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Abstract

The time-evolving matrix product operator (TEMPO) method has become a very compet-
itive numerical method for studying the real-time dynamics of quantum impurity prob-
lems. For small impurities, the most challenging calculation in TEMPO is to construct the
matrix product state representation of the Feynman-Vernon influence functional. In this
work we propose an efficient method for this task, which exploits the time-translationally
invariant property of the influence functional. The required number of matrix product
state multiplication in our method is almost independent of the total evolution time,
as compared to the method originally used in TEMPO which requires a linearly scaling
number of multiplications. The accuracy and efficiency of this method are demonstrated
for the Toulouse model and the single impurity Anderson model.
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1 Introduction

A prototypical model for studying non-Markovian open quantum effects is to consider a quan-
tum system of a few energy levels, referred to as the impurity, that is immersed in a continuous
noninteracting bath which consists of an infinite number of bosonic or fermionic modes. Fre-
quently studied quantum impurity models (QIMs) include the spin-boson model [1]which con-
tains a single two-level spin coupled to a bosonic bath, and the Anderson impurity model which
contains a localized electron coupled to an electron bath [2]. The former is a paradigmatic
quantum system which is used to study, e.g., quantum stochastic resonance [3], dissipative
Landau-Zener transition [4] and quantum phase transition [5,6]. The latter is a fundamental
model for studying strong correlated effects in condensed matter physics [7], and is also a
building block for quantum embedding methods such as the dynamical mean field theory [8].

A number of methods have been developed to solve the real-time dynamics of QIMs be-
yond the Born-Markov approximation. These method include the real-time diagrammatic
Monte Carlo [9–11] and its recent higher order extensions [11,12], the hierarchical equation
of motion [13–15], the numerical renormalization group [16–19], and the matrix product
states (MPS) based methods [20–30]. Among these methods, the MPS based methods are
known to allow well-controlled approximation schemes and could often be efficiently imple-
mented [31,32].

An emerging and rapidly developing MPS based method for QIMs is the time-evolving
matrix product operator (TEMPO) method, first developed for bosonic QIMs [33–40]. Re-
cently this method was extended to the fermionic case, referred to as the Grassmann TEMPO
(GTEMPO) method as it deals with the Grassmann path integral (PI) [41–43]. The central
idea of TEMPO is to directly construct an MPS representation of the augmented density tensor
(ADT), defined as the integrand of the PI, which only contains the impurity degrees of freedom
in the temporal domain. This is in comparison with the conventional wave-functional based
MPS methods which explicitly represent the spatial impurity-bath wave function as an MPS
and then evolve it in time [29,30,44–46]. Here we note another set of recent works [47–51]
that also exploits the MPS representation of the Feynman-Vernon influence functional (IF) [52]
(which will be referred to as the tensor network IF methods). Formalism-wise, these methods
differ from GTEMPO in that in their numerical calculations the PI is converted into a fermionic
operator expression in the Fock state basis, thus avoiding directly dealing with Grassmann vari-
ables (GVs). In the meantime, the algorithm design in GTEMPO could be more straightforward
as it directly translates the Grassmann expression of the fermionic PI into MPS calculations.
The advantage of the TEMPO and the tensor network IF methods compared to the wave-
functional based MPS methods is obvious: the bath degrees of freedom are exactly treated
via the Feynman-Vernon IF. The only sources of error in TEMPO are the time discretization
error and the MPS bond truncation error. TEMPO is also likely to be advantageous in terms of
computational efficiency compared to the wave-functional based methods. In fact, the entan-
glement of the temporal MPS is closely related to the memory kept in the bath that is relevant
for the impurity dynamics [34, 53], which thus resembles those natural orbital methods that
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select a few relevant modes from the bath [54–57], but in TEMPO the whole process is done
exactly without having to explicitly deal with the bath.

For small impurities, such as a single spin or a single electron, the construction of the
MPS representation of the Feynman-Vernon IF (referred to as the MPS-IF afterwards) is the
dominant calculation in TEMPO. The approach originally taken in TEMPO [33], is to build
up the MPS-IF by decomposing the IF into the product of many partial IFs, each written as
an MPS of a small bond dimension and the total number of partial IFs scales linearly with
the total evolution time. Another approach to build the MPS-IF, which is used in the tensor
network IF methods [47, 48], is to map the IF into a Gaussian state and then construct it by
applying an equivalent quantum circuit of local gate operations onto the vacuum state using
the Fishman-White (FW) algorithm [58]. The depth of the quantum circuit has been shown
to scale only logarithmically with the evolution time in certain cases. The partial IF approach
has also been used in combination with the tensor network IF method, and is reported to have
a similar accuracy with the FW algorithm [50]. In both approaches, the time-translationally
invariant (TTI) property of the IF is explicitly destroyed.

In this work we propose an alternative approach to construct the MPS-IF which exploits the
TTI property of the IF. Similar to the partial IF approach, we build the IF using a series of MPS
multiplications. However, the total number of MPS multiplications required by our approach
is almost independent of the total evolution time (this feature shares some similarity to the
logarithmic scaling of the circuit depth in the FW algorithm). In our numerical examples
on the noninteracting Toulouse model and the single impurity Anderson model (SIAM), we
find that a small constant number, 5 concretely, of MPS multiplications is already enough to
achieve a similar level of accuracy to the partial IF approach, but with a drastic speedup in
computational efficiency. Our method could thus greatly accelerate the TEMPO method for
the real-time dynamics of QIMs.

2 Method description

The method we propose to efficiently construct the MPS-IF works for both the bosonic
(TEMPO) and fermionic (GTEMPO) QIMs. In this section, we first present in detail our method
for the fermionic case (which is the harder case), where Grassmann MPS (GMPS) is used in-
stead of a standard MPS to represent the IF for the convenience of dealing with Grassmann
tensors (one could refer to Ref. [41] for the definition and operations of GMPS). Then we
briefly show its bosonic version.

