874775 - - - - 102
- - D8 1.02303 0.00844388 | -0.550255 0.0701249 - - 102
- - D6D8 | 0.965893  0.0079549 1.7356 0.147362 - - 102
- - D10 0.972029 0.00807064 1.1986 0.145733 -2.19289  0.465412 | 10°
5 3 D6 1.04054 0.984653 - - - - 102
- - D62 1.04214 0.987883 - - - - 1072
- - D8 1.00196 0.987822 1.08267 18.6226 - - 107°
- - D6eD8 | 1.00181 0.988081 1.09388 18.7829 - - 10—°
- - D10 1.00562 0.98803 0.825618 18.7835 2.17667 176.233 | 10~°
5 6 D6 1.03348 0.245126 - - - - 1072
- - D62 1.03991 0.248375 - - - - 1072
- - D8 0.999576  0.248316 1.07771 4.60098 - - 107%
- - D6D8 | 0.998928  0.248584 1.12409 4.76346 - - 1074
- - D10 1.00132 0.248551 0.956224 4.76386 1.32458 43.4194 | 1075
5 9 D6 1.02388 0.108177 - - - - 107!
- - D62 1.03854 0.111473 - - - - 107t
- - D8 0.999888  0.111418 1.01896 2.00528 - - 107°
- - D6D8 | 0.998403  0.111689 1.12332 2.17231 - - 10°°
- - D10 1.00038 0.111662 0.985568 2.17267 1.03623 18.8382 | 10~°
5 12 D6 1.00998  0.0602473 - - - - 1072
- - D62 1.03656 0.0636086 - - - - 10°
- - D8 1.0007 0.063563 0.930206 1.09799 - - 107*
- - D6D8 | 0.998018  0.0638348 1.11413 1.2723 - - 1074
- - D10 0.999613  0.0638126 1.00372 1.27262 0.774643  10.2533 | 107°
5 15 D6 0.990933  0.0380704 - - - - 10!
- - D62 1.03351 0.0415125 - - - - 10°
- - D8 1.00163 0.04148 0.813574 0.679671 - - 1072
- - D6D8 | 0.997397  0.041748 1.09566 0.864998 - - 1072
- - D10 0.998511 0.0417325 1.01919 0.865256 | 0.488463  6.30339 | 10~*
5 18 D6 0.965893  0.0260397 - - - - 10°
- - D62 1.02891 0.0295697 - - - - 10°
- - D8 1.00242 0.029555 0.669774 0.454578 - - 107!
- - D6D8 | 0.996306  0.0298097 1.06217 0.656493 - - 107t
- - D10 0.996742  0.0298038 1.03251 0.656615 | 0.168076 4.1875 1074
5 21 D6 0.934215 0.0188138 - - - - 10!

- - D62 1.02235 0.0224234 - - - - 10°
- - D8 1.00275  0.0224291 0.500178 0.321628 - - 107!
- - D6D8 | 0.994565  0.0226532 1.00184 0.548546 - - 107!
- - D10 0.993985  0.0226603 1.04119 0.548338 | -0.193425 2.94854 | 102
5 24 D6 0.895982  0.0141668 - - - - 102
- - D62 1.0137 0.0178232 - - - - 10°
- - D8 1.00221 0.017844 0.307827 0.238731 - - 10°
- - D6D8 | 0.992008 0.0180137 0.896514 0.501956 - - 10°
- - D10 0.989903  0.0180328 1.0405 0.500969 | -0.619413 2.188 1072
5 27 D6 0.852562  0.0110361 - - - - 102
- - D62 1.00348 0.014677 - - - - 10°
- - D8 1.00023  0.0146916 | 0.0976998  0.185623 - - 10°
- - D6D8 | 0.987778  0.0147991 0.762986 0.490231 - - 10°
- - D10 0.984127 0.0148064 1.02352 0.488319 -1.16773 1.71363 | 1072
5 30 D6 0.806484 0.00885404 - - - - 102

- - D62 0.992757  0.0123987 - - - - 10!

