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Abstract

We study static black holes in scalar-Gauss-Bonnet (sGB) gravity with a massive scalar
field as an example of higher curvature gravity. The scalar mass introduces an addi-
tional scale and leads to a strong suppression of the scalar field beyond its Compton
wavelength. We numerically compute sGB black hole spacetimes and scalar configura-
tions and also compare with perturbative results for small couplings, where we focus on a
dilatonic coupling function. We analyze the constraints on the parameters from requiring
the curvature singularity to be located inside the black hole horizon rh and the relation to
the regularity condition for the scalar field. For scalar field masses mrh ≳ 10−1, this leads
to a new and currently most stringent bound on sGB coupling constant α of α/r2

h
∼ 10−1

in the context of stellar mass black holes. Lastly, we look at several properties of the
black hole configurations relevant for further work on observational consequences, in-
cluding the scalar monopole charge, Arnowitt–Deser–Misner mass, curvature invariants
and the frequencies of the innermost stable circular orbit and light ring.
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1 Introduction

General Relativity (GR) as the theory of gravity has passed all empirical tests to date [1–3].
Yet modern theoretical developments suggest that modifications of Einstein’s gravity are re-
quired at some level. This has motivated a significant research effort in high-energy physics
to develop a theory of quantum gravity. However, modifications to GR may already arise at
intermediate, lower energy scales than the full quantum-gravity regimes. Such modifications
have been constrained by high-precision tests of gravity in tabletop experiments [4], the solar
system [1], and binary pulsars [5]. However, the genuinely nonlinear regimes of gravity re-
main largely unexplored and have only recently started to become accessible to measurements,
for instance, with gravitational waves [6–8]. This opens new opportunities to test modified
theories where corrections to GR only become relevant in high-curvature regimes. One such
family of theories is scalar-Gauss-Bonnet (sGB) gravity, where the gravitational action of GR is
augmented by adding a quadratic-in-curvature contribution involving the topological Gauss-
Bonnet invariant dynamically coupled with a scalar field. Because of the topological nature of
the higher curvature term, the theory is ghost-free and the equations of motion are still second
order in the fields [9] and thus a dynamical system whose mathematical well-posedness was
proved in [10–12]. The sGB form of the gravitational action also has motivations from the low
energy limit of quantum gravity paradigms [13–15].

In this paper, we focus on consequences of sGB gravity for static spherical symmetric black
holes when including a nonvanishing scalar field mass. Black holes are clean testbeds for pre-
cision tests of higher-curvature gravity as they are devoid of any matter and solely involve
curved spacetime. In GR, black holes are conjectured to have ’no-hair’: their exterior space-
time can be entirely described by only three parameters: their mass, spin, and electromag-
netic charge [16–20]. This also implies that black holes cannot be dressed with any nontrivial
scalar, vector, or spinor fields [20–24], even when considering more complex potentials for
the fields [25]. The no-hair property of black holes also extends to several classes of modified
gravity theories such as Brans-Dicke theories [26] and more generalized scalar-tensor theo-
ries [27]. Yet for many other classes of theories, including sGB gravity, the no-hair properties
no longer hold. Instead, depending on the parameters, the scalar field can develop a nontriv-
ial profile around black holes that extends through the horizon [12, 28–36] or spontaneous
(de-)scalarization can arise [37–42], see the review articles [43,44] for a detailed discussion.

The scalarization of black holes in sGB strongly depends on properties of the coupling
function f (ϕ) between the scalar field and the quadratic curvature terms. When f (ϕ) has
a non-vanishing first derivative for all values of ϕ, which is often referred to as type I and
includes dilatonic couplings f (ϕ)∼ eγϕ, with γ a numerical coefficient [28,29,45] and linear
functions f (ϕ) ∼ ϕ leading to shift-symmetric sGB theories [30], only scalarized black hole
solutions exist. Studies showed explicitly that black holes evade the no-hair theorem [28,33,
34] and obtained static [46–48], slowly rotating [29,49,50] and rapidly rotating [51–54] black
hole solutions. They found that requiring regularity of the scalar field at the horizon leads to
an analytical bound in the parameter space beyond which no physical solutions exist [28].
Additionally, the resulting sGB black hole solutions generally have a curvature singularity at a
finite radius [47,55]. For a fixed sGB coupling and smaller black hole masses, the singularity
moves farther away from the origin and closer to the horizon. Requiring the absence of naked
singularities thus leads to a minimum mass for the domain of existence of black holes. For
type II coupling functions whose derivative vanishes for some values of ϕ, such as quadratic
f (ϕ)∼ ϕ2 [37,40,41] and Gaussian f (ϕ)∼ eγϕ

2
[56,57] couplings, the quadratic scalar field

term acts as an effective scalar mass. As the effective mass term can be negative, the black
hole solution can become unstable and the presence of scalar condensates becomes favored
and results in scalarized black holes.
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While black holes in sGB theories with a massless scalar field have been extensively studied
as discussed above, the effects of including a scalar field mass remain less explored. Including
a mass term in the action is natural from a theoretical perspective and represents the lowest
order self-interaction. Accounting for a mass of the scalar field is further motivated by the only
scalar field measured to date, the Higgs boson, and common in scalar models for other sectors
of particle physics such as the proposed QCD axion and ultralight dark matter candidates [58–
62]. A mass term leads to an exponential suppression of effects of the scalar field at scales
larger than its Compton wavelength instead of having an infinite extent as in the massless case.

The phenomenology of massive scalar fields around compact objects has been considered
in several contexts, including studies of charged black holes [63, 64], black hole superradi-
ance [65–67], neutron stars in scalar tensor gravity [68,69], and type II sGB black holes [70].
For black holes in type I sGB with a massive scalar field, previous work has numerically cal-
culated black hole solutions [71], included a scalar potential and cosmological constant [72],
and studied the dynamics of a massive scalar field with self- interaction in the decoupling limit,
i.e. on a fixed Schwarzschild spacetime, via a numerical relativity code [73]. Observational
consequences of a massive scalar field in the context of compact objects have also been con-
sidered. While the exponential suppression of the field at large distances reduces the size of
several of the observational signatures compared to the massless case it may also lead to novel
features due to the additional scale involved, as found for gravitational waves from superra-
diant ultralight boson clouds [74]. Several previous studies further showed that gravitational
waves are promising probes for detecting or setting stringent constraints on theories involving
massive scalar fields based on effects of scalar dipolar radiation losses in compact-object bi-
nary systems. For example, [75] considered binary neutron stars in scalar-tensor gravity, [76]
analyzed extreme mass ratio inspirals, [77] analyzed probing massive fields in the context
of multiband detection, and [78] placed the first empirical gravitational-wave constraints on
massive sGB.

In this paper, we go beyond previous work on static black holes in massive sGB [71–73]
by (i) combining perturbative and numerical analyses to gain deeper insights into the behav-
ior of the spacetime and scalar field and (ii) performing a systematic study of the solutions
and resulting observables over a wide parameter space. This differs from the scope of the
work in [71], which developed details of the theoretical framework and performed system-
atic numerical studies of solutions focused on extracting the horizon radius and consequences
for thermodynamics. Specifically, in this paper, we numerically compute black hole solutions
and, for the first time, also calculate perturbative solutions for small sGB couplings to trace
behaviors of the metric functions and scalar field configurations. Together, these two methods
enable us to study features of curvature invariants of the spacetime and its energetics such as
the gravitational mass and scalar-induced energy density of the configurations from different
perspectives. We also analyze the parameter dependencies of the bounds on maximum scalar
field at the horizon based on requiring the absence of naked singularities, as obtained from
numerical solutions, and regularity of the scalar field at the horizon, as obtained from an ana-
lytical bound. This lead to a theory bound on the coupling constant of the gravitational theory.
In addition, we calculate the parameter dependencies of observables such as the shifts in the
ISCO and light ring away from the GR values. We discuss the relevance of our results as a first
step towards making connections with measurements such as the black hole shadows, tidal
effects close to the black holes, and as a baseline for computing gravitational wave imprints
beyond the leading-order dipole radiation losses. The latter would contribute to the recent
ongoing efforts of constructing the gravitational waveforms for black hole binary systems in
sGB gravity [79–81]. Our findings also identify interesting mass ranges for the sGB scalar
condensate within the broader context of proposed scalar fields in the universe, and highlight
interesting qualitative characteristics and parameter ranges for further studies.
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In this paper we use Greek indices to denote tensor components in standard Einstein no-
tation. However we use Latin superscripts to assign orders in the small coupling expansion.

