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Abstract

Holographic space-time, a theory of quantum gravity that generalizes string theory and
quantum field theory, predicts black holes in the early matter-dominated era of its models
of inflation. Before these black holes can decay, there is a chance that enough of these
particles merge to produce radiation visible today in the Cosmic Microwave background.
To discover if this is the case, we perform a rudimentary computer simulation. We show
that no problematic black holes are formed by mergers in the Holographic Space-time
models of inflation. However, we conclude that tiny bound structures containing black
holes remnants form in this theory unconditionally. Since black hole decay products
are mostly massive standard model particles, and perhaps their superpartners, the fate
of these structures is a complicated dynamical problem that requires further study. It
suggests the possibility of primordial structures on the order of the horizon size at the
beginning of the radiation dominated era. This is about 109 LP in the current model.
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1 Introduction

Ever since the conception of general relativity and quantum mechanics, physicists have been
searching for a unified field theory: one theory that describes the three fundamental forces
along with gravity. The standard model of particle physics successfully explains the electro-
magnetic, weak, and strong forces. However, the addition of gravity - namely, general rela-
tivity - has proven to be a challenge. Naively quantizing space-time gives rise to a myriad of
mathematical problems, such as probabilities being larger than unity. Thus, a vastly different
approach is needed to find a unified field theory.

The biggest contender for such a theory is string theory, in which particles are replaced
by one-dimensional objects such as strings. This theory has a mathematical framework that
successfully incorporates gravity with the three fundamental forces. However, a flaw of string
theory is that it does not describe our specific universe. There are two fundamental discrepan-
cies between string theory and the real world: super-symmetry (SUSY) and cosmology. String
theory finds an association between macroscopic space-time radius of curvature and almost
exact supersymmetry, but the universe does not have this property. In addition, string models
always have a non-positive cosmological constant, but the universe appears to have a positive
one. While string theory is mathematically consistent, it does not perfectly describe the real
world.

Holographic Space-time was introduced as a a more general framework for quantum grav-
ity, which can accommodate a positive cosmological constant. Holographic space-time ex-
pands on string theory and quantum field theory using the strong holographic principle. In
this theory, classical causal diamonds are replaced by quantum causal diamonds. That is, all
measurements possible in a causal diamond in a 4 dimensional space-time are encoded in a
null foliation of the diamond boundary, with maximal area leaf: the holographic screen A⋄.
The von Neumann entropy of the quantum density matrix of an empty diamond is given by the

A⋄
4GN
= A⋄

4 , as we will use natural units (ħh = c = GN = 1) throughout this paper. Holographic
space-time assumes this fact since it can be shown to produce Einstein’s field equations from
the local laws of thermodynamics, the purely geometrical Raychaudhuri equation, and Unruh’s
observation linking acceleration and temperature in weakly curved space-times [1].

HST actually makes the slightly stronger assumption that the Hilbert space of the diamond
is finite dimensional. This was originally motivated by the assumption that the density matrix
in a general diamond had to be maximally uncertain, but a more refined ansatz [2–4] has
recently been proposed. These hypotheses map the causal structure and conformal factor of
space-time into quantum concepts.

In order to incorporate causality into the dynamics of HST, one introduces independent
Hamiltonians along each timelike geodesic in a background classical space-time. Following
the logic of [1], the classical background is thought of as describing the hydrodynamics of
the quantum system one is trying to construct. One breaks each geodesic up into nested
intervals of proper time. In the cosmological context, the past tip of each interval lies at
the beginning of the universe, and the future tip of each successive interval is one Planck time
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in the future of that of the previous diamond. Inside of a given diamond, time evolution of
“generic states" is the analog of “one sided modular flow" in quantum field theory. However,
since all of the diamond Hilbert spaces are finite dimensional, this flow is just a time dependent
unitary embedding of the Hilbert space of the smaller diamond into that of the next larger one.
A specific conjecture for the form of this embedding was recently given in [5]. We will only
need to understand two things about this conjecture. It postulated a universal form for the
density matrix of a causal diamond ρ⋄ = e−K⋄ with

〈K⋄〉= 〈(K⋄ − 〈K⋄〉)2〉=
A⋄
4

. (1)

Secondly, localized excitations of energy E as measured along the geodesic in the diamond,
live in a constrained subspace of the Hilbert space, with of order E

p

A⋄ frozen q-bits. The
geodesic proper time scale for interactions that unfreeze these q-bits, and for all processes
involving q-bits on the horizon is

p

A⋄. This can be understood geometrically as the analog of
the Milne redshift for near horizon processes in Minkowski space.

