
SciPost Phys. Core 7, 060 (2024)

Markovian to non-Markovian phase transition in
the operator dynamics of a mobile impurity

Dominic Gribben1, Jamir Marino1 and Shane P. Kelly1,2⋆

1 Institute for Physics, Johannes Gutenberg University of Mainz, D-55099 Mainz, Germany
2 Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy,

University of California at Los Angeles, Los Angeles, CA 90095, USA

⋆ skelly@physics.ucla.edu

Abstract

We study a random unitary circuit model of an impurity moving through a chaotic
medium. The exchange of information between the medium and impurity is controlled
by varying the velocity of the impurity, vd , relative to the speed of information propaga-
tion within the medium, vB. Above supersonic velocities, vd > vB, information cannot
flow back to the impurity after it has moved into the medium, and the resulting dynamics
are Markovian. Below supersonic velocities, vd < vB, the dynamics of the impurity and
medium are non-Markovian, and information is able to flow back onto the impurity. We
show the two regimes are separated by a continuous phase transition with exponents
directly related to the diffusive spreading of operators in the medium. This is demon-
strated by monitoring an out-of-time-order correlator (OTOC) in a scenario where the
impurity is substituted at an intermediate time. During the Markovian phase, informa-
tion from the medium cannot transfer onto the replaced impurity, manifesting in no
significant operator development. Conversely, in the non-Markovian phase, we observe
that operators acquire support on the newly introduced impurity. We also characterize
the dynamics using the coherent information and provide two decoders which can ef-
ficiently probe the transition between Markovian and non-Markovian information flow.
Our work demonstrates that Markovian and non-Markovian dynamics can be separated
by a phase transition, and we propose an efficient protocol for observing this transition.
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1 Introduction

The scrambling of quantum information is a concept crucial to a number of fields [1–9]. Its
study helps quantify the complexity of quantum processes and can be related to the local recov-
erability of information [1, 10]. Quantum experiments carried out in reality are inextricable
from their environments which often hinder information tasks when quantum information in
the system is irretrievably lost to the environment [11–22]. However, there is always a finite
probability that this information can flow back into the system and for certain physical pro-
cesses this backflow is crucial. For example, in closed system thermalization the bulk of the
system acts as an environment to, and becomes entangled with, local subsystems [23–25].
Furthermore, this information back flow, or non-Markovanity, may be a useful resource for
quantum information processing [26,27].

Recently, phase transitions in information dynamics have been demonstrated in a variety
of settings ranging from PT-symmetric non-Hermitian systems [28–34] to systems monitored
by projective measurements [35–44], to more general open systems involving qubits arranged
in a variety of space-time geometries [14, 21, 32, 45–61]. It is therefore natural to wonder
if open system dynamics undergo a phase transition in information flow as they are tuned
between Markovian and non-Markovian limits. In this light, the authors of Refs. [62, 63]
investigated non-Markovian effects of monitored systems with a non-Markovian environment
but did not find a transition in non-Markovanity. In another context, Refs. [64,65] found the
non-Markovianity of an impurity is sensitive to a topological phase transition occurring within
the environment. However, it is not clear if the two phases are distinguished by Markovian and
non-Markovian dynamics. Furthermore, the environment in both systems are non-scrambling
and Gaussian which is not characteristic of generic quantum systems.

Thus, in this work, we investigate the possibility of a phase transition in non-Markovianity
of an impurity coupled to a quantum chaotic environment. We present a model in which
the system can be taken between regions of zero and non-zero information backflow by only
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Figure 1: Cartoon of the model we consider: an impurity (blue circle) moving
through a medium. The circles within the medium correspond to the unitary brick-
work which drives the evolution of the medium. Initially, the medium contains no
information about the impurity (clear circles). Then at a random time, the impurity
interacts with the medium and leaks information into it at that particular point in
spacetime. The information is rapidly scrambled away from this point (green circles)
at a characteristic velocity. In this work, we investigate the behaviour for subsonic
(left) and supersonic (right) impurity velocities.

varying the form of the coupling between the system and environment. Distinct from previous
results [62,64,65], we find that these regions are separated by a continuous phase transition,
and identify a critical point characterized by scale-free temporal correlations.

The model we consider describes an impurity moving through a chaotic medium. The
capacity at which information can leave the impurity and re-enter at a later time can be tuned
by varying the velocity of the impurity relative to the information scrambling velocity within
the medium. We simulate the chaotic dynamics of the model using random unitary circuits and
capture the flow of information by computing the out-of-time-order correlator (OTOC) [66–
68]. The strength of the OTOC on the impurity at late times results from a combination of
information retained by the impurity over time and information backflow from the medium.
To isolate the contribution from backflow we enact a protocol in which the impurity is removed
at an intermediate time and replaced with a fresh impurity. Any non-trivial operator support
on the fresh impurity must be a result of feedback from the medium. Beginning with a single
qubit impurity moving through a 1D medium, we find that on varying the velocity of the
impurity a phase transition occurs between zero and non-zero backflow. Using a mapping
between operator growth and a random walk [67,68], we show that the criticality is a result
of the diffusive growth of the operator within the medium.

The effect of varying the velocity of a local object, e.g. an impurity or local quench, within
a medium relative to the speed of light within that medium has been studied previously in
contexts such as Hawking radiation within many-body systems [69]. More generally the effect
of this moving perturbation on the underlying state of the medium has been studied in a variety
of approaches [70–74]. In contrast to these studies we instead focus on the dynamics of the
information localized on the impurity and how this is affected by its velocity.

We then extend our model to that describing a 1D impurity moving through a 2D medium
to study the effect of the backflow transition on scrambling within the impurity. In particular
we focus on how the presence of backflow affects a distinct phase transition known to occur
in the Markovian limit of this extended model [14]. This transition is between phases of
persistent and vanishing scrambling within the impurity and we shall refer to it here as the
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scrambling transition. We find that the scrambling transition is only possible when there is no
operator backflow.