2 Black holes in scalar-Gauss-Bonnet gravity

2.1 Action

We consider the following action for sGB gravity1

SsGB =
c4

16πG

∫

M
d4 x

p

−g[R− 2gµν∂µϕ∂νϕ − V (ϕ) +α f (ϕ)R2
GB] . (1)

Here R denotes the Ricci scalar on manifold M with metric gµν. The scalar fieldϕ has potential
V (ϕ) and is non-minimally coupled to the Gauss-Bonnet invariant

R2
GB = R2 − 4RµνRµν + RµνρσRµνρσ , (2)

via a dimensionless coupling function f (ϕ) and a coupling constant α with dimension length
squared. In this work we focus on the simplest potential for a massive scalar field

V (ϕ) = 2m2ϕ2 , (3)

where
m=

mϕc

ħh
, (4)

denotes the scalar field mass parameter having the dimension of inverse length with mϕ the
scalar field mass in kilograms. While much of our analysis is general for any coupling function
f (ϕ), our case studies of static black hole solutions specialize to type I coupling functions of
the form f (ϕ) = βeγϕ. This choice is inspired by the low-energy effective action of certain
string theories, with the choice of β and γ corresponding to different string models [82–84].
We will focus here on f (ϕ) = 1

4 e2ϕ corresponding to Einstein-dilaton-Gauss-Bonnet (EdGB)
gravity [28,29,46]. Other choices for γ will lead to qualitatively the same behavior for black
hole spacetimes [71].

The massless scalar field theory with dilatonic coupling has most constraints on the cou-
pling constant α compared to the other types of sGB theories, altough often obtained in
the weak field limit where the exponential coupling function is approximated by the lead-
ing order linear term in the scalar field. The constraints are coming from different types of
observations ranging from solar system test to binary pulsar observations, for an overview
see [85–92]. The strongest current observational constraints on the coupling constant come
from a Bayesian analysis of the data from the first three observing runs from the LIGO-Virgo-
KAGRA (LVK) detector network to

p
α≲ 0.8−1.33km [93–95]. For massive scalar field sGB, a

first observational constraint based on data from the first two observing runs of LVK obtainedp
α ≲ 2.47km [78]. A weaker bound in the massive case is consistent with expectations, as

the mass causes a suppression of the scalar field effect on large scales.

1For the numerical prefactor of the kinetic and potential (3) scalar field terms, we follow the standard convention
also considered for massless sGB, see e.g. [46,79]. However there is a discrepancy in how these factors are defined
in the literature on the massive scalar field extension, specifically between [72] and [71]. We follow here the
convention of [71], which means that our results of the field equations, metric and scalar field solutions will differ
in numerical factors from [72].
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2.2 Relevant length scales

Before discussing the technical details of computing static black hole solutions in massive sGB,
we give an overview of the key length scales and their hierarchy, which has important conse-
quences for qualitative features of the solutions and for defining perturbative approximations.
Figure 1 illustrates these scales for an example of a black hole and scalar condensate. We
consider a static, spherically symmetric black hole of horizon radius rh which is of the order
(but slightly smaller [71]) of the Schwarzschild radius

rh ∼ rS =
2GM

c2
, (5)

with M the mass of the black hole. The black hole is surrounded by a massive scalar field cloud
that extends inside the horizon. The characteristic size of the cloud is related to the mass of
the scalar field. The cloud is exponentially suppressed for distances beyond the Compton
wavelength λϕ which is inversely proportional to the scalar field mass m

λϕ ∼ 1/m . (6)

Hence in the small-mass limit the scalar field cloud stretches out further to infinity, approach-
ing the massless sGB solution. By contrast, for larger masses, the scalar field becomes more
confined to the vicinity of the horizon, and for m→∞ the scalar field decouples and the so-
lution approaches the Schwarzschild black hole. In Fig. 1 we show the Compton wavelength
length scale for small masses. Here, small masses refers to the Compton wavelength being
larger than the black hole horizon.

The last length scale is set by the coupling constant
p
α which determines the strength

of the higher curvature contributions. When we apply perturbation theory in section 3, we
assume the dimensionless version of the coupling to be small

α̂≡
α

r2
h

. (7)

Assuming the current observational bound is saturated
p
α = 2.47 km and considering black

holes in the mass range 5M⊙ ≲ M ≲ 1010M⊙, the dimensionless coupling lies in the range
10−11 ≲ α̂ ≲ 0.2, validating the assumption of working in the small coupling regime. The
perturbation theory we set up is exact in m, i.e. we do not assume any restriction on the
scalar field mass. Expanding both in the small mass and coupling limit resulted in non-regular
solutions for the scalar field at the black hole horizon. On the other hand, when discussing the
numerical solution to the field equations, no restrictions on the length scales related to both
the mass and coupling are assumed. However it turns out that requiring the scalar field to be
regular at the horizon does give a restriction on the value of the coupling and scalar field mass
depending on the black hole mass and amount of scalar field at the horizon. This restrictions
ensures that the curvature singularity at r ̸= 02 lies within the horizon and hence prevents a
naked singularity, see also Fig. 1.

2.3 Field equations

Varying the action (1) with respect to the metric gµν results in the following field equations

Gµν = Tµν , (8)

with Gµν the Einstein tensor and Tµν the ’effective’ energy momentum tensor which includes
contributions from the scalar field and the higher curvature terms,

Tµν =2∂µϕ∂νϕ − gµν∂ρϕ∂
ρϕ − gµνm

2ϕ2 − 4α∗R∗αµνβ∇
α∇β f (ϕ) . (9)

2When working in Schwarzschild coordinates.

6

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.069


SciPost Phys. Core 7, 069 (2024)

Figure 1: Sketch of the black hole horizon (black region) and the scalar condensate
around the black hole (red) with the relevant length scales and their hierarchy in an
example of a small scalar field mass.

Here ∗R∗
αµνβ

is the double dual Riemann tensor defined as ∗R∗
αµνβ

= 1
4ε

γσ
αµ Rγσρϵε

ρϵ

νβ
with

εαµγσ the anti-symmetric Levi-Civita tensor. The scalar field equation is given by

□ϕ = m2ϕ −
1
4
α f ′(ϕ)R2

GB , (10)

with □ ≡ gαβ∇α∇β the d’Alembertian operator. One can check that the field equa-
tions (8), (10) are invariant under the rescaling of the coordinates with a generic factor c
which leaves the fields invariant together with redefining m −→ m/c, α −→ c2α.

2.4 Metric and asymptotic behavior

In this work we focus on static, spherically symmetric black hole solutions for which the general
metric is given by

ds2 = −eA(r)d t2 + eB(r)dr2 + r2(dθ2 + sin2 θdφ2) . (11)

We assume the same symmetries for the scalar field, hence ϕ = ϕ(r). Substituting this and
the general metric (11) in the field equations (8) and (10), we obtain the components of (8)
given explicitly in (A.1) in Appendix A. The scalar field equation is given explicitly by (A.2).
To obtain the desired black hole and condensate solutions to the equations of motion for the
metric functions A(r), B(r) and the scalar field ϕ(r) requires imposing the correct boundary
conditions at the black hole horizon and at spatial infinity. The black hole horizon is defined
in Schwarzschild coordinates by a vanishing time component of the metric and a diverging
radial component. Furthermore we require the scalar field to remain regular at the horizon.
Hence we have the following conditions approaching the black hole horizon rh

A(r)→−∞ ,

B(r)→∞ ,

ϕ′(r) , ϕ′′(r) finite.

(12)

Furthermore at infinite radial distance we require the solution to be asymptotically flat and
approach Minkowski spacetime. Therefore, at spatial infinity, the scalar field sourcing the

7
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metric equations should vanish as well and we have

A(r)→ 0 ,

B(r)→ 0 ,

ϕ(r)→ 0 .