To completely specify time evolution along a geodesic one must also evolve the system
outside the current causal diamond at cosmological time t. The fundamental conjecture of
the HST formalism is that this is determined by the Quantum Principle of Relativity (QPR). If
we take two diamonds along two different geodesics they will have an overlap (which might
be empty). The QPR states that the maximal area causal diamond in the overlap must be
identified with a tensor factor in each of the individual geodesic Hilbert spaces and that, for
all initial conditions, the density matrices in these two tensor factors must have the same
spectra.

There is one set of initial conditions for which it is easy to satisfy the QPR. We simply
say that the state in each geodesic Hilbert space at any time is a generic one chosen from the
universal density matrix. Since these generic states live on the apparent horizon, their average
energy at time t scales like Et−1〈K⋄〉= t−1S ∼ t, where S is the number of q-bits. Since there
is no curvature scale in these relations we conclude that the resulting universe is automatically
spatially flat. The energy and entropy densities therefore scale like

ρ ∼ t−2 , σ ∼ t−2 , (2)

which gives an equation of state p = ρ. We are free to stop the growth of the Hilbert space at
any time, and let the system continue to evolve with a random Hamiltonian K having the same
two first moments. This model describes a cosmology with scale factor a(t) = sinh1/3(3t/RI),
where π(RI/LP)2 is the entropy of the asymptotic density matrix. In this model the QPR can be
satisfied by saying that the density matrix on the overlap diamond is just the universal density
matrix for diamonds of that area. The model has no localized excitations so it really only has
coarse grained observables.

To construct a more realistic model, we imagine constrained initial conditions, such that
the Hilbert space of the causal diamond slowly expands, but the system inside it just contains
multiple copies of the above model with the same RI that are approximately non-interacting.
These are, in conventional language, inflationary horizon volumes. In the post- inflation stages
of this model [6–11], individual inflationary horizon volumes are seen as black holes in the
backward Milne coordinates of a slow roll geometry, as the horizon expands after inflation.
Most of these black holes decay, igniting the Hot Big Bang at a temperature around 108−1010

GeV, but a fraction ∼ 10−8 of them carry the minimal charge under a discrete ZN gauge sym-
metry, and survive to be Primordial Black Hole (PBH) Dark matter, with mass of order MP = 1.
Prior to the Hot Big Bang, there is an era of early matter domination and primordial density
fluctuations grow to be o(1) before the black holes decay. One might worry, that the neutral
black holes, whose initial mass is ∼ 106 could combine to form black holes that would decay
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during an era where they would have left an imprint on observational data. There are very
strong constraints [12–14] on black hole number densities in the mass range whose Hawking
lifetime is a few orders of magnitude below the current age of the universe. These problematic
black holes could rule our model out.

In this paper, we study this problem numerically to determine whether that early growth
of structure could lead to signals that could falsify the model. We simulate a toroidal lattice of
black holes, incorporating periodic boundary conditions and an expanding universe to produce
a homogeneous and isotropic cosmological space-time. Since black hole mergers are highly
relativistic and one merger alone is a complicated process, we simplify our merger process
to one of conservation of momentum. Through this process, we find that no mergers occur,
meaning that Holographic space-time is not inconsistent with the real world. We then find
that entire groups of black holes ‘stick’ together, resulting in bound structures containing black
hole remnants.