- - D8 0.996115 0.0123682 -0.125553  0.151125 - - 10°
- - D6D8 | 0.977947  0.0124495 0.840751 0.460585 - - 10°
- - D10 0.976295  0.0123872 0.980555 0.460251 -1.95454  1.41855 | 1072
6 3 D6 1.029 1.41854 - - - - 1072
- - D62 1.03012 1.42176 - - - - 1073
- - D8 1.00443 1.42172 0.99779 38.6663 - - 10—°
- - D6D8 | 1.00436 1.42188 1.0049 38.8975 - - 107°
- - D10 1.00766 1.42184 0.670863 38.8982 3.91389 527.092 | 107°
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Table 13: As described in Tab. 11.

Mx f dim Ce Sce cg Scg ci0 Scio x:‘in
6 6 D6 1.0231 0.353626 - - - - 1072
- - D62 1.02757 0.356846 - - - - 1072
- - D8 1.0007 0.356806 1.03749 9.59054 - - 10—°
- - D6D8 | 1.00041 0.356982 1.06816 9.82338 - - 107°
- - D10 1.00192 0.356962 | 0.915134 9.82374 1.75886  130.497 | 10—°
6 ) D6 1.01645 0.156419 - - - - 102
- - D62 1.02658 0.159669 - - - - 102
- - D8 1.00025 0.159631 1.00743 4.20693 - - 10—°
- - D6D8 | 0.999566 0.159811 1.07715 4.44411 - - 10—°
- - D10 1.0007 0.159795 | 0.963307  4.44439 1.26644  57.0715 | 10°°
6 12 D6 1.00712  0.0873974 - - - - 1072
- - D62 1.02536  0.0906925 - - - - 10!
- - D8 1.00017 0.0906579 | 0.952493  2.32371 - - 10—°
- - D6DS8 | 0.998933 0.0908387 | 1.07632 2.56762 - - 107°
- - D10 0.999839 0.0908262 | 0.985441 2.56787 | 0.964559 31.3958 | 107>
6 15 D6 0.994553 0.0554535 - - - - 102
- - D62 1.02351 0.0588048 - - - - 107t
- - D8 1.00002 0.0587756 | 0.87614 1.45338 - - 1072
- - D6D8 | 0.998072 0.0589564 | 1.06774 1.70696 - - 1072
- - D10 0.998801 0.0589462 | 0.995035 1.70717 | 0.724855 19.5399 | 105
6 18 D6 0.978148 0.0381078 - - - - 10!
- - D62 1.02061 0.0415239 - - - - 10°

- - D8 0.999437 0.0415022 | 0.779703 0.982276 - - 102
- - D6DS8 | 0.996613 0.0416802 | 1.05023 1.24935 - - 1072
- - D10 0.99712  0.0416732 | 0.999976  1.24952 0.46265 13.134 | 10—°
6 21 D6 0.957354 0.0276604 - - - - 10°

- - D62 1.01624 0.0311447 - - - - 10°

- - D8 0.998114 0.0311326 | 0.661893 0.700304 - - 1072
- - D6D8 | 0.994301 0.0313028 | 1.01666 0.986123 - - 1072
- - D10 0.994494 0.0313001 | 0.997552 0.986199 | 0.159608 9.3128 | 10~*
6 24 D6 0.931688 0.0208979 - - - - 10!

- - D62 1.00994  0.0244451 - - - - 10°

- - D8 0.995695 0.0244438 | 0.521384 0.51987 - - 107t
- - D6DS8 | 0.990869 0.0245973 | 0.954089 0.831728 - - 107!
- - D10 0.990557 0.0246013 | 0.984813 0.83158 | -0.229103 6.88186 | 104
6 27 D6 0.90095  0.0162879 - - - - 10!

- - D62 1.00132 0.0198795 - - - - 10°

- - D8 0.991787 0.0198876 | 0.356441 0.399246 - - 107!
- - D6D8 | 0.986123 0.0200113 | 0.838812 0.746804 - - 107t
- - D10 0.984951  0.020025 0.95527 0.746114 | -0.770891 5.27224 | 10~*
6 30 D6 0.865429 0.0130248 - - - - 102

