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Abstract

Off-shell effects in large LHC backgrounds are crucial for precision predictions and, at
the same time, challenging to simulate. We present a novel method to transform high-
dimensional distributions based on a diffusion neural network and use it to generate
a process with off-shell kinematics from the much simpler on-shell one. Applied to a
toy example of top pair production at LO we show how our method generates off-shell
configurations fast and precisely, while reproducing even challenging on-shell features.
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1 Introduction

Fast and precise theoretical predictions from first principles are required for essentially every
experimental LHC analysis. This is especially true for modern inference methods, where the
complete phase space coverage ensures an optimal measurement [1,2]. Based on perturbative
quantum field theory, precision simulations of the hard scattering process face two challenges,
the loop order and the multiplicity of the partonic final state [3]. The latter increases rapidly
for example, when we describe the production of decaying heavy particles. Naively, one could
expect that describing the decay kinematics close to the mass shell of the heavy particles, for
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example using a Breit-Wigner propagator, is sufficient. However, given the precision targets of
the upcoming LHC runs, on-shell approximations are no longer justified [4,5]. In view of the
HL-LHC, simulations need to describe heavy particle production and decay including, both,
quantum corrections and off-shell kinematics.

In addition to the theoretical and computational effort behind precise calculations, the
question is how they can be made available through multi-purpose event generators. Here
we can resort to modern machine learning (ML) [1, 6]. Following the modular structure of
event generators, the most obvious ML-applications are neural network surrogates for expen-
sive scattering amplitudes [7–13]. Aside from the speed, these surrogates have the advan-
tage that they can always be evaluated in parallel on GPUs [14–17]. Given these amplitudes,
we can then improve the phase-space integration and sampling [18–26]. One advantage is
that simulations are defined over interpretable physics phase spaces, for example scattering
events [27–33], parton showers [34–41], and detector simulations [42–65]. All of these speed
improvements maintain the first-principles nature of LHC event generators, which means they
take theory predictions and evaluate them using faster ML-methods.

The goal of this study is to develop a precise and fast generative network that maps two
LHC phase spaces onto each other [65–67]. If one phase space is a narrow sub-manifold of the
other one, like in the case of on-shell and off-shell phase spaces of production of heavy unstable
particles, one cannot use regression or classifier reweighting but must resort to generative
networks. For LHC applications, we already know that precision-generative networks [32,68–
71] are easy to ship and powerful in amplifying their training data [72, 73]. Tasks we can
solve with their help include event subtraction [74], event unweighting [75, 76], or super-
resolution enhancement [77, 78]. Their conditional versions enable new analysis methods,
like probabilistic unfolding [67, 79–87], inference [88–90], or anomaly detection [91–96].
Currently, the best-performing network architectures are normalizing flows for invertible tasks
and diffusion networks for sampling problems, with help from transformers for combinatorics.

In this paper we present such a mapping and use it to efficiently generate events over an
off-shell phase space from given on-shell events. The idea behind this sampling from on-shell
events is that the generative network does not have to reproduce the on-shell features and
can focus on the additional and relatively smooth off-shell extension. We start by describing
our training dataset and the problem of off-shell event generation in Sec. 2. Our generative
network setup, based on a Bayesian- Conditional Flow Matching (CFM) architecture [33], is
presented in Sec. 3. To control the generative network performance [71] and to improve the
precision of the kinematic distributions [32], we apply a classifier reweighting in Sec. 4. We
present an Outlook in Sec. 5.

2 Off-shell vs. on-shell events

Our benchmark process is the complete off-shell top pair production followed by leptonic de-
cays,

pp→ be+νe b̄µ−νµ . (1)

Top pair production with its rich resonance structure is known to challenge phase space sam-
pling, just as generative networks for transition amplitudes [30].

