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Daniele Nello⋆ and Alessandro Silva†

International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy

⋆ danello@sissa.it , † asilva@sissa.it

Abstract

We consider adiabatic quantum pumping through a resonant level model, a single-level
quantum dot connected to two fermionic leads. Using the tools of adiabatic expansion,
we develop a self-contained thermodynamic description of this model accounting for the
variation of the energy level of the dot and the tunnelling rates with the thermal baths.
This enables us to study various examples of pumping cycles computing the relevant ther-
modynamic quantities, such as the entropy produced and the dissipated power. These
quantities are compared with the transport properties of the system, i.e. the pumped
charge and the charge noise. Among other results, we find that the entropy production
rate vanishes in the charge quantization limit while the dissipated power is quantized in
the same limit.
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1 Introduction

The laws of thermodynamics were mainly conceived in the 19th century at the peak of the
Industrial Revolution to describe the novel technologies that were being developed in the pe-
riod, such as steam engines. Classic thermodynamics applies to macroscopic systems while
the recent development of nanoscale devices [1] and of quantum information theory posed
the problem of reconciling the concepts of thermodynamics with quantum theory, which plays
a fundamental role in describing these systems [2,3]. Notable examples of quantum machines
are adiabatic quantum pumps: these were first introduced based on the adiabatic theorem by
David Thouless in 1983 [4] in the context of isolated quantum systems. A related version of
quantum pumping in a transport setting ideal to describe open quantum systems has subse-
quently been introduced by Piet Brouwer [5], who was able to describe the charge pumped
in a cycle pumping through an open, yet non-interacting system, as a geometrical quantity
written in terms of the instantaneous scattering matrix of the system (without reference to a
specific time dependence). Generalizations of this construction to interacting systems have
been attempted [6–8]. For specific settings, characterized by the fact that the conductance
is zero along the entire cycle, the charge pumped through a quantum dot can be quantized
(with zero associated charge noise [9]), a possibility that makes this physical phenomenon
potentially interesting for applications in various areas, such as metrology.

Looking at it as an engine, the operation of a quantum pump should be characterized
by standard thermodynamic quantities: the work done, the entropy produced and the heat
exchanged. A fresh thermodynamic view of quantum pumping opens up the possibility of
addressing qualitatively different questions. For example, is there a minimal work done as-
sociated with charge quantization? Or can we find a connection between entropy production
and current noise? These issues relating transport to the thermodynamic properties of a pump-
ing cycle can be addressed only by developing a description of transport and thermodynamics
within the same formalism (cf. with [10] for classical pumps). In this paper, we focus on
this task by addressing adiabatic pumping through the simplest, yet nontrivial system that dis-
plays all significant ingredients we are looking for (charge quantization, noise): a resonant
level coupled to two leads. We construct our thermodynamic analysis building on the ideas
of Bruch et.al. [11] (and other notable works [8, 12–17]) who addressed using the Keldysh
technique the thermodynamics of a resonant level whose position is shifted as a function of
time. We extend these results to describe quantum pumps and their thermodynamics in terms
of a systematic gradient expansion of non-equilibrium Green functions and provide expres-
sions for all relevant thermodynamic quantities characterizing a pumping cycle. Computing
thermodynamic quantities for a few examples of cycles we obtain among other things that
charge quantization, which is of course attained with zero charge noise, corresponds thermo-
dynamically to zero entropy production (at zero temperature) and a saturated work per cycle
proportional to the speed with which the quantity associated to the quantization limit is varied.
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The structure of the paper is organized as follows: after introducing the model in Sec. 2
in Sec. 3 we compute transport properties, summarizing the derivation of Brouwer’s formula
and will introduce a novel way to perform the adiabatic expansion of the noise of the current,
showing that it is consistent with the available literature. In Sec. 4.1 and 4.2 we describe the
equilibrium thermodynamics of the resonant level model and develop an adiabatic expansion
accounting for the variation of both the dot energy level and the level-lead couplings over
time. This will allow us to compute the thermodynamic quantities integrated over a cycle
in these two parameters and compare them with the results of the transport properties. A
thermodynamic tradition is learning by example: we will consider specific thermodynamic
cycles in Sec. 5.1-5.2. In these examples, we will compute the relevant quantities averaged
over a cycle, enabling us to compare them. This will make it possible to show, among other
results, that there is no entropy production (nor noise) for cycles where the charge is quantized.
In addition to that, we will show that the dissipated power obeys a similar quantization rule,
compared to the one followed by the pumped charge.

2 The model

In the following, we will consider adiabatic quantum pumping through a specific system: a
time-dependent resonant level model consisting of a single energy level coupled to two metallic
leads. The leads act as fermionic reservoirs and are kept fixed at temperature T and chemical
potentials µL and µR (from now on assumed to be equal µL = µR = µ).

The Hamiltonian of the system consists of three different terms

H = HD +HV +HB , (1)

where HD is the Hamiltonian associated with the dot

HD = εd(t)d
†d . (2)

HB is associated with the leads
HB =
∑

kα

εkαc†
kαckα , (3)

and HV to the leads-dot coupling

HV =
∑

α

HαV =
∑

α

Vα(t)
∑

k

(d†ckα + h.c.) . (4)

Here d is the annihilation operator of the dot level, whilst ckα is associated with an electron
with momentum k in the α = L, R lead, and Vα is the coupling between the dot and lead α.
Throughout this paper we will assume the leads to have a constant density of states and an
infinite bandwidth (wideband limit), implying that the decay rate Γα = 2π | Vα |2

∑

k δ(ε−εki)
does not depend on energy. In this case, the expression for the spectral function of the dot is

A(ε) =
Γ

(ε− εd)2 + (
Γ
2 )2

, (5)

where Γ = ΓL + ΓR is the total decay rate.
Adiabatic quantum pumping requires at least two of the system parameters to be varied

periodically in time along a certain cycle [5]. We will therefore take both the energy dot level
εd(t) and the level-dot couplings Vα(t) to be time-dependent and driven by an external agent.
Below we will investigate the effect of this external driving on the thermodynamics of the
system.
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In the following, we will be interested in connecting transport quantities to thermodynamic
ones. While the thermodynamics of a quantum pump will be discussed thoroughly below, the
study of transport through quantum pumps has been the subject of many studies [5, 13–16,
18–20]. In particular, the two quantities of interest in transport are the charge pumped in a
cycle and its noise. Defining the stroboscopic times in terms of the period T0 as Tn = nT0 we
may define the operator describing the charge pumped in the n-th period as

Q(n)α =

∫ Tn

Tn−1

d t Iα(t) , (6)

where Iα = −dNα/d t, with Nα =
∑

k c†
k,αck,α, is the current flowing out of lead α. Clearly

the average change pumped in M cycles is Qα(M) = MQα where Qα = 〈Q(n)α 〉 is the charge
pumped in cycle, independent on n in the stationary state.

Coming now to the noise it is evident that current-current correlations produce both fluc-
tuations in the charge pumped in a single cycle as well as correlations of charge pumped in
different cycles. The first is described by δQ(n)α = 〈(Q

(n)
α )

2〉 − 〈(Q(n)α )〉
2. In the following, how-

ever, we will focus on a similar quantity that has the advantage of being similar to the zero
frequency component of the noise power spectrum, defined as

δQαα = lim
M→+∞

(δQα(M))2

M
, (7)

where (δQαα(M))2 =
∑M

n,m=1(〈Q
(n)
α Q(m)α 〉 − 〈Q

(n)
α 〉〈Q

(m)
α 〉. Using the definition of the operators

we may rewrite the latter as

δQαα = lim
M→+∞

T0

TM

∫ TM

0

d t

∫ TM

0

d t ′[〈Iα(t)Iα(t ′)〉 − 〈Iα(t)〉〈Iα(t ′)〉] . (8)

3 Pumped charge and its noise

As a warm-up to describe the physical problem we want to address and establish the formalism
that will later be used to discuss thermodynamic quantities let us use its most important tool,
the gradient expansion, to derive Brouwer’s formula for the charge pumped in a cycle by a
quantum pump as well as the expressions for its statistical fluctuations. Brouwer’s formula
will follow the steps reported in Ref. [8]. The current has the following expression

〈Iα〉= −〈Ṅα〉= −i〈[H, Nα]〉= i
∑

k

(Vα〈c
†
kαd〉 − h.c) . (9)

Using standard manipulations with the Keldyish technique (see Appendix A) one can show
that the expression of the pumped current is [21]

〈Iα(t)〉=
∫

d t1d t2

∑

β

�

Sαβ(t, t1) f (t1 − t2)S
†
βα
(t2, t)−δ(t − t1) f (t1 − t2)δ(t2 − t)

�

, (10)

where f (ε) = 1/(exp[β(ε−µ)]+1) is the Fermi distribution function of the leads and Sαβ(t, t ′)
are the time-dependent S-matrices satisfying the unitarity condition

∑

β

∫

d t1Sαβ(t, t1)S
†
αβ
(t1, t ′) = δ(t − t ′) . (11)
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These expressions can be further simplified in the adiabatic limit, that is when the typical
time of variation of system parameters is much longer than the typical time scale of the
electron dynamics. For a quantum pump this means to have a period T0 ≫ 1/Γα,av where

