
SciPost Phys. Core 7, 061 (2024)

Unraveling complexity: Singular value decomposition
in complex experimental data analysis

Judith F. Stein, Aviad Frydman and Richard Berkovits⋆

Department of Physics, Jack and Pearl Resnick Institute,
Bar-Ilan University, Ramat-Gan 52900, Israel

⋆ richard.berkovits@biu.ac.il

Abstract

Analyzing complex experimental data with multiple parameters is challenging. We pro-
pose using Singular Value Decomposition (SVD) as an effective solution. This method,
demonstrated through real experimental data analysis, surpasses conventional ap-
proaches in understanding complex physics data. Singular values and vectors distin-
guish and highlight various physical mechanisms and scales, revealing previously chal-
lenging elements. SVD emerges as a powerful tool for navigating complex experimental
landscapes, showing promise for diverse experimental measurements.
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1 Introduction

Singular value decomposition (SVD) finds extensive applications, primarily in data compres-
sion [1–4], machine learning [5,6] and recovery of information from noisy data [7,8]. While
physicists recognize its crucial role in defining entanglement entropy [9], its utilization in
analyzing and interpreting experimental data has often been confined to niche applications
[10–13]. One of the most common uses of Singular Value Decomposition (SVD) is in the
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statistical analysis of repeated measurements of a set of variables under assumed identical
conditions, known as Principal Component Analysis (PCA) [14]. However, SVD holds sig-
nificant potential for the analysis of complex experimental data where a set of variables are
manipulated under different conditions. This is especially useful for data influenced by distinct
physical mechanisms concurrently affecting the experimental results. By adjusting a control
parameter, one can modulate these mechanisms to varying degrees. Leveraging SVD elimi-
nates the need for prior assumptions in modeling the contributions of these mechanisms to
the measurements.

In recent numerical studies, researchers have employed SVD analysis to examine the nu-
merically calculated energy spectra of complex chaotic quantum systems [15–25]. The energy
spectra of quantum chaotic systems are influenced by both universal and system-specific fea-
tures, presenting a challenging task commonly referred to as “unfolding” within the field. Var-
ious unfolding methods have been utilized, and SVD has demonstrated a distinct advantage
in revealing universal properties of the spectrum, particularly on larger energy scales.

SVD, a linear algebra technique, allows the rewriting of any matrix with dimensions M×P
as a sum of amplitudes (termed singular values) multiplied by an outer product of two vec-
tors, where the number of terms is determined by min(M , P). Details of this process will be
discussed in Sec. 2. The singular values, being positive, can be ordered by size, enabling
the approximation of the original matrix through a sum over a reduced number of the larger
terms, significantly fewer than min(M , P).

Why does this mathematical exercise matter for experimental measurements? After all,
most experimental data isn’t structured like a matrix. However, if the results of the measure-
ments depend on two parameters where at least one of them is equidistantly sampled (or
interpolated), one can organize the data by performing M measurements of one parameter
where for each such measurement the second parameter is measured P times (see Fig. 1a),
into an M × P matrix.

We will showcase the effectiveness of the SVD model through experimental measurements
of differential current conducted on both one- and two-dimensional arrays of superconduct-
ing dots on a graphene substrate. By sweeping the dc voltage at various gate voltages, the
measured conductivity exhibits a pronounced dependence on both bias and gate voltages. Os-
cillations in relation to the dc voltage, with seemingly distinct periods in different regions,
are observed. Through SVD analysis, we aim to untangle this intricate data, gaining valuable
insights into the dependence of experimental measurements on the two parameters.

The paper unfolds in the subsequent sections. In Sec. 2, we delve into an exposition of
the SVD method, elucidating its application to data analysis. Sec. 3 is dedicated to detail-
ing the experiment and the acquired experimental data, along with speculative insights into
the underlying physics. Motivated by the discernible oscillations in the data concerning the
dc voltage, we embark on Fourier analysis in an attempt to glean an interpretation; however,
the results prove inconclusive. Subsequently, in Sec. 4, we harness the power of SVD anal-
ysis, revealing its capacity to yield a markedly clearer interpretation of the data. The final
section (Sec. 5) undertakes a discussion on the broader application of SVD analysis to other
experimental measurements.