(13)

To capture the nontrivial fall-off behavior of the scalar field near infinity, we substitute the
asymptotic metric functions (13) in the scalar field equation (A.2) and obtain

2r2ϕ′′(r) + 4rϕ′(r)− 2m2r2ϕ(r) = 0 . (14)

Solving this differential equation for ϕ(r) yields the asymptotic solution

ϕ(r)→ c1
e−mr

r
+ c2

emr

2mr
, (15)

with c1, c2 two integration constants. For an asymptotically flat solution we require c2 = 0
while the remaining coefficient c1 is determined by matching to the near-horizon solutions
and depends on the coupling as we show in Sec. 6.3.2. The expression (15) with c2 = 0
quantifies the qualitative behavior alluded to earlier: the scalar field mass causes the field
configuration to be constrained to the vicinity of the black hole and exponentially suppressed
beyond the scale of the Compton wavelength (6). In the limit m→ 0, the exponential in (15)
becomes unity and the falloff of the field is much slower ∼ 1/r, consistent with calculations
in the massless case [46,47].

3 Perturbative black hole solutions for small coupling

Before we compute the exact metric and scalar field solutions by solving the field equa-
tions (8), (10) numerically, we analyze the solution in the small coupling expansion to gain
further insights into the behavior of the solution. We expand in the dimensionless coupling
constant α̂ defined in (7). It is convenient to define a dimensionless radial coordinate

u=
rh

r
, (16)

so the horizon always lies at u= 1 and spatial infinity at u= 0. Furthermore we introduce the
dimensionless mass

m̂= rhm . (17)

We expand the metric components and the scalar field for small coupling α̂≪ 1. At this stage
it is more convenient to reparameterize the metric functions

eA(u)→ Ā(u) ,

eB(u)→
1

B̄(u)
,

(18)

as it makes the expansion more straightforward. Then the small-coupling expansion is given
by the ansatz

Ā=
∞
∑

i=0

Āi α̂i ,

ϕ =
∞
∑

i=0

ϕi α̂i , (19)

8
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where we omit here and in the following the explicit expansion of B̄ as it is similar to (19).
We substitute this ansatz into (A.1), (A.2) and solve order by order in α̂. At O(α̂0) we need to
obtain the Schwarzschild solution as the limit of α −→ 0 should recover GR. Therefore we can
already impose

Ā0 = B̄0 = 1− u ,

ϕ0 = 0 .
(20)

To recover the Schwarzschild solution at zeroth order in the coupling, in the context of the
perturbative solution rh in (16), (17) and (7) is equal to rS (5). However we defined the
variable u, mass and coupling parameters in terms of the general horizon radius so they can
be used in the context of the exact solution in Sec. 4 as well.

3.1 Equations of motion at linear order in the coupling

Before analyzing in detail the expansion of the field equations, we can already gain insights into
the scalings of different contributions with the coupling by considering the field equations (8)
with the expansion (19). At linear order in the coupling, there is a correction to the scalar field
as the source term in (10) is linear in the coupling. Next, analyzing the source of the metric
equations of motion (9) we find that the energy momentum tensor consists of terms quadratic
in the scalar field and a contribution linear in the coupling times∇α∇β f (ϕ) =∇α( f ′(ϕ)∂ βϕ)
which is at least linear in the scalar field. As the scalar field to lowest order is linear in the
coupling, Tµν is quadratic and higher order in α̂. Consequently, the corrections to the field
equations for the metric potentials (8) will only appear O(α̂2). At linear order in α̂, the metric
remains the Schwarzschild metric and we need to compute the solution to the linearized scalar
field equation in a Schwarzschild background. This is summarized in the second row of Table 1.
In particular, to solve for the linear solutions in α̂, we substitute the small coupling expansion
for the scalar field and metric components (19) in (10) and use (20) for the zeroth order
coefficients and Ā1 = B̄1 = 0 as discussed above. This leads to the linearized scalar field
equation in the radial coordinate u defined in (16)

(u− 1)ϕ1′′(u) +ϕ1′(u) +
m̂2

u4
ϕ1(u) = 3u2 f ′(ϕ0) . (21)

3.1.1 Near-horizon and asymptotic behavior of the linearized field

To capture the solution of (21) near the horizon, we expand around the horizon radius

ε= u− 1 . (22)

This leads to a double expansion of the fields in α̂ and ε, where each coefficient in the α̂
expansion in (19) is further expanded in a Taylor series in ε. For the O(α̂) coefficient we have

ϕ1 = ϕ1
h + εϕ

1′
h +O(ε2) . (23)

For the O(α̂) terms, solving the differential equation (21) order by order in ε and using (20)
determines ϕ1′

h in terms of ϕ1
h via

ϕ1′
h = 3 f ′(0)− m̂2ϕ1

h . (24)

The coefficient ϕ1
h corresponds to the amount of scalar field at the horizon at linear order in

the coupling and f ′(0) is a constant. One can reason that the solution to (21) has to be a
monotonically increasing solution (see Appendix B for the detailed arguments) and therefore
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the first derivative at the horizon has to be positive [64]. This leads to the following constraint
on the amount of (linearized) scalar hair at the horizon and the mass of the scalar field

ϕ1
h <

3 f ′(0)
m̂2

. (25)

In the linearized case, we thus find a constraint on the amount of scalar field at the horizon.
In massless sGB, similar arguments result in an expression for the scalar field derivative at the
horizon (in this case for the full theory) [28] given by

ϕ′h =
rh

4α f ′(ϕh)

 

−1±

√

√

√1−
24α2 f ′(ϕh)2

r4
h

!

. (26)

Requiring the square root to be positive yields the constraint

f ′(ϕh)
2 <

r4
h

24α2
. (27)

For a fixed coupling function and constant, this bound (27) determines the maximum amount
of allowed scalar hair at the horizon depending on the size of the black hole. Conversely,
given a certain amount of scalar field at the horizon, the constraint (27) sets a lower bound
on the black hole mass that can sustain this hair. Using the definition of m̂ from (17) in (25)
shows that the maximum amount of scalar hair at the horizon depends both on the scalar field
mass and the black hole mass. In Sec. 6 below we study the effect of the scalar mass on these
quantities with full black hole solutions and establish a more meaningful comparison to the
massless results (27).

As at linear order in the coupling the background is still Schwarzschild spacetime, the
asymptotic limit of the scalar field at this order follows (15) to first order in the asymptotic
expansion in u. To write it in the notation introduced in this section

ϕ1(u) = ϕ1′
∞e−m̂/uu+ ϕ̄1′

∞
em̂/u

2m̂
u+O(u2) , (28)

where we absorbed the factor rh in the first term in the constant ϕ1′
∞.

3.1.2 Numerical solution for the linearized field

The solution to (21) has to be calculated numerically. It is computed by defining an initial
value problem at an infinitesimal distance from the black hole horizon u= 1−10−5, with (23)
as initial condition, and integrating to spatial infinity u = 0. We keep the description and
discussion of the numerical methods needed on top of a numerical integrator general. For the
numerical integration we specify to an 8th order explicit Runge Kutta scheme with a machine
and working precision of 30 digits to acquire the needed numerical precision. For more details
we refer to the last section of Appendix C.

In (23) ϕ1
h is the constant that needs to be determined by matching to the asymptotic

limit (28). A difficulty is to ensure that the asymptotic solution (28) obeys the desired fall-off
conditions at infinity, with ϕ̄1′

∞ = 0 to eliminate the growing mode. If this condition is not
exactly fulfilled, the growing mode always takes over at some large distance from the horizon.
Furthermore, any small numerical error in the initial condition that results in an inexact match
toϕ1′
∞ finite and ϕ̄1′

∞ zero in (28) immediately leads to a diverging solution. Therefore, finding
the exact exponentially decaying solution numerically is a challenge. However, solutions close
to the desired solution can be computed using the bisection method described in [64] and in
Appendix C. This method is based on identifying the domain of existence of the exponentially
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Figure 2: Solution for the linearized scalar field with m̂= 1 for different numbers of
cycles of the bisection method. The legend also shows the value of ϕ1

h corresponding
to each curve. The integration starts at the horizon u = 1 − 10−5 and proceeds
outwards to infinity u= 0.

decaying solution in the range of input guesses ϕ1
h for which, when integrating the solution

outwards, the behavior at infinity switches from positively to negatively diverging for too large
or too small guesses respectively. Decreasing this range for ϕ1

h through several iterations leads
to a narrow range of guesses that approach the ’right’ value for ϕ1

h such that the solution only
decays. The more cycles in this bisection method, the more accurate the guess for ϕ1

h and the
farther the diverging behavior is pushed out to larger distances. This is shown in Fig. 2 below.
For solving (21) we apply this bisection method for 15 cycles, where the difference in ϕ1

h from
the value of the previous cycle is ∼ 10−14. We compare these small-coupling results for ϕ1

h to
the values obtained in the full solution in Sec. 4.