2.1 The path integral formalism

For briefness we use the SIAM to describe our method, but we note that our method can be
directly applied to general QIMs as long as the Feynman-Vernon IF applies, e.g., the bath is
noninteracting and is linearly coupled to the impurity. The Hamiltonian of the SIAM can be
written as

Ĥ =
�

εd −
1
2

U
�

∑

σ

â†
σ âσ + Uâ†

↑ â↑â
†
↓ â↓ +
∑

k,σ

εk ĉ†
k,σ ĉk,σ +
∑

k,σ

�

Vk â†
σ ĉk,σ +H.c.
�

, (1)

where the first line contains the impurity Hamiltonian, with σ ∈ {↑,↓} the electron spin, εd
the on-site energy of the impurity and U the Coulomb interaction, the second line contains
the bath Hamiltonian and the coupling between the impurity and the bath, with εk the band
energy and Vk the coupling strength. We assume that the whole system evolves from the initial
state:

ρ̂(0) = ρ̂imp(0)⊗ ρ̂th
bath , (2)
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where ρ̂imp(0) is some arbitrary impurity state and ρ̂th
bath is the bath equilibrium state with

inverse temperature β .
The impurity partition function at time t, defined as Zimp(t) = Tr ρ̂(t)/Tr ρ̂th

bath, can be
written as a path integral [59,60]:

Zimp(t) =

∫

D[ā, a]A [ā, a]

:=

∫

D[ā, a]K [ā, a]
∏

σ

Iσ [āσ, aσ] , (3)

where āσ = {āσ(τ)}, aσ = {aσ(τ)} are Grassmann trajectories, and ā = {ā↑, ā↓}, a = {a↑, a↓}
for briefness. The measure D[ā, a] =

∏

σ,τ dāσ(τ)daσ(τ)e−āσ(τ)aσ(τ). The integrand of the
PI, denoted as A, is the augmented density tensor (ADT) in the temporal domain which is a
Grassmann tensor (it is a standard tensor of complex numbers for bosonic PI) and contains all
the information of the impurity dynamics. It should be noted that this path integral formalism
only contains the impurity GVs in the temporal domain.

The bare impurity propagator K is

K[ā, a] = 〈−a+N |e
−iĤimpδt |a+N−1〉 · · · 〈a

+
2 |e
−iĤimpδt |a+1 〉 × 〈a

+
1 |ρ̂imp(0)|a−1 〉 〈a

−
1 |e

iĤimpδt |a−2 〉 × · · ·

× 〈a−N−1|e
iĤimpδt |a−N 〉 , (4)

where Ĥimp is the impurity Hamiltonian. For the purpose of numerical calculations, the IF can
be discretized using the QuaPI method [61, 62] with a time step size δt, which results in the
following discrete expression [41] (see Appendix. A for details):

Iσ ≈ e−
∑

ζ,ζ′
∑

jk āζ
σ, j∆

ζζ′
j,k aζ

′
σ,k . (5)

Here ζ,ζ′ = ± denotes the forward and backward branches of the Keldysh contour,
1 ≤ j, k ≤ N (N = t/δt is the total number of time steps) label the discrete time steps,
∆
ζζ′

j,k denotes the four hybridization matrices, aζ
σ,k and āζ

σ,k denote the discrete GVs. Since
there are 8 GVs, a±↑↓,k and ā±↑↓,k, within each time step, the total number of GVs is 8N . For
a given β , the hybridization matrices are fully determined by the coupling strength function:
J(ω) =
∑

k V 2
k δ(ω−ωk).

2.2 The partial IF method

In TEMPO, one first builds K and each Iσ as an MPS, and then multiplies them together to
obtain the ADT as an MPS. In our implementation we represent each GV as one site, therefore
the MPS representations of K and Iσ all have 8N sites for the SIAM. Based on the ADT, one can
easily calculate any multi-time correlations of the impurity. In GTEMPO, a zipup algorithm is
introduced to build the ADT only on the fly which could often further reduce the computational
cost. In both cases, the most computationally expensive task is to build Iσ as an MPS (as long
as the impurity is small).

Before we introduce our method, we first briefly review the partial IF method used in
GTEMPO, which breaks Iσ into the product of partial IFs as:

Iσ =
∏

ζ, j

Iζ, jσ :=
∏

ζ, j

�

e−
∑

ζ′ ,k āζ
σ, j∆

ζζ′
j,k aζ

′
σ,k

�

. (6)

Here Iζ, jσ denotes the partial IF for the ζ branch and jth time step. The decomposition in
Eq.(6) is exact since the partial IFs commute with each other (more generally, any Grassmann
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Figure 1: (a) The partial IF method to build the discretized N -step Feynman-
Vernon influence functional as an MPS using the multiplications of O(N) partial IFs.
The branch indices of the partial IFs are suppressed for briefness. (b) The time-
translationally invariant approach to build the MPS-IF, where m GMPS multiplica-
tions is required and the result converges exponentially fast with m.

expression with an even number of GVs commutes with each other). In Ref. [41], a numerical
algorithm is used to build each partial IF as a GMPS of a small bond dimension. Here we show
that each partial IF can be exactly written as a GMPS of bond dimension 2, which is essentially
because that the summand in its exponent shares the same GV āζσ, j and one simply has

Iζ, jσ = 1−
∑

ζ′,k

āζσ, j∆
ζζ′

j,k aζ
′

σ,k . (7)

Concretely, assuming that we use a time-local ordering of the GVs, where the GVs at different
time steps are aligned in ascending order, and the GVs within the same time step j are aligned
as a+σ, j ā

+
σ, ja
−
σ, j ā
−
σ, j [41,42], then the GMPS for Iζ, jσ can be directly written as:

Iζ, jσ =
�

1 ∆
ζζ′

j,1 aζ
′

σ,1

�

· · ·
�

1 ∆
ζζ′

j, j aζ
′

σ, j
0 1

�

�

1 āζσ, j

āζσ, j 0

�

�

1 0

−∆ζζ
′

j, j+1aζ
′

σ, j+1 1

�

· · ·
�

1

−∆ζζ
′

j,N aζ
′

σ,N

�

, (8)

where ζ′ include both branches. This partial IF strategy is schematically shown in Fig. 1(a).
Here we can also see another stark difference between GTEMPO and the wave-function based
MPS methods: in GTEMPO the whole time evolution window [0, t] is addressed simultane-
ously, while in the latter the evolution proceeds from time t to t+δt iteratively. Furthermore,
in GTEMPO we first build the MPS-IF for the whole time interval [0, t], which is then used for
calculating any multi-time impurity correlations within this time interval.