As in the scrambling transition, the backflow phase transition can also be observed in a
particular channel capacity. The relevant channel in this case captures the information about
the initial state contained within the medium and discarded impurity at late times. We show
that a party with access to only these degrees of freedom can recover the initial impurity state
with perfect fidelity when the channel capacity is maximal. This is achieved via a protocol
where a fresh impurity is coupled to the medium and the dynamics are reversed. Additionally,
we show that the backflow transition can be observed in a complementary channel. This chan-
nel characterizes the ability to decode information on the initial impurity state given access
to its final state along with the initial states of the medium and the fresh impurity inserted in
the reset step. The decoder for the complementary channel is reminiscent of that proposed
in [10], for the Hayden-Preskill protocol. We associate these two quantum channels with dis-
tinct decoding protocols and in each case derive relations between the decoder fidelity and
the channel capacity. In one case the decoder fidelity is optimal in the limit of zero backflow
whereas for the other decoding it is enhanced in the opposite limit where non-Markovianity is
maximal.

We conclude with a discussion of the distinction between the operator non-Markovianity
introduced in this paper and non-Markovianity observed in time ordered correlations [75].
We highlight how operator non-Markovianity is only captured by protocols involving an echo
such as the OTOC and decoder fidelities discussed in this paper. In contrast, the notions of
Markovianity as discussed in Ref. [75], do not capture an echo and do not naturally capture
the phase transition here. To connect the two we discuss a situation in which the observer has
access to the initial environment but loses access at later times.

The paper is organized as follows. In Section 2 we introduce the model and give the details
of the circuit implementation for both the 1D and 2D cases. We continue, in Section 3, to detail
how we capture the operator dynamics and in particular the protocol we implement to capture
operator backflow. First, we consider a single qubit impurity coupled to a 1D medium, and
discuss the OTOC dynamics of this model in Section 4.1. Here we compute the degree of
information backflow as a function of velocity and determine finite-time scaling exponents. In
Section 4.2 we take a 1D impurity moving through a 2D medium and investigate the impact of
the backflow transition on scrambling within the impurity. We then, in Section 5, investigate
how the backflow transition is manifest in a pair of complementary channel capacities. We
detail decoding protocols whose fidelity is directly related to these channel capacities and can
be used to observe the transition in small, near term quantum computers. We conclude our
discussion, in Section 6, where we emphasize what defines operator non-Markovianity before
we finally, in Section 7, summarize our results and discuss potential future directions.

2 Model

Below we construct a random circuit model aimed at capturing the information dynamics of
an impurity moving through a chaotic medium. To do so, we will consider the full unitary
evolution of the total system of impurity and medium. By partitioning a closed system into
subsystems labelled system and environment, we are then able to apply open systems concepts
such as Markovianity. In this paper we always consider Markovianity of the impurity as a
system with the medium as its environment. The main result is that the change from non-
Markovian to Markovian operator dynamics on the impurity corresponds to a continuous phase
transition.
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Figure 2: Circuit diagram of the model implementation. Here the medium qubits are
all initialized in an infinite temperature state, ρ∞, and the impurity is initially in state
ρI(0). In this realization the impurity initially drifts two sites away from its origin and
then interacts with the medium, after a further drift of one site it once again swaps
qubits with the medium. The green gates indicate the lightcone associated with the
information transferred into the medium by the first swap. The second swap is still
within this scrambling lightcone and thus could lead to backflow of information from
medium to impurity.

2.1 One-dimensional medium

Our first model is of a single impurity qubit moving over a 1D chain of qubits describing
the medium. The chaotic evolution of the medium is captured by a random circuit and the
impurity-medium interaction consists of swap gates applied at a fixed rate, p. We choose to use
this form of interaction as it is analogous to the absorption/emission of quanta from/into the
medium. However, we expect the results of this paper to hold for any interaction that results in
operators being spread from impurity to medium and vice versa.1 The circuit implementation
of this evolution is depicted in Figure 2. The medium is initialized in an infinite temperature
state and evolves under a brickwork of random unitaries drawn from the Clifford group. The
Clifford group is a unitary 3-design: it exactly reproduces the first, second and third order
moments of the Haar distribution [76]. Below, we consider the dynamics of OTOCs, which
are second order functions of the brickwork unitaries, and hence are equivalent to those that
would be generated by Haar random circuits.

Between every two layers of unitaries, the impurity qubit is swapped with the medium
qubit at position x ∈ Z with probability p. Initially, the impurity is at position x = 0, and after
each interaction step it shifts from x to x + d where the drift, d ∈ Z, is drawn, independently
at each step, from the following binomial distribution:

p(d) =
�

dmax

d

�

pd
D(1− pD)

dmax−d . (1)

Such a process implements a biased random walk with drift velocity vd = pDdmax/τ= pDdmax
where τ is the time between shifts. For the results presented in this article, we work in units
of τ≡ 1 and fix dmax = 20.2

1We have confirmed this prediction numerically for an interaction consisting of random unitaries drawn from
the Clifford group.

2We have confirmed that the main results of these paper do not qualitatively change if a deterministic shift is
used instead.
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Figure 3: Illustration of the model implementation for a 1D impurity moving through
a 2D medium. The left diagram shows the circuit which evolves the impurity through
time with swaps occurring between each site and its independent strip of the medium.
The right-hand cartoon shows how the impurity moves through the medium. Each
green strip of the medium evolves independently via the circuit displayed in Figure 2.

2.1.1 Motivation and expectations

This model could describe, for instance, a mobile impurity immersed in a Bose gas, or equiv-
alently a static impurity in a flowing gas [77–81]. In such a system, the general expectation
is that information transferred from impurity to medium is rapidly scrambled away from the
location of the interaction in a characteristic lightcone [67, 68]. This lightcone captures the
velocity at which information is scrambled through the medium.