3.2 Higher order corrections in α̂

As discussed in Sec. 3.1, the corrections to the Schwarzschild metric first appear at order α̂2.
At each n-th order in the perturbative expansions in α̂ with n ≥ 2, the field equations (A.1)
together with the background and linearized solutions discussed above depend on the metric
coefficients at orders ≤ n as well as the scalar field corrections up to one lower order ≤ n− 1.
The scalar field equation (10) becomes dependent on the metric corrections only at O(α̂3).
Therefore we focus on obtaining the perturbative solution to that order so as to capture all the
different dependencies of the solutions and compare with the full solution in the next section.

Table 1: Dependencies of the equations of motion (A.1) and (A.2) in the small-
coupling limit on the expansion coefficients at each order n in α̂. At orders n > 0,
the dependencies listed in the table are those obtained after substituting the lower
order solutions.

Order t t field equation r r field equation scalar field equation

α̂0 B̄0, ϕ0 Ā0, B̄0, ϕ0 Ā0, B̄0, ϕ0

α̂1 - - ϕ1

α̂2 B̄2, ϕ1 Ā2, B̄2, ϕ1 ϕ2

α̂3 B̄3, ϕ1, ϕ2 Ā3, B̄3, ϕ1, ϕ2 B̄2, Ā2, ϕ1, ϕ2, ϕ3
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We summarize these dependencies of the field equations at the different orders in Table 1.
The approach to assemble all the inputs to compute solutions is similar to the linearized case:
after obtaining the system of equations order by order in α̂ from the small-coupling expansion
of the field equations, the next step is to analyze their asymptotic and near-horizon limits.

3.2.1 Near horizon and asymptotic limit of the higher order correction solutions

For the near horizon limit, we expand all functions ε defined in (22) as in the linearized
case 3.1. Specifically, we make the ansatz

Āi = Āi
h + εĀ

i′
h + ε

2Āi′′
h +O(ε3) ,

ϕi = ϕi
h + εϕ

i′
h + ε

2ϕi′′
h +O(ε3) ,

(29)

and similarly for B̄i , where we focus on i = 2, 3 for the quadratic and cubic orders in the
coupling respectively. We substitute this ansatz into the t t and r r components of the field
equations (8) and the scalar equation of motion (10), expand for ε ≪ 1 and solve order by
order.

To capture the asymptotic behavior at spatial infinity, we first note that as discussed above,
the corrections to the scalar field equation of motion from the metric enter only at O(α̂3).
Thus, at O(α̂2), the asymptotic behavior of ϕ2 is still given by (15). By contrast, the metric
field equations (8) at O(α̂2) and higher depend on the scalar field one order lower in α̂ (see
Table 1). Thus, near spatial infinity they involve contributions from a quadratic combination of
the scalar field asymptotics (15) with c2→ 0. In turn, this implies that at O(α̂3), the asymptotic
scalar field involves a cubic combination of (15). Based on these considerations, we include
the expected number of factors of the exponential from (15) in our ansatz for the expansion
of the functions near spatial infinity, specifically

Āi = e−2m̂/u
�

Āi
∞ + uĀi′

∞ + u2Āi′′
∞ + u3Āi′′′

∞ +O(u4)
�

,

ϕ3 = e−3m̂/u
�

ϕ3
∞ + uϕ3′

∞ + u2ϕ3′′
∞ + u3ϕ3′′′

∞ +O(u4)
�

,
(30)

and similarly for B̄i again focussing on i = 2,3. With the dependencies on the exponentials
captured in the ansatz, one can factor them out in the field equations to the lowest orders
in u (here up to u3). Factoring out the exponentials is important to be able to proceed, as
otherwise the field equations do not have a series expansion around u = 0 since e1/u remains
large in this limit. In (30) we only kept terms up to O(1/u3), which we found to give sufficient
accuracy for our purposes. However, the method can be extended to include higher orders by
altering the ansatz in such a way that the dependencies on exponentials can be factored out
in the equations of motion.

We substitute the ansatz (30) into the t t, r r components of the field equations and the
scalar one at each O(α̂i) and solve order by order in u for the coefficients. We find that, as
expected based on the scaling considerations discussed above, these coefficients depend on
the scalar field integration constants up to one order lower in α̂.

3.2.2 Numerical solutions with higher order corrections

With the asymptotics near the horizon and spatial infinity in hand, we turn to solving the field
equations over the entire spatial domain order by order in α̂. We first note the simplifying fact
that at quadratic order in α̂, the t t component of the field equations at O(α̂2) depends only
on the B̄ correction and the scalar field at O(α̂) (see Table 1). We can therefore first solve
the t t component of the field equations at O(α̂2) for B̄ by substituting the numerical solution
of the linearized scalar field as described in Sec. 3.1 and solving the equation numerically by
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starting the integration from an infinitesimal distance outside of the horizon u = 1 − 10−5

and integrating towards u = 0 using the same specifications for the numerical integrator as
mentioned in Sec. 3.1.2. As discussed in Sec. 3.1 and Appendix C, the divergent behavior of
the linearized solution, which enters into all subsequent calculations at higher orders in α̂,
can numerically only be suppressed out to a small but finite u. This implies that the higher
order solutions can only be computed up to a slightly larger value of u, as the onset of the
divergence must be pushed outside the domain of integration. For a given accuracy of the
linearized solution, this leads to a deterioration in accuracy at each higher order in α̂.

For the initial conditions of the integration we use (29) to linear order in ε. For B̄2 this is
given by

B̄2 ∼ Ā2
h + ε

�

(m̂ϕ1
h)

2 + Ā2
h

�

. (31)

The coefficient Ā2
h needs to be determined by matching to the asymptotic limit (30). The

asymptotic solution of B̄2 in (30) is given by

B̄2 ∼ e
−2m̂

u

�

m̂ϕ1′
∞u+

1
2

u2
�

2(ϕ1′
∞)

2 − m̂(ϕ1′
∞)

2
�

�

, (32)

with ϕ1′
∞ the integration constant of the asymptotic limit of the linearized scalar field (28) and

is thus completely determined by the scalar field solution at linear order in the coupling. We
compute the numerical solution having this desired asymptotic behavior by using a shooting
method. This is based on obtaining the solution for B̄2 for different guesses of Ā2

h and evalu-
ating these solutions at infinity until these values agree with the values at infinity of (32). In
Appendix C we describe details of the implementation of the shooting method in this context
by giving the explicit example for computing B̄2.

Having solved the t t component of the field equations, we use the resulting numerical
solution for B̄2 together with ϕ1 in the r r field equation and solve for Ā2 using the shooting
method described above and in Appendix C. This completes the computation of the metric
functions at O(α̂2). The solution for the scalar field expansion coefficient ϕ2 at that order can
be determined separately, as its equation of motion does not involve any metric corrections
(see Table 1). Therefore we can use the same bisection method as for the linearized scalar
field. Finally, the metric and scalar field corrections at O(α̂3) can be determined via the same
procedure and methods as described for the second order corrections.

4 Full numerical black hole solutions

To check to what extent the perturbative solution captures the behavior of the black hole space-
time correctly and compute results including non-perturbative effects, we solve the field equa-
tions (A.1), (A.2) without approximations using numerical methods. We follow the method-
ology of [71] for a specific choice of coupling function, however, our analysis in Sec. 6 has a
different focus and therefore complements the results in [71].

For solving the full field equations, it is more convenient to work with a different setup
from that used for the small-coupling approximations described above. In particular, we work
with the parameterization of the metric potentials in terms of A and B instead or Ā and B̄
and rewrite (A.1), (A.2) as follows [47, 72]. We use the r r-component to eliminate the B(r)
and B′(r) contributions to the field equations and cast the r r-component (A.1) as a quadratic
equation in eB(r)

e2B(r)ρ(r) + eB(r)β(r) + γ(r) = 0 , (33)

where
ρ(r) = 4

�

1− (mrϕ(r))2
�

,

β(r) = −4
�

1+ rA′(r) + 2αA′(r) f ′(ϕ)ϕ′(r)− r2ϕ′(r)2
�

,

γ(r) = 24αA′(r) f ′(ϕ)ϕ′(r) .