2.3 The time-translationally invariant IF method

The partial IF method is generic for arbitrary hybridization matrix. However, this is an overkill
since the hybridization matrix in Eq.(5) is not general: it has the crucial property of being
time-translationally invariant, namely ∆ζζ

′

j,k can be written as a single-variate function of j− k
as

∆
ζζ′

j,k = η
ζζ′

j−k . (9)
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Denoting Fζζ′σ = −
∑

jk āζσ, j∆
ζζ′

j,k aζ
′

σ,k and Fσ =
∑

ζ,ζ′ Fζ,ζ
′

σ , the above property allows us to

efficiently write Fζζ′σ as a GMPS of a small bond dimension, similar to the strategy used in
constructing long-range matrix product operators (MPOs) [63]. The details are shown in the
following.

First we assume that ηζζ
′

(for fixed ζ and ζ′) can be decomposed into the summation of
exponential functions as

ηζζ
′

x ≈
n
∑

l=1

αlλ
|x |
l , (10)

where αl and λl are parameters to be determined, and x can be both positive and negative.
Finding the optimal αl and λl in Eq.(10) is an important and well-studied task in signal pro-
cessing, which can be solved by the Prony algorithm [64] (also see Appendix. C). We denote
the error occurred in this decomposition as

ςp =
∑

x

�

ηζζ
′

x −
n
∑

l=1

αlλ
|x |
l

�2

. (11)

In practice, we will increase n in the Prony algorithm until ςp is less than a given threshold.
Once the optimal αl and λl are found, Fζζ′σ can be built as an translationally invariant GMPS
with bond dimension 2n+2, the site tensor of which can be written as an upper-triangular (or
equivalently lower-triangular) operator matrix:




























1 α1aζ
′

σ · · · αnaζ
′

σ −ᾱ1āζσ · · · −ᾱnāζσ η
ζζ′

0 aζ
′

σ āζσ
0 λ1 · · · 0 0 · · · 0 λ1āζσ
...

... · · ·
...

... · · ·
...

...
0 0 · · · λn 0 · · · 0 λnāζσ
0 0 · · · 0 λ̄1 · · · 0 λ̄1aζ

′

σ
...

... · · ·
...

... · · ·
...

...
0 0 · · · 0 0 · · · λ̄n λ̄naζ

′

σ

0 0 · · · 0 0 · · · 0 1





























, (12)

where αl and λl correspond to the expansion of ηζζ
′

x for 1≤ x ≤ N in Eq.(10), while ᾱl and λ̄l

correspond to the expansion of ηζζ
′

x for −N ≤ x ≤ −1. We have also neglected the time step
indices of ā and a due to the time-translational invariance. Crucially, n often scales very slowly
with N [65–67]. In practice, we find that for commonly used coupling strength functions, one
could easily reach ςp ≤ 10−5 with n≤ 20.

Now that we have an efficient GMPS representation of each Fζζ′σ , we could use any
MPO-based time-evolving algorithms [68], such as the time-dependent variational principle
(TDVP) [69], to construct Iσ = eFσ as a GMPS. In fact one can easily transform back and forth
between a GMPS and an MPO: an MPO can be converted into a GMPS by applying it onto the
Grassmann vacuum, while a GMPS can be converted into an MPO by copying its physical in-
dices, with the Grassmann anticommutation relations properly taking care of. However, brute-
force application of these methods will in general require O(1/δ)MPO-MPS multiplications, if
we choose δ as the step size (δ is a hyperparameter which has a completely different meaning
from the δt used for discretizing the IF). In the following we introduce an approach which
only requires O(log(1/δ)) GMPS multiplications instead. Assuming that δ = 1/2m, then we
can write

Iσ =
�

eFσ/2
m�2m

. (13)
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For large enough m, one can first find an efficient first-order approximation of eF
ζζ′
σ /2

m
as a

GMPS of bond dimension 2n+ 1, using the WI method for example [63]:
























1+δηζζ
′

0 aζ
′

σ āζσ α′1aζ
′

σ · · · α
′
naζ

′

σ ᾱ′1āζσ · · · ᾱ
′
nāζσp

δλ1āζσ λ1 · · · 0 0 · · · 0
...

... · · ·
...

... · · ·
...p

δλnāζσ 0 · · · λn 0 · · · 0p
δλ̄1aζ

′

σ 0 · · · 0 λ̄1 · · · 0
... · · ·

...
... · · ·

...
...p

δλ̄naζ
′

σ 0 · · · 0 0 · · · λ̄n

























, (14)

with α′i =
p
δαi and ᾱ′i = −

p
δᾱi . In our actual implementation we use the WI I method which

is a better first-order approximation than WI . Once we have an efficient GMPS representation

of each eF
ζζ′
σ /2

m
, we can multiply these four GMPSs together (with MPS bond truncation) to

obtain an efficient GMPS representation of eFσ/2
m

(note that Fζζ′σ commutes with each other),
then Iσ can be obtained by only m GMPS multiplications: in the ith step one simply multiplies
eFσ/2

m−i+1
with itself. Crucially, m is not directly dependent on the total evolution time t

and it is clear that the error occurred in the first-order approximation of eFσ/2
m

will decrease
exponentially fast with m (m could still be indirectly dependent on t since the precision of the

first-order approximation of each eF
ζζ′
σ /2

m
will be affected by the norm of the matrix Fζζ′σ , but

the latter will at most only increase polynomially with N). This TTI approach to construct the
MPS-IF is schematically shown in Fig. 1(b).