In the factorized approach, in which the production and decay processes decouple, this
process is known all the way up to NNLO-QCD [97–100], NLO-EW [101–105] and NNLO-
QCD combined with NLO-EW [106] in the production process; NNLO-QCD [107, 108] in the
decay; and NNLO-QCD in both production and decay [109–111]. Full off-shell calculations
in the dilepton channel are so far only available at NLO-QCD [112–117], but a calculation of
full off-shell top pair production in association with an extra jet at NLO is also available in
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Ref. [118]. In this pilot study we restrict ourselves to leading order in QCD, O(α2
Sα

4), and
reserve the application of our method to higher-order predictions to a future publication.

We generate event samples for 13 TeV proton-proton collisions with NNPDF31_nlo_as_0118
parton distributions [119]. The neutrinos, charged leptons and quarks of the first two genera-
tions are treated as massless, and the CKM matrix is assumed to be trivial. All input parameters
are given in Tab. 1, and the electromagnetic coupling α and the weak mixing angle are derived
from the weak gauge-boson masses and the Fermi constant.

Our study and our results can be extended to higher-order predictions or other processes
by combining different jet multiplicities in the final state [90]. Our two benchmark datasets
are generated with HVQ [120] and BB4L [121, 122], respectively. The data generated with
HVQ only includes approximate off-shell effects using a finite top width and including spin
correlations [123] and is referred to as on-shell data. The generator is based on the POWHEG

method [124,125] and is part of the POWHEG BOX V2 [126] package.
The data generated with BB4L takes into account full off-shell effects also including singly-

resonant and non-resonant contributions and the corresponding interferences. The generator
employs the POWHEGRES method [127], tailored for simulations with unstable particles. In
this case, W bosons and b quarks do not always stem from a top decay.

In Fig. 1 we illustrate the size of the off-shell effects for a selection of kinematic distri-
butions of final-state leptons and b-quarks. These distributions are not meant to compare
realistic predictions with different treatment of off-shell effects, but rather our two datasets,
so no event selection criteria are applied. For the invariant mass of the lepton-b system we en-
sure, through charge identification, that the two particles come from the same (anti)top decay.
Correspondingly, their invariant mass has an upper edge that does not exist for off-shell events.
For the reconstructed top mass, or the invariant mass of the three decay products, we clearly
see the Breit-Wigner propagator form, with an explicit cutoff. Far below the actual top mass,
the off-shell prediction develops a shoulder at the W -mass. The secondary panels show the
ratios of the integrated one-dimensional phase space densities, illustrating that a reweighting
strategy between the two samples is unlikely to work.

The strategy behind our surrogate network is to generate an off-shell event dataset and
learn its structures relative to a corresponding on-shell event dataset. This strategy can be
applied to any process and at any order in perturbation theory. Our two datasets consist of
5M unit-weight events each. The six particles in the final state of Eq.(1) are represented by
{pT ,η,φ}, with fixed external particle masses. We remove three degrees of freedom through
a global azimuthal rotation and by enforcing two-dimensional transverse momentum conser-
vation, leaving us with a 15-dimensional phase space. Each on-shell requirement replaces a
full phase space dimension by a fixed range, given by the Breit-Wigner shape with a hard-
coded cutoff in the reconstructed invariant mass. Moreover, we conceal information relevant
for eventual parton showering like the colourflow configuration or resonance history assign-
ment. This is appropriate because the BB4L generator in its default setup does not distinguish
between the t t̄ and single-top resonance histories and assigns colourflow correspondingly.

Table 1: Parameters used for the generation of the training datasets.

mt 172.5 GeV Γt 1.453 GeV
mb 4.75 GeV
mZ 91.188 GeV ΓZ 2.441 GeV
mW 80.419 GeV ΓW 2.048 GeV
mH 125.0 GeV ΓH 0.0403 GeV

B(W → eν/µν) 1/9
GF 1.16585× 10−5GeV−2
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Figure 1: Example distributions for on-shell and off-shell t t̄ event samples, illustrat-
ing the different phase space coverage. The right panels show the same distribution
as the left panels, but zoomed into the respective bulk region.