(34)
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The solution to the quadratic equation (33) is given by

eB(r) =
−β(r) +

p

β(r)2 − 4ρ(r)γ(r)
2ρ(r)

. (35)

Here, we chose the solution with the positive sign as it gives the desired asymptotic limit3

defined by (13). Furthermore, the expression for B′(r) is given by the derivative of (35). The
remaining field equations can then be rewritten as two second order differential equations for
A(r) and ϕ(r) given explicitly by

A′′(r) = f (r,ϕ(r),ϕ′(r), A′(r)) ,

ϕ′′(r) = h(r,ϕ(r),ϕ′(r), A′(r)) .
(36)

Here f and h are functions of the corresponding variables in their arguments, which are given
in by (A.3), (A.4). We note that in obtaining (36) we focused on rewriting the θθ and scalar
field equations (A.1), (A.2), however the final solutions of the metric function A(r) and ϕ are
independent of this choice. In practice, finding the black hole solution requires solving (36)
for A(r) and ϕ(r) as a boundary value problem corresponding to (12) and (13).

4.1 Near-horizon and asymptotic behavior of the exact solutions

As our goal to obtain the spherically symmetric black hole solution has been reduced to solving
the boundary value problem corresponding to (36), we study in this section the behavior of the
metric functions and scalar field approaching these boundaries in more detail following [47,
72].

4.1.1 Asymptotic limit

From our estimate in section 2.4, by substituting in this limit the Minkowski metric in the field
equations, we found that the scalar field falls of as ∼ e−mr/r to first order in 1/r. We also
limit the expansion of the asymptotic limit for the full solution to first order in the 1/r. This is
motivated by the perturbative results of Sec. 3.2.1, which showed that higher order corrections
in 1/r occur together with higher order powers of the exponent, hence these corrections are
strongly suppressed. For the order 1/r correction to the metric functions, we can make the
following argument. As the scalar field falls of exponentially, at spatial infinity the scalar field
has decreased to zero. In the case of zero scalar field, the higher curvature corrections to the
field equations vanish as well, see (A.1). This can also be reasoned from the action (1), where
for a vanishing scalar field, the prefactor of the GB invariant is constant and because the term
is a topological invariant it becomes a boundary term and its contribution to the dynamics
vanishes. The asymptotic behavior at order 1/r of the metric function eA(r) and eB(r) therefore
correspond to the Schwarzschild metric. Again we know from the perturbative case that in
this regime, higher orders in 1/r are strongly suppressed. The asymptotic behavior of the
functions in (36) is then given by

eA(r)→
A′∞

r
+O(1/r2) ,

ϕ(r)→
ϕ′∞e−mr

r
+O(1/r2) .

(37)

The integration constants A′∞ and ϕ′∞ are proportional to the system’s ADM mass and scalar
monopole charge respectively and are fixed by matching the solution to the near horizon limit
detailed below.

3Substituting the asymptotic behavior for A(r) and ϕ(r) assuming both fall off to 0 as ∼ 1/r and ∼ e−mr/r
respectively , which we discuss in Sec. 4.1.1, leads to β(r) −→ −4. Then the positive sign solution gives eB(r) −→ 1
which is the desired asymptotically flat result.
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4.1.2 Near horizon limit

The behavior of the metric functions and the scalar field at the horizon is given by (12). The
divergence in the function A(r) implies A′(r) −→∞. Thus, 1/A′(r) → 0 and we expand the
field equations (35) in 1/A′(r), which leads to

eB(r) =
2α f ′(ϕ)ϕ′(r) + r
(1− r2m2ϕ(r)2)

A′ +
�

2α f ′(ϕ)ϕ′(r)
�

2− 3m2r2ϕ(r)2 + r2ϕ′(r)2
�

+r
�

r2ϕ′2 − 1
��

/ [
�

r2m2ϕ(r)2 − 1
� �

2α f ′(ϕ)ϕ′(r) + r
��

+O
�

1
A′

�

.
(38)

Substituting the expanded expression (38) in (36) and expanding the equations in the
same limit gives

A′′(r) =
a
b

A(r)2 +O
�

A′
�

, (39a)

ϕ′′(r) =
c
b

�

2α f ′(ϕ)ϕ′(r) + r
�

A′(r) +O(1) , (39b)

where a, b and c are given by (A.5). For ϕ′′(r) to remain finite as A′(r) −→ ∞, we require
the coefficient of A′ in (39b) to vanish at a rate equal or faster than A′ diverges. However,
comparing (39) with (38), we see that letting (2α f ′(ϕ)ϕ′(r) + r) vanish would also make
the divergent term ∼ A′ of eB(r) vanish, which is inconsistent with the horizon condition (12).
Therefore, to impose regularity of the scalar field near the horizon requires c −→ 0 and b ̸= 0.

At the black hole horizon we can rewrite c = 0 using the explicit expression (A.5) as a
condition on ϕ′(rh) = ϕ′h given by

ϕ′h = −
A±

�

1−m2r2
hϕh

2
�p

C

B
, (40)

with A, B and C given by (A.6) and (A.7). Only the minus solution converges to (26) in
the small mass limit and to (24) in the small coupling limit. We also note that the square root
in (40) adds an additional requirement as it should be positive definite, imposing an inequality
which gives a further restriction on the parameters ϕh, rh.

Next, considering the near-horizon expansion of the field equations and substituting the
minus solution of (40) in (39) yields

A′′ = −(A′)2 +O
�

A′
�

,

ϕ′′ =O(1) .
(41)

Integrating (41) yields a logarithmic function and fixing the integration constant such that the
solution diverges to minus infinity at rh leads to the derivative A′(r) ∼ 1

r−rh
. Combining this

with (38) we obtain the near-horizon behavior of the metric components and scalar field

eA(r) = A′h (r − rh) +O(r − rh) ,

ϕ(r) = ϕh +ϕ
′
h (r − rh) +O(r − rh) ,

(42)

where ϕ′h is given by (40). Then A′h, ϕh are the only free integration constants which get fixed
by matching with the asymptotic solution.

4.2 Numerical computation of the full solution

We use an initial value formulation to solve the second order differential equations (36) for
A(r) and ϕ(r) simultaneously again using the same specifications for the numerical integrator
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as mentioned in Sec. 3.1.2. Note that α, m and rh are all input parameters in this initial value
problem. The solution for B(r) can be recovered by substituting these solutions in (35). We
start the integration at an infinitesimal distance (r/rh = 1+ 10−3) outside the event horizon
using the near-horizon solutions (42) and (40) as initial conditions. The amount of scalar field
at the horizon ϕh and the coefficient A′h are determined by matching to the right asymptotic
behavior. The unstable nature of the scalar field solution poses a challenge for solving (36)
simultaneously with the right asymptotic behavior. It turns out that the scalar field solution
and approximation for ϕh are not sensitive to the estimation for A′h. One can therefore obtain
an educated guess for ϕh independent of A′h and use this guess to solve the system simulta-
neously. The scalar field solution up to some finite value of r then already behaves as the
exponentially decaying solution and a numerical root finding routine is then able to extract
the initial conditions corresponding to the right asymptotic behaviors.

More explicitly, we implement these considerations as follows. After defining the system of
differential equations (36) as functions of the initial valuesϕh, A′h, we use the bisection method
described in Sec. 3.1 and Appendix C to obtain an educated guess forϕh, setting A′h temporarily
to 1. Looking at the scalar field solution with these initial conditions, we define the maximum r
for which the solution is still exponentially decaying as r∞, where for r > r∞ the exponentially
growing mode takes over. We set up a shooting method routine similar to the methodology
described in Sec. 3.2 and Appendix C to find the initial conditions that match the solution to
the asymptotic behavior (37) at r∞. We justify matching the solutions to the asymptotic limit
for some finite r∞ ̸=∞ by similar arguments as for the higher order perturbative solutions.
In brief, r∞ is the maximum distance where the scalar field has essentially fallen off to 0. For
a vanishing scalar field the metric is the Schwarzschild solution as described in Sec. 4.1.1,
hence we can already require the metric function A(r) and scalar field to follow (37) at r∞.
Additionally as the constants A′∞, ϕ′∞ are unknown, we define our shooting method in terms
of the ratios eA/(eA)′ and ϕ/ϕ′(r) as functions of the initial conditions to match

eA(r)

eA(r)′
→−r ,

ϕ(r)
ϕ′(r)

→−
r

(1+mr)
, (43)

and determine A′∞, ϕ′∞ afterwards. We achieve this by defining a function of the differ-
ence between the metric solution with the initial conditions found as described above and the
asymptotic limit in (37), and similarly for the scalar field solution, as a function of A′∞ and
ϕ′∞ respectively.