To this end, we discuss the implementation-wise difference of the GMPS multiplication
used in the partial IF and the TTI IF approaches. For the partial IF approach, one needs to
multiply a GMPS of bond dimension 2 with an existing GMPS (of a large bond dimension
χ). This is done by simply performing GMPS multiplication [41] followed by the standard
SVD compression [31]: one performs a left-to-right sweep to prepare a left-canonical MPS
without any bond truncation, and then a right-to-left sweep to prepare a right-canonical MPS
during which MPS bond truncation is performed (later we will discuss the MPS bond truncation
strategy we have used). Since one of the GMPS involved in the multiplication has a very small
bond dimension 2, the computational cost of this operation (multiplication followed by SVD
compression) scales as O(Nχ3). For the TTI IF approach, one needs to multiply two same
GMPS whose bond dimension could be close to χ, if the SVD compression method is used for
the bond truncation of the resulting GMPS, then the cost of the left-to-right sweep would scale
as O(Nχ6) since no bond truncation is performed in this stage. A better MPS compression
strategy in this scenario would be the variational compression technique [70]: one initializes
a GMPS with a fixed bond dimension χ and iteratively minimizes the distance of it with the
multiplication of the two GMPSs (the multiplication can be computed on the fly to reduce
memory usage). The variational compression technique is used in our implementation of the
TTI IF approach. Overall, the computational costs of the partial IF and the TTI IF approaches
scale as O(N2χ3) and O(Nχ4) respectively. Therefore the TTI IF approach will be beneficial for
large N (assuming that χ will remain approximately a constant as N grows, see Appendix. D
for further discussions on the computational costs).

2.4 TTI approach to construct the MPS-IF for bosonic QIMs

Finally we briefly consider the bosonic case, for which we focus on the spin-boson model as
an example. The Hamiltonian can be written as [1]:

Ĥ = ĤS+ σ̂z

∑

k

Vk(b̂k + b̂†
k) +
∑

k

ωk b̂†
k b̂k , (15)
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where ĤS is the impurity spin Hamiltonian, b̂†
k and b̂k are bosonic creation and annihilation

operators. Here we also note that for bosonic impurity problems the TTI property of the IF
has already been explored to speedup the construction of the MPS-IF [71, 72], however the
strategies introduced in these works are very different from our approach.

After discretization using the QuaPI method, the bosonic IF has a similar discrete expres-
sion as Eq.(5) [40,62]:

I ≈ e−
∑

ζ,ζ′
∑

j,k sζj∆
ζζ′
j,k sζ

′
k . (16)

Here s ∈ {1,−1} is a normal scalar instead of a Grassmann variable. Another difference of
bosonic IF compared to Grassmann IF is that the conjugate variable of s is the same as itself,
thus the length of the resulting MPS representation is only half of the fermionic case. The
partial IF approach to construct the MPS-IF can be done in parallel with Eq.(6), except that
in the bosonic case Eq.(7) does not exactly hold and one may not be able to analytically write
down each partial IF as an MPS of bond dimension 2. Nevertheless, an algorithm is introduced
in Ref. [33] to numerically construct each partial IF as an MPS of a small bond dimension.

The TTI approach to construct the MPS-IF can be done by strictly following the fermionic
case, but making the substitution of the GVs a and ā in Eqs.(12,14) by σ̂z . For example, the
bosonic version of Eq.(12) is simply





























1 α1σ̂
ζ′

z · · · αnσ̂
ζ′

z ᾱ1σ̂
ζ
z · · · ᾱnσ̂

ζ
z η

ζζ′

0 σ̂
ζ′

z σ̂
ζ
z

0 λ1 · · · 0 0 · · · 0 λ1σ̂
ζ
z

...
... · · ·

...
... · · ·

...
...

0 0 · · · λn 0 · · · 0 λnσ̂
ζ
z

0 0 · · · 0 λ̄1 · · · 0 λ̄1σ̂
ζ′

z
...

... · · ·
...

... · · ·
...

...
0 0 · · · 0 0 · · · λ̄n λ̄nσ̂

ζ′

z
0 0 · · · 0 0 · · · 0 1





























, (17)

and similarly for Eq.(14), noticing that the minus sign is missing due to the bosonic commu-
tation relation.

3 Numerical results

In this section we numerically demonstrate the accuracy and efficiency of the TTI approach to
construct the MPS-IF, with comparisons to the analytical solutions and the partial IF approach.
We will focus on the fermionic QIMs for our numerical experiments.

First of all, we discuss about the sources of numerical errors in the partial IF and the TTI
IF approaches. In the partial IF approach, the only approximation made on top of the time
discretization of the IF is the MPS bond truncation, which can be controlled either by setting a
bond truncation tolerance ς (throwing away any singular values with relative weights smaller
than ς) as done in Ref. [41], or by setting a maximum bond dimension χ (keeping χ states
with largest weights after bond truncation) as done in Ref. [48], or both. In all our numerical
tests of both approaches to build the MPS-IF, we first use a small tolerance ς= 10−7 and then
use χ as a hard limit for MPS bond truncation (from Refs. [41,43], ς= 10−6 could already be
accurate enough for the δt and the coupling strength function we use in this work, therefore
we are essentially using the second criterion χ for bond truncation). The accuracy of the
partial IF approach with respect to the MPS bond truncation tolerance has been thoroughly
studied in Refs. [41–43]. For the TTI IF approach, there are two additional sources of errors
compared to the partial IF approach: the error occurred in the Prony algorithm characterized
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Figure 2: (a, b) Imaginary part of the retarded Green’s function G(t) versus time t
for (a) the semi-circular coupling strength function in Eq.(18) and (b) the Lorentzian
coupling strength function in Eq.(19). The cyan and purple dashed lines are results
for the partial IF and the TTI IF methods respectively. The insets show the absolute
errors of both approaches compared to the analytical solutions. (c, d) The runtime
scaling of both approaches for the two coupling strength functions used in (a, b). The
cyan circle and purple triangle are results for the partial IF and the TTI IF respectively,
the solid lines with the same colors are polynomial fittings for these two approaches.
For these simulations we have used χ = 50 for each MPS-IF, Dδt = 0.1, m = 5 and
ςp = 10−5.

by ςp and the discretization error of Iσ determined by m. In our numeric tests we will only
consider the effects of these two additional sources of errors on the accuracy of the TTI IF
approach.