This paper is outlined as follows. Section 2 details the assumptions and parameters that our
code uses. Section 3 explains the results of our simulations. Then, section 4 contains analysis
of the behavior of black holes on a macroscopic scale. Finally, we conclude our thoughts and
provide commentary for the next steps of this project in section 5.

2 Code structure and parameters

To determine if most black holes decay before they merge, we wrote a program similar to
an N -Body simulation on Jupyter Notebooks. The program starts with N initial black holes
with random initial velocities and masses, all evenly spaced in a lattice. Every time-step, we
check to see if there exist pairs of black holes that are close enough to merge, and adjust
their parameters accordingly. This is accompanied by keeping track of the expansion of the
universe. In addition, the simulation topology is chosen as a 3-D torus to find a result for the
whole universe limit computational resources. Below, we will formalize these notions.

2.1 Parameters of the simulation

2.1.1 Velocity

We randomly generate velocities from a normal distribution with mean 0 and standard de-
viation σv =

1
10 (since we are using natural units, this is equivalent to c

10). This type of
distribution is used, since we do not have any reason to believe the velocities are Poisson or
any other distribution. In addition, the mean velocity was chosen to be 0, as the black holes
are free to move in both the negative and positive directions. Furthermore, σv was chosen to
be low enough that black holes with high velocities, which would require relativistic correc-
tions and is impractical for large number of particles, are not simulated. In Python, we used
the version 1.20.1 numpy package and the function numpy.random.normal to produce this
distribution.

2.1.2 Mass

The mass distribution is similar: we randomly produce values from a normal distribution,
now with mean m̄ = 106 [12] and standard deviation of order 1. The latter value comes is
what the density fluctuations grow to be non-linear - the time of the universe we attempt to
study [7]. The mass distribution of the black holes is also calculated with the aforementioned
numpy.random.normal function.

4

https://scipost.org
https://scipost.org/SciPostPhysCore.7.3.057


SciPost Phys. Core 7, 057 (2024)

2.1.3 Initial time

The standard equations of cosmological perturbation theory say that

δm
m
= ε
�

δH
H

�

t2/3 , (3)

where ε ≡ −Ḣ
H2 . In our model δH

H ∼ m−1, the entropy/mass fluctuation of a single black hole.
Note that this does not have a factor of

p
ε familiar from field theory models of inflation.

In those models, that factor comes from the normalization of the fluctuating gravitational
field, treated as a perturbative quantum field, whereas in HST models, the physical origin
of fluctuations comes from the quantum fluctuations of Inflationary Black Holes. ε is not
constrained by the “Swampland” ideas, which assume that CMB fluctuations are those of a
quantum field. Rather it is constrained by the requirement that the horizon expand rapidly
enough during the slow roll era that the individual inflationary horizon volumes behave as
isolated quantum systems. This gives the constraint

ε > B(ln (H−1))−1 . (4)

The parameter B here has to do with fast scrambling. If the natural time scale defined by a
Hamiltonian is T and the system is a fast scrambler, then quantum information introduced
into one q-bit is distributed over all of the q-bits in a time of order BT ln (S), where S is the
number of q-bits and B is a constant that varies from system to system. It’s typical to assume
that B ∼ 1. Equation (4) assumes that the horizon is a fast scrambler of quantum information.
Given the observational constraint εm ∼ εH−1

I ≈ εH
−1 = 10−5, where HI is the scale of the

horizon during inflation, we find that ε ∼ 0.1. This is compatible with CMB data because as
noted above, the ratio between scalar and tensor two point functions in HST models will scale
like ε2 instead of ε.

The initial time of the simulation t0 can be found with (3) with δm/m∼ 1, as mentioned
prior. Plugging in these values produces t0 = 10

21
2 .

2.1.4 Spatial distribution and density

A lattice is specifically chosen due to its isotropy and homogeneity on large scales. These as-
sumptions are chosen to easily satisfy the consistency conditions of HST, which state that if two
trajectories intersect (and therefore share information), their corresponding density matrices
must have the same spectra in this region [7]. It has been postulated that homogeneity is a
prerequisite for this complex condition [7]. The addition of isotropy is guaranteed to satisfy
the coarse-grained consistency condition, making the lattice a helpful setting to study. Fur-
thermore, we limit the size of the lattice to a ‘cube’ or cell, and make the metric a 3D torus.
This process accounts for a large lattice structure, representing the universe, while keeping
the computing power minimal. More information of this metric can be found in section 2.2.