To match the coefficients, we integrate over the absolute difference between the solution
and the asymptotic limit and determine the constants A′∞ and ϕ′∞ that minimize the integral
over a small region in r. For A′∞ the small region was determined around r∞ and for ϕ′∞ the
region is based on integer multiples of the Compton wavelength. For each choice of param-
eters, we require that the minimized integral is ≲ 10−9 as criterion for a good match, where
A′∞ is approximately constant and thus less sensitive to the choice of integral range than ϕ′∞,
which requires matching two functions that are rapidly decaying.

Additionally, we are interested in the solution for the spacetime inside the horizon to see if
the scalar field extends inside the horizon and to analyze the singular behavior of the spacetime
inside the black hole. We therefore use an extension of the metric (11) as done in [47] by
defining a coordinate patch inside the horizon described by similar metric potentials as in (11)
but the opposite signs. With this convention, we capture the sign flip that occurs for the time
and radial components of the metric in Schwarzschild coordinates inside the horizon, for which
the time coordinate becomes spacelike and vice versa. This switch is then incorporated in the
additional minus sign and therefore the solution to the metric corrections itself can retain
the same sign in- and outside the horizon. With this setup, we calculate numerical solutions
to (36) by integrating from a small distance inside the event horizon to r = 0. An important
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assumption in this process needed to set the initial value of the scalar field is that the limit
of the scalar field approaching the horizon from both sides exists and can be glued together
smoothly. This implies that the same initial conditions and coefficients ϕh, A′h apply as for the
outside solution. However, the metric functions are discontinuous in this setup, for instance,
the solution for A(r) diverges to minus infinity on both sides of the horizon.

A caveat is that the solution inside the horizon in Schwarzschild coordinates is not very
meaningful, for example, there is no intuitive interpretation of the coordinates. However we
can nevertheless use this solution to show that the scalar field extends to the inside of the black
hole and to analyze the behavior of curvature invariants inside the horizon. We compute and
discuss these curvature scalars in Sec. 6. As these quantities contain coordinate independent
information, the conclusions of our analysis are valid more generally beyond the particular
choice of interior coordinates.

In this way, we construct the full numerical solution for A(r) and ϕ(r) in and outside
the horizon. We compare this to the solution for a massless scalar field and the perturbative
solution.

5 Comparison of the solutions

For the numerical results discussed in this section, we specialize to the coupling function
f (ϕ) = e2ϕ/4. As mentioned in Sec. 2.1 we focus on γ = 2 as parameter in the exponent
in the coupling function corresponding to EdGB. We fix this choice to keep the amount of free
parameters tractable. Additionally, the effect of varying γ on the properties of the BH solution
was studied in [71] and shown to result in qualitatively similar behavior. In general the effect
of larger values of γ correspond to an enlarged effect from the scalar field, leading for example
to stronger constraints on the coupling [91].

In this section we first show the result of the perturbative and exact numerical solution
for the metric function A(r) and the scalar field ϕ(r) for different values of the coupling and
scalar field mass. We discuss the dependency of these two parameters on the solutions and
compare the massless and massive solutions to the perturbative case. Secondly, we show an
overview of different sGB black hole solutions analysing the difference in horizon radius as
compared to the Schwarzschild radius as function of the black hole mass for different choices
of the coupling and scalar field mass.

5.1 Comparison between massless, massive, and perturbative solutions

Figure 3 shows different results for the metric function A(r) defined in (11) and Fig. 4 displays
the corresponding scalar field. The pink curves correspond to the full solution with vanishing
scalar field mass, while black curves are the results for a mass of m̂= 0.1. The left panels are
for a larger value of the coupling than the right ones. For the perturbative and Schwarzschild
solutions we only show the curves outside the black hole horizon.

Before discussing the results, we note an important point regarding comparisons between
the perturbative and exact solutions. The perturbative solutions are computed in terms of
u = rS/r and similarly for the Schwarzschild solution. These need to be rescaled to compare
with the full solution shown here in terms of rh/r. We choose to compare black holes with the
same ADM mass,4 which implies for the asymptotic limit of the full sGB solutions (37) that
A(1)∞/r = rS/r. Next, we rescale the radial coordinate of the full solution such that rh = 1. The
ratio between the Schwarzschild and sGB horizons can be obtained via rS/rh = A(1)∞/1 and is
used to rescale the perturbative and Schwarzschild solution in the figures below.

4For sGB and Schwarzschild black holes with the same ADM mass, the global mass generally differs due to the
contributions from the scalar field in sGB [46].

17

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.069


SciPost Phys. Core 7, 069 (2024)

5.1.1 Massless case: Code check and singularity

First, we focus on the massless case as it has been more comprehensively studied in previous
literature. For an independent check of our results, we compare the pink curves in Fig. 3
with a corresponding result in Fig. 1 of [47] and verify a similar qualitative behavior, up to
small differences arising from different choices of coupling functions and -constant. Next, we
analyze the features of the metric potential in Fig. 3 and corresponding scalar profile in Fig. 4.
At large distances, they show the expected asymptotic behavior A(r)→ 0 and an exponential
decay for the scalar field. Near the horizon (black vertical line), the scalar field remains finite
while A(r) diverges to minus infinity when approaching from the outside. For the coupling
α̂ ∼ 0.2 shown in the left panel of Fig. 3 the divergence for r < rh occurs very close to the
horizon r/rh ∼ 0.99 (pink dashed line). This is due to the presence of a finite radius singularity,
which is a well known phenomenon for massless sGB black holes [47,48,55]. We will make a
concrete identification between this divergence in A(r) and a genuine curvature singularity in
Sec. 6.1.1. We see from the right panel of Fig. 3 that for a smaller coupling α̂, the singularity
moves further to the interior, as expected based on recovering the GR limit for zero coupling.
This implies that the maximum value of α̂ for which a black hole exists is determined by the
singularity coinciding with the horizon; higher values of α̂ will lead to a naked singularity.

5.1.2 Effect of the scalar mass

Qualitatively, the features of the solutions for finite scalar field mass are similar to the massless
case. For the metric functions outside the horizon, the mass has a very small effect, as seen in
Fig. 3, while for the scalar field in Fig. 4 the differences are more noticeable. The singularity
for the massive case occurs at r/rh = 0.97 for a coupling of α̂= 0.2. A larger mass of the scalar
field thus shifts the singularity further inwards, as also expected from the infinite mass limit,
where the scalar condensate disappears and the black hole reduces to Schwarzschild with a
singularity at r/rh = 0. This implies that the maximum value of the coupling for which black
hole solutions exist increases for larger scalar field masses, consistent with the results of [71].

From a computational perspective we directly identify the maximum α̂ for black hole solu-
tions based on the fact that for any value exceeding it, the near-horizon initial conditions and
the asymptotically flat limit can no longer be connected by a smooth numerical solution.