Γα,av =
1
T0

∫ T0

0 d tΓα(t). In order to perform a gradient expansion [22] on convolutions of the
form

C(t, t ′) =

∫

d t1A(t, t1)B(t1, t ′) , (12)

we express them in terms of the Wigner coordinates T = t+t ′
2 and τ = t − t ′ and perform the

Wigner-Fourier transform with respect to the coordinate τ, defined as

A(T,ω) =

∫

dτeiωτA(T +τ/2, T −τ/2) . (13)

The Wigner transform of a convolution is not the product of Wigner transforms: instead, we
have, formally

C(T,ω) = A(T,ω)Gω,T B(T,ω) , (14)

where

Gω,T = e
1
2i (
←−
∂T
−→
∂ω−
←−
∂ω
−→
∂T ) =
∑

n

1
(2i)n

1
n!
(
←−
∂T
−→
∂ω −

←−
∂ω
−→
∂T )

n . (15)

Expanding the Wigner transform up to first order in the gradients we obtain

C(T,ω) = A(T,ω)B(T,ω) +
1
2i
(∂T A(T,ω)∂ωB(T,ω)− ∂ωA(ω, T )∂T B(T,ω)) . (16)

This expansion can be now used to expand systematically Eq. 10 to first order in the gradients.
The result is

〈Iα〉=
∫

dω
2π

f (ω)
�

∑

β

§

Sαβ(ω, T )S†
βα
(ω, T ) +

1
2i
(∂T Sαβ∂ωS†

βα
− ∂ωSαβ∂T S†

βα
)
ª

− 1
�

−
∑

β

∫

dω
4πi
(− f ′(ω))
�

∂T SαβS†
βα
− Sαβ∂T S†

βα

�

. (17)

The first term of this sum vanishes due to the gradient expansion of the condition of unitarity
of the S-matrix Eq. 11. Therefore we are left only with the last term. Considering the charge
pumped in a period T0

Qα =

∫ T0

0

d t〈Iα〉 , (18)

and substituting the expression of the current yields

Qα = −
∑

β

∫

dω
4πi
(− f ′(ω))

∫ T0

0

dT
§

∂T SαβS†
βα
− Sαβ∂T S†

βα

ª

. (19)

The dependence on time of the S matrices in the previous expression is to be under-
stood as parametric in the two parameters (x1, x2) that define the pumping cycle, i.e.
Sαβ(t) = Sαβ(x1(t), x2(t)). We may therefore use Green’s theorem to transform the time
integral above, which is just an integral over the pumping cycle (x1(t), x2(t)), into an integral
over the area enclosed by the pumping cycle itself. The result is

Qα =
∑

β

∫

dε
4π

f ′(ε)
�

∫∫

A

d x1d x2

i
(∂x2

Sαβ∂x1
S†
βα
− ∂x1

Sαβ∂x2
S†
βα
)
�

. (20)
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The scattering matrix entering this expression is the instantaneous scattering matrix depend-
ing on the varied parameters in time x1, x2. For the resonant level model, where the time-
dependent parameters are the level position and the hybridization strength to the leads, one
has, therefore, the following expression (α,β = L, R)

S =

�

1− iΓ LGR −i
p

ΓLΓRGR

−i
p

ΓLΓRGR 1− iΓRGR

�

, (21)

with
GR =

1

ε− εd + i Γ2
. (22)

A similar expansion can be derived to obtain the current noise. The expression we obtain is
analogous to those derived in Ref. [21], i.e. the noise can be separated into two different terms

δQαα =
T0

Tm

∫ Tm

0

d td t ′
∫

d t1d t2 f (t1 − t ′) f̃ (t ′ − t2)[δ(t − t1)δ(t − t2)− S†
αα(t1, t)Sαα(t, t2)]

+
T0

Tm

∫ Tm

0

d td t ′
∫

d t1d t2 f (t ′ − t2) f̃ (t1 − t ′)[δ(t − t1)δ(t − t2)− S†
αα(t1, t)Sαα(t, t2)]

+
T0

Tm

∫ Tm

0

d td t ′
∫

d t1d t2d t ′1d t ′2 f (t1 − t ′2) f̃ (t
′
1 − t2)

∗
∑

γδ

[S†
αγ(t1, t)Sαδ(t, t2)S

†
δα
(t ′1, t ′)Sγα(t

′, t ′2)−δ(t − t1)δ(t
′ − t ′1)δ(t − t2)δ(t

′ − t ′2)] , (23)

where f̃ (t, t ′) = δ(t − t ′)− f (t, t ′).
To perform the adiabatic expansion of both terms, we notice that they have the same

structure as a product of convolutions. Taking m→ +∞ and performing an expansion in the
gradients as done before for the current one obtains at zero order

δQ(0)αα = −2

∫

dε
2π

�

−
1
β

∂ f
∂ ε

�

∫ T0

0

dT
�

1− Sαα(ε, T )S†
αα(ε, T )
�

. (24)

where β is the inverse temperature. This is the average over a period of the instantaneous
equilibrium Johnson-Nyquist noise [23].

At first order in the gradients the only non-zero contribution is

δQ(1),thαα =

∫ T0

0

dT

∫

dε
4πi

�

−
1
β

∂ 2 f
∂ ε2

�

∑

β ̸=α

�

∂T SαβS†
αβ
− Sαβ∂T S†

αβ

�

−
∫ T0

0

dT

∫

dε
4πi

�

−
1
β

∂ f
∂ ε

�

∑

β

�

∂εSαβ∂T S†
αβ
− ∂T Sαβ∂εS

†
αβ

�

.

(25)

This term, which obviously depends on the operation of the pump, is a first-order contribution
to thermal noise proportional to the temperature and vanishing at zero temperature [18,24].

The gradient expansion performed above turns out to miss an important shot noise term
and is valid only when ħhΩ≪ kB T , whereΩ= 2π

T0
. The finite shot-noise contribution which sur-

vives even at zero order was first computed in Ref. [18]. It arises from the emission/absorption
of quanta of energy from the scatterer. The expression of this zero-temperature shot noise is

δQ(1),shαα =
∞
∑

q=1

q
4π

C (s ym)
αα,q (0) , (26)

6
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where

C (s ym)
αα,q (E) =

Cαα,q(E) + Cαα,−q(−E)

2
, (27)

Cαα,q(E) =
∑

γδ

[S∗αγ(E)Sαδ(E)]q[S
∗
αδ(E)Sαγ(E)]−q , (28)

which arises from the quartic term of eq. 23. The superscript []q identifies the Fourier coeffi-
cients, defined as

[A]q(E) =

∫ T0

0

d t
T0

eiqΩtA(E, t) . (29)

The derivation of the present shot noise term is described in Appendix E. Moreover, the rele-
vance of the various terms of the noise is discussed in more detail in the Appendix F. In Sec. 5
we will analyze the noise obtained together with thermodynamic quantities to gain further
insight into the relationship between transport and thermodynamics.

4 Quantum pump as an engine

Now that the transport problem is described in its full generality, let us look at a quantum
pump as a thermodynamic engine. By varying the parameters (x1, x2) over a cycle it is clear
that we are performing a certain work on the system as well as dissipating heat and generating
entropy. The goal of this section will be to give concrete expressions to these quantities for the
specific problem of quantum pumping of a resonant level model. Of course, as in the case of
transport properties, we will have to proceed in steps, first considering the quasi-static limit,
and then proceeding to higher-order contributions in the gradient expansion.

4.1 Quasistatic limit

Let us start developing this formalism in the limit of reversible and quasi-static transformations
where we can work in the equilibrium gran-canonical framework at fixed temperature β−1 and
chemical potential µ. Evaluating the grand potential of the total system, Ω= −1/β lnΞ, where
Ξ= Tr[e−β(H−µN)], in terms of the density of states ρ(ε) of the total system one obtains

Ωtot = −
1
β

∫

dε
2π
ρ(ε) ln[1+ e−β(ε−µ)] . (30)

We are now interested in extracting the time-dependent part of this expression when parame-
ters are varied quasi-statically: for a resonant level model in which the time-dependent param-
eters are εd(t), ΓL/R(t) this amounts, as shown in Appendix B, to the replacement in Eq.(30)
of the total density of states ρ(ε) with the instantaneous local spectral function of the dot
At(ω) = A(ω, [εd(t), ΓL/R(t)]) = −2Im[Gr(ω, [εd(t), ΓL/R(t)])] obtaining an instantaneous
grand potential

Ωt = −
1
β

∫

dε
2π

At(ε) ln[1+ e−β(ε−µ)] . (31)

7

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.067


SciPost Phys. Core 7, 067 (2024)

From this expression, we can derive the quasistatic thermodynamic functions N (0)t , S(0)t and
E(0)t , respectively particle number, entropy, energy [11] obtaining

N (0)t =

∫

dε
2π

At(ε) f (ε) , (32)

S(0)t = kB

∫

dε
2π

At(ε)
�

− f ln f − (1− f ) ln(1− f )
�

, (33)