We take the initial black hole number density in the post slow roll era to be just small
enough that the black holes do not immediately recombine into a single horizon filling black
hole. We estimate that this density is n= Cm−3 with C ∈ [10−3, 10−1], after which the density
falls as n= Cm−3 t−2. The reason for this initial condition is that, according to the logic of HST
models, any universe with localized excitations comes from an improbable initial condition.
We want to find the least improbable set of initial conditions that could create a universe like
the one we see.

Since n can also be written as N L−3, where N is the number of black holes in the cell and
L is the length of one side of the cell. We can derive the starting length l between adjacent
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black holes at t0, giving us

l =
3

√

√

√ m̄3 t2
0

C
, (5)

from the relation L = 3pNl.

2.1.5 Updating position and velocity

We can use the numerical integration technique Leapfrog Integration to update the positions
and velocities of the particles every time-step. This technique, which can be utilized to solve
any differential equation of the form ẍ = f (x), has the following steps (for each time-step):

∆x = v∆t +
1
2

aold(∆t)2 , ∆v =
1
2

aold∆t , ∆v =
1
2

anew∆t , (6)

where anew is the newly updated acceleration based on the change in position. More informa-
tion about this technique can be found at [15]. We are able to use this method because the
dynamics of each black hole is solely governed by the (classical) gravitational force it feels.

2.2 Periodic boundary conditions

Since our topology is T3 ≡ S1 × S1 × S1, we have to account for some of its properties. The
most obvious consequence of this topology is that if a particle leaves the cell, then the particle
instantaneously comes back in through the side diametrically opposite. Such a condition helps
ensure homogeneity.

Another such property is how particles feel a force from a boundary black hole (i.e. black
holes that exist on the boundary of our toroidal lattice) from two directions. For example, if
there exists a black hole in the middle of the cell, and there exists a black hole on the edge
directly to the left of the former particle, then the black hole in the middle feels a force directly
from the left and right.

Gravity Gravity

x = 0 x = 2L

Figure 1: An example to illustrate how forces travel in T1. There is one boundary
black hole on the left and one interior black hole exactly in the middle. Due to the
topology, the former can be thought of as being on the right, which we have modelled
with a mirror black hole on the right. Forces have periodic boundary conditions as
well, so this topology keeps the interior black hole in place, which in turn keeps the
stationary black hole in place. This scenario is drastically different than one in R1,
in which the black holes would have gravitated towards each other. Identically, we
can think of the force on the right to be from the same black hole, but in the opposite
boundary side.
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(0,0)

(2l, 2l)

Figure 2: The 3D toroidal lattice structure at t = t0 with N = 27. Here, we have 13
boundary black holes (in black), which we model on the corresponding diametrically
opposite side as 13 mirror black holes (in gray). We also have one interior black hole
(in blue).

To simplify our process a bit, we utilize the method of images and create mirror black
holes that are placed diametrically opposite to boundary black holes (it is important to note
that they are two different representations of the same black hole). More specifically, each
boundary black hole will have exactly one mirror black hole, with the same mass, velocity,
and acceleration in our simulation.1 An important note about acceleration is that a boundary
black hole will feel gravity from particles near it and from particles near its mirror (since its
mirror is a representation of itself). This detail applied to our earlier scenario can be seen in
Figure 1.