For the network input, the kinematic variables are preprocessed: we scale the transverse
momenta to p1/3

T and express the azimuthal angles as arctanh(φ/π). As subsequent classi-

fier input, it turns out that p−1/3
T leads to the best results. Finally, all input dimensions are

standardized to zero mean and unit variance.

3 Direct diffusion

For the network training, we start with the condition that we do not want to train on paired
on-shell and off-shell events, because such a pairing does not follow a well-defined algorithm.
This does not mean it is impossible to construct such a mapping, but we expect it to lead to
artifacts. Instead, we will train a generative Direct Diffusion (DiDi) network on two phase
space densities, one from on-shell and one from off-shell events.

Usually, we employ generative networks to learn a mapping between a simple latent space
and some kind of phase space. The distribution in the latent space is sampled from, so we typi-
cally use a uniform or a Gaussian distribution. In this application, the latent space corresponds
to the on-shell phase space, and the mapping is trained to generate off-shell events,

x ∼ pon(x) ←−−−−−→ x ∼ pmodel(x |θ )≈ poff(x) . (2)

Using the conditional flow matching (CFM) setup for LHC events [33, 128], we encode the
transformation from on- to off-shell events as a continuous time evolution, which follows an
ordinary differential equation (ODE)

d x(t)
d t

≡ v(x(t), t) . (3)
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t ∼ U([0, 1])

x0 ∼ poff(x0), x1 ∼ pon(x1) x(t|x0) = (1− t)x0 + tx1 CFM

L =
(
vθ − (x1 − x0)

)2 vθ

Figure 2: Training procedure for a CFM network mapping between on-shell and off-
shell phase space distributions. Diagram adapted from Ref [33].

In terms of the related probability density, we can formulate the same task as

∂ p(x , t)
∂ t

+∇x [p(x , t)v(x , t)] = 0 . (4)

The ODE and the continuity equation are equivalent, so we can train a network to represent
the velocity field and use this velocity field to generate samples using a fast ODE solver for
Eq.(3). Defining our time dependent probability density as

p(x , t)→
¨

poff(x) , t → 0 ,

pon(x) , t → 1 ,
(5)

we now need to construct the associated velocity field.
Unlike for the usual generative setup, we define x(1) = x1 as a sample from the on-shell

phase space, whereas x(0) = x0 corresponds to the off-shell phase space. Therefore, we adapt
the linear trajectory between on-shell and off-shell events to

x(t|x0) = (1− t)x0 + t x1→
¨

x0 , t → 0 ,

x1 ∼ pon , t → 1 .
(6)

The true conditional velocity field of our linear trajectory linked to our probability density in
Eq. (5) is hence given by

v(x(t|x0), t|x0) =
d
d t
[(1− t)x0 + t x1] = −x0 + x1 . (7)

The remaining derivation is in complete analogy to Ref. [33], leading to the simple MSE loss

LCFM =


[vθ ((1− t)x0 + t x1, t)− (x1 − x0)]

2�
t∼U([0,1]),x0∼poff,x1∼pon

. (8)

Because the CFM setup does not include a likelihood, we can go directly from pon to poff,
without extra effort due to detours like in Flows4Flows [66], and without any pairing between
x0 ∼ poff and x1 ∼ pon.

As usual, we use a Bayesian version of the generative network [32,129], to extract uncer-
tainties on the learned phase space density. The Bayesian CFM loss [33]

LB-CFM =
¬
LCFM

¶
θ∼q(θ )

+ c KL[q(θ ), p(θ )] , (9)

includes a hyperparameter c to balance the regular CFM loss with the Bayesian regularization
term. If the first loss term was a likelihood loss, this factor would be fixed by Bayes’ theorem.
We have checked that the network performance is stable over many orders of magnitudes
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for c = 10−10 ... 10−2. For larger values we observe that the training becomes unstable, as
expected, while for very small values the uncertainty can no longer be captured. In addition,
the prior weight distribution q(θ ) is given by a unit Gaussian, where the choice of width hardly
affects the network performance. Compared to the deterministic counterpart, this Bayesian
network is equally precise.