3.1 The noninteracting (U = 0) case

The noninteracting Toulouse model [1, 7] is a perfect test ground to access the accuracy and
efficiency of our method, as this model is analytically solvable, and the way to construct the
MPS-IF for this model is exactly the same as for more complicated impurity models: in the later
cases one simply needs to construct more MPS-IFs. We will set εd = 0 in the noninteracting
case.

First, we use both the TTI IF method and the partial IF method to build the MPS-IF, where
we set χ = 50 for both methods and set ςp = 10−5 (we require the error occurred in the Prony
algorithm to be smaller than ςp), m= 5 for the TTI IF method, then we calculate the retarded
Green’s functions based on these two MPS-IFs respectively. To show the general performance
of the TTI approach, we consider two very different coupling strength functions: (i) the semi-
circular function

Js(ω) =
Γ

2π
D
Æ

1− (ω/D)2 , (18)
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Figure 3: (a, c) The absolute errors between the retarded Green’s function of the
Toulouse model calculated by the TTI IF method and the analytical solutions for (a)
different tolerance ςp used in the Prony algorithm and (c) different values of m, for
the semi-circular coupling strength function in Eq.(18). (b, d) The same plots as (a,
c) but for the Lorentzian coupling strength function in Eq.(19). For these simulations
we have used χ = 50 for each MPS-IF and Dδt = 0.1. The default values of the rest
two hyperparameters, if not particularly specified, are m= 5 and ςp = 10−5.

with Γ = 0.1, and (ii) the Lorentzian function

Jl(ω) =
1
π

D
ω2 + D2

. (19)

Here the coupling strengths in the two coupling strength functions are set to be very different
on purpose to demonstrate the accuracy and universality of our method. In both cases we set
D = 2 (we use D/2 as the unit) and set Dδt = 0.1. We will also fix Dβ = 10 in all our numerical
simulations. The results are plotted in Fig. 2 with Dt = 120 at most (with N = 1200). From
Fig. 1(a, b), we can see that the absolute errors of the results calculated by the TTI IF method
and by the partial IF method against analytical solutions are both of the order 10−3. From
Fig. 1(c, d), we can see that the TTI IF method is significantly more efficient than the partial
IF method: the former roughly scales as t1 while the latter roughly scales as t2. The t1 scaling
in the TTI IF method is because that the length of the underlying GMPS grows linearly with t
for a fixed δt, even though the number of GMPS multiplications is fixed as a constant.

In Fig. 3, we study the influence of the two hyperparameters: ςp and m on the accuracy of
the TTI IF results. From Fig. 3(a, b), we can see that the error occurred in the Prony algorithm
is crucial for the accuracy of the final results: we see drastic improvement of accuracy when
decreasing ςp from 10−3 to 10−5 for both coupling strength functions. In comparison, from
Fig. 3(c, d), we can see that the improvement of accuracy by increasing m is almost negligible,
the results for a small m= 5 are already as accurate as those for m= 15.

To this end, we note that in our understanding of the scaling analysis of the computational
costs for both methods, we have implicitly assumed that the required bond dimension χ is
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Figure 4: The maximum OSEE as a function of the total evolution time t for the
Toulouse model for (a) Dδt = 0.1 and (b) Dδt = 0.2. We have used χ = 100 and
the semi-circular coupling strength function in Eq.(18). We have also used the TTI
IF method with m = 5 and ςp = 10−5 to build the MPS-IF in these simulations. The
insets in both panels show maximum absolute error against the analytical solutions
of the retarded Green’s function.

roughly a constant (which we fix to be 50 in above simulations) as t increases. While cur-
rently there is no known theoretical guarantee that the IF can be efficiently represented as an
MPS with a constant bond dimension, we can roughly understand the effectiveness of the MPS
representation as follows: the exponent Fσ of the IF has a similar form to a spatially trans-
lationally invariant long-range quadratic Hamiltonian with coupling coefficients ∆ζζ

′

j,k , which

decays to zero as | j − k| → ∞. Moreover, Iσ = eFσ is similar to a high-temperate thermal
state with Hamiltonian −Fσ and inverse temperature 1 (the constant 1 is crucial for the fast
convergence of our simulation results against m in Fig. 3). In practice, we find that we can
generally obtain very accurate results with χ ≤ 100. To quantify the effectiveness of the MPS
representation, we further plot in Fig. 4 the operator space entanglement entropy (OSEE), de-
fined as the bipartition entanglement entropy of quantum operators or density operators [73]
(the IF is similar to a density operator in the temporal domain [74]), as a function of the total
evolution time t. We can see that the OSEE approximately saturates at Dt/2 = 50 for both
Dδt = 0.1 in Fig. 4(a) and Dδt = 0.2 in Fig. 4(b), and the accuracy of our simulation becomes
higher for smaller δt. The increase of OSEE for larger δt also agrees with the observation in
the bosonic case, where it is shown that a larger bond dimension is often required for larger
δt [38].

3.2 The single impurity Anderson model

As an application for a harder instance, we apply our method to study the steady state current
of the single impurity Anderson model coupled to two baths. Our goal in this study is mainly
to verify whether the existing finite-time calculations have reached steady state or not, by
extending the evolution time with our new method. We use the same settings as used in
Refs. [11,41,48], namely the two baths are both at zero temperature, with chemical potentials
µ1 = −µ2 = V/2 and semi-circular coupling strength function in Eq.(18) with Γ = 0.1 (we use
Γ as the unit in this case). In Refs. [41, 48], the steady state particle current is computed by
performing real-time evolution till Γ t = 4.2. In particular, the results in Ref. [41] calculated
by the partial IF method have well converged against different δt and MPS bond truncation
tolerance, therefore the major remaining factor that may affect the quality of the obtained
steady state current is the total evolution time (the whole system may have not reached its non-
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Figure 5: The symmetric particle current J as a function of time t for different
values of V as indicated in the title of each panel. The green lines with markers
are TTI IF results for U/Γ = 0,2, 4,6, 8 respectively. The red squares are the exact
diagonalization results for U = 0. The blue markers are previous partial IF results
from Ref. [41], calculated with ς = 10−7 (the bond dimensions of the MPS-IFs in
these calculations are close to 160) and Γδt = 0.014. For the TTI IF calculations we
have used χ = 160, Γδt = 0.014, m= 5 and ςp = 10−5.