- - D62 0.990113 0.0166263 - - - - 10°

- - D8 0.985926 0.0166361 | 0.165411 0.316445 - - 107t
- - D6D8 | 0.979825 0.016718 | 0.640609 0.709609 - - 107t
- - D10 0.977269 0.0167405 | 0.901631 0.707769 | -1.59143 4.18391 | 1072
7 3 D6 1.02288 1.9313 - - - - 104
- - D62 1.0237 1.93451 - - - - 10—*
- - D8 1.00665 1.93448 0.902131  71.6873 - - 10°°
- - D6D8 | 1.00662 1.93459 0.906743  72.0024 - - 10—°
- - D10 1.01023 1.93455 0.407461  72.0035 7.97618 1330.36 | 10°°
7 6 D6 1.01721 0.481831 - - - - 1073
- - D62 1.02049 0.485035 - - - - 103
- - D8 1.00147 0.485006 1.00242 17.8204 - - 10—°
- - D6D8 | 1.00131 0.48513 1.02397 18.1364 - - 10—°
- - D10 1.00259 0.485113 | 0.847507 18.1368 2.7797 330.276 | 10°°
7 o D6 1.01213 0.21341 - - - - 103
- - D62 1.01955 0.216634 - - - - 1072
- - D8 1.00053 0.216606 | 0.995301 7.8458 - - 107°
- - D6D8 | 1.00017 0.216734 1.04504 8.16588 - - 107°
- - D10 1.00098 0.216723 | 0.933747 8.16615 1.71181 145.1 10—°
7 12 D6 1.0053 0.119464 - - - - 10—
- - D62 1.0186 0.122719 - - - - 102
- - D8 1.00008 0.122693 | 0.960405  4.35565 - - 10—°
- - D6D8 | 0.999435  0.122822 1.04923 4.68214 - - 10—°
- - D10 1.00006 0.122813 | 0.964044 4.68236 1.2666 80.3171 | 10~°
7 15 D6 0.996155 0.0759814 - - - - 1072
- - D62 1.01717 0.0792776 - - - - 107!
- - D8 0.999478 0.0792539 | 0.907748 2.74141 - - 10—*
- - D6D8 | 0.998457 0.0793832 | 1.04596 3.0768 - - 1074
- - D10 0.998956 0.0793763 | 0.97794 3.07699 0.96701 50.3672 | 10~°
7 18 D6 0.984248 0.0523652 - - - - 10!
- - D62 1.01489 0.0557085 - - - - 107!
- - D8 0.998356 0.0556884 | 0.838465 1.86601 - - 1074
- - D6D8 | 0.996878 0.055817 1.0349 2.21329 - - 1074
- - D10 0.997257 0.0558117 | 0.98335 2.21344 | 0.692647 34.1397 | 10°°
7 21 D6 0.969136 0.0381316 - - - - 10°