The network and training setup is visualized in Fig. 2. We use a simple dense network with
SiLU activation, where the last layer is initialized at zero. This sets the initial velocity field to
zero and induces an identity mapping at the starting point of the training. We do not enforce
a prescription for turning a given on-shell event into an off-shell event through the training
data or the training procedure. In fact, for each epoch different phase space points will be
connected via a linear trajectory. Instead, the network training constructs its own mapping to
populate the off-shell phase space. This happens as part of the loss minimization, which means
the transport map follows from an implicit measure encoded in the network architecture and
loss.

As the CFM training objective is a simple regression, we can train on 17 dimensions, in-
cluding two redundant degrees of freedom, as this happens to increase the precision. The two
additional observables, the transverse momentum and the polar angle of the neutrino, are de-
termined by transverse momentum conservation and are hence multidimensional correlations.
Empirically we found that it is easier for the model to learn the behavior of those observables
when handed directly. Especially more complicated correlations such as the invariant mass of
the reconstructed top benefit greatly from this additional information. While improving the
efficiency of the training these dimensions will be ignored for the actual event generation.

The network hyperparameters and the training parameters are given in Tab. 2. We encode
t in a higher embedding dimension and following [128] we add batch-wise random noise of
scale 10−4 to x0 and x1 during training. We use the standard Dopri5 ODE solver to sample
from our network. In the interest of precision we use a large batch size. This is a problem for
generic optimal-transport networks [130], but can be easily implemented in our architecture.
We tested the OT-CFM [130] and found that in our setup the required small batch size indeed
led to worse performance.

In Fig. 3 we show a set of one-dimensional kinematic distributions, for the on-shell data
we start from, the off-shell training data, and the generated off-shell data. In the first panel we
see how the network learns subtle differences almost perfectly well. The typical precision is
around the per-cent level. For complex and sensitive correlations, like the lepton-b invariant
mass and the reconstructed top mass we start with a huge deviation between the on-shell
distribution and the off-shell target. To generate these distributions correctly, the generative
network has to learn correlations in the corresponding 9-dimensional sub phase space.

Table 2: Generative network setup (DiDi) and hyperparameters.

Hyperparameter

Embedding dimension 64
Layers 8
Intermediate dimensions 768

LR scheduling OneCycle
Starter LR 10−4

Max LR 10−3

Epochs 1000
Batch size 16384

c 10−3

# Training events 3 M
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Figure 3: Results from our Direct Diffusion off-shell generator, compared to the on-
shell starting point and the off-shell training distributions.

Our results confirm that in phase space regions covered well by both datasets, the gener-
ative network reproduces the target distribution precisely, as one could expect. However, we
also see that even in phase space regions not populated by on-shell events the target distri-
bution is reproduced relatively precisely. The typical agreement between the generated and
target densities is around 10% in phase space regions with relatively little training data. While
this deviation is covered by the uncertainties of the Bayesian network, we propose possible im-
provements in the next section.

Finally, we can ask how our generative network fills the off-shell phase space from the
on-shell events. In Fig. 4 we show the correlations between the generated off-shell distribu-
tion and the on-shell starting distributions, i.e. the migration of paired latent and target phase
space events from the forward simulation, where we emphasize that the pairing is only defined
by the network evaluation, not by the training. In general, the correlation between the kine-
matic observables should be close to the identity, as confirmed by the pT,b̄ distribution in the
left panel. This means that the shift from on-shell to off-shell phase space is relatively small
and uncorrelated. However, for the reconstructed top mass, some of the events have to be
shifted by a larger value, as illustrated in the right panel. While the width of the linear corre-
lation becomes very small around the top mass peak, it rapidly increases away from the peak,
demonstrating the large shift required to populate the off-shell phase space. Moreover, our
network maps events from each side of the Breit-Wigner peak to the same side of the off-shell
distribution.
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Figure 4: Migration plot — correlation between generated (off-shell) and starting
(on-shell) distributions for two kinematic correlations. It illustrates the mapping
found by the network during training.