5.1.3 Performance of the perturbative small-coupling solutions and comparison to
Schwarzschild

Another interesting feature illustrated in Figs. 3 and 4 is the quality of the perturbative solu-
tions to O(α̂3) corresponding to the green curves. We see that near the horizon for the larger
value of the coupling (left panel) the perturbative solution differs appreciably from the full
solution. This is most noticeable when comparing the locations of the horizon, which for the
perturbative and Schwarzschild solution lie at larger radial coordinate than the full solution, as
indicated by the divergence of A to −∞. While the near-horizon behavior of the perturbative
solution is based on expanding around the Schwarzschild horizon (29), the actual black hole
horizon in this case is determined by the root of B̄. After appropriately rescaling coordinates
as described in the beginning of the section, this leads to the horizon locations indicated in
the plots. As expected, for larger couplings the differences between the perturbative and exact
solutions become larger, which is especially noticeable near the horizon. As mentioned, for
larger couplings the singularity lies close to the horizon, and it is reasonable to expect non-
perturbative effects to be important in its vicinity. In the large r/rh limit, the perturbative and
numerical solutions coincide as the curvature effects become less and less significant. We also
see that for the smaller coupling shown in the right panel, the perturbative solution agrees
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Figure 3: Behavior of the metric function A(r) characterizing the time-time compo-
nent of the metric for couplings of α̂ = 0.2 (left panel) and α̂ = 0.1 (right panel).
Black curves show the full solution for a scalar field mass m̂ = 0.1, pink curves the
massless case, green curves represent the perturbative solution including corrections
to O(α̂3) and grey curves show the Schwarzschild solution for comparison. For the
latter two only the solutions outside the horizon are shown. The black vertical line
denotes the horizon radius and the vertical dashed curves the singularities.

much better with the full solutions near the horizon, as it is also farther from the singular-
ity and the horizon moves closer to rh. In Appendix D we give some additional analysis on
the perturbative solution comparing also the solutions up to different orders in the coupling.
Together with this analysis we conclude that the perturbative solution deviates less from the
exact solution in the large scalar mass regime. As expected as for large scalar masses the scalar
field decreases and decouples in the limit of the mass to infinity. Furthermore, we find no par-
ticular behavioural change comparing the solution up to quadratic and cubic order, for which
the metric corrections to scalar field come in, see Table 1. Lastly we find the difference of the
perturbative solution in the near horizon region to be largest. However even with the finite
radius singularity lying close to the horizon for larger values of the coupling, when restricting
to the regimes away from the immediate vicinity of the divergence, we find no sign of quali-
tatively new non-perturbative behaviour that would not be approximately captured by adding
higher small coupling corrections to the solution.

5.2 Comparing horizon radii and mass for different BH solutions

To give an overview of different sGB black hole solutions compared to Schwarzschild black
holes, we find the solution to (36) for the metric functions and scalar field for different black
hole masses. As mentioned in Sec. 4.1.1 and Sec. 4.2, the ADM mass of the black hole, corre-
sponding to half the 1/r coefficient of the metric function in the asymptotic limit, is extracted
after computing the metric solution.

We rescaled the coordinates and correspondingly the scalar field mass and coupling con-
stant, see Sec. 2.3, with M⊙ instead of the horizon radius, working in natural units. Con-
sequently, rh becomes, together with the scalar field mass and coupling, an input parameter
of the initial value problem instead of being equal 1 in rescaled coordinates r/rh. For two
choices of the rescaled scalar field mass and coupling constant we then obtained the metric
and scalar field solutions as described in Sec. 4.2 for a range of black hole radii and determined
the corresponding black hole mass. We show the results in Fig. 5. Depending on the choice
of the parameters we find a minimum horizon radius for which no numerical solution can be
found connecting the near horizon and asymptotic limit for the fields. In Sec. 6.2 we find this
corresponds to the smallest radius for which the singularity is still censored by the horizon.
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Figure 4: Scalar field profile for couplings of α̂ = 0.2 (left panel) and α̂ = 0.1 (right
panel). Black curves show the full solution for a scalar field mass m̂ = 0.1, pink
curves are for the massless case, and green curves represent the perturbative solu-
tion including corrections to O(α̂3) only showing the solution outside the horizon.
The black vertical line denotes the horizon radius and the vertical dashed curves the
singularities.
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Figure 5: Fractional difference of the horizon radius with the Schwarzschild radius
as function of the black hole mass for different values of the scalar field mass and
coupling constant. Note the scalar field mass and coupling constant are rescaled
by M⊙ instead of the horizon radius as in (17) and (7). The curves end when the
difference with the Schwarzschild radius becomes smaller than the initial offset to
the horizon radius when computing the numerical solution, see Sec. 4.2.

Additionally, the curves stop for a finite value of the black hole mass, this is a consequence
of limited numerical accuracy. As mentioned in Sec. 4.2, to solve (36) requires the integra-
tion to start at a small offset to the horizon radius (r/rh = 1 + 10−3). When the difference
between the horizon radii shrinks and becomes smaller than this offset, this difference can no
longer be accurately obtained. Hence, we stopped the computation at the corresponding black
hole mass. Qualitatively in the large black hole mass limit the horizon radius approaches the
Schwarzschild radius.

A comparable diagram was shown in Fig. 5 of [71], for a broader range of scalar field
masses and also varying the coefficient in the coupling function. Note the coordinates and
parameters in this work are rescaled by

p
α. Fig. 5 complements this diagram by showing the

effect of the mass and coupling on the black hole horizon separately.
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Comparing the black and green curve in Fig. 5 one can see the effect of increasing the
scalar field mass for a constant coupling function. The minimum black hole mass slightly
decreases for a larger scalar field mass. This corresponds to our findings of the solutions
inside the horizon in Fig. 3, 4. For the massive case, the radius for which the functions diverge
are shifted inwards compared to the massless solution. In Sec. 6.1.1 we’ll show this point of
divergence corresponds to a curvature singularity. Hence, for larger scalar field masses the
singularity moves inwards and the black hole is allowed to be smaller for the singularity to
stay inside the horizon, corresponding to smaller black hole masses. Additionally, we find
that for a larger scalar field mass the difference with the Schwarzschild radius increases for
black hole masses close to the minimum allowed mass. Thus as the black hole is allowed to
be smaller because of the inwards shifting singularity, for larger scalar field masses the offset
to rS increases accordingly.

We can obtain similar conclusions comparing the black and pink curves varying the cou-
pling. As found in Fig. 3 the singularity moves closer to the horizon by increasing the coupling
constant. The minimum black hole mass therefore increases for the pink curve corresponding
to a larger coupling. The increase is much more apparent for the compared coupling constants
then the decrease for the two compared scalar field masses. We do find an opposite relation
for the offset of the horizon radius compared to rS near the minimum black hole mass. Even
though the black holes have to be larger to contain the singularity inside the horizon for a
larger coupling value, the offset with rS slightly increases for a larger value of the coupling.
This increase is much smaller than for the two compared scalar field masses.

6 Properties of the solutions

Having constructed the full and perturbative numerical solutions for a static black hole in
massive sGB, we analyse the properties of these solutions. We start by studying the spacetime
curvature in and outside the horizon and recover how properties such as the amount of scalar
field on the horizon or the scalar monopole charge depend on the parameters of the theory.
The analysis in this section complements the discussion of [71] which focused on the horizon
radius, amount of scalar field at the horizon, black hole surface, entropy, and temperature
as function of the black hole mass for different coupling functions and scalar field masses.
Note that the rescalings in [71] to obtain dimensionless variables are different from those
used in this paper, in particular, we rescale based on the horizon radius, while [71] rescaled
by the coupling constant. In all further analysis we specify to a dilatonic coupling function
f (ϕ) = e2ϕ/4.

6.1 Characterizing the curvature and field density

Before we analyze more specifically how certain properties of the black hole solutions depend
on the parameters of the theory, we first consider the curvature scalars and energy density
around the black hole to gain more intuition for the solutions.

6.1.1 Curvature invariants and singularity

To characterize the curvature we analyze the curvature invariants. Here we focus on the
Kretschmann scalar

K = RµνρσRµνρσ , (44)

and its cousin; the fully contracted Weyl tensor squared

C = CµνρσCµνρσ . (45)
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Figure 6: left panel: Curvature invariants of the Kretschmann scalar K (dashed lines)
and the contracted Weyl tensor C (pink and purple curves) in- and outside the event
horizon (black vertical line) for two values of the scalar field mass (lighter colors
for larger mass). The vertical dashed black lines denote the location of the finite
radius singularity. right panel: The percent difference of K in massive sGB and
Schwarzschild for two values of the scalar field mass only for the spacetime out-
side the horizon.

In vacuum in GR these two invariants coincide. We calculate them using the full numerical
solution for a coupling of α̂ = 0.2 and for masses of m̂ = 0.1 and m̂ = 1. The results are
illustrated in Fig. 6, where the right panel shows the percent difference of the Kretschmann
scalar for a massive sGB and Schwarzschild black hole. Here we make the same choice as for
Fig. 3, comparing to a Schwarzschild black hole with the same ADM mass. We see that the cur-
vature invariants blow up for r/rh ∼ 0.88 and r/rh ∼ 0.97 for m̂= 1 and m̂= 0.1 respectively.
For m̂ = 0.1 this corresponds to the same location as the divergences in A and ϕ seen in the
left panels in Fig. 3 and 4, which corroborates the identifications between these divergences
and genuine singularities already mentioned in Sec. 4. We also note from comparing the solid
curves corresponding to C and the dashed lines illustrating the results for K in Fig. 6 that while
for most regions outside the horizon the two kinds of curvature invariants coincide, they differ
slightly in its immediate vicinity and the interior.