Out of the N points in our simulation, there exist 1
2[N − (

3pN − 2)3] mirrors. Thus, we
are simulating 1

2[N +(
3pN −2)3] unique black holes. Figure 2 shows what our toroidal lattice

looks like at the start when N = 27.2

2.3 Merger process

It is well known that the merging of black holes is a complicated and highly relativistic process.
With high accuracy, a simulation of even one pair coalescing together is extremely detailed.
Since we are working with a lot of black holes, we will be simplifying this process to one of
momentum conservation.3 Namely, we shall think of two black holes merging as a perfectly
inelastic collision, resulting in the following newly formed particle’s parameters

m= mi +m j , x =
1
2
(x i + x j) , v =

mi vi +m j v j

mi +m j
, (7)

where the first and last equations come from conservation of momentum. The position is
deemed to be the midpoint of the two black holes before the merge.

1This is actually not true: each boundary black hole on an edge of our cube has 3 mirrors and a boundary black
hole on a vertex has 7 mirrors (namely, the other vertices). However, this level of detail makes our program much
more complicated with little benefit, so we will work with our approximation.

2The perceptive reader would have noticed the slight issue with Figure 2. Earlier, we assumed that L = 3pNl,
which is not 2l when N = 27. Since we are working with a large N , we do not have to worry about this discrepancy,
since the factor 3pN/( 3pN − 1) that should have been in (5) is approximately 1 when N is high.

3We will not be working with Kerr black holes or binary systems, so we shall only consider conservation of linear
momentum.
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The condition to merge is when two black holes get closer than 10m, the Schwarzschild
radius, of each other, where m is the mass of either black hole. That is, black holes i and j
merge when:

distance(i, j)≤min(10mi , 10m j) . (8)

In addition, if i and j are both boundary and/or mirror black holes, then their mirrored
particles, denoted as i∗ and j∗, will also merge. Obviously, this is a rudimentary approximation
to the actual black hole merger process. We believe that, given our conclusions, it is adequate.
We will find that the black holes never get close enough to merge, so all the complications of
the merger process never come into play.

Before we analyze results, we must consider one other core component of this simulation.

2.4 Expansion of the Universe

Since we are simulating the matter dominated era of the universe, the normalized Friedmann’s
equation tells us that

H2

H2
0

= Ωr a−4 +Ωma−3 +Ωka−2 +ΩΛ ≈ Ωma−3 , (9)

where we rightfully assumed that Ωr ,ΩΛ ≈ 0 due to the era of the universe, and it has been
shown that Ωk ≈ 0 in the early universe [16]. Through integration, we arrive at a(t)∝ t

2
3 .

As a result, our expansion is governed by a =
�

t
t0

�2/3
. In the first time-step in which a ≥ 2,

we make a = 1 again and double the size of our lattice spacing (which in turn doubles the
physical distance between all particles). We allow this process to continue 9 more times; that
is, we allow the physical volume of our cube to grow up to 230 times the start volume after
considerable time has passed. We stop at this point, as the probability of merging after 10
expansions is minuscule.

2.5 Time step

Finding an appropriate value∆t for the time-step depends on multiple factors, such as time of
the simulation and expansion of the universe. Theoretically, the smaller ∆t is, the more accu-
rate the simulation is. However, this may pose a problem if the ‘ending’ time of the simulation
is large. Such a time in this scenario represents the time it takes for black holes to decay. We
know that this decay time is approximately

td = 210πg−11019 ≈ 210π1016 , (10)

where g represents the number of particle species and is approximately equal to 103. This
means that if ∆t is as ‘small’ as 103, then the simulation will take 1019−1021/2

103 ∼ 1016 time
steps, which is an extremely large number. This value can be drastically reduced by safely
assuming that most of mergers (if any) will happen before the universe expands even once
(due to the increase in distance and decrease in acceleration). Thus, a good approximation
for the ‘end’ of our simulation is the time it takes to expand. To find this time, we use the
previously derived equation for the scale factor, finding t ∼ 6 × 1010. Thus, the number of
time steps needed is 1010

∆t . We can safely set ∆t to some value between 105 − 107; this is
large enough that results are obtainable and small enough that it doesn’t negatively impact
the simulation.4

4If two particles are right outside of the merging threshold, then they can move straight past each other without
merging when∆t is large. This happens due to the high acceleration they obtain from being near each other, which
causes a large change in position.
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Table 1: A table of the values we considered for each parameter. No combination of
these values resulted in any merge.