4 Classifier control and reweighting

Because the unsupervised density estimation underlying our generative network is more chal-
lenging and less precise than a supervised classifier training, we can use a trained classifier
as a function of phase space to systematically check and improve the generative network. A
perfectly trained statistical classifier converges to the ratio of likelihoods,

C(x) =
pdata(x)

pdata(x) + pmodel(x)
. (10)

As a function of phase space we can use this classifier to construct an event reweighting, which
improves the precision of the generative networks [32],

w(x) =
pdata(x)

pmodel(x)
=

C(x)
1− C(x)

. (11)

In addition, we can use the same learned event weights to determine the precision of the
generative network and systematically search for failure modes by searching for clusters of
very small or very large weights in phase space [71].

We train the classifier on 27 observables, our 15 physical dimensions, complemented by
the reconstructed top and anti-top masses, the reconstructed W+ and W− masses, the recon-
structed masses of the b̄l and bl̄ systems, and the six corresponding transverse momenta. For
the input of our classifier we sample events from our Bayesian generator setting each network
weight to its mean value. The setup is given in Tab. 3.

We show histograms of learned phase space weights w(x i) on a linear and a logarithmic
axis in Fig. 5. As expected, the distributions peak at unit weights, with a width around 0.3.
Following Eq.(11), large weights correspond to phase space regions where the generative net-
work produces a too small density of off-shell points; small weights mark phase space regions
where the generative network produces too many off-shell events, compared to the training
data. To study both tails of the weight distribution, we evaluate the weights over the combi-
nation of 2M training and 2M generated events and confirm that both tails decrease rapidly.
We eventually clip the event weights to w < 15 to improve the numerical behavior of our
generation and avoid sparks in regions of low statistics.
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Figure 5: Histogram of the learned event weights, evaluated on the off-shell training
data and the DiDi-generated off-shell events. The two panels show the same weights,
on linear and logarithmic scales.

In Fig. 6 we track phase space regions with very small and very large weights. We compare
all events of our test sample to the subsets with w(x) < 0.6, corresponding to 12.3% of the
sample, and w(x) > 1.6, corresponding to 6.2% of the generated sample. The two shown
distributions illustrate the general feature that the kinematic distributions for both tails are
similar. In the pT,b̄-distribution we can identify two limitations of the network training: for
small transverse momenta a slight shift of the cliff will lead to large relative weight corrections,
while for large transverse momenta the decreasing density of training events will increase the
relative size of the noise. For the reconstructed anti-top mass, one of the critical distributions
for our generative task, the low-weight and high-weight tails are also comparable with each
other and also comparable on both sides of the mass peak. The only distinct feature appears
around the peak where events with small weight dominate the slightly over populated sides
of the peak. This indicates that all weight tails are generated by noise, there are no missing
localized features, and the limiting factor is the statistics of the training data.

Even though the shortcomings of our generative networks, visible in Fig. 3, arise from noisy
network training and do not reflect systematic shortcomings, they affect the trained generative
network in a systematic, localized manner. As a function of phase space, we can correct them
using the event weights from Eq.(11), because the classifier network is more sensitive and more
precise than the generator network [71]. In Fig. 7 we show a set of kinematic distributions
for reweighted events, where the uncertainty is given by the Bayesian generator. Comparing
the agreement between the reweighted and the target distribution with the unweighted per-
formance from Fig. 3 we see significant improvements. In the secondary panels we show the

Table 3: Classifier network setup and hyperparameters.

Hyperparameter

Layers 5
Intermediate dimensions 512
Dropout 0.1
Normalization BatchNorm1d

LR scheduling ReduceOnPlateau
Starter LR 1−3

Patience 10
Epochs 100
Batch size 1024

# Training events 2.5 M
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Figure 6: Clustering of the classifier trained to distinguish the off-shell training data
from DiDi-generated events, for two example distributions.

reweighted predictions from the Bayesian generator, allowing us to compare the statistical un-
certainty from the training data with the predictive uncertainty from the generative network.
For the entire range of pT,b̄ the network agrees with the true distribution within its predictive
uncertainties, and almost within the uncertainties of the training data. For ml̄ b, DiDi has to
cover phase space far beyond the on-shell structures, and, again it hardly exceeds the statis-
tical uncertainties of the training data and provides a conservative uncertainty estimate from
the Bayesian setup.