By tuning the impurity velocity relative to the speed of information scrambling within
the medium, one may expect the information dynamics to undergo a transition. When the
impurity moves slower than the information scrambling in the medium there is potential for
information to flow back into the impurity and hence the reduced dynamics of the impurity
can be non-Markovian. On the other hand, if the velocity is increased such that the trajectory
falls outside the light cone, information backflow becomes impossible and the medium acts
as a Markovian environment for the impurity. This limit, where the probability of feedback is
zero, corresponds to vd > c where c is the maximum velocity of information in the medium;
in our case two layers of unitaries are applied per time step such that c = 2. In this limit
the medium is effectively reset with respect to the dynamics of the impurity and there is no
possibility of feedback. The general model and these two cases are depicted in Figure 1. In the
Appendix A, we consider an alternate circuit where the scrambling within the medium only
occurs up to the position of the impurity.

2.2 Two-dimensional medium

Motivated by Ref. [14] we also consider a chain of N impurity qubits moving through a 2D
lattice of N ×M qubits. The 2D medium evolves as N decoupled chains of M qubits evolving
under the brickwork circuit in Figure 2. The N media are treated as independent but evolve
under equivalent parameters i.e. p and vd are global properties. Although treating the envi-
ronments as independent is artificial it presents a simple limit in which we can explore the
effect of backflow on the scrambling within the impurity. The 1D impurity chain takes steps
through this medium in the x-direction with the step length being drawn from the distribution
in Eq. (1). We allow for interactions to occur between the individual impurity sites via a ran-
dom unitary brickwork equivalent to that occurring in the medium. Between applying each
layer of unitaries to the impurity chain, each qubit of the chain is swapped independently into
the medium with probability p. The 2D model is depicted in Figure 3; another perspective is
gained by considering Figure 2 as a cross-section.
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2.2.1 Motivation and expectations

For the 2D model we must account for the scrambling in the medium, the scrambling on the
impurity, and the interaction between them. When taking the limit of Markovian impurity
dynamics, vd > c, the scrambling dynamics of the medium can be ignored and the circuit is
equivalent to the one studied in Ref. [14]. There, the medium was a stationary reservoir of
infinite temperature qubits. Similarly, in the limit vd > c the 1D impurity is deterministically
beyond the scrambling lightcone and only interacts with infinite temperature qubits unaffected
by past medium-impurity interactions. In this Markovian limit, the swaps occurring between
the impurity and the medium suppress scrambling within the 1D impurity. In Ref. [14], it
was shown that this suppression can result in a phase transition at a critical swap rate, pc ,
above which scrambling in the impurity quickly vanishes corresponding the a complete loss of
information into the environment. This scrambling transition was identified to be part of the
directed percolation universality class [14].

Outside of the Markovian limit, vd < c, information backflow is possible, and we investigate
its effect on the scrambling transition identified in the Markovian limit. A simple expectation is
that information backflow into the impurity increases information scrambling in the impurity
and increases the critical swap rate.

3 Capturing operator dynamics and backflow

In this section we start with the 1D problem. We initialize an operator localized on the impurity,
after some time on the order of p−1 it is swapped into to the medium and then scrambled. To
capture how the operator is scrambled within the medium we compute the out-of-time-order
correlator (OTOC) defined by

C (M)(x , t) =
1
4

tr
¦

ρ I M
0

�

X (I)(t), Y (M)x

�† �
X (I)(t), Y (M)x

�

©

, (2)

where X (I) is the Pauli-X operator acting on the impurity and X (I)(t) = U†
t X (I)Ut is this operator

evolved to time t in the Heisenberg picture. Y (M)x is the Pauli-Y operator acting on the medium
qubit at site x . OTOCs quantify where in Hilbert space a time-evolved operator has support.
In addition to the operator weight in the medium, we capture the operator weight remaining
on the impurity with the OTOC given by

C (I)(t) =
1
4

tr
¦

ρ I M
0

�

X (I)(t), Y (I)
�† �

X (I)(t), Y (I)
�

©

, (3)

where Y (I) is the Pauli-Y operator acting on the impurity. The choice of Pauli operators in the
above expressions is arbitrary in our case; on averaging over Clifford circuit realizations, any
two distinct non-identity Pauli operators for the initial and time-evolved operators would yield
identical results.

If C (I)(t) vanishes at some time t then the entire information content of the initial operator
has flowed into the environment. In the case of Markovian environments this information is
irretrievable unless one can access the environment. However, for a generic environment,
information can flow back into the system at later times leading to non-Markovian revivals of
the OTOC on the system. But this non-Markovianity is distinct from that typically considered
in the field of open quantum systems which concerns the evolution and/or correlations of a
state rather than an operator [75,82]. We will now outline a protocol in which we can measure
the degree of this backflow.
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Figure 4: Schematic of the protocol used to measure the operator backflow quantified
by B = 1

4 tr
�

ρ I M
0 [X̃

(I)(t), Y (I)]†[X̃ (I)(t), Y (I)]
	

. The total space is partitioned into the
impurity, I , the medium, M , and the fresh impurity swapped in at the reset step, R.
Highlighted in green and blue are the potential channels for information about X (I)

to be carried, non-trivial operator weight on the impurity is detected by computing
the overlap with Y (I). It is only possible for non-trivial weight to be carried to the
fresh impurity via M and channel highlighted in blue, with the perspective of the
impurity as system and medium as environment this corresponds to a non-Markovian
information flow. The unitaries, U1 and U2, are given by the circuit in Figure 2.

3.1 Operator backflow

We capture operator backflow with a protocol analogous to the causal break of the process
tensor formalism [75,83–88]. At the break the system is effectively reset such that across this
break information can only be communicated via the environment; any dependence of the
system’s evolution post-break on its evolution pre-break is an indication of non-Markovianity.
Our protocol in this spirit is depicted in Figure 4. First, the model is evolved for a time t1, then
the impurity is reset by swapping the qubit with one in an infinite temperature state. This
fresh impurity is then evolved for a further time t2 to give a total evolution time of T ≡ t1+ t2.
After these steps we again track the operator weight on the impurity via an OTOC given by

B(vd , T ) =
1
4

tr
¦

ρ I M
0

�

X̃ (I)(T ), Y (I)
�† �

X̃ (I)(T ), Y (I)
�

©

, (4)

whose definition is equivalent to that of C (I)(T ), but with the operators evolved under the
backflow protocol, i.e. X̃ (I)(T ) = U†

2 U†
1 X (I)U1U2. We enforce that t1, t2 ≫ p−1 such that the

impurity and medium have significant time to interact before the reset step and subsequent
OTOC readout.