2 The SVD method

As discussed in the introduction, the initial step in applying SVD analysis involves transform-
ing the experimental measurement X (U , V ), dependent on parameters V and U , into a ma-
trix. Without loss of generality, in the presented data, V is swept at equidistant increments
of 5 × 10−5V , such that Vj = j∆V for j = 1,2, . . . P. To use this matrix representation, it is

2

https://scipost.org
https://scipost.org/SciPostPhysCore.7.3.061


SciPost Phys. Core 7, 061 (2024)

  

V

U1

U2

U3

U4

X(U,V) X  Matrix

X1,1

X2,1

X3,1

X4,1

X1,2 X1,3

X2,2

X(k=1)  Matrix

The X matrix is decomposed to modes using SVD
for example the k=1 mode

(k=1)

V

U1

U2

U3

U4

X(U,V)

M
od

e 
1

V1

V1

V2 V3

V2 V3

X2,3

X3,2 X3,3

X4,2 X4,3

•

• • •

•
•

•

•
•

•

•
•

•

• • •
•
•

•

•
•

•

•
•

•

• •

•••

a

d

b

c

X1,

X1,1

X2,1

X3,1

X4,1

X1,2 X1,3

X2,2 X2,3

X3,2 X3,3

X4,2 X4,3

(k=1) (k=1)

(k=1) (k=1) (k=1)

(k=1) (k=1) (k=1)

(k=1) (k=1) (k=1)

Figure 1: The SVD procedure. A schematic cartoon of the SVD procedure. In (a),
a physical observable X , dependent on two parameters U and V , is measured. The
procedure involves setting Ui (i = 1, 2, . . .) while changing V , resulting in the curves
for X (Ui , V ) illustrated in the graph. In (b), to represent the data as a matrix X, V
is discretized into Vj , and each value of X (Ui , Vj) is inserted as the matrix element
X i, j . Thus, each row corresponds to the measurements for a given value of Ui . The
SVD procedure is applied, yielding a series of matrices X(k), with the original matrix
expressed as a sum of modes X=

∑

kσkX(k), where σk is the singular value, and the
modes are ordered by magnitude from the largest. In (c), the matrix for the largest
mode, k = 1, is represented. Due to the structure of the SVD procedure (see text),
each matrix element in X(k=1) is equal to U⃗ (k=1)

i V⃗ (k=1)
j . Thus, each row is equivalent

to the same vector V⃗ (k=1) multiplied by a different constant U⃗ (k=1)
i . This relationship

is illustrated in the plot (d), corresponding to the curves X (Ui , V ) for the first mode.

not essential for Vj to be equidistant; however, it is necessary that all Vj ’s are the same for all
measurements appearing in the same column. Similarly, it is essential that the values of Ui are
the same for the same row. If this is not the case in a particular experiment, it can sometimes
be rectified by extrapolating the measurements to the same value of Vi or U j .

On the other hand, the second parameter, U , may not necessarily increase at equidistant
intervals or even be ordered. It suffices for U to be set at M different values, denoted as Ui .
Consequently, a M × P matrix Xi j = X (Ui , Vj) can be constructed as schematically illustrated
in Fig. 1.

In the SVD procedure, the matrix X is expanded as a sum of the singular values σk mul-
tiplied by M × P matrices X(k). These matrices are constructed by an outer product of two
vectors U⃗ (k)i (a column of length M) and V⃗ (k)j (a row of length P). Explicitly, X is decomposed

into X = UΣVT , where U and V are M × M and P × P matrices, respectively, and Σ is a di-
agonal matrix of size M × P with a rank r = min(M , P). The r diagonal elements of Σ are
the singular values (SV) σk of X. These SVs are positive and can be ordered by magnitude
as σ1 ≥ σ2 ≥ . . . ≥ σr . As discussed, X can be expressed as a series of matrices X(k), i.e.,
Xi j =
∑r

k=1σkX(k)i j , where X(k)i j = UikVT
jk = U⃗ (k)i V⃗ (k)j , a rank 1 matrix. The sum of the first

m modes provides an approximation X̃ =
∑m

k=1σkX(k) to X , representing the minimal depar-
ture between the approximate measurements, X̃, obtained using m(M + P + 1) independent
variables compared to the full energy spectrum, which requires M P variables. This forms the
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Figure 2: Raw data for the 1D (top panels) and 2D (bottom panels) samples. (a)
and (f) show optical microscope images of a 1D and 2D SLG/SC-dot-array configu-
rations respectively. The respective conductance, G, versus gate voltage, Vg , curves
are depicted in (b) and (g) showing a conductance dips at the Dirac points of the
underlying graphene. Corresponding sets of differential conductance, dI/dV , versus
bias voltage, Vdc measurements at different gate voltages, are shown in (c) and (h).
Typical dI/dV − Vdc curves are singled out in (d) and (i) for which the power spec-
trum of the data obtained by FT analysis are shown in (e) and (j).

basis for the use of SVD as a data compression method. Since, for most cases (including those
discussed here), the SVs drop rapidly as a function of k, a good approximation of X is achieved.
Indeed, examining the SVs as a function of k, typically involving a Scree plot plotting λk = σ2

k
vs. k on a logarithmic scale, serves as the first step in analyzing the data.