Parameter Values

C 10−3, 5× 10−3, 10−2, 5× 10−3, 10−1

(σv)−1 20,16, 10,8, 4

∆t 105, 5× 105, 106, 5× 106, 107

3 Results inside each cell

After running the simulation, the code for which is available on GitHub, there seem to be 0
mergers occurring. To make sure our results were not a result of the input parameters chosen,
we utilized many possible values for C , the standard deviation of the velocity σv , and ∆t.
Table 1 provides a list of values used. This strongly suggests that no merger will occur, a result
independent of the initial conditions. It is worth noting that we limited N to 216 due to the
complexity of the program. Furthermore, we set C = 1019, 1020, and 1021 (which significantly
decreases the lattice spacing according to (5)) to make sure the code was running correctly.
Here, we noticed that black holes merged together in this setting.

Let us consider a hypothetical scenario to assess the legitimacy of our results. Suppose
there are two black hole of mass 107 separated by the distance l. Then, note that they merge
when the distance between them is less than 108. In addition, suppose that both start out
with speed 1

4 and with velocities such that they are heading towards each other. Finally, since

the maximum acceleration they will feel is 107

1016 = 10−9, we assume they have a constant
acceleration of 10−9 (again in a way that they are moving towards each other, with increasing
speeds). The reason why we are analyzing this scenario is to determine the time taken for
two black holes to merge, when they start in the toroidal lattice (given our artificially inflated
initial parameters such as velocity, acceleration, mass, etc.). With C = 0.1, we get l ∼ 2×1013,
so t ∼ 2×1011. This value is almost double the time it takes to expand the universe, even with
unrealistically high parameters. That is, the universe expands before the black holes merge,
meaning that the black holes are further apart. These calculations suggest that probability of
black holes merging before the universe expands is low.

4 Macroscopic behavior

Up until now, we have been analyzing the behavior of black holes in a tiny portion of the Hori-
zon volume and arrived at the conclusion that black holes do not coalesce in this microscopic
setting. However, we are yet to consider the behavior of each cell of black holes; that is, such
groups may become bound together.

This can be determined by comparing two times, vaguely similar to our earlier work. Like
before, we will need to calculate the time for the Horizon radius to double. The second time
we need is new: the time it takes for mass on the outskirts of the Horizon volume to reach
the center via gravitational collapse. For simplicity, we assume that the Horizon volume is
spherical. This is then equivalent to a collapse of a Newtonian shell.

9
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4.1 Expansion time

To find the first time, we need an expression for the radius. We know that the coordinate of
the horizon K grows with the following differential equation:

K̇ =
1
a

. (11)

Using Friedmann’s Equation, we can solve for K and in turn the physical distance RH ,
which is simply the coordinate size times the expansion coefficient:

RH(a) = R0 + 2

√

√ 3
8πρ0

a3/2 = 10m̄+ 2m̄

√

√3 ∗ 103

8π
a3/2 . (12)

In addition, we simplified the above equation with ρ0 =
m̄

(10m̄)3 = 10−3m̄−2 and R0 = 10m̄,
which is the Schwarzschild radius of a black hole with average mass m̄. Our analysis happens
when a ≈ 105, meaning that we can safely ignore the first term.

It is easy to see that RH doubles when a becomes 22/3105. To determine how much time
this takes, we can integrate Friedmann’s equation. This straightforward calculation gives us
texpansion = 2.303× 1014.