In the case of random unitary evolution the environment strongly scrambles any informa-
tion that flows into it and the system evolution is Markovian as characterized by a process ten-
sor which factorizes between timesteps. However, it has recently been shown that although
the state evolution may be Markovian or near-Markovian, the OTOC can still display non-
Markovian correlations [89]. These correlations arise due to the Heisenberg evolution of the
operator; in our model this causes the support of the operator to first spread onto the medium
and then, after the reset step, onto the fresh impurity. This is highlighted in Figure 2 where
we illustrate how information of the initial state can flow through the various channels of the
process. The only way for this information to flow onto the final impurity is via the channel
represented by the blue line. This corresponds to backflow of information from the medium
via U2, this information having flowed into the medium via U1. We expect U1 to transfer infor-
mation from the impurity to the medium regardless of the impurity’s velocity, but U2 can only
implement the reverse if the impurity remains causally connected to the initial transfer, i.e. if
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it travels at sub-luminal velocities. Although we treat the full system unitarily, by considering
the impurity sector as the system and the medium as the environment, we can consistently
refer to the Markovianity of the reduced operator dynamics on the impurity.

4 Operator dynamics

In this section, we present the OTOC dynamics for both the 1D and 2D models introduced
in Section 2. First, we investigate the dynamics of the backflow protocol for the 1D system
and perform finite-time scaling on the late-time dynamics. For the 2D system, we consider the
steady state of the OTOC without applying the reset step and investigate the effect of operator
backflow on the scrambling of operators within the 1D impurity.

4.1 One-dimensional medium

We shall focus exclusively on B(vd , T ), the disorder-averaged weight of the OTOC on the im-
purity at time T during the reset protocol depicted in Figure 4. In Figure 5 we plot B(vd , T )
at a late time as a function of the drift velocity vd . A transition occurs between at a critical
velocity of v∗ ≈ 1.2. To understand the significance of this value we must recall that the infor-
mation dynamics within the medium is stochastic. So, while the rate at which the lightcone
broadens is bounded from above by c, we can also associate a butterfly velocity, vB, with the
typical expansion rate. The average increase in the number of sites on which an operator has
support after a time t is then given by 2vB t [68]. In our case we have vB = 1.2, precisely the
velocity at which we observe the transition.

In Figure 6 we show that the disorder-averaged backflow satisfies a finite-time scaling of
the following form:

B(vd , T ) = f
�

(vd − v∗)
p

T
�

, (5)

where f is a universal scaling function. The origin of this exponent can be understood by
analyzing the operator dynamics within the medium. Given that t2 is much larger than the in-
verse swap rate 1/p, we expect that, at t2, the impurity has equilibrated with the local medium
and will follow the dynamics of the nearest medium qubit. We are therefore interested in the
weight of the OTOC in the medium at the position of the impurity; after disorder averaging
that position is x I = vd t.

To determine the OTOC at this position, we use the approach detailed in Ref. [68]. There,
the average OTOC is considered by choosing the unitary bricks from the Clifford group and us-
ing the fact that the Clifford group is a 3-design [76]. This ensures the average over the Clifford
group is the same as the average over the Haar group for the OTOC. Clifford circuits map Pauli
strings to Pauli strings, and since we consider an initial Pauli X operator, this operator remains
a Pauli string for all time. From the definition of the OTOC we have B(vd , t) = 1 if the operator
X (I)(t) has character of X or Z on the impurity and otherwise equals zero. On disorder aver-
aging if the operator has non-trivial (i.e. non-identity) support on a particular site then it has
equal probability of having X , Y or Z character. Therefore we have that B(vd , t) = 2

3 nI(vd , t),
where nI(vd , t) is a density that is equal to one if X (I)(t) has non-trivial support on the impu-
rity, and zero otherwise. We can equivalently express the disorder-averaged OTOC within the
medium at position x as B(M)(x , t) = 2

3 nM (x , t), where B(M) is the OTOC within the medium

during the backflow protocol. The late-time dynamics of nM (x , t) is characterized by regions
of zero and non-zero density separated by diffusively propagating boundaries. The dynamics
of these boundaries can be well captured by a hydrodynamic description where the probability
distribution of the boundary position evolves according to a Fokker-Planck equation [68]. The
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Figure 5: Backflow order parameter on variation of impurity drift velocity. Here we
set t1 = 100, t2 = 1000 and p = 0.1. This is the result of an average over 104

disorder realizations.

OTOC weight at the position of the impurity is given by

P(vd , t) = nM (x I , t) =
1
2

�

1− erf

�

v
p

t

2
p

D

��

, (6)

where v = vd − vB is the difference between the impurity velocity, vd and operator butterfly
velocity vB, and D is a constant. This satisfies the diffusion-like scaling relation:

P(v, t) = F(v
p

t) . (7)

The backflow transition satisfies precisely the same scaling relation as that followed by the
OTOC weight within the medium at the position of the impurity. This occurs because at late
times the impurity matches the free dynamics of the OTOC within the medium without affect-
ing it, the diffusive nature of this dynamics gives us the numerically observed scaling relations
shown in Fig. 6. Moreover, the dynamics described by Eq. (6) are scale-free when v = 0. Away
from this point the dynamics instead follow an error function which at long times corresponds
to exponential relaxation on a timescale given by v2

4D .