The SV,σk, corresponding to significant modes (typically with k ∼ O(1)), along with the as-
sociated vectors U⃗ (k) and V⃗ (k) for these modes, play a crucial role in interpreting experimental
data. This importance can be illustrated through an analogy with one of the most widely used
experimental data analysis methods, the Fourier transform. In the case of a Fourier transform,
the experimental results X (Ui , Vj) can be expressed as

∑

ki ,k j
fki ,k j

sin(ki) sin(k j). Superficially,
the structure bears similarity to the SVD sum, as both involve an amplitude multiplied by two
vectors or functions. In both methods, the goal is to identify amplitudes significantly larger
than others to characterize the data. Furthermore, the general dependence of these amplitudes
on the mode or frequency can offer insights into the overall characteristics of the system, such
as the presence of 1/ f noise.

Nonetheless, significant distinctions exist. The SVD sum involves just r =min(M , P) SV, a
stark contrast to the M P amplitudes present in the Fourier transform. This reduction in the
number of terms in the SVD sum arises because, unlike the fixed vectors involved in the outer
multiplication of the Fourier transform, the vectors in SVD are optimized to achieve the best
fit with a minimal number of modes, known as the Eckart–Young–Mirsky theorem [26–28].
Consequently, in contrast to the Fourier transform, valuable insights are gained not only from
the SV but also from the optimized vectors U⃗ (k) and V⃗ (k) associated with contributing modes.
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Figure 3: SVD analysis of the 1D sample. (a) A scree plot of SV squared (λk = σ2
k)

as function of the mode number k for the 1D sample. The first mode is orders of
magnitude larger than the rest, while the second mode deviates from the power-law
behavior seen for larger modes for which λk ∼ k−1.3. (b,c,d) Top panels: the con-
tribution of the first mode (k = 1), second mode (k = 2) and fourth mode (k = 4)
respectively to the measured data. Note that a distinct feature of the second mode,
seen for both 1D and 2D samples is the fact that they intersect at a distinct value of
voltage V ′dc = ±12mV for the 1D sample, and Vdc = ±9mV for the 2D sample, indi-
cated by the dashed red lines. For k = 4 the values connected to the superconducting
V ′dc are depicted by the dashed red line. Bottom panels: the vector V⃗ (k=1/2/4) (left)
and U⃗ (k=1/2/4) (right). The curves in the main panels are calculated by multiplying
the SV times V⃗ (k=1/2/4) by the appropriate U⃗ (k=1/2/4)

Vg
for each curve.

In the subsequent sections, we will elaborate on these somewhat vague ideas by imple-
menting them using concrete experimental data. This data is derived from conductance mea-
surements performed on one- and two-dimensional superconducting grain arrays deposited
on graphene.

3 Experimental results

We analyze results obtained on single-layer-graphene (SLG) films decorated by ordered arrays
of disordered superconducting indium oxide (InO) dots. We compare two geometries: (i)
A one-dimensional row of 17 sequential dots shown in Fig. 2a (1D sample) and (ii) a two-
dimensional array of 16 × 5 dots shown in Fig. 2f (2D sample). The SLGs were fabricated
either by flake-exfoliation or CVD growth on top of a Si/SiO substrate. The graphene layers
were etched to create rectangles with dimensions of 1µm×18µm (1D) and 17µm×6µm (2D)
using standard lithography followed by RI E process. Suitable C r/Au contacts were deposited
on the samples for electric measurements and an additional electrode was fabricated on the
back side of the Si substrate to act as a gating electrode. The superconducting dot arrays were
prepared by e-beam evaporation of 50nm thick InO film patterned to produce 1µm diameter
dots with 200nm inter-dot distance. The InO was e-beam evaporated at a partial oxygen
pressure of≈ 1×10−5 mbar, resulting in disordered superconducting film with a Tc of∼ 3.5K .
All electronic measurements were conducted in a He3 system at T = 0.33K .