- - D62 1.01137 0.0415263 - - - - 10!
- - D8 0.996413 0.0415109 | 0.750673  1.33996 - - 102
- - D6DS8 | 0.994416 0.0416366 | 1.01074 1.70288 - - 1072
- - D10 0.99466  0.0416332 | 0.977706 1.70299 | 0.414387 24.4041 | 10~°
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Table 14: As described in Tab. 11.
My B dim Ce Scg cg Scg C10 5cqo xiin
7 24 D6 0.950354 0.0289032 - - - - 10°
- - D62 1.00617  0.0323494 - - - - 1071
- - D8 0.99327  0.0323398 0.64258 1.0007 - - 1072
- - D6DS8 | 0.990728 0.0324588 | 0.965326  1.38406 - - 1072
- - D10 | 0.990763 0.0324583 | 0.960662 1.38407 | 0.0539281 18.1427 | 10~°
7 27 D6 0.927504 0.0225904 - - - - 10!
- - D62 0.998806 0.0260823 - - - - 107!
- - D8 0.98855  0.0260791 | 0.510485  0.770686 - - 1072
- - D6D8 | 0.985523 0.0261851 | 0.882197  1.18069 - - 1072
- - D10 | 0.985194 0.0261896 | 0.926521 1.18049 | -0.467042 13.9165 | 107°
7 30 D6 0.900336 0.0180942 - - - - 10!
- - D62 0.988796 0.0216182 - - - - 107!
- - D8 0.981838 0.0216204 | 0.349993  0.609175 - - 107!
- - D6D8 | 0.978547 0.0217043 | 0.733969 1.05361 - - 107!
- - D10 | 0.977557 0.0217169 | 0.868176 1.0529 -1.27983  10.9691 | 107
8 3 D6 1.01969 2.52294 - - - - 10~°
- - D62 1.02032 2.52614 - - - - 1075
- - D8 1.0092 2.52613 0.768645 122.352 - - 107°
- - D6D8 | 1.00919 2.5262 0.771495 122.764 - - 107°
- - D10 1.01367 2.52614 | -0.0367678 122.766 16.8834  2965.98 | 107°
8 6 D6 1.01363  0.629749 - - - - 1073
- - D62 1.01614  0.632943 - - - - 1073
- - D8 1.00215  0.632922 0.963676  30.4573 - - 107°
- - D6D8 | 1.00207  0.633013 0.979354  30.8692 - - 1075
- - D10 1.0034 0.632995 0.740265  30.8698 4.94083  737.606 | 107°
8 9 D6 1.00944  0.279159 - - - - 1073
- - D62 1.01511  0.282366 - - - - 1072
- - D8 1.00081  0.282345 0.979773 13.4404 - - 10~°
- - D6D8 | 1.00061 0.28244 1.01676 13.8562 - - 107°
- - D10 1.00134 0.28243 0.885373 13.8565 2.6664 324.973 | 107°
8 12 D6 1.00409  0.156453 - - - - 1073
- - D62 1.01423  0.159683 - - - - 1072
- - D8 1.00011  0.159663 0.96136 7.48544 - - 1075
- - D6D8 | 0.99974  0.159759 1.028 7.90736 - - 10~°
- - D10 1.00024  0.159752 0.93779 7.90758 1.78433  180.588 | 107°
8 15 D6 0.997018  0.0996584 - - - - 1073
- - D62 1.01298  0.102919 - - - - 1072
- - D8 0.999289 0.1029 0.924236  4.73028 - - 1075
- - D6D8 | 0.998705  0.102997 1.02838 5.16059 - - 1075
- - D10 | 0.999094 0.102991 0.958947  5.16078 1.3277 113.802 | 107°
8 18 D6 0.987788 0.0688098 - - - - 1072
- - D62 1.01098 0.0721055 - - - - 107!
- - D8 0.997935 0.0720883 | 0.871844  3.23503 - - 1074
- - D6D8 | 0.997091 0.072185 1.02034 3.67624 - - 1074
- - D10 | 0.997399 0.0721807 | 0.96541 3.6764 1.00712  77.5742 | 107°
8 21 D6 0.976005 0.0502132 - - - - 107!
- - D62 1.00784 0.0535471 - - - - 107!
- - D8 0.995699 0.0535325 | 0.803608 2.3351 - - 1074
- - D6D8 | 0.994557 0.0536278 1.00129 2.79011 - - 107*
- - D10 0.99478  0.0536247 | 0.961571  2.79023 0.69189  55.7899 | 10~°
8 24 D6 0.961253 0.0381497 - - - - 10°
- - D62 1.00314  0.0415225 - - - - 107!
- - D8 0.992216 0.0415112 | 0.716856  1.75299 - - 1073
- - D6D8 | 0.990758  0.041603 0.964379  2.22523 - - 1073
- - D10 | 0.990864 0.0416015 | 0.945701 2.2253 0.306376  41.7204 | 10~°
8 27 D6 0.943141 0.0298882 - - - - 10°
- - D62 0.996439  0.0332972 - - - - 107!
- - D8 0.987127 0.0332897 | 0.606923 1.35623 - - 1073
- - D6D8 | 0.985379 0.0333745 | 0.896676  1.84988 - - 1072
- - D10 | 0.985302 0.0333756 | 0.910389 1.84983 | -0.209871 32.154 | 107°
8 30 D6 0.921307 0.0239913 - - - - 10!
- - D62 0.98722  0.0274291 - - - - 107!
- - D8 0.980012 0.0274258 0.46873 1.07517 - - 1072
- - D6D8 | 0.978078 0.0274981 0.77873 1.59523 - - 1072
- - D10 | 0.977671 0.0275037 | 0.85077 1.59492 -1.0202  25.4018 | 1075
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