4.2 Two-dimensional medium

For the 2D problem the quantity of interest is the density of the OTOC over the entire impurity.
We first extend the definition of the OTOC in Eq. 3 to have spatial dependence:

C (I)(y, t) =
1
4

tr
n

ρ I M
0

�

X (I)0 (t), Y (I)y

�† �
X (I)0 (t), Y (I)y

�
o

, (8)

where y has been introduced to index the position on the impurity. From this we can anal-
ogously define the, now site-dependent, density: C (I)(y, t) = 2

3 nI(y, t). The site-dependence
of the operator weight on the impurity is irrelevant to the question of backflow we study here.
Instead, we consider the total operator weight

NI(t) =
1
N

∑

y

nI(y, t) , (9)

where N is the number of qubits within the impurity. This is the order parameter observing
the phase transition in scrambling in the Markovian limit of this model [14]. The transition
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Figure 6: Left: Expanded view of the backflow phase transition near the critical point.
Right: Data collapse under a finite-time rescaling. Here we set t1 = 100 and p = 0.1.
This is the result of an average over 104 disorder realizations.

is characterized by the steady-state value of NI ; below the critical swap rate pc , NI is finite
and the system is in the scrambling phase, while above the crticial swap rate NI vanishes and
the system is in the “absorbing phase”. This was shown to belong to the directed percolation
universality class, where bond formation is promoted by the unitary gates and suppressed by
the swap operations [14]. In the language of directed percolation, operator backflow can be
associated with the formation of long-range temporal bonds in the temporal direction. We now
consider the effect of these long-range temporal bonds on the percolation within the impurity.

Figure 7 shows the phase diagram we observe on varying the p as we take vd across the
backflow transition. There are four relevant regimes: subsonic velocities vd < v∗, supersonic
yet subluminal velocities v∗ < vd ≤ c, superluminal velocities vd > c, and a critical velocity
vd = v∗. In the subsonic regime, vd < v∗, the operator flow is in non-Markovian phase of the
1D model. Here, operators flow back into the system and operator support on the impurity is
always maintained; this region is purely scrambling. Conversely, in the superluminal regime,
vd > c, the impurity is beyond the deterministic lightcone of the medium and backflow is im-
possible. However, within this regime there is a region where results differ from the expected
Markovian limit. This discrepancy can be attributed to the use of a stochastic drift velocity in
our model. This introduces fluctuations, causing the impurity to occasionally traverse within
the lightcone, thus deviating from the anticipated Markovian behavior. Despite this deviation,
our model faithfully reproduces the Markovian outcomes as vd is increased, exhibiting two
distinct phases: a percolating phase where the steady state value of NI(t) is greater than zero
and an absorbing phase where it vanishes. These phases survive even when v∗ < vd < c, but
the critical swap rate, pc , is shifted. The long-range bonds formed in this region are suppressed
exponentially in time and their only affect is to renormalize the probability of the short-range
bond formation. This renormalization diverges as we approach the critical velocity, vd = v∗,
and the probability of long-range bond formation becomes constant. This occurs because, at
this velocity, the impurity is perfectly following the centre of the diffuse lightcone boundary
within the medium such that from its reference frame the local operator weight is constant
in time. Unless the long-range bonds are broken at a comparable, unphysical, rate then the
impurity will always percolate.
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Figure 7: Phase diagram for the two-dimensional model as a function of swap rate,
p, and impurity drift velocity, vd . The absorbing phase corresponds to a steady state
with NI = 0, while the percolating phase corresponds to NI > 0 in the steady state.
The vertical line in the plot indicates the position of the critical velocity, v∗, of the
backflow transition in the one-dimensional model. The horizontal line indicates the
critical swap rate, pc , of the scrambling phase transition in the Markovian model as
reported in Ref. [14].

5 Information transition

We have shown that an impurity moving in a 1D medium can exhibit a phase transition in oper-
ator Markovianity by studying the OTOC dynamics of the system with the impurity reset oper-
ation shown in Fig. 4. Operator dynamics has been linked to the spread of information [1,14],
and we will now explore how the phase transition in operator non-Markovianity manifests in
the dynamics of quantum information. Specifically we study the coherent information trans-
mitted through two complementary channels. These channels are those highlighted in the
right-hand panel of Figure 8 as Yellow→ Blue for the echo protocol and Yellow→ Green for
the Teleportation protocol. The results in this section were numerically simulated using the
QuantumClifford.jl software package [90].

5.1 Echo protocol

In the thought experiment, Alice prepares the impurity qubit, I , in a particular state, ρI , and
then allows it to move through the chaotic medium, M , evolving under the circuit described
in Section 2. At an intermediate time she discards her qubit and replaces it with a maximally
mixed qubit, R. At the end of the experiment, a second party, Bob, obtains access to both the
discarded qubit, D, and the medium M . For clarity, we emphasise that Bob cannot access the
impurity and has no knowledge of the input states.

We now show that the transition in operator backflow can also be observed in the infor-
mation Bob has about the state, ρI , that Alice prepared in the impurity qubit at the beginning
of the experiment. We quantify this information using the coherent information [91]. The
coherent information is most easily calculated by introducing an ancilla qubit, A, that is maxi-
mally entangled with the initial state of Alice’s qubit (the impurity). Conceptually, this ancilla
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Figure 8: Left: Manifestation of backflow phase transition in coherent information.
Here we set t1 = 100, t2 = 1000 and p = 0.1. This is the result of an average over 400
disorder realizations. Right: Diagram of the general protocol, the colors highlight
the qubits accessible by the parties in both the echo and teleportation protocols. In
the Markovian phase, there is no backflow and information of the initial state is only
accessible via M and D so we expect Bob’s decoder fidelity to be maximal. Conversely,
Charlie’s decoder is dependent on information flowing back onto the fresh impurity,
R, and therefore we expect his decoder fidelity to be maximal in the non-Markovian
phase.

acts a memory of the initial state of the impurity, and allows us to track how much of that
information remains on the impurity as it interacts with the medium. Note that this protocol
is complementary to the one in which Alice prepares a specific state ρI on the impurity. The
coherent information accessible by Bob is then given [91] as

I(A→ Bob) = S(ρBob)− S(ρBob∪A) , (10)

where S(ρC) = −Tr[ρC log2ρC] is the von-Neumann entanglement entropy of the reduced
density matrix of subspace C . The subspace labelled “Bob” contains the qubits that Bob can
access, namely the qubit discarded by Alice and the final state of the medium: Bob ≡ D ∪M .
For a circuit which allows Bob to recover Alice’s state ρI perfectly, his qubits will end up
maximally entangled with the ancilla A such that I(A→ Bob) = 1. While if Bob ends up with no
information about Alice’s state, his qubits and the ancilla will decouple, and I(A→ Bob)≤ 0.