The momentum and the mass of the reconstructed W− match the truth perfectly in the
bulk, and roughly within the statistics of the training data in the tails. The former is important,
because it confirms the original motivation that the network reproduces the on-shell features
with extremely high precision. The same can be seen for the reconstructed anti-top mass,
where most of the phase space is filled by extrapolating from the on-shell distribution and the
network learns these new phase space regions without degrading the precision in the bulk
at all.

5 Outlook

Sufficiently fast and precise event generation for the HL-LHC is a major challenge in the com-
ing decade. A perfect example is the generation of off-shell kinematic configurations for large
backgrounds. Even when they can be computed from perturbative QFT, with significant invest-
ment in CPU time, they need to be implemented in standard event generators. A promising
strategy to provide them in an amortized manner is generative surrogate networks. They are
easy to include and ship with event generators and enhance the precision of a limited number
of events, just like a fitted function to a statistically limited dataset.

Generating off-shell events is also an exciting problem for modern machine learning, be-
cause it cannot be solved by regressing an amplitude at a give phase space point. Instead, it
requires a generative surrogate to cover the off-shell phase space. We proposed a new method,
namely to generate off-shell configurations relative to given on-shell configurations. Its ad-
vantage is that the generative network only learns a controlled deviation from a simple unit
transformation. This simplified task allows us to generate a rich resonance structure without
the usual challenges in network size and precision training. The approach is enabled by Di-
rect Diffusion (DiDi) networks, which sample from any given distribution to produce another
distribution, in our case transforming on-shell events into off-shell events.
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Figure 7: Results from our re-weighted Direct Diffusion off-shell generator, compared
to the on-shell starting point and the off-shell target distributions.

For top pair production we have shown that already a relatively small network with lim-
ited training effort can reproduce the target off-shell distributions at the 10% level. Most
importantly, the DiDi generation does not encounter any issues with learned features. The
challenging on-shell peaks are described at the 5% level or better, as seen in Fig. 3.

Using a classifier reweighting we can improve its precision to the few per-cent level, even
in challenging kinematic distributions, Fig. 7. Now the bulk precision exceeds 1%, and the
precision in the extrapolation region is reliably below or at the 10% level. The same classifier
allows us to control the performance of the generative networks and ensures that all local
features in phase space are correctly learned. Finally, the Bayesian extension of the DiDi archi-
tecture provides us with a conservative uncertainty estimate, tracking the effects of statistically
limited training data.
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Our approach can be extended to higher-orders as long as the corresponding event sam-
ples can be provided as training data. Such an extension is not trivial because with each extra
particle in the final state, e.g. due to an extra emission in the NLO real correction, the di-
mension of the phase space increases. We do not foresee any conceptual issues however, as
increasing the dimension of the phase space in our setup is straightforward and relatively small
event samples were needed at LO, and both diffusion networks as well as Classifiers have been
shown to scale well with dimension. The size of the off-shell effect, or more specifically the
ratio of the full and approximate off-shell prediction for a given observable, could in principle
change dramatically when changing orders.1 This is not a problem though, as DiDi is able to
reproduce full off-shell predictions also in regions where the approximate off-shell prediction
is vanishing. For realistic predictions we will also need to address issues related to matching
to the parton shower, like shower starting scale and colourflow configurations not discussed
here. For the latter we may have to include single top production in our on-shell data set.

Our fast generative surrogate is ready to be implemented standalone using Les Houches
Event (LHE) format for input and output. Generative networks of this kind will also be part
of the ML-enhanced ultrafast MADGRAPH event generator [23,24].
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