equilibrium steady state yet with Γ t = 4.2). With the more efficient TTI IF method to construct
the MPS-IF, we can reach longer evolution time. In this work, we thus evolve the system till
Γ t = 8.4 (with N = 600) and check if the previous results have well converged to their steady
state values. We denote the particle current from the νth bath with spin σ into the impurity
as J νσ (see Ref. [41] for the definition of particle current and the way to calculate it based
on the obtained MPS-IFs). As in Refs. [41, 48], we calculate the symmetric particle current
J = (J 1

↑ −J 2
↑ )/2= (J 1

↓ −J 2
↓ )/2. Here we also note that the major performance advantage of

GTEMPO compared to the tensor network IF method is that the computational cost of GTEMPO
is independent of the number of baths (as the baths are all integrated out in the Feynman-
Vernon IF) [41], while the cost of the tensor network IF method scales exponentially with the
number of baths [48].

In Fig. 5, we plot the symmetric particle current versus time t, with the starting point
Γ t = 4.2 (which is the longest time that has been reached in previous studies [41,48]), for V
from small to large. We focus on the regime of small chemical potential bias with V/Γ ≤ 1.07,
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which is often harder to reach the steady state. We have used Γδt = 0.014 and χ = 160 for all
these simulations. As comparison, we have shown the partial IF results taken from Ref. [41]
(under the same δt) with the same markers but in cyan (only for the starting time). The
results from exact diagonalization (ED) is also shown in the same markers but in red (for the
starting and final times). For ED results we have discretized each bath into 8000 equal-distant
frequencies and verified their convergence against bath discretization. We can see that the
results calculated with our TTI IF method well matches with the previous partial IF results
(the errors between them are within the first-order time discretization error). From Fig. 5(a,
b, c) where V/Γ < 0.54, we can see that the particle currents has converged fairly well for
U = 0, however, for U > 0 the particle current increases significantly (especially for U/Γ > 2)
from Γ t = 4.2 to Γ t = 8.4, indicating that the whole system has not reached its steady state
yet, and that the derivation from the steady state seems to be larger when U/Γ increases from
0 to 4. In comparison, from Fig. 5(d,e,f) where V/Γ > 0.7, we can see that the particle currents
have well converged for all values of V s and Us we have considered. Overall, the above results
indicate that the system could reach its steady state more quickly for larger V and smaller U .

4 Summary

In summary, we have proposed an efficient method to construct the MPS representation of
the Feynman-Vernon influence functional, which is a central step in the TEMPO method and
may also be applicable in the tensor network IF method. Our method exploits the time-
translationally invariant property of the Feynman-Vernon IF for quantum impurity problems.
Compared to the partial IF method originally used in TEMPO where the required number of
MPS multiplications scales linearly with the total evolution time t, the number of MPS multi-
plications required in our method is almost independent of t. We demonstrate the accuracy
and efficiency of our method in the noninteracting Toulouse model and the single impurity An-
derson model with two baths, where we show that the TTI IF method can reach comparable
accuracy with the existing partial IF method, but with a drastic speedup. Our method could
thus significantly accelerate the TEMPO method for solving real-time dynamics of quantum
impurity problems.
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A Quasi-adiabatic propagator scheme for hybridization functions

The hybridization function on the Keldysh contour ∆(τ,τ′) is

∆(τ,τ′) = Pττ′
∫

dωJ(ω)Dω(τ,τ′) , (A.1)

where Dω(τ,τ′) is the free contour-ordered Green’s function of the bath, defined as

Dω(τ,τ′) = 〈TC ĉω(τ)ĉ
†
ω(τ
′)〉0 . (A.2)
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Here TC is the contour-ordered operator, and Pττ′ = 1 if τ,τ′ are on the same Keldysh branch,
and −1 otherwise. On the normal time axis, Dω(τ,τ′) is split into four blocks as

Dω(τ,τ′) =

�

D++ω (t, t ′) D+−ω (t, t ′)
D−+ω (t, t ′) D−−ω (t, t ′)

�

, (A.3)

where the explicit forms are

D++ω (t, t ′) =

¨

[1− n(ω)]e−iω(t−t ′) , t ≥ t ′ ,

−n(ω)e−iω(t−t ′), t < t ′ ,
(A.4)

D+−ω (t, t ′) = −n(ω)e−iω(t−t ′) , (A.5)

D−+ω (t, t ′) = [1− n(ω)]e−iω(t−t ′) , (A.6)

D−−ω (t, t ′) =

¨

−n(ω)e−iω(t−t ′) , t ≥ t ′ ,

[1− n(ω)]e−iω(t−t ′) , t < t ′ .
(A.7)

Here n(ω) = (eβω + 1)−1 is the Fermi-Dirac distribution function.
We split the trajectories ā±σ(t), a±σ(t) into intervals of equal duration as ā±σ, j , a±σ, j in

( j − 1
2)δt < t < ( j + 1

2)δt, then the hybridization function is discretized according to QuaPI
scheme as

∆
ζζ′

j,k =

∫

dωJ(ω)

∫ ( j+ 1
2 )δt

( j− 1
2 )δt

d t

∫ (k+ 1
2 )δt

(k− 1
2 )δt

d t ′Dω(t, t ′) . (A.8)

Note that Pττ′ vanishes in the above expression since it cancels the sign of dτ, dτ′ on the
Keldysh contour. Then the explicit expressions of the discretized hybridization functions are

∆++j,k =























2

∫

dω
J(ω)
ω2
[1− n(ω)]e−iω( j−k)δt(1− cosωδt) , j > k ,

−2

∫

dω
J(ω)
ω2

n(ω)e−iω( j−k)δt(1− cosωδt) , j < k ,
∫

dω
J(ω)
ω2
{[1− n(ω)][(1− iωδt)− e−iωδt]− n(ω)[(1+ iωδt)− eiωδt]} , j = k ,

(A.9)

∆+−j,k = −2

∫

dω
J(ω)
ω2

n(ω)e−iω( j−k)δt(1− cosωδt) , (A.10)

∆−+j,k = 2

∫

dω
J(ω)
ω2
[1− n(ω)]e−iω( j−k)δt(1− cosωδt) , (A.11)

∆−−j,k =























−2

∫

dω
J(ω)
ω2

n(ω)e−iω( j−k)δt(1− cosωδt) , j > k ,

2

∫

dω
J(ω)
ω2
[1− n(ω)]e−iω( j−k)δt(1− cosωδt) , j < k ,

−
∫

dω
J(ω)
ω2
{n(ω)[(1− iωδt)− e−iωδt]− [1− n(ω)][(1+ iωδt)− eiωδt]} , j = k .