Fig. 2 c,h show differential conductance versus bias voltage (dI/dV −Vdc) curves at differ-
ent gate voltage, Vg , for a 1D and a 2D sample. It is evident that the data for both the 1D and
2D samples is rather complex. The measurements reveal an intricate dependence on both Vdc
and Vg . As illustrated in Fig. 2 b,g, which show the conductance, limVdc→0 G = dI/dV plotted
as a function of Vg , it is observed that G exhibits a dip in the proximity of Vg ∼ 0. Conversely,
at higher values of Vdc , Vg has a weaker influence on dI/dV . Oscillations are observed at cer-
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Figure 4: SVD analysis of the 2D sample. similar to those presented in Fig. 3. Note
that for this sample, λk ∼ k−4.

tain values of Vg , whereas at others, they are less pronounced. Furthermore, these oscillations
appear to depend on Vdc .

The complex structure of the curves is expected to be a result of three main contributions:
1. A depletion of the electronic DOS around the Fermi level due to the Altsuler-Aronov (AA)
mechanism of electron-electron interactions in disordered films [29].
2. A Superconducting gap,∆ in the graphene regions below the InO dots due to the proximity
effect [30], each with an expected bias scale of ∆InO ≈ 0.7mV [31].
3. Electronic quantum interference effects resulting from the periodic structure of
superconducting-normal region interfaces. These effects depend on the Fermi velocity of
graphene, vF ≈ 106 m/s, and the inter-dot distance, ≈ 200nm, leading to an expected pe-
riod as function of Vdc of ≈ 2mV .

In order to appropriately analyze these results, one would like to decompose the different
physical contributions to the data. A naive way to do so would be to employ a simple Fourier
transform. However, the intricacies involved largely rule out a 2D Fourier transform of both Vdc
and Vg . Even when attempting a Fourier transform solely for Vdc at a fixed Vg where oscillatory
behavior is unmistakable, no distinct peak in frequency is evident (see Fig. 2 e,j). This lack
of clarity in frequency peaks makes it challenging to draw meaningful conclusions from the
Fourier transform analysis. In addition, such analysis method requires separate calculation for
each individual Vg value in an attempt to identify repeating patterns. Clearly, a more useful
and efficient analysis tool is required.

4 SVD analysis

Hence, we apply SVD analysis to the experimental data presented in the previous section (Sec.
3). As outlined in Sec. 2, the initial step involves examining the behavior of the SV. In Figs.
3a and 4a, a scree plot illustrates the squared SV (λk = σ2

k) in relation to the mode number k.
Notably, the largest SV (k = 1) is orders of magnitude greater than subsequent modes for both
samples. Beyond k = 3, a power-law behavior emerges. Specifically, the 1D chain exhibits a
power law described by λk ∼ k−1.3 (Fig. 3a), while the 2D sample follows a steeper power
law, λk ∼ k−4 (Fig. 4a). This disparity in power laws is significant; as demonstrated in the ap-
pendix of Ref. [18], a power law of λk ∼ k−1 corresponds to 1/ f noise. Consequently, modes
k = 3−15 for the 1D sample appear to align with characteristics of 1/ f noise. In contrast, the
2D sample seems well-characterized by the initial few modes, as the contribution from subse-
quent modes rapidly diminishes. This observation is reinforced by noting that measurements
of the 1D sample exhibit greater noise compared to those of the 2D sample (Fig. 2).
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Now, let us delve into an examination of the contributions from individual modes. The
contributions of the first mode (k = 1) to the measured data are shown in Fig. 3b for the 1D
sample and Fig. 4b, for the 2D sample, along with the associated vectors V⃗ (k=1) and U⃗ (k=1).
The differential conductance, dI/dV , as a function of Vdc for various values of Vg is plotted,
where the various values are coded with the same color code as in Fig. 2. As discussed in
Sec. 2, X(k=1) = σ1U⃗ (k=1) ⊗ V⃗ (k=1). The outer multiplication between these two vectors has a
transparent interpretation. Specifically, the vector V⃗ (k=1) captures the first mode’s dependence
of the differential conductance, dI/dV , on Vdc . Consequently, the vector V⃗ (k=1) is multiplied by
the term of the vector U⃗ (k=1) that corresponds to the appropriate value of Vg . This relationship
is visually evident in the main panels of Figs. 3b and 4b, where the multiplication of V⃗ (k=1)

by the corresponding value of U⃗ (k=1) is plotted for each term of U⃗ (k=1), i.e., for each value of
the gate voltage Vg .