4.2 Collapse time

Now, we need to find the time it would take for mass at the edge of the horizon volume to
reach the center. The equation of motion of such a mass is

ẍ = −
G(2M)

x2
, (13)

where 2M = 8
3πR3

Hρ is the mass at the center. Luckily, this equation of motion is 1-dimensional
and autonomous, so the time it takes for the particle to start at x = RH(a = 105) and end at
x = 0 can be solved for. This derivation is identical to the one for freefall time, the time
it takes for a gas to collapse due to its own gravity. As explained in [17], this has the form

tff =
Ç

3π
32ρ = 5.427× 1014, when plugged in our values. Notice that tff > texpansion.5

Before we reach a conclusion, a more careful look at the expression for free fall time is
necessary. This variable is inversely related to M (so, also ρ), and we know the mass is not
fixed in our scenario. If we recall, M is dependent on RH and ρ, which are both functions of
time. Thus, our equation of motion becomes

ẍ = −
8πGR3

H(t)ρ(t)

3x2
. (14)

Now, we get a second-order non-autonomous differential equation, which is much harder
to solve by hand, so we can do this numerically. This involves first updating RH and ρ, which
will help us update the position x .

For the former two, we will be using Runge-Kutta 4, a popular numerical integration tech-
nique for first-order differential equations. For example, if we wanted to update x based on
its derivative f (x), then we would first create four parameters:6

k1 = f (x) , k2 = f
�

x + d t
�

k1

2

��

, k3 = f
�

x + d t
�

k2

2

��

, k4 = f (x + d t(k3)) . (15)

5This equation is the general expression for free fall time with mass M , but since we have mass 2M , the 32
should be replaced by a 64. Regardless, the inequality holds true.

6These are the parameters if ẋ is purely a function of x .
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Figure 3: Position x (blue) and Mass M (red) with respect to time. Clearly, x reaches
0 around t = 3× 1013. Notice that mass increases with time. In fact, it is linear.

Now, the updated position is

xnew = xold +
1
6

d t(k1 + 2k2 + 2k3 + k4) . (16)

More information about Runge-Kutta 4 can be found here [18].
To effectively use this method, notice that both RH and ρ can be written as functions of

a. With d t = 107 (which is reasonable, since d t ≪ tff), we get that tcollapse = 2.989× 1013,
as seen in Figure 3 (the code for this calculation can be found on GitHub). With this more
accurate model, we find that the time needed for a mass on the boundary of a Newtonian shell
is considerably less than our expansion time, meaning that groups of black holes are bound
together. It is important to understand that this result was not dependent on our choice of
initial conditions; these bound structures are products of the theory of HST.

It is worth noting that tcollapse being smaller than tff makes physical sense. The reason can
be realized by observing M with respect to time. We already know that

M(a) =
8
3
πR3

H(a)ρ(a)∝ a3/2 . (17)

Since a increases, M increases as well, strengthening the force of gravity. Thus, tcollapse is
rightfully smaller than tff. The full evolution of M with respect to time can be seen in Figure 3.
Notice the linearity of the red plot. This is in agreement with our work, as a∝ t2/3.

5 Conclusion

The main conclusion of our paper is that the Holographic space-time model of inflation survives
as a model of the early universe. As outlined in previous work [6–11] it gives us an econom-
ical explanation of the CMB fluctuations,7 baryogenesis, and PBH dark matter. The model
is fully quantum mechanical, causal and unitary, and has no singularities or Trans-planckian
problems. It gives predictions for the detailed form of the tensor fluctuation spectrum and for
non-Gaussian fluctuations, which differ from those of field theoretic models. The current pa-
per shows that no problematic black holes, whose decays could have given signals that falsified
the model, are formed during the early matter dominated era. Intriguingly we have also found
that it is likely that bound structures do form during this era. Most of the black holes mak-
ing up these structures decay, but most of their decay products are actually massive standard

7We do not yet have a precise calculation of the tensor to scalar ratio, but work is in progress on that.
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model particles, and their superpartners, if those have masses less than ∼ 1013 GeV. The size
of these structures when they are formed is about 1028. This is roughly 10−4 cm, indicating
their large size on microscales. The structures also contain a sprinkling of Planck mass stable
PBHs, Thus, it seems conceivable that these early structures could have an interesting effect
on the evolution of structure in the early universe. One would have to understand the rate at
which the massive particles cool and whether they remain bound to the PBH clusters, perhaps
forming the nuclei around which early galaxies coalesce.
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