E(0)t =

∫

dε
2π
ε At(ε) f (ε) . (34)

Clearly, the derivatives of these quantities with respect to time are connected to the reversible
energy change Ė(1), the reversible power Ẇ (1), the heat exchange rate Q̇(1) and the current
Ṅ (1). In particular, using the relation ∂ΓA= −∂εRe(GR) the expression for the reversible power
Ẇ (1) = ε̇d∂εd

Ω+
∑

α Γ̇α∂ΓiΩ can be written as

Ẇ (1) = ε̇d

∫

dε
2π

Af + Γ̇

∫

dε
2π

Re(GR) f . (35)

Similar calculations lead to the expression of the quasi-static heat exchange rate as

Q̇(1) = T
dS(0)

d t
= ε̇d

∫

dε
2π
(ε−µ)A∂ε f + Γ̇

∫

dε
2π
(ε−µ)Re(GR)∂ε f . (36)

The current out of the dot is

Ṅ (1) =
dN (0)

d t
= ε̇d

∫

dε
2π

A∂ε f + Γ̇

∫

dε
2π

Re(GR)∂ε f . (37)

Finally, the energy exchange rate

Ė(1) =
dE(0)

d t
= −ε̇d

∫

dε
2π
ε∂εAf − Γ̇
∫

dε
2π
ε f ∂εRe(GR) . (38)

Notice that these quantities satisfy the first law of thermodynamics in the form

Ė(1) = Ẇ (1) + Q̇(1) +µṄ (1) . (39)

4.2 Gradient expansion of thermodynamic quantities

Let us now come to the main results of this paper: a self-contained thermodynamic description
of the operation of a quantum pump. Quantum pumping is not a quasi-static phenomenon:
the quasi-static contribution to the pumped current is just zero. It is intuitively appealing that
the same will be true for certain thermodynamic quantities that are expected to be intimately
connected to the flow of a current, such as the heat dissipated and the entropy produced.
Therefore in order to address them we will have to extend our analysis to account for correc-
tions to the quasi-static limit using a gradient expansion. Our goal will be for each generic
quantity to express it as expansion in gradients as O =

∑

i O
(i), where O(i) contains the i-th

time derivative. In order to do so we will first write O in terms of non-equilibrium Green’s
functions (Appendix C) and then perform their adiabatic expansion deriving the next-order
corrections to the expressions obtained in the previous section. The expansion we are going to
derive is an expansion in gradients precisely as the one obtained for the pumped charge and
the noise, i.e. using as small parameters ε̇d/Γ

2 and Γ̇α/Γ
2.
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Let us start with the simplest quantity: the particle number in the resonant level. The
average number of particles is readily connected to a Green’s function using its definition,
N = 〈d†d〉 = −iG<(t, t). Therefore one can identify N (i) with the i-th order expansion in the
gradients of the lesser Green function (see Appendix C) which can be calculated starting from
the Keldysh equation

G< =

∫

d t1d t2GR(t, t1)Σ
<(t1, t2)G

A(t2, t ′) . (40)

Performing a gradient expansion of this one readily obtains the zeroth order terms reported
above and

N (1) = −
ε̇d

2

∫

dε
2π
∂ε f A2 −

Γ̇

2

∫

dε
2π
∂ε f

A2

Γ
(ε− εd) . (41)

This result can be used to compute the second-order correction to the current out of the dot

Ṅ (2) = −
ε̇d

2

2

∫

dε
2π
∂ 2
ε f A2 −

Γ̇ 2

2

∫

dε
2π
∂ε f (ε− εd)∂Γ

�

A2

Γ

�

−
ε̇d Γ̇

2

∫

dε
2π

�

∂ΓA
2 −

A2

Γ
+
∂εA

2

Γ
(ε− εd)
�

∂ε f

−
ε̈d

2

∫

dε
2π
∂ε f A2 −

Γ̈

2

∫

dε
2π
∂ε f

A2

Γ
(ε− εd) .

(42)

The argument becomes more involved if one wants to calculate the gradient expansion of the
entropy. For this sake one needs to substitute in the expression for the entropy introduced
the Fermi distribution f with the non-equilibrium distribution φ(ε, T ) [12] obtained from the
Wigner transform of the lesser Green’s function G<(ε, T ) = iA(ε, T )φ(ε, T )

S = kB

∫

dε
2π

A
�

−φ lnφ − (1−φ) ln(1−φ)
�

. (43)

A gradient expansion of the lesser Green’s function (and a similar one for the retarded one)
results in a gradient expansion for the non-equilibrium distribution, hence for the entropy.
The results for φ are given in Appendix C. The resulting expansion to the first order of the
non-equilibrium distribution gives S(1)

S(1) = −
kBε̇d

2

∫

dε
2π

�

ε−µ
kB T

�

∂ε f A2 −
kB Γ̇

2

∫

dε
2π

�

ε−µ
kB T

�

∂ε f
A2

Γ
(ε− εd) , (44)

and therefore the entropy production rate to the second order is

Ṡ(2) =
ε̇d

2

2T

∫

dε
2π
(ε−µ)∂ε f ∂εA

2 −
Γ̇ 2

2T

∫

dε
2π
(ε−µ)∂ε f (ε− εd)∂Γ

�

A2

Γ

�

−
ε̇d Γ̇

2T

∫

dε
2π
(ε−µ)∂ε f
�

∂ΓA
2 −
∂εA

2

Γ
(ε− εd) +

A2

Γ

�

−
ε̈d

2T

∫

dε
2π
(ε−µ)∂ε f A2

−
Γ̈

2T

∫

dε
2π
(ε−µ)∂ε f

A2

Γ
(ε− εd) . (45)

Coming to the internal energy, it can be verified that at zero order E(0) = 〈HD〉(0) +
1
2〈HV 〉(0)

[12]. We may then identify an “effective system” of Hamiltonian He f f = HD +
1
2 HV and an

“effective bath” HB +
1
2 HV [11]. Therefore, at every order in a gradient expansion, we have

E(i) = 〈HD〉(i) +
1
2
〈HV 〉(i) . (46)
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The expectation value for 〈HV 〉 is given in Appendix D. As for the internal energy we compute
the zeroth order in the gradients (quasi-static approximation) in Eq.(34) and the rate of change
to first order in Eq.(38). Let us now evaluate the first-order correction of the energy

E(1) = −
ε̇d

2

∫

dε
2π
ε∂ε f A2 −

Γ̇

2

∫

dε
2π
ε∂ε f

A2

Γ
(ε− εd) , (47)

whose time derivative reads

Ė(2) =
ε̇d

2

2

∫

dε
2π
ε∂ε f ∂εA

2 −
Γ̇ 2

2

∫

dε
2π
ε∂ε f (ε− εd)∂Γ

�

A2

Γ

�

+
ε̇d Γ̇

2

∫

dε
2π

�

ε∂ε f ∂ΓA
2 + ε

∂εA
2

Γ
∂ε f (ε− εd)
�

−
ε̈d

2

∫

dε
2π
ε∂ε f A2

−
Γ̈

2

∫

dε
2π
ε∂ε f

A2

Γ
(ε− εd) . (48)

The expression for the energy agrees with the energy-resolved one [12]

E(i) =

∫

dε
2π
εA(ε, T )φ(i)(ε, T ) . (49)

The power can be computed according to the definition. We can distinguish two different
contributions, relative to HD and HV . The first one is

Ẇ (i)
D =
­

∂ HD

∂ εd

·(i−1)

ε̇d = ε̇d N (i−1) . (50)

Likewise for the components of the coupling

Ẇ (i)
V =
∑

α

­

∂ HV

∂ Vα

·(i−1)

V̇α =
∑

α

V̇α(t)
∑

k

(〈d†ckα〉(i) + h.c.) =
∑

α

V̇α(t)
Vα(t)

〈HαV 〉
(i) . (51)

Changing variable to Γα

Ẇ (i)
V =
∑

α

Γ̇α
2Γα
〈HαV 〉

(i−1) , (52)

so that
Ẇ (i) = Ẇ (i)

V + Ẇ (i)
D . (53)

The first order in the gradients of the power was computed in Eq. 35. We may now use the
expansion above to compute the second order correction as

Ẇ (2) = −
ε̇d

2

2

∫

dε
2π
∂ε f A2−

Γ̇ 2

4

∫

dε
2π
∂ε f ∂ΓA+

ε̇d Γ̇

2

∫

dε
2π
∂ε f ∂εA+
∑

α

Γ̇ 2
α

2Γα

∫

dε
2π

f
∂εA
2

. (54)

Note the presence of Γα at the denominator: this term causes a singularity at Γα = 0, which
appears only when multiple heat baths are present.