During the first stage of the protocol, the initial state is entirely encoded in the impurity and
the medium subspaces. Immediately after this impurity is discarded, prior to the occurrence
of any swaps, this is still true and Bob has perfect access to Alice’s initial qubit such that
I(A → Bob) = 1. As long as this remains true, Bob will always have complete information
on the initial state. This is certainly true if the dynamics are Markovian. Here there is no
operator back flow, the information remains in the medium and again Bob has perfect access
to the information in Alice’s initial qubit. Once the operator dynamics become non-Markovian,
however, some information flows back into Alice’s impurity and Bob loses the ability to decode
the initial state of Alice’s qubits. This is shown in the left-hand panel of Figure 8 where we
plot I(A→ Bob) as a function of vd . There we see a transition occurring at the same critical
velocity as the backflow transition observed by the OTOC. We again find the diffusive scaling
exponents as shown in Figure 9, with the relevant scaling quantity being 1− I(A→ Bob). This
quantity is zero only in the region of zero backflow and increases as the velocity is decreased
into the phase of non-zero backflow i.e. it acts as a witness of operator non-Markovianity.
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Figure 9: Left: Information phase transition around critical point. Right: Data col-
lapse under a finite-time rescaling. Here we set t1 = 100 and p = 0.1. This is the
result of an average over 400 disorder realizations.

5.1.1 Echo decoder

The information accessible to Bob is maximal in the Markovian limit as all of the information
about the Alice’s qubit has flowed to Bob. We will now describe a decoder which yields a
perfect fidelity in this limit and can be used to observe the transition. The decoder is depicted
in Figure 10 as the green unitary operations. The construction is similar to the decoder in
Ref. [14]; here Bob inserts a new impurity qubit, I ′, prepared in an infinite temperature state
and carries out the time-reversal of the evolution up to that point. The additional reset step in
reverse consists of tracing out the impurity and replacing it with Alice’s discarded impurity, D.
The fidelity of this decoder is then given by the probability of a Bell pair forming between the
final state of D and A. Perfect fidelity is achieved when TrR[U2ρR], and by extension TrI[U

†
2ρI],

is unitary, which implies no information is transferred from M to R. When this occurs, such
as in the Markovian limit, U†

1 is trivially able to cancel the effect of U1 and the initial state is
recovered.

There is a connection between the coherent information and the decoder fidelity for a
given circuit realization given by

I(A→ Bob) = 1+ log2 F , (11)

we derive this in Appendix B. In the supersonic phase the coherent information approaches
unity and the decoder achieves perfect fidelity, while in the subsonic phase some information
of the initial state flows back onto R such that the decoder can no longer perfectly recover the
initial state. We will now outline how a different protocol witnesses the same transition.

5.2 Teleportation protocol

Here we make use of a fundamental property of bipartite entropies to derive a distinct protocol
which exhibits an equivalent transition in coherent information but for a channel complemen-
tary to the previous protocol. In this new protocol Alice carries out an equivalent role i.e. she
prepares the impurity qubit, I , in a specific state, allows it to interact with the medium, M ,
and then replaces it with a new qubit, R, in an infinite temperature state. Throughout this the
total evolution is unitary, as such any information which Bob cannot access from the discarded
qubit, D, or the final state of M must be accessible elsewhere in the system. With this in mind
we now introduce a third party, Charlie, who is also attempting to deduce information about
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Figure 10: Diagram of the decoding protocol. When Alice reliquishes control of the
impurity Bob performs a reversal of the dynamics up to that point except he only has
access to the medium, M , and the impurity discarded by Alice in the refresh step, D.

the initial state of the impurity. Charlie has qubits that are maximally entangled with the ini-
tial states of M and R, AM and AR respectively, as well as having access to the final state of
R. These new ancilla, AM and AR, play a similar role to A in that they perfectly remember the
initial state of the medium and the new qubit. Charlie having access to these implies he can
make use of this information to help decode Alice’s information. However, unlike Bob, Charlie
has no knowledge of the discarded qubit, D, or the final state of M . The degrees of freedom
Charlie can access are complementary to those accessible by Bob. This allows us to greatly
simplify the calculation of the coherent information available to Charlie.

For pure states, like the one describing the quantum correlations between Alice, Charlie
and Bob, all bipartite entanglement entropies satisfy

S(ρB) = S(ρB⊥) , (12)

where B⊥ is the complement to the subspace B. Take a generic tripartite space consisting of
X ∪ Y ∪ Z and consider the coherent informations I(X → Y ) and I(X → Z). Making use of
Eq. (12) allows us to relate these in the following way:

I(X → Y ) = S(ρY )− S(ρX∪Y )

= S(ρY⊥)− S(ρ(X∪Y )⊥)

= S(ρX∪Z)− S(ρZ)

= −I(X → Z) . (13)

Applying this relation to the relevant channels of Bob and Charlie then yields

I(A→ Charlie) = −I(A→ Bob) . (14)

This equivalence implies that I(A→ Charlie)must also witness the backflow transition when vd
is varied. In contrast to Bob, Charlie has no information about Alice’s qubits in the Markovian
regime (when Bob can decode perfectly). While, in the regime of operator Non-Markovianity,
Charlie has partial information about Alice’s qubits.
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Figure 11: Diagrams depicting the complementary decoding protocol performed by
Charlie given he only has access to the final state of the impurity along with the
initial states of the medium and the impurity inserted at the reset state. The blue
arrow indicates the goal of the protocol: to teleport information from the initial state
of Alice’s qubits to Charlie’s ancillas.