(A.12)

B Multiplication of two Grassmann MPSs

In bosonic case, the discretized influence functional (IF) has the following form [33]:

I[s±1 , . . . , s±N ] = e−
∑

ζ,ζ′
∑

j,k sζj∆
ζζ′
j,k sζ

′
k , (B.1)
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which can be expressed as the product of partial-IF as

I[s±1 , . . . , s±N ] =
∏

j,ζ

I j,ζ[s
±
1 , . . . , s±N ]

=
∏

j,ζ

e−
∑

k,ζ′ s
ζ
j∆
ζζ′
j,k sζ

′
k .

(B.2)

Here we can see that each partial IF is an ordinary tensor of 2N variables (e.g., of rank 2N)
from s±1 to s±N , and the IF can be obtained by element-wise product of the partial IFs. When the
partial IFs are represented as MPSs, the element-wise product between two ordinary tensors is
converted into the multiplication of two MPSs. As a result, for the multiplication of two MPSs,
one should perform element-wise product for the physical indices and tensor product for the
auxiliary indices.

In fermionic case, the influence functional has a similar form but the ordinary number s is
replaced by the Grassmann variable (GV) [60]. And we need to deal with the multiplication
of Grassmann tensors (GT) in this case.

Assuming that for an algebra of GVs of n components ξ1, . . . ,ξn, we have two GTs

A=
∑

i

Ain,...,i1ξin
n · · ·ξ

i1
1 , ik = {0,1} , (B.3)

and
B =
∑

j

Ajn,..., j1ξ jn
n · · ·ξ

j1
1 , jk = {0,1} , (B.4)

where the upper indices ik, jk of GV ξk are actual powers. The product of these two GTs gives

C̃ =
∑

i j

Ain,...,i1 B jn,..., j1ξin
n · · ·ξ

i1
1 ξ

jn
n · · ·ξ

j1
1 . (B.5)

We need to swap ξin
n , . . . ,ξi1

1 to the proper position, and each swapping would yields a sign
according to the GV commutation rule. Due to this sign issue, the product of two GTs do not
simply falls into the element-wise product of the coefficient tensors Ain,...,i1 and B jn,..., j1 . After
the rearrangement, we formally have C̃ in the form

C̃ =
∑

i j

C̃ in jn,...,i1 j1(ξin
n ξ

jn
n ) · · · (ξ

i1
1 ξ

j1
1 ) , (B.6)

where C̃ in jn,...,i1 j1 are obtained from the tensor product Ain,...,i1 B jn,..., j1 and also by taking the
swapping signs into consideration. The index ik, jk can be merged by noticing the Grassmann
multiplication relation (which corresponds to the element-wise product in the bosonic case)

ξ
ik=0
k ξ

jk=0
k = 1 , ξ

ik=1
k ξ

jk=1
k = 0 ,

ξ
ik=1
k ξ

jk=0
k = ξk , ξ

ik=1
k ξ

jk=0
k = ξk .

(B.7)

After merging the index ik, jk, we finally obtain a GT C in the form

C =
∑

i

C in,...,i1ξin
n · · ·ξ

i1
1 , (B.8)

where the coefficient tensor C in,...,i1 is obtained from C̃ in jn,...,i1 j1 by merging the index pairs
ik, jk.

Now if we directly represent the coefficient tensor of the GT as an MPS, the resulting rule
for MPS multiplication is to perform tensor product of each site tensor first, and then merge
the physical indices using the rules in Eq.(B.7). In this case one should also take the global sign
change into consideration, which would result in anonying global operations on the resulting
MPS. This latter issue is perfected solved by the usage of Grassmann MPS (GMPS) which
employs the Z2 parity symmetry and reduces global sign changes into local ones [41].
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C The Prony algorithm

We want to approximate a discrete function ηx in the form (here for simplicity we assume
x ≥ 0)

ηx ≈
n
∑

l=1

αlλ
x
l . (C.1)

This is a nonlinear problem even if the value of n is known. The goal is to pick 2n samples
η1, . . . ,η2n to fit the 2n parameters α1, . . . ,αn,λ1, . . . ,λn. The above expression gives n equa-
tions which may be expressed in the matrix form as





λ0
1 · · · λ0

n
...

. . .
...

λn−1
1 · · · λn−1

n









α1
...
αn



=





η1
...
ηn



 . (C.2)

Therefore if the λls are determined, then we have a set of linear equations which can be easily
solved to obtain the αls.

The key of the Prony method is to recognize that Eq. (C.1) is the solution to some ho-
mogeneous linear constant-coefficient difference equation. In order to find such a difference
equation, we define the characteristic polynomial φ(λ) as

φ(λ) =
n
∏

l=1

(λ−λl) . (C.3)

This polynomial has λl as its roots and can be expanded into a power series as

φ(λ) =
n
∑

k=0

akλ
n−k , (C.4)

where the coefficient a0 = 1. Employing Eq. (C.1), we have

n
∑

k=0

akηp−k =
n
∑

k=0

ak

n
∑

l=1

αlλ
p−k−1
l

=
n
∑

l=1

αlλ
p−n−1
l

n
∑

k=0

akλ
n−k
l

=
n
∑

l=1

αlλ
p−n−1
l φ(λl) = 0 ,

(C.5)

which is valid for n+ 1 ≤ p ≤ 2n. Therefore we have a0ηp +
∑n

k=1 akηp−k = 0, which can be
expressed as an n× n matrix equation:











ηn ηn−1 · · · η1

ηn+1 ηn · · ·
...