The heat exchange rate Q cannot be calculated directly [25] since there are no physical
process accounting for dissipation and the Landauer-like picture of transport assumes that
dissipation processes take place far away from the system and do not affect its dynamics [26].
The only way it can be derived is from the first law of thermodynamics. The latter reads

Ė(i) = Ẇ (i) + Q̇(i) +µṄ (i) . (55)
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Then, the heat exchange has to be calculated inverting this relation

Q̇(i) = Ė(i) − Ẇ (i) −µṄ (i) . (56)

Finally, the heat exchange flow reads

Q̇(2) = −
ε̇2

d

2

∫

dε
2π
(ε−µ)∂ 2

ε f A2 −
Γ̇ 2

2

∫

dε
2π
∂ε f (ε− εd)(εd −µ)∂Γ

�

A2

Γ

�

−
Γ̇ 2

4

∫

dε
2π
∂ 2
ε f (ε− εd)∂ΓA−

∑

α

Γ̇ 2
α

2Γα

∫

dε
2π

f
∂εA
2

−
ε̈d

2

∫

dε
2π
(ε−µ)∂ε f A2 −

Γ̈

2

∫

dε
2π
(ε−µ)∂ε f

A2

Γ
(ε− εd)

−
ε̇d Γ̇

2

∫

dε
2π
∂ε f (εd −µ)
�

∂ΓA
2 −

A2

Γ
+
∂ εA2

Γ
(ε− εd)
�

+
ε̇d Γ̇

2

∫

dε
2π
∂ε f (ε− εd)∂ΓA

2 −
ε̇d Γ̇

4

∫

dε
2π
∂ 2
ε f (ε− εd)∂εA . (57)

The results obtained for N and Ẇ are consistent with the ones found in [27].
A final comment on the adiabatic expansion we have just performed is that the entropy

production rate is not simply related only to the heat production, but there is a further contri-
bution which can be identified with the dissipated power. In particular this relation holds

Ṡ(2) =
Q̇(2)

T
+

Ẇ (2)

T
. (58)

This is because in general, we have this expression

dS
d t
= Σ̇+

Q̇
T

, (59)

where Σ̇ can be related to the entropy production of the universe and S is the entropy of the
system. In turn, the change of the entropy of the universe is given by the mismatch between
the corresponding reversible work rate and the work rate in an irreversible process, called the
unusable energy, i.e.

T Σ̇= Ėun = Ẇrev − Ẇ , (60)

which up to second order corresponds to Ẇ (2) [28].

5 Quantum thermodynamics of various pumping cycles

It is now time to put all the pieces of the puzzle together and show how the formulas devel-
oped above can be used to gain insight into the physics of quantum pumping by combining
information on thermodynamic quantities as well as transport properties (pumped charge and
its noise). We will do so for various examples of cycles constructed for a resonant-level model.

5.1 The peristaltic cycle

The simplest cycle one can think of is the “peristaltic” cycle which consists of four strokes as
shown in Fig.1: the level initially empty at +ε0 coupled only to ΓL . It is then lowered to −ε0
and filled with an electron from the left. Afterwards, the coupling is switched to the right and
the level is raised again to +ε0 and emptied on the right. Finally, the coupling is reinstated
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Figure 1: The peristaltic cycle: the level initially empty at +ε0 coupled only to ΓL .
It is then lowered to −ε0 and filled with an electron from the left. Afterwards, the
coupling is switched to the right and the level is raised again to +ε0 and emptied on
the right. Finally, the coupling is reinstated to its initial value.

to its initial value. In this cycle, the only varied quantities are εd and δΓ = ΓL − ΓR. The total
decay rate Γ = ΓL + ΓR is not changed.

We calculate the current, using Brouwer’s formula (Sec. 3). In the limit of low temperature
T , the pumped charge is

Q(0)L =
2
π

§

arctan(x) +
x

1+ x2

ª

+O(T2) , (61)

where x = ε0
Γ/2 . In the limit x >> 1, the pumped charge is quantized, Q(0)L → 1.

The expectation is that the corresponding noise will tend to zero in the quantization limit.
We are interested in the zero-temperature limit, which enjoys contributions only from the
“shot” noise (Sec. 3). The zeroth order contribution to the current noise is just thermal and
vanishes in this limit

δQ(0)LL = 0 . (62)

We evaluate the first-order term in the gradients, containing the relevant shot noise contribu-
tion. The result of this calculation gives a current noise which tends to zero in the quantization
limit

lim
x→∞

δQLL(x) = 0 (63)

(see e.g. Fig 2).
Let us now proceed with the comparison with thermodynamic quantities by integrating the

previously calculated ones over a cycle. Clearly, integrating over a cycle quantities expanded
up to the first order will give a quantity independent of the cycle parametrization, hence geo-
metric. In the present case, however, the integrals are all vanishing, as one can see from the
one of the power expanded to first order

Ẇ (1) =
∂Ω

∂ εd
ε̇d +

∂Ω

∂ Γ
Γ̇ , (64)

which using Green’s theorem can be expressed as

W (0)
c ycle =

∫ T0

0

d tẆ (1) =

∫∫

A
dεd dΓ
�

−
∂ 2Ω

∂ εd∂ Γ
+
∂ 2Ω

∂ Γ∂ εd

�

= 0 . (65)
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Figure 2: The first order of the noise integrated over the peristaltic cycle in the zero-
temperature limit (in logarithmic scale). In this case, we have set vεd

= |ε̇d | and
vδΓ = |δ̇Γ | to 1. Since the sum of Eq. 26 cannot be carried out to infinity numerically,
we chose a value of qmax as an upper limit to that sum. The latter value was chosen
to guarantee convergence and was set to qmax = 10000.

Similar reasoning can be applied for integrals of all other rates at first order. We can point
out that this is a trivial consequence of the absence of any chemical potential or temperature
difference.

In contrast, second-order rates integrated over a cycle will not be geometric quantities
and will depend on the specific parameterization. In the following, we will consider a linear
parameterization so that the rates ε̇d and δ̇Γ are constants along the four strokes. The work
would display some divergent integrals, signalling the failure of the gradient expansion for
this particular cycle (see Appendix G). The problem concerns indeed the fact that the gradient
expansion can be justified only if both ΓL , ΓR ̸= 0 at all times, which is of course inconsistent
with the condition δΓ = ±Γ . One way out is to regularize the cycle, making δΓ vary from
[−Γ +δ, Γ −δ]. While the pumped charge and the other terms in the current noise turn out to
have a smooth limit as δ→ 0, the work should be computed only for δ small but finite. The
work per cycle is

W (1)
c ycle = −vεd

∫ ε0

−ε0

dεd

∫

dε
2π
∂ε f A2 +

vδΓ
2

∫ Γ−δ

−Γ+δ
dδΓ

Γ

Γ 2 −δΓ 2

∫

dε
2π

f
∂εA
2

. (66)

Performing the integration over εd one obtains in the limit T → 0

W (1)
c ycle = vεd

∆W (1)
εd
+ vδΓ∆W (1)

δΓ
, (67)

where vεd
= |ε̇d |, vδΓ = |δ̇Γ |, and the coefficients are

∆W (1)
εd
=

2
πΓ

§

arctan x +
x

1+ x2

ª

, (68)

and

∆W (1)
δΓ
=

1
Γ

arctanh
�

1− ξ
�

1
π

1
x2 + 1

, (69)

in terms of the dimensionless variables x = ε0
Γ/2 and ξ = δ

Γ . Comparing this result with the
one obtained for the charge pumped over a cycle, we obtain the following direct relationship
∆W (1)

εd
=

vεd
Γ Q(0)L . The contribution proportional to vδΓ is shown in Fig. 4 and it is vanishing

in the limit x →∞. Therefore in the limit of charge quantization

W (1)
c ycle =

vεd

Γ
, (70)

13

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.067


SciPost Phys. Core 7, 067 (2024)

Figure 3: The current integrated over a cycle for the left lead w.r.t. the adimensional
parameter x. It is clear that in the limit x →∞ the quantity displays a quantization
to 1.

the work is finite in the presence of charge quantization and proportional to the pumped
charge, in the case of constant velocity.

Let us now compute in the same way the entropy produced over a cycle

S(1)c ycle =
vεd

T

∫ ε0

−ε0

dεd

∫

dε
2π
(ε−µ)∂ε f ∂εA

2 . (71)

Performing the integrations the result up to the first order in the temperature is

S(1)c ycle = vεd
∆S(1)εd

, (72)

where

∆S(1)εd
=
πT k2

B

3
128
Γ 3

x
(1+ x2)3

+O(T3) . (73)

Comparing this expression with the expression of the work, we observe that while in the limit
x →∞ the work saturates to the value

vεd
Γ , the entropy production tends to zero (Fig. 5).

For completeness, we report here also the result for the remaining quantities

Q(1)c ycle = −vεd

∫ ε0

−ε0

dεd

∫

dε
2π
(ε−µ)∂ 2

ε f A2 −
vδΓ
2

∫ Γ−δ

−Γ+δ
dδΓ

Γ

Γ 2 −δΓ 2

∫

dε
2π

f
∂εA
2

, (74)

E(1)c ycle = vεd

∫ ε0

−ε0

dεd

∫

dε
2π
ε∂ε f ∂εA

2 , (75)

N (1)c ycle = −vεd

∫ ε0

−ε0

dεd

∫

dε
2π
∂ 2
ε f A2 . (76)

Performing the integrations one obtains that in the limit x → ∞ and T → 0 N (1)c ycle = 0,

S(1)c ycle = 0 and Q(1)c ycle = −W (1)
c ycle. These conditions define a Non-Equilibrium Steady State

(NESS) (see for example [29]).