5.2.1 Teleportation decoder

As before, we can construct a decoding protocol that reconstructs this partial information as
shown in Figure 11. In that figure, the decoder is shown in green, and we show the diagram for
the corresponding fidelity, F̃ , in Appendix C. There is a clear similarity with the Hayden-Preskill
protocol decoder proposed by Yoshida and Kitaev [10]; in both cases a Bell measurement is
performed to facilitate the teleportation of Alice’s information to Charlie’s qubits. The telepor-
tation that Charlie hopes to achieve in this case is indicated by the blue arrow in Figure 11.
The success of the teleportation improves when the bell measurement probability is lower (see
Appendix C). Given that R and AR are initially in a Bell state, the decoder has the worst fidelity
when TrM [U2ρM (t1)] is unitary, i.e. U2 and U∗2 do nothing to disentangle R and AR.

As in the previous protocol, we can relate Charlie’s decoder fidelity, F̃ to the coherent
information (details in Appendix C):

I(A→ Charlie) = 1+ log2 F̃ . (15)

The logarithm of the fidelity, therefore also observes the backflow transition. Note, that while
Bob’s decoder works perfectly in the Markovian phase, Charlie’s decoder only partially suc-
ceeds in the non-Markovian phase. This is the main difference with the Hayden-Preskill pro-
tocol, and highlights the fact that the scrambling of operators back on to the impurity is not
maximal, as is assumed for the black hole in the Hayden-Preskill protocol.

The phase transition in the OTOC dynamics explored in Section 4.1 is related to a revival in
operator support on the impurity due to non-Markovian feedback from the medium. However,
the non-Markovian effects only arise because of the echo step carried out in the OTOC calcula-
tion. This new protocol we have identified undergoes a phase transition in non-Markovianity
more aligned with its traditional definition: in terms of the backflow of information from en-
vironment to system. While the decoding is facilitated by Charlie initially having access to the
medium, this access is lost during the dynamics and the enhancement of the decoder fidelity
is driven by feedback of information onto the impurity.

6 Operator Markovianty

In this paper we found a model which shows a phase transition in the operator dynamics
of an impurity moving through a medium. At slow velocities, the operator dynamics were
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non-Markovian, while at high velocities the operators dynamics were Markovian. Above, we
introduced several protocols that observe the transition, and in this section, we compare non-
Markovianity in the operator dynamics to non-Markovianity in time ordered correlations. We
capture non-Markovianity in the operator dynamics explicitly with the backflow OTOC intro-
duced in Eq. (4) and Figure 4. The back flow OTOC determines the weight of an operator,
initially localized on the impurity, at a late time T on the impurity, given that the impurity
was replaced at an earlier time t1. The replacement removes all operator support from the
impurity such that any subsequent operator support there can only be due to operator support
in the environment, which itself must have flowed from the initial impurity, spreading back
into the fresh impurity.

While this back flow OTOC detects non-Markovianity in the dynamics of the operator,
it does not detect the existence of non-Markovianity in time-ordered correlations. Non-
Markovianity in time-ordered correlations can instead be characterized by the operational
framework introduced in Ref [75]. Considering non-Markovianity of the impurity in that
framework, we must assume that the medium is operationally in accessible. This implies that
an echo of the environment cannot be performed and the backflow OTOC cannot be captured
by that framework. This also allows for the possibility that the time-ordered correlations do
not show non-Markovianity, but the backflow OTOC does. This is likely the case for the dy-
namics discussed here when the environment is initialized in a maximally mixed state. Even
though operators flow back onto the system, they also have large support in the medium, and
thus imply large correlations between the system and the environment. Since the chaotic dy-
namics of the medium spread these correlations non-locally, they will be inaccessible to the
local probes provided by the multi-time correlations of the impurity.

Nonetheless, there is still a notion in which the information dynamics is non-Markovian.
This is demonstrated by the two channel capacities and decoders discussed above. For the
echo decoder, introduced in Section 5.1, the information accessible to Bob is used to decode
Alice’s qubit. In the Markovian phase, Bob obtains all information about Alice’s qubit and can
perfectly decode. In contrast, when operators spread back on to the impurity after t1, some
of the information is lost to him and he loses some ability to decode. Note that while some
information about Alice’s qubits has left the medium (Bob’s qubits), it has not completely trans-
ferred into the impurity. Instead, that information has spread into the correlations between
Bob’s qubits and the fresh impurity. In both phases, the late-time impurity can not recover
Alice’s qubit, while only in the Markovian phase, when Bob doesn’t lose information due to
operator backflow onto the impurity, can Bob decode.

A different reasoning applies to the teleportation decoder discussed in Section 5.2. In
contrast to the echo decoder, Charlie requires access to the initial state of the medium, but
not the final state. If we consider the medium to be inaccessible at all times such a protocol
falls outside the operational notion of non-Markovianity as discussed in Ref [75]. However,
if we consider an experiment to have initial access, but to lose that access after the first step
of dynamics we match the two pictures. In this case, the fidelity of the teleportation decoder
has the form of a multi-time correlation. In the Markovian phase, Charlie cannot decode, and
the fidelity vanishes, while in the non-Markovian phase, the teleportation protocol partially
succeeds and the fidelity becomes positive.

7 Conclusion

Within the framework of random unitary circuits we have studied an impurity moving through
a chaotic medium and the flow of information between them as characterized by an OTOC.
Information deposited into the medium is rapidly scrambled away from the deposition site at
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the speed of sound vB. We show that the supersonic (v > vB) and subsonic (v < vB) impurity
velocities correspond to regimes of zero and non-zero operator backflow respectively. This was
determined by defining a protocol in which the impurity qubit was swapped with a fresh one
uncorrelated with the environment and computing the OTOC on this new qubit. The scaling
exponents associated with this transition was shown to be related to the diffusive evolution of
the OTOC in the medium.

We considered the implications of the backflow transition on the scrambling transition pre-
viously observed in a 1D impurity interacting with a Markovian environment [14]. As expected
from that work, this transition is only possible at supersonic velocities where the backflow oc-
curs with a rate which decays exponentially with a characteristic timescale. When this is no
longer the case, i.e. when the probability of backflow remains constant or decays algebraically
with a small exponent as in Appendix A, there can be no absorbing phase. However, in the
case of power-law decay, there is a potential for the transition to survive, provided the power
is sufficiently large [92].