...
...

. . .
...

η2n−1 η2n−2 · · · ηn



















a1
a2
...

an









= −









ηn+1
ηn+2

...
η2n









. (C.6)

Solving this matrix equation gives the coefficients ak of the characteristic polynomial φ(λ),
and then its roots λl can be calculated. Substituting λl back into Eq. (C.2) and solving it to
get the coefficients αl , and the desired expression (C.1) is obtained.
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To this end, we note that the Prony method has an intimate relation to the linear prediction
technique used to extrapolate the Green’s function to longer times [75]. Both techniques
assumes that the underlying function can be approximately decomposed as in Eq.(C.1). The
difference is that the Prony algorithm explicitly finds the coefficients of the decomposition.
While in linear prediction, one is interested in the recursion relation

η̃m = −
p
∑

i=1

biηm−i , (C.7)

between the history and the future, therefore the goal is to determine the values of bi by the
least square method. As discussed in Ref. [75], the linear prediction works well for Green’s
function because the internal structure of Green’s function has the form in Eq.(C.1). In fact, af-
ter some transform one could derive Eq.(C.7) from Eq.(C.1). Thus in principle, in linear predic-
tion one could also use the Prony algorithm to find the explicit decomposition in Eq.(C.1) first,
and then use it to predict future results instead of finding the recursion relation in Eq.(C.7).

D Memory truncation versus the zipup algorithm

The computational costs of both the partial IF and TTI IF approaches are dependent on t,
partially because that the ranks of the involved Grassmann tensors scale linearly as N . In the
bosonic case, a memory truncation scheme is adopted in QuaPI and TEMPO to reduce the
scaling of the computational cost [33, 61]. The basic idea of the memory truncation scheme
is as follows: the hybridization function ∆ζζ

′
(t, t ′) vanishes as

�

�t − t ′
�

� → ∞, accordingly

the discretized hybridization function ∆ζζ
′

j,k also vanishes as | j − k| → ∞, therefore we may
truncate the discretized hybridization function when | j − k| is large enough. In numerical
calculations, one may set ∆ζζ

′

j,k = 0 when | j − k| > ∆kmax, with ∆kmax a positive integer. As
a result, one only needs to keep ∆kmax time steps of the ADT, and the ADT can be evolved to
later time iteratively via tensor multiplications and integrating out previous time steps further
apart than ∆kmax. Concretely, we illustrate the first step of the memory truncation scheme
with ∆kmax = 3 in Fig. 6(a). In the beginning, we have the initial ADT with four time steps
from t0 to t3, represented by light purple circles. Then we need to apply a tensor (here “apply”
means the element-wise product in Appendix. B), which represents a partial IF from t1 to t4
(t0 is absent in the partial-IF because its distance to t4 is larger than∆kmax). In the meantime
the bare impurity dynamics is involved from t3 and t4. After the tensor multiplication, the t0
step is integrated out which yields a new ADT which only consists of time steps from t1 to t4.

(a)
t3 t2 t1 t0A

t4 t3 t2 t1

t4 t3 t2 t1A

(b) K

It3 t2 t1 t0

t3 t2 t1 t0

K

It2 t1 t0

t2 t1 t0

Figure 6: Schematic illustration of (a) the first step of the iterative construction of the
ADT using the memory truncation scheme and (b) the zipup algorithm for Toulouse
model. The gray rectangular in (b) represents an environment tensor obtained by
iteratively integrating out the GVs in each time step.
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It can be seen that in the memory truncation scheme, the ADT is explicitly built. Assuming
that the bond dimension of the ADT is χA, then the computational cost of building the ADT
roughly scales as O(N∆kmaxχ

3
A), in comparison with the computational cost O(N2χ3) of the

partial IF approach for building the MPS-IF.
In GTEMPO, we do not construct the ADT explicitly because χA could be very large, even

though the bond dimension χ of each MPS-IF may be small. Instead we use a zipup algorithm
which calculates the ADT only on the fly when calculating multi-time correlations, as illustrated
in Fig. 6(b) for the Toulouse model. We denote the bond dimension ofK asχK. The ADT can be
obtained by multiplying K and I. In general we found that the bond dimension of the ADT can
be hardly reduced by MPS compression (or one may result in significant loss of accuracy [42]).
Therefore the bond dimension of ADT would simply be χA = χKχ for Toulouse model (and
χA = χKχ2 for the single-impurity Anderson model). Even for the simple case of the SIAM, we
can see the huge gain of the zipup algorithm compared to explicitly building the ADT, since the
computational cost of the latter scales at least as O(χ6) (more details of the zipup algorithm
can be found in Refs. [41, 42]). However, one disadvantage of the zipup algorithm is that it
is essentially incompatible with the memory truncation scheme, which can also be seen from
Fig. 6(b): if one integrates out the time step t0, the two MPSs for K and I will be joint together,
then one would result in a single MPS representation of the ADT, which becomes equivalent
to the memory truncation scheme.

Now we can have a thorough discussion of the memory truncation scheme and the zipup
algorithm in terms of their computational costs. In the fermionic case, one generally faces
a large number of “flavors”, for example, even in the simple case of the SIAM, one has two
flavors, for spin up and spin down respectively. In such situation, the zipup algorithm is the
method of choice, even though without the memory truncation the computational cost of
constructing I scales with t2 (the partial IF method) or t (the TTI IF method). In comparison,
in the bosonic case, one usually considers a single flavor. For example, for the spin-boson
model, one has χK = 2 and thus χA = 2χ at most. In this case the memory truncation scheme
would be as efficient as as the TTI IF approach as its cost only scales linearly with t. Here we
also point out that even in such ideal situation, the memory truncation scheme still has several
drawbacks: (i) the hyperparameter ∆kmax requires deep knowledge of the model, which is
generally hard to be determined before hand; (ii) it can not be used in the imaginary-axis
calculations as the hybridization function does not decay except for zero temperature.
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