5.2 Other examples of cycles

In our analysis of the peristaltic cycle we found that in the limit of quantization, the work per
cycle saturates to a value determined by the rate of change of the energy level vεd

. In contrast,
the entropy produced per cycle goes to zero (as the noise). The purpose of this section will
be to explore other examples of a cycle and study the possibility that these qualitative results
could apply to more general situations.
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Figure 4: ∆W (1)
εd
Γ and ∆W (1)

δΓ
Γ . The contribution proportional to vεd

tends to 1 for
x → ∞, following the direct relation with the pumped charge. In contrast, the
contribution proportional to vδΓ tends to zero in the same limit.

Figure 5: The leading order in temperature of the entropy vs. the adimensional
parameter x. From this figure, it is evident that the quantity tends to zero in the
quantization limit.

Let us consider a modification of the peristaltic cycle in which the couplings are modified
one by one and not together: the level is lowered from εd = ε0 to−ε0, while connected mainly
to the right lead with ΓR = Γ0 and ΓL = δ (ξ = δ/Γ0 ≪ 1). The role of the two couplings is
then inverted by first raising ΓL to Γ0 and then decreasing ΓR to δ. It is now the turn of the level
to be raised from −ε0 to ε0. Then the ΓR and ΓL are exchanged again with the inverse of the
above process. The results for the pumped charge are portrayed in Fig. 6. It displays indeed
charge quantization in the large x = ε0/Γ limit. The current noise can be safely computed
for this cycle and the results for the two coefficients which govern the dependence on vεd

and
vΓ are in Fig. 7. As we can see both the coefficients tend to ξ = δ

Γ as x → ∞. Therefore
limξ→0 limx→∞δQαα(x ,ξ) = 0.

Let us now turn to the work per cycle which has the following expression

W (1)
c ycle = vεd∆W (1)

εd
+ vΓ∆W (1)

Γ , (77)

where

∆W (1)
εd
=

2
Γ0π

§

arctan(x) +
x

1+ x2

ª

, (78)
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Figure 6: The charge pumped from left to right. It is negative because the current
flows from left to right. The current displays charge quantization in the large x limit.

Figure 7: The first order of the noise of the current δQLL (in logarithmic scale).The
current noise tends to 0 as x →∞ as expected, following the quantization require-
ment.

and

∆W (1)
Γ =

1
πΓ0

1
(x2 + 1)

§

− 2x arccot
�

x
ξ− 2

�

− 2x arccot
�

x
ξ+ 2

�

+ 2 log
�

1− ξ
ξ

�

+ log
�

ξ2 + x2 + 2ξx + 1
ξ2 + x2 − 2ξx + 4

�ª

+
2
πΓ0

�

2− ξ
x2 + (2− ξ)2

−
1+ ξ

x2 + (1+ ξ)2

�

, (79)

displays a quantization of
W (1)

c ycleΓ0

vεd
→ 1 in the large x limit (see Fig. 8). This appears to be in

agreement with what is stated for the peristaltic cycle.
Finally, let us focus on the entropy whose first non-zero order reads

S(1)c ycle = vΓ∆S(1)Γ + vεd∆S(1)εd
+O(T3) , (80)

where

∆S(1)Γ =
π

12
1
Γ 3
(k2

B T )
�

2
(4x2 + 1)2

−
16

(x2 + 1)2

�

, (81)

and

∆S(1)εd
=
π

3
(k2

B T )
1
Γ 3

32x
(1+ x2)3

. (82)
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Figure 8: The two components of the dissipated power proportional to vεd
and vΓ for

ξ = 0.001. The work displays a quantization to
vεd
Γ0

in the limit x →∞, as the first
component is saturated to 1, while the second vanishes in this limit.

Figure 9: The second order in temperature of the entropy for vΓ = vεd
= 1.We see

that both the coefficients vanish in the quantization limit.

The two coefficients are in Fig. 9. We can see that also in this case, the entropy tends to zero
in the charge quantization limit. All the other quantities do not add any relevant physical
information: as before since S(1)c ycle = 0, Q(1)c ycle = −W (1)

c ycle all the external work is converted
into dissipated heat.

Our previous example shows that the main results pertaining to the peristaltic cycle, i.e.
work quantization in the limit of quantized charge, no entropy production and zero noise,
pertain also to similar cycles.
Let us now focus on another cycle whose peculiarity is to have a maximal pumped charge
equal to half an electron charge: the triangular cycle introduced in [30]. In this cycle, at
the beginning, the dot is weakly coupled with strength δ to both leads. Then, it is loaded by
coupling to the left lead up to Γ0≫ δ. The next step is to shift the coupling from the left to the
right reservoir. Finally, the dot is discharged while returning to the initial state. The energy
level of the dot is maintained constant εd = ε0 and only the couplings are varied ( see Fig.
10). In this example, we have half an electron per period. This means that the current noise
has to be finite. The fact that the charge transport is on average equal to 1/2 per cycle, means
that half of the times one charge is transported and the other half none. The charge pumped
per cycle is plotted in Fig. 11 and is given by the expression

Q(1)R =
2
π

∫

I(C)
dX LdXR

X
[1+ X 2]2

=
1
π

�

arctan[X0]−
X0

1+ X 2
0

�

, (83)
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Figure 10: The diagram of the cycle with fractional charge quantization.

Figure 11: The charge pumped w.r.t the adimensional parameter X0, displaying the
fractional quantization to the value 1

2 .

where I(C) is the triangular contour in Fig. 10. In terms of X = Γ
2ε0

and X0 =
Γ0

2ε0
. It is evident

that
lim

X0→∞
Q(1)R = 1/2 . (84)

The adiabatic current noise in Fig. 12 is finite in the quantization limit, due to the non-
integer charge. In this case, the most relevant contribution is from the hypotenuse of the
process, where both the couplings are varied and the energy level is half occupied on average.
The value reached by the charge noise is

lim
X0→∞

δQ(1)RR =
1
2

�

1−
1
2

�

=
1
4

. (85)

The work done per cycle (Fig. 13) is

W (1)
c ycle = vΓ∆W (1)

Γ + vδΓ∆W (1)
δΓ

, (86)

where

∆W (1)
Γ =

1
ε0π

�

X0

1+ X 2
0

+ arctan[X0]−
δ

1+δ2
− arctan[δ]
�

, (87)

and

∆W (1)
δΓ
=

1
Γ

arctanh
�

1−δ
�

1
π

2X0

X 2
0 + 1

, (88)

with δ = η
Γ0

. We have, in the quantization limit

W (1)
c ycleε0

vΓ
→

1
2

. (89)
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Figure 12: The noise with respect to X0. In this case, we observe a finite noise in the
quantization limit. The limiting value is 1

4 .

Figure 13: The two components of the work with respect to X0. The figure shows
how in the limit X0→∞ the work tends to the value W (1)

c ycle→
1
2

vΓ
ε0

.

The entropy integrated over a cycle (fig. 14) reads

S(1)c ycle = vΓ∆S(1)Γ , (90)

∆S(1)Γ =
1

ε3
0

π

12
k2

B T
2X0

(1+ X 2
0)2

. (91)

Likewise, the entropy in the quantization limit tends to zero.
The results for the two processes we have considered up to now indicate that, when the

design of the cycle allows us to define a limiting condition which entails a quantized charge
pumped, there are some conclusions we can draw regarding the other quantities relevant to our
purposes. In particular, the out-of-equilibrium work performed on the system obeys a similar
quantization relation. The entropy integrated over the cycle vanishes in the considered limit.
Likewise, the charge noise disappears, as the charge pumped is quantized.

Figure 14: The entropy with respect to X0.
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6 Conclusion and outlook

In this paper, we have studied the problem of characterizing thermodynamically adiabatic
pumping through a single energy-level quantum dot coupled to two leads. We established a
systematic scheme based on a gradient expansion to calculate all the relevant transport and
thermodynamic quantities.

For a resonant level model, focusing on specific cycles and comparing transport to thermo-
dynamic quantities we have shown that whenever a quantized charge is attained one expects,
together with zero charge noise, zero entropy production and a saturated work per cycle pro-
portional to the speed with which the quantity associated to the quantization limit is varied.

The methods developed here could in principle be generalized to other time-dependent
transport problems, such as transport through multilevel dots or even interacting systems [7,
31]. Another interesting direction of future related research is to study quantum stochastic
thermodynamic quantities (for example the work distribution) and how fluctuation theorems
can apply to these thermodynamic cycles.