Hence, the first mode derived from the SVD provides an overall insight into the behav-
ior of the differential conductance. For our samples, we associate this gross feature with AA
depletion in disordered metals. AA depletion manifests in a logarithmic increase in the dif-
ferential conductance, which is truncated at low voltage due to temperature. Indeed, in the
case of the 1D sample, the first mode vector V⃗ (k=1) exhibits a broad minimum around Vdc = 0,
followed by a logarithmic increase. For the 2D sample, the behavior is more intricate, and a
sharp minimum at Vdc = 0 appears, revealing a more distinct structure that needs further ex-
planation. It’s noteworthy that, unlike modes in the Fourier transform, SVD tailors its vectors
to the specific measurements, as exemplified by the contrast between V⃗ (k=1) for the 1D and
2D samples.

Additionally, while V⃗ (k=1) captures the fundamental features of the experiment for the 1D
sample, it misses notable features observed in the 2D sample, such as the transformation of the
minimum at Vdc = 0 into a maximum for certain values of Vg . An examination of the behavior
of U⃗ (k=1) as a function of Vg reveals a close correlation with the behavior of G, as depicted in
Fig. 2 b,g.

Next we turn to the second mode of the SVD analysis. The mode is plotted in Figs. 3c and
Fig. 4c. A very clear feature of X(k=2) of both samples is that distinct regions of behavior as
function of Vdc are revealed. All curves cross at two values of V ′dc = ±12mV for the 1D sample
and at V ′dc = ±9mV for the 2D sample. These values of V ′dc correspond to the estimation of
the superconducting gap in these systems, and they are unequivocally revealed by the second
mode of the SVD. Considering the simpler 1D, which includes 17 junctions (dots) in series, one
can expect to observe structure at ∆InO × 17 = 11.9mV . Remarkably, this aligns exactly with
the point where the curves of the second mode of the 1D sample intersect. For the 2D sample
the shortest path across the sample is of 12 junctions, corresponding to ∆InO × 12 = 8.4mV ,
not far from the estimation garnered from the width of the second mode.

The higher modes expose more intricate effects on the differential conductance, evident
in the oscillations with respect to Vdc . Complicating the analysis is the observation that these
oscillations seem to exhibit a different period within the region of the superconducting gap
compared to outside of it. Moreover, this phenomenon is more pronounced for specific val-
ues of Vg . As illustrated in Figs. 3d and Fig. 4d, where one of the typical higher modes
(k = 4) is presented, it is apparent that the amplitude and frequency of the oscillations differ
for |Vdc| < V ′dc compared to |Vdc| > V ′dc . In the 1D sample case, those frequencies found to be
2.5mV for |Vdc| < V ′dc, inside the superconducting gap, and 1.9mV for |Vdc| > V ′dc , outside
of it. Other high modes, such as k = 3, 5,6, show a similar, although somewhat noisier pe-
riodicity. As noted above, such a voltage scale is expected for electronic interference effects
due to the dot periodicity. For the 2D, which includes more than one single dot periodicity, the
electronic interference effects are washed out and the oscillations are much slower, of order
of 10mV which fits the gap energy.
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5 Conclusion

In this work, we demonstrated the strength of the SVD technique, beyond its conventional
applications, to assist in analyzing complex physics experimental data. We showed that the
SV and the different modes effectively separate and highlight distinct physical mechanisms
that construct the results, which were otherwise difficult to isolate. Hence, the SVD is found
to be an excellent tool for navigating through experimental data complexities, successfully
reducing the dimensionality while preserving crucial information. It stands as a valuable asset
for sophisticated experimental data analyses and holds further promise for unveiling valuable
insights of real physics properties.

The potential of utilizing the SVD method for experimental data is vast, as it can essentially
be employed to any experiment where data depends on two variables. For instance, it may be a
most useful tool for analyzing mesoscopic systems where resistivity as a function of voltage and
magnetic fields exhibits repeatable fluctuations with no clear period [32]. Similarly, optical
spectra often shows non trivial structure as a function of e.g., wavelength and temperature.
Alternatively, SVD may be effective for analyzing scanning images of a physical property as a
function of lateral X and Y axes where one would like to deconvolute real physics from scanning
noise and effects of the scanning probe kernel. SVD has also recently been used in network
data analysis [33]. These are few examples for the immense potential of SVD applications in
experimental physics data analysis. Its utility extends far and wide, making SVD an invaluable
asset for diverse scientific disciplines.
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