We went on to show how the operator non-Markovanity transition is also manifest in a
quantum channel capacity, namely that between the initial impurity state and the final state
of the environment plus the qubit discarded in the backflow protocol. We associated with
this channel a decoder whose fidelity was closely related to the channel capacity and became
ideal in the Markovian limit. By considering the complement to this quantum channel we then
derived an alternative protocol which resembles the proposed in [10] for the Hayden-Preskill
protocol. In this case the performance of the decoder was tied to the degree of backflow from
the environment becoming optimal in the non-Markovian limit.

We have presented a relatively simple model that undergoes a phase transition in informa-
tion backflow. Similar to the scrambling transition [14] and the measurement induced phase
transition (MIPT) [35,36,93,94], the transition occurs in the dynamics of information. Unlike
the MIPT, but similar to the scrambling transition, there is no exponential time complexity bar-
rier in observing the backflow transition. Similar to the scrambling transition, the dynamics
of information in the backflow transition can be observed using one of the two simple decoder
shown above. The main gain in comparison to the scrambling transition (which requires stor-
ing L2 qubits of the medium) is that the backflow transition occurs in 1D medium, and only
requires storing L qubits during the time evolution and decoding. This difference may be of
importance when simulating the transitions on near term quantum computers.

Beyond realizing this transition on modern near-term devices other promising directions
would be to extend this to a more realistic open quantum model such as a spin-boson type
model [95, 96] or a Kondo model [97]. Already we can draw some conclusions when con-
sidering a mobile impurity coupled non-chaotic environments such as these. A typical exam-
ple is a mobile atom coupled to electromagnetic radiation. In this case, the impurity is not
only Markovian if it moves outside the light cone, but can also be if it moves inside the light
cone. This is because operators dynamics are ballistic in a wave medium [98], and operators
only have significant support close to the light cone. This is in contrast to a generic chaotic
medium, where operators have non-negligible support through out the light cone. In studying
open quantum systems closer to reality, recent techniques developed to treat non-Markovian
dynamics will be of great assistance [99–103].
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A Alternate 1D circuit

Here we show that the backflow transition, with modified exponents, also occurs when the
1D model of the main text is slightly modified. We now allow for scrambling to only occur
up to the position of the impurity as depicted in Figure 12. In this case the backflow order
parameter on variation of vd is shown in Figure 13.

The change to the circuit modifies the spread of the operator within the environment and
in particular the weight of the OTOC at the impurity position which is instead given by

P1(vd , t) =
exp
�

−v2 t
4D

�

p
πDt
�

1+ erf
�

v
p

t
2
p

D

�� . (A.1)

This in turn satisfies a distinct scaling relation:

P1(v, t) =
p

t F1(v
p

t) , (A.2)

and we see this manifest as well in the scaling of the backflow order parameter in Figure 14.

Figure 12: Cartoon of the modified boundary conidition where scrambling in the
environment, as indicated by the green region, can only occur up to the position of
the impurity, the dashed line.
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Figure 13: Backflow order parameter for the alternate circuit on variation of impurity
drift velocity. Here we set t1 = 100, t2 = 1000 and p = 0.1. This is the result of an
average over 104 disorder realizations.
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Figure 14: Left: Expanded view of the backflow phase transition for the alternate
circuit near the critical point. Right: Data collapse under a finite-time rescaling.
Here we set t1 = 100 and p = 0.1. This is the result of an average over 104 disorder
realizations.
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Figure 15: Left: The fidelity of Bob’s decoding protocol for a given unitary circuit, U ,
and initial states: ρM , ρR and ρI ′ . Right: The purity of the reduced density matrix
ρA∪Bob. If ρM , ρI ′ and ρR are all infinite temperature states then these two diagrams
are equivalent down to a numerical factor.

B Derivation of Eq. (11)

The fidelity of the decoder for Bob’s protocol is related to the purity of the reduced density
matrix ρA∪Bob prior to decoding via

F = d−1
M Tr(ρ2

A∪Bob) , (B.1)

where dM is the Hilbert space dimension of the medium; we show this diagrammatically in
Figure 15. By manipulating the fidelity diagram the decoder becomes a replica in the purity
diagram. These two diagrams correspond when ρM , ρI ′ and ρR are infinite temperature states.
Infinite temperature states in the fidelity are related to trace operations in the purity (and vice
versa) via

ρ∞B ↔ d−1
B TrB[·] , (B.2)

where dB is the Hilbert space dimension of B. These dimensional factors mostly cancel in our
case except for dM .

Now, the entanglement spectrum for Clifford circuits is flat[]; this results in an equivalence
between Renyi entropies, Sn(ρC), defined by

Sn(ρC) =
1

n− 1
log2 Tr[ρn

C] . (B.3)

This combined with the relation S(ρC) = limn→1 Sn(ρC) allows us to make the following sub-
stitutions:

I(A→ Bob) = S2(ρBob)− S2(ρA∪Bob)

= − log2 Tr[ρ2
Bob] + log2 Tr[ρ2

A∪Bob]

= 1+ log2 F , (B.4)

where to arrive at the last line we used S2(ρBob) = − log2(dM dI) = 1− log2(dM ).
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Figure 16: The fidelity of the second Hayden-Preskill-like protocol of the main text.
The numerator trivially contracts to yield a constant factor and the non-trivial de-
pendence on the unitary appears in the probability of measuring a bell pair, PEPR.

C Details of HP fidelity and derivation of Eq. (15)

The fidelity for Charlie’s decoding protocol is shown diagrammatically in Figure 16 where the
only non-trivial factor is given by the probability of measuring a Bell pair, PEPR. By comparing
the diagram for PEPR and that for the original decoder’s fidelity, F in Figure 15, it is apparent
that

PEPR ≡ F . (C.1)

The numerator in F̃ trivally contracts to yield a factor of d−2
I where dI is the Hilbert space di-

mension of the impurity. Altogether we have the following relation between the two fidelities:

F = 1

F̃d2
I

. (C.2)

Substituting this into Eq. (11) and making use of Eq. (14) (along with dI = 2) then yields
Eq. (15).
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