The results we obtained are relative to a specific model, but nonetheless offer insight into
the phenomenon of adiabatic pumping and its thermodynamical implications, which can be
relevant in other contexts (for example Thouless pumps).
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A Derivation of Eq. 10

Starting from the expression of the current and using the lesser Green function
G<d,kα(t

′, t) = i〈c†
kα(t)d(t

′)〉 we can write

〈Iα〉= 2Re
§

∑

k

VαG<d,kα(t, t)
ª

. (A.1)

It is straightforward to see that, whenever the leads are non-interacting, the lesser Green’s
function entering the definition of the current has the expression [22]

G<d,kα(t, t ′) =

∫

d t1

�

g<kα(t, t1)[Vα]
∗GA(t1, t ′) + g r

kα(t, t1)[Vα]
∗G<(t1, t ′)
�

. (A.2)

Performing now the summation over k as in Eq. A.1 using g<k,α(ε) = 2πiδ(ε − εk) f (ε) and
g r

k,α(ε) = 1/(ε−εk+ i0+), where f (ε) = 1/(exp[β(ε−µ)]+1) is the Fermi function, we have

∑

k

G<kα(t, t ′) =

∫

d t1

�

2πν0i f (t − t1)[Vα]
∗GA(t1, t ′)−πν0i[Vα]

∗G<(t1, t ′)
�

, (A.3)

where ν0 =
∑

k δ(ε−εkα) is the constant density of states and f (t) is the (properly regularized)
Fourier transform of the Fermi distribution. Therefore the expectation value of the current
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operator can be written as

〈Iα〉= 2Re
�

i

∫

d t1 f (t − t1)T
a
αα(t1, t ′)−

i
2

T<αα(t, t)
�

, (A.4)

in terms of the generalized, time-dependent transmission matrices

TR,A,≷
αβ

(t, t ′) = 2πν0

∑

k

[Vα(t)]
∗GR,A,≷(t, t ′)Vβ(t

′) . (A.5)

A further simplification of Eq. A.4 is obtained by expressing of T<αα in terms of retarded and
advanced quantities using

G<(t, t ′) =

∫

d t1d t2GR(t, t1)Σ
<(t1, t2)G

A(t2, t) , (A.6)

with
Σ<(t, t ′) = 2πν0i

∑

α

Vα(t) f (t − t ′)[Vα(t
′)]∗ . (A.7)

Then we have

T<αα(t, t) =
∑

β

∫

d t1d t2TR
αβ(t, t1) f (t1 − t2)T

A
βα(t2, t) . (A.8)

Substituting this expression into the current we obtain

〈Iα〉= i

∫

d t1[ f (t − t1)T
R
αα(t1, t)− TA

αα(t, t1) f (t1 − t)]

+
∑

β

∫

d t1d t2TR
αβ(t, t1) f (t1 − t2)T

A
βα(t2, t) . (A.9)

Finally introducing the time-dependent scattering matrices defined as

Sαβ = δαβδ(t − t ′) + iTR
αβ(t, t ′) ,

we arrive at Eq. 10.

B The density of states

The density of states is given as the trace of the spectral function of the system over all the
single-particle states n

ρ(ε) =
∑

n

Ann(ε) , (B.1)

and we remind that Ann = −2ImGR
nn in terms of the retarded Green function. In the basis of

uncoupled dot and leads electron states we can decompose the density of states in terms of
the dot and leads contributions

ρ(ε) = Add(ε) +
∑

kα

Akk,α(ε) . (B.2)

To calculate Akk,α we write the Dyson equation for the retarded Green function of the leads

GR
kk,α(ε) = gR

kα(ε) + (g
R
kα(ε))

2V 2
α (t)G

R
dd(ε) . (B.3)
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Since ΣR
kα = |Vα(t)|2 gR

kα(ε), where gR
kα(ε) is the free lead green function, we define

σα(ε) =
∑

kΣ
R
kα one can rewrite the above density of states in terms of the retarded self-

energy as

ρ(ε) = Add(ε)
�

1−
d
dε

Re(σα(ε))
�

+ 2Re(GR
dd(ε))

d
dε

Im(σα(ε)) + να(ε) , (B.4)

where να(ε) = −2
∑

k Im(gR
kα(ε)).

In our case, it follows from the definition that

σα = −
i
2
Γα . (B.5)

As a consequence, the terms that depend on the derivatives of the self-energy vanish. Further-
more, the free density of states of the leads depends neither on εd nor on Γα so that we can
cast it aside. What we are left with is simply the density of states of the dot alone Add , which
we indicate as A in the course of the article.

C The expansion of the equations of motion

In the following, we derive the gradient expansion of different Green functions.

• We start with the gradient expansion of the equation of motion for the retarded Green
function of the dot

δ(t − t ′) =

∫

d t1GR(t, t1)[i∂t1
δ(t1 − t ′)− εd(t1)δ(t1 − t ′)−ΣR(t1 − t ′)] , (C.1)

with the retarded self-energy ΣR(t, t ′) =
∑

kα |Vα(t)|
2 gR

kα(t, t ′)We switch to the Wigner
transform, defined as

G(ε, t) =

∫

dτG(t1, t2)e
iετ , (C.2)

where t = t1+t2
2 and τ= t1− t2. We recall that for a convolution, the Wigner transform

is
∫

d t ′C(t1, t ′)D(t ′, t2) =

∫

dε
2π

e−iετC(ε,τ) ∗ D(ε,τ) , (C.3)

where C(ε,τ)∗D(ε,τ) = C(ε,τ)Ex p[ i
2(
←−
∂ε
−→
∂t −
←−
∂t
−→
∂ε )]D(ε,τ). Therefore, up to the first

order we have

1= GR(ε,τ)
�

ε− εd +
i
2
Γ

�

+
i
2

�

∂εG
R(ε,τ)(−ε̇d(t) +

i
2
Γ̇ )− ∂t G

R(ε, t)
�

. (C.4)

Therefore, up to the first order in the velocities, for the retarded and advanced Green
functions we have GR(ε, t) = (ε− εd(t) + i Γ (t)2 )

−1 and GA(ε, t) = (ε− εd(t)− i Γ (t)2 )
−1.

• The lesser component of the Green function is given by

G< =

∫

d t1d t2GR(t, t1)Σ
<(t1, t2)G

A(t2, t ′) . (C.5)

The zero order is
G<(0)(ε, t) = GRΣ<GA = iAf . (C.6)

22

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.067


SciPost Phys. Core 7, 067 (2024)

As we already know, the part dependent on ε̇d yields a contribution −i ε̇d
2 ∂ε f A2. Now,

let’s work out the different contributions to the part which is dependent on Γ̇

1)
i
2

�

∂εG
R∂tΣ

<GA− GR∂tΣ
<∂εG

A
�

=
i
2
(iΓ̇ f )(∂εG

RGA− GR∂εG
A)

= −
i
2
Γ̇ f

A2

Γ
, (C.7)

2)
i
2

�

− ∂t G
R∂εΣ

<GA+ GR∂εΣ
<∂t G

A
�

=
i
2
Γ̇ (iΓ∂ε f )

i
2
([GR]2GA+ GR[GA]2)

= −
i
2
Γ̇∂ε f

A2

Γ
(ε− εd(t)) , (C.8)

3)
i
2

�

∂εG
RΣ<∂t G

A− ∂t G
RΣ<∂εG

A
�

=
i
2
Γ̇ (iΓ f )

i
2

�

∂εG
R[GA]2 + [GR]2∂εG

A
�

=
i
2
Γ̇ f

A2

Γ
, (C.9)

where we used the following relations: ∂εG
RGA − GR∂εG

A = i A2

Γ ,
∂t G

R/A = −ε̇d∂εG
R/A + Γ̇ (∓ i

2)[G
R/A]2, Re(GR) = ε−εd

Γ A and [GR]2[GA]2 = (A
Γ )

2. Over-
all, we obtain

G<(ε, t) = iAf − i
ε̇d

2
∂ε f A2 − i

Γ̇

2
∂ε f

A2

Γ
(ε− εd) . (C.10)

As a consequence, we can identify a non-equilibrium distribution function

φ = f −
ε̇d

2
∂ε f A−

Γ̇

2
∂ε f

A
Γ
(ε− εd) . (C.11)

D Calculation of the expectation value of the coupling term

Now, let us derive the expression of 〈HV 〉 up to the first order from the expansion of the mixed
Green function. To calculate 〈HV 〉 we write

〈HV 〉=
∑

α

Vα(t)
∑

k

�

〈d†ckα〉+ 〈c
†
kαd〉
�

=
∑

α

〈HαV 〉 . (D.1)

Where we define HαV = Vα(t)
∑

k

�

d†ckα + c†
kαd
�

. It reads

〈HαV 〉= 2Vα(t)
∑

k

Im
�

G<d,kα(t, t)
�

, (D.2)

with G<d,kα = i〈c†
kα(t

′)d(t)〉, for which the property G<d,kα(t, t) = −
�

G<kα,d(t, t)
�∗

holds. Now,
the equation of motion for the mixed Green function leads to

〈HαV 〉= 2Vα(t)
∑

k

Im
�

∫

d t ′[GR(t, t ′)g<kα(t
′, t) + G<(t, t ′)gA

kα(t
′, t)]
�

= 2Im
�

∫

d t ′[GR(t, t ′)Σ<α (t
′, t) + G<(t, t ′)ΣA

α(t
′, t)]
�

.

(D.3)

Moving to the Wigner transform

〈HαV 〉= 2Im
�

∫

dε
2π
[GR(ε, t) ∗Σ<α (ε, t) + G<(ε, t) ∗ΣA

α(ε, t)]
�

. (D.4)
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The second term G<(ε, t) ∗ΣA
α(ε, t) = G<(ε, t) ∗ ( i

2Γα) dose not contribute. In fact, the zero-
order term is real and to the next order we can apply this type of argument
∫

dε
2π

Im
�

i
2
∂εG

<(ε, t)
i
2
Γ̇α

�

=
Γ̇α
4

∫

dε
2π
∂εG

<(ε, t)
i

=
Γ̇α
8π

�

∂εG
<(ε, t)
i

�+∞

−∞
= 0 . (D.5)

Up to the first order in the velocity, the gradient expansion yields

〈HαV 〉= 2Im
�

∫

dε
2π

�

GR(ε, t)i f (ε)Γα −
i
2
∂t G

R(ε, t)i∂ε f Γα +
i
2
∂εG

R(ε, t)i f (ε)Γ̇α

��

. (D.6)

The gradient expansion of the whole interaction term therefore reads:

〈HV 〉= 2Im
�

∫

dε
2π

�

GR(ε, t)i f (ε)Γ −
i
2
∂t G

R(ε, t)i∂ε f Γ +
i
2
∂εG

R(ε, t)i f (ε)Γ̇
��

. (D.7)

E Derivation of the shot noise term in the first order of the adia-
batic expansion

To derive the “shot” noise term in the first order of the adiabatic expansion of the current
fluctuations, which is not present in the gradient expansion of the latter quantity, we link up
with the approach employed in [18], namely the adiabatic expansion of the Floquet scattering
matrix. Furthermore, we show that this approach yields the same results for the adiabatic
expansion of all the other thermodynamics and transport quantities we have considered in the
article.

The definition of the two-times scattering matrix relates the outgoing states to the ongoing
ones

bα(t) =
∑

β

∫ ∞

−∞
d t1Sαβ(t, t1)aβ(t1) . (E.1)

If we perform the Fourier transform of this expression, what we obtain is

bα(ε) =
∑

β

∫ ∞

−∞

dω
2π

Sαβ(ε,ε+ω)aβ(ε+ω) , (E.2)

adopting the ingoing energy ε as a reference. But we have to note that the scattering matrix
elements are periodic in their arguments S(t, t ′) = S(t, t ′ + T0). So, it’s more appropriate to
use a Fourier series expansion

bα(ε) =
∑

β

∞
∑

n=−∞
SF
αβ(ε,εn)aβ(εn) , (E.3)

where εn = ε+ nΩ, and Ω = 2π
T0

. The matrix SF (ε,εn) is dubbed “Floquet scattering matrix”
and described in a series of articles, most prominently [13].
The definition of the current noise is

δIαα(t, t ′) = 〈∆Iα(t)∆Iα(t
′)〉 , (E.4)

and ∆Iα(t) = Iα(t)− 〈Iα(t)〉. It can be rewritten as

δIαα(t, t ′) = 〈Iα(t)Iα(t ′)〉 − 〈Iα(t)〉〈Iα(t ′)〉 . (E.5)
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The current operator, in turn, reads

Iα(t) = b†
α(t)bα(t)− a†

α(t)aα(t) . (E.6)

In the Fourier transform, the noise of the current turns into

δIαα(t, t ′) =

∫

dEdE′dE′′dE′′′

(2π)4
ei(E−E′)t ei(E′′−E′′′)t ′ (E.7)

×
�

〈(b†
α(E)bα(E

′)− a†
α(E)aα(E

′))(b†
α(E

′′)bα(E
′′′)− a†

α(E
′′)aα(E

′′′))〉

− (〈b†
α(E)bα(E

′)〉 − 〈a†
α(E)aα(E

′)〉)(〈b†
α(E

′′)bα(E
′′′)〉 − 〈a†

α(E
′′)aα(E

′′′)〉)
�

.

We consider the charge-pumped fluctuations, which are defined as

δQαα =

∫ T0

0

dT

∫ ∞

−∞
dτδ
�

T +
τ

2
, T −

τ

2

�

. (E.8)

In the latter, we employ the Wick theorem and cancel the disconnected averages, then insert
Eq. E.3. The expression is further simplified by employing the representation of the delta
function δ(α) =

∫∞
−∞ d teiαt . We obtain all the expressions of [18]

δQαα = δQth
αα +δQsh

αα , (E.9)

δQth
αα = 2T0

∫

dε
2π

f (ε) f̃ (ε)
∑

n

(1− |SF
αα(εn,ε)|2) , (E.10)

and

δQsh
αα = T0

∫

dε
(2π)2
∑

γδ

∑

n

∑

m

∑

p

( f (εn)− f (εm))2

2
(SF∗
αγ(ε,εn)S

F
αδ(ε,εm)

× SF∗
αδ(εp,εm)S

F
αγ(εp,εn)) . (E.11)

The Floquet scattering matrix has the following adiabatic expansion

SF (En, E) = Sn(E) +
nΩ
2
∂

∂ ε
Sn(E) +ΩAn +O(Ω2) , (E.12)

with Sn(E) the n-th Fourier coefficient of the scattering matrix defined as

Sn(E) =

∫ T0

0

d t
T0

einΩtS(E) , (E.13)

and An is the first order correction of the quantity. By substituting the expansion, one obtains
the zero and first-order thermal noise

δQ0,th
αα = 2kB T

∫ ∞

−∞

dε
2π

�

−
d f
dε

��

T0 −
∫ T0

0

dT |Sαα(E)|2
�

, (E.14)

and

δQ1,th
αα = kB T

∫ ∞

−∞

dε
4πi

∫ T0

0

dT
�

−
d f
dε

�

∑

β ̸=α

dIαα
dE

, (E.15)

where dIαα
dE is the spectrally resolved current, with its definition

dIαα
dE

=
�

∂ S∗αα
∂ t

Sαα −
∂ Sαα
∂ t

S∗αα

�

. (E.16)

These two expressions can correspond with the ones obtained from the gradient expansion.
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The shot noise term has different expressions according to the regime in which we consider
it. In the zero temperature limit kB T ≪ Ω and kB T ≪ Γ−1. In the zero temperature limit, the
difference ( f (En) − f (Em))2 ≃ θ (Em − µ) − θ (En − µ). Taking the other scattering matrix
elements in the zero order

δQ1,sh
αα =

∞
∑

q=1

qΩ
8π2

C (s ym)
αα (µ) . (E.17)

In the high-temperature limit, instead, we can formally write the difference as

( f (En)− f (Em))2 ≃
�

− d f
dε

�

|n−m|Ω. Then this “high-temperature shot noise” reads

δQ2,sh
αα =

∫ ∞

−∞

dε
8π2

�

d f
dε

�2 ∞∑

q=1

(qΩ)2C (s ym)
αα (E) . (E.18)

Note that this belongs to the second order in the adiabatic expansion. This expression can
be understood by rewriting it in terms of the derivatives and compared with the gradient
expansion. In fact, we have that

∑

q

qΩ[A]q =
1
i
∂tA(ε) . (E.19)

Then

δQ(2,sh)
αα = −
∫ T0

0

dT

∫

dε
16π

(∂ε f (ε))2
§

2
∑

β

�

∂ 2
T SαβS†

αβ
+ Sαβ∂

2
T S†
αβ
− 2∂T Sαβ∂T S†

αβ

�

− 2
∑

γδ

(∂T SαδS†
αδ
− Sαδ∂T S†

αδ
)(∂T SαγS

†
αγ − Sαγ∂T S†

αγ)
ª

. (E.20)

The relevance of all these terms is discussed in the next section of the Appendix.
Using this formalism of the Floquet scattering matrix, now we show how to derive the

expansion of all the quantities we have analyzed in the main article. In terms of the operators,
the current reads [13]

Iα(t) =

∫

dEdE′

(2π)2
ei(E−E′)t(b†

α(E)bα(E
′)− a†

α(E)aα(E
′)) . (E.21)

The charge pumped is the integral over t of this quantity. After substituting the definition of
the Floquet scattering matrix, we have the following expression

Qα = T0

∫

dE
2π

∑

β

∑

n

(|SF
αβ(E, En)|2 f (En)− f (E)) . (E.22)

When shifting the energy variables E→ E − nΩ

Q(1)α = T0

∫

dE
2π

∑

β

∑

n

|SF
αβ(En, E)|2( f (E)− f (En)) . (E.23)

The difference of Fermi functions f (E)− f (En)→ nΩ
�

− d f
dε

�

, formally assuming kB T ≫ Ω.

However, one can demonstrate that this gives the correct result in the zero temperature limit
as well. Inserting eq. E.12, one obtains the following expression

Q(1)α = T0

∫

dE
2π

∑

β

∑

n

�

−
d f
dε

�

nΩ|Sn
αβ(E)|

2 . (E.24)
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Using relation E.19, we obtain our previous expression of the pumped charge

Q(1)α =

∫ T0

0

d t

∫

dE
2π

∑

β

�∂ S∗
αβ

∂ t
Sαβ − S∗αβ

∂ Sαβ
∂ t

�

. (E.25)

The variation of the number of particles is obtained from the currents as Ṅ (i) =
∑

α I (i)α

Ṅ (1) =
∑

α

�

ε̇d

∫

dε
4πi

2iΓαA
Γ
+ Γ̇α

∫

dε
4πi

2iReGR

�

= ε̇d

∫

dε
2π

A+ Γ̇

∫

dε
2π

ReGR . (E.26)

Likewise for the heat current

IH,α =

∫ ∞

−∞

dE
2π

∑

n

(En −µ)
∑

β

|SF
αβ(En, E)|2( f (E)− f (En)) . (E.27)

Employing the same reasoning as before, we write the first-order heat exchange as

I (1)H,α =

∫ ∞

−∞

dE
4πi
(E −µ)

�

∂ S∗
αβ

∂ t
Sαβ − S∗αβ

∂ Sαβ
∂ t

�

, (E.28)

and
Q(1) =
∑

α

I (1)H,α . (E.29)

The energy current reads

IE,α =

∫ ∞

−∞

dE
2π

E
∑

β

∑

n

|SF
αβ(En, E)|2( f (E)− f (En)) , (E.30)

and at first order

Ė(1) = ε̇d

∫ ∞

−∞

dE
2π

E(−∂ε f )A+ Γ̇

∫ ∞

−∞

dE
2π

E(−∂ε f )ReGR . (E.31)

Finally, we introduce the entropy current with lead α, which has the following expression [32]

IΣ = kB

∫

dEdE′

(2π)2
ei(E−E′)t
�

log f (b†
α(E)bα(E

′) + a†
α(E)aα(E

′)) + log(1− f )(bα(E)b
†
α(E

′)

+ aα(E)a
†
α(E

′))
�

. (E.32)

In terms of the Floquet scattering matrix, the latter reads

IΣ =

∫

dE
2π
(E −µ)

T

∑

n

(En −µ)
∑

β

|SF
αβ(En, E)|2( f (E)− f (En)) . (E.33)

Repeating the analysis of the current, we end up with this expression

Ṡ(1) = ε̇d

∫ ∞

−∞

dE
2π
(E −µ)

T
(−∂ε f )A+ Γ̇

∫ ∞

−∞

dE
2π
(E −µ)

T
(−∂ε f )ReGR . (E.34)

The work rate Ẇ can be obtained by using the first law of thermodynamics. This analysis can
be extended to further orders and concludes that all our results coincide with the gradient
expansion method.
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F Comparison between the leading order terms of noise in the var-
ious regimes

As pointed out in [18], there are three different regimes in which the different leading order
terms of the noise are relevant. We have three relevant terms for our analysis. The first is the
first-order thermal noise arising from the thermal excitation of the scatterer, corresponding to
Eq. 25. It contains an energy scale proportional to kB T ΩT0

Γ . The second term is the shot noise
term (Eq. 26), which contains an energy scale of ΩT0. The third term is the second-order
adiabatic shot noise in the high-temperature limit of Eq. E.18 This term is, strictly speaking,

singular in the zero-temperature limit and it contains an energy scale of Ω
2T0

kB T .
By examining the ratio of these terms, we determine the regimes in which each of these

terms is relevant. We can conclude that in the low-temperature regime KB T ≪ Ω, the first-
order “shot” noise is prevalent. There is an intermediate temperature regimeΩ≪ kB T ≪

p
ΩΓ

in which the high-temperature “shot” noise is prevalent, while in the high-temperature limitp
ΩΓ ≪ kB T .

G The adiabaticity conditions

In this section, we analyze the conditions on the instantaneous velocity and acceleration ac-
cording to which the physical process we are considering can be adiabatic. Following the
method put forward by [33], we extend the adiabatic expansion of the charge pumped up
to the third order and require that the first order in the expansion of the charge current is
much bigger than the higher order corrections. The first-order instantaneous current can be
rewritten in the form

Q(1)α =
1
T0

∫ T0

0

d t
∑

i

Aα,i(t)
d x i

d t
. (G.1)

This is the adiabatic term, which can be interpreted in a geometrical manner (Brouwer’s for-
mula). The second order has two contributions

Q(2)α =
1
T0

∫ T0

0

d t
�

∑

i

B(1)α,i (t)
d2 x i

d t2
+
∑

i, j

B(2)α,i, j(t)
d x i

d t

d x j

d t

�

. (G.2)

Using integration by parts, the second order correction becomes

Bα,i, j = B(2)α,i, j −
∂ B(1)α,i (t)

∂ x j
. (G.3)

Exactly in the same way, from the third order we can distinguish 2 different terms:

〈I (3)α (t)〉= 〈I
(3v)
α (t)〉+ 〈I (3a)

α (t)〉 , (G.4)

〈I (3v)
α (t)〉=
∑

i, j,k

Cα,i, j,k(t)
d x i

d t

d x j

d t
d xk

d t
, (G.5)

〈I (3a)
α (t)〉=
∑

i, j

Dα,i, j(t)
d2 x i

d t2

d x j

d t
. (G.6)

In order for the process to be adiabatic, we must require that the first order in the expansion
of the charge current is much bigger than the higher order corrections:

|〈I (1)α (t)〉| ≫ |〈I
(2)
α (t)〉|, |〈I

(3v)
α (t)〉|, |〈I (3a)

α (t)〉| . (G.7)
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We translate this condition in terms of the coefficients. In this way, we can rewrite the adia-
baticity condition for the second-order correction defining a velocity limit v(2)l im,α(t) for which
it must be true that

|v(t)| ≪ v(2)l im,α(t) . (G.8)

The velocity limit can be defined as

v(2)l im,α(t) =
|Aα(t)|
|Bα(t)|

, (G.9)

Aα(t) =
∑

i

Aα,i(t)ṽi(t) , (G.10)

Bα(t) =
∑

i, j

Bα,i, j(t)ṽi(t)ṽ j(t) , (G.11)

where ṽi =
vi
|vi |

. For the third order correction in similar way

v(3)l im,α(t) =

√

√ |Aα(t)|
|Cα(t)|

, (G.12)

Cα(t) =
∑

i, j,k

Cα,i, j,k(t)ṽi(t)ṽ j(t)ṽk(t) . (G.13)

So, in the end we must require that

v(t)≪min[v(2)l im, v(3)l im, ...] . (G.14)

Now, let’s examine these conditions on our peristaltic cycle, for which x1 = εd and x2 = δΓ .
We can extract an energy scale 1

Γ 2 and express in terms of the adimensional variables
x = εd/Γ and y0 = δΓ/Γ

|Aα,1|=
2
πΓ

1± y0

2

�

�

�

�

1
x2 + 1

+
2x2

(1+ x2)2
−

2
(1+ x2)2

�

�

�

�

. (G.15)

In the same way, we can compute Aα,2. The result is

|Aα,2|=
1

4πΓ

�

�

�

�

x0

1+ x2
0

�

�

�

�

, (G.16)

in terms of x0 = ε0/Γ . The results of the second-order coefficients are

Bα,11(t) =
2
πΓ 3

1± y0

2
∂εA

2 . (G.17)

The resulting condition for the derivative of εd is

ε̇d

Γ 2
≪ f2(x , y0) , (G.18)

where f2 is an adimensional function which is in fig.15.
Now, let’s analyze the third-order corrections for the velocity. One can obtain the expres-

sion of the coefficient

Cα,111 =
1

2πΓ 5

1± y0

2

§�

1
(x − i)6

+
1

(x + i)6

�

+ i
2

1+ x2

�

−
1

(x − i)5
+

1
(x + i)5

�

− i
2

(1+ x2)2

�

−
1

(x − i)3
+

1
(x + i)3

�

−
8

(1+ x2)4

ª

. (G.19)
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Figure 15: The adimensional function f2(x , y0) with respect to the variable x, for
y0 = 1.

Figure 16: The adimensional function f3(x , y0) with respect to the variable x, for
y0 = 1.

The coefficient Cα,222 is also equal to 0. Therefore, we can express the condition v(t)≪ v(3)l im
as

ε̇d

Γ 2
≪ f3(x , y0) , (G.20)

where f3(x , y0) is in 16.
Finally, let’s consider the limits on acceleration. From the adiabatic expansion, we can

infer that the coefficient Dα11 is

Dα11 =
1

3π
1± y0

2

§�

1
(x − i)5

+
1

(x + i)5

�

− i
2

1+ x2

�

1
(x + i)4

−
1

(x − i)4

�

− i
34

(1+ x2)2

�

1
(x + i)2

−
1

(x − i)2

�ª

. (G.21)

The resulting condition on the acceleration is

ε̈d

Γ 3
≪ g(x , y0) , (G.22)

g(x , y0) is in (fig.17). These results appear to justify the claim that the adiabatic expansion is
well-defined along the entire cycle, provided that the appropriate bounds on the derivatives
of the time-dependent quantities are respected. However, repeating the same reasoning with
the current noise and the thermodynamic rates would signal that there are divergences when
one of the couplings with the two baths is switched off: ΓL = 0 or ΓR = 0.
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Figure 17: The adimensional function g(x , y0) with respect to the variable x, for
y0 = 1.
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