Looking at the right panel of Fig. 6 we see that close to the horizon up to r/rh ∼ 1.1,
the curvature in sGB gravity is larger than for the Schwarzschild black hole. Interestingly,
however, in the region 1.1 ≲ r/rh ≲ 5 the curvature in sGB is weaker than Schwarzschild,
with the fractional difference attaining its largest negative value around r/rh ∼ 1.3. In the
large-r limit the curvature invariants coincide, as expected. With increasing scalar field mass,
the curvature decreases. Hence, the massless limit leads to the strongest curvature and thus
largest deviation from Schwarzschild. The distinguishability of the curvature up to r/rh ∼ 5
could have interesting consequences, for instance, for tidal effects.

6.1.2 Energy density

The energy density of the spacetime is given by T t
t = −ρ in (A.1). Additionally we define

ρϕ as the pure scalar contributions of T t
t which can be obtained by setting α → 0 in (A.1).

The results for the energy densities for a case with the maximum coupling for a massless sGB
black hole are illustrated in Fig. 7. The left panel shows the full energy density including the
higher curvature contributions for a scalar mass m̂ = 0.8, while the right panels show the
corresponding radial profiles for that case (green curves) and the massless one (black curves).
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Figure 7: left panel: 2D figure of the energy density around the black hole shown
as the black disk for a system with α̂ = 0.2, m̂ = 0.8. right panels: Energy density
(top) and scalar part of the energy density (bottom) as function of r for a massless
and m̂= 0.8 scalar field.

The upper panel of Fig. 7 shows that ρ is concentrated close to the horizon and becomes
more dilute further away from the black hole. Around r/rh ∼ 2 the energy density has already
fallen off to essentially zero. From the right panels of Fig. 7, we see that for the full energy
density (top), the same behavior occurs in the massless case, also around the same values.
However, the pure scalar field contribution to the energy density (bottom) has very different
features, namely for the massless field configuration, the falloff to zero is much slower, as
expected based on the asymptotic behavior of the field (37) indicating the scalar field is su-
pressed for distances larger than the Compton wavelength. Specifically, the percent difference
in ρϕ between one and two times the Compton wavelength (λϕ = 1.25) for the massive case
is 99%. For comparison, in the massless case, the falloff of the density between the same radial
distances is only 94%. Another interesting feature is that while the scalar field contribution
is always positive, the full energy density is not. The reason is that the higher curvature con-
tributions can have different signs, which leads to a negative total energy density close to the
black hole horizon. The fact that the energy density can become negative is one of the reasons
black holes both in massless and massive sGB can evade the no hair theorem [25,28].

6.2 Scalar hair, regularity constraint and bound on the coupling

As explained in Sec. 4.1, requiring the scalar field solution to be regular at the horizon leads
to a constraint for the derivative of the scalar field at the horizon, c.f. (24), (26) and (40) for
the linear-in-coupling, massless and massive full theory respectively. For the linearized case
we showed in Sec. 3.1.1 and Appendix B that the solution for the scalar field should be a
monotonically decreasing (or increasing in terms of u) function and therefore that the scalar
field derivative at the horizon should be negative. For the scalar field background solution
for general coupling we expect to find ground state type behaviour as well corresponding to
a monotonically decreasing solution, as sudden bumps or wells are expected for exited states.
This assumption is also build upon the fact that the full exact solution should reduce to the
linearized solution in the small coupling limit. Also numerically, the solutions to (36) found
to connect the near horizon and asymptotic limits of the scalar field for generic coupling, see
Fig. 4, show this type of function too. Hence we state the scalar field at the horizon for generic
coupling ought negative to be able to find a solution to (36) connecting the near horizon and
asymptotic limits.
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Figure 8: left panel: The amount of scalar field at the horizon ϕh as function of the
dimensionless scalar field mass m̂. The panel shows the values for the linearized (di-
amonds) and full solution (dots) of the scalar field equation for two different values
of the coupling (grey and pink shades). Additionally, the linearized (25) (solid lines)
and full theory constraints (40) (dashed lines) are shown for two different values of
the coupling. right panel: maximum allowed value for the coupling constant as a
function of the scalar field mass from the requirement of preventing a naked singu-
larity (squares) and the near horizon constraint (40) (dots).

For the linearized case requiring ϕ′h < 0 is accomplished via (25) and in the massless
full theory case this is done by imposing the square root to be real via (27). However, in
the massive case requiring the square root to be real by imposing C > 0 does not ensure
ϕ′h < 0 (40). Therefore in this case both C > 0 and ϕ′h < 0 need to be imposed to ensure an
asymptotically flat solution. All of these inequalities depend on the parameters ϕh, α̂ and m̂.
The dependence on rh is encapsulated in the dimensionless parameters α̂, m̂. In this section,
we study these inequalities imposed near the horizon to determine how ϕh depends on the
theory parameters.
The left panel of Fig. 8 compares the following near horizon results as function of the scalar
field mass

• solid lines: linearized theory near horizon constraint (25),

• dashed curves: full theory near horizon constraint (40),

• diamonds: value ϕh from the linearized numerical solution,

• dots: value ϕh from the full theory numerical solution,

all for two values of the coupling constant in gray and pink shades for respectively α̂ = 0.2,
α̂= 0.1.

We see that ϕh and the difference of this parameter between the linearized and full theory
is largest for a larger coupling, as expected. For scalar field masses larger than m̂ > 1, where
in dimensionfull parameters the Compton wavelength lies inside the black hole horizon, the
scalar hair is severely suppressed (note the logarithmic scale of the plot). In the large m̂ limit,
the linearized and full theory result coincide as for m̂→∞ the scalar field should decouple
and black holes should have no hair.

In the same panel we also show the linearized inequality (25) as the pink and gray lines.
We obtain the full theory constraint by selecting the largest value forϕh allowed for which (40)
is real and negative for each choice of α̂ and m̂.
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For increasing m̂, we find that beyond a certain coupling-dependent threshold that coin-
cides with the cusp in the dashed curves in Fig. 8, two branches of values for ϕh arise for which
ϕ′h < 0. For one branch the values of ϕh becomes larger for larger mass while for the other
branch they become smaller, which we identify as the desired physical solution. We therefore
selected the largest possible ϕh in the physical branch.

From Fig. 8 we see that the linearized and full constraints coincide in the large mass limit as
required. The values forϕh obtained from the numerical solutions are always below the curves
from the near-horizon constraints. In the small-mass limit, the matching to the asymptotic
falloff fixesϕh to smaller values than allowed by the near-horizon constraints. In the zero-mass
limit and largest possible coupling in the massless theory is α̂∼ 0.2, we find indeed that when
approaching the massless limit ϕh approaches the largest allowed value by the near-horizon
constraint. Similarly, in the large-mass limit, the numerical solution for ϕh approaches the
maximum allowed value by the corresponding near-horizon constraint.

The literature on the massless theory suggests that the near-horizon constraint (26) pre-
vents the finite surface singularity from extending outside the black hole horizon. We analyze
the link between the singularity and the near-horizon constraint in the massive theory in the
right panel of Fig. 8.

The green squares correspond to the maximum value for the coupling constant for which
the singularity lies on the horizon radius. We obtained these values by computing the solution
for the scalar field and metric functions and increasing the coupling constant up to when the
singularity came to lie on the horizon. This was repeated for each value of the scalar field
mass as shown in Fig. 8.

The black dots correspond to the maximum values of the coupling for which the near
horizon constraint (40) is still real and negative; ϕ′h < 0. These values for the coupling are
found by substituting the values for ϕh, found when computing the solutions to obtain the
green square values, in (40) and solving the inequality ϕ′h < 0 for α̂ for each value of the
scalar field mass. For the more detailed discussion on this procedure and a short analysis on
the maximum allowed ϕh we refer to Appendix E.

From this right panel of Fig. 8 we find that for the studied mass range the near horizon
constraint coupling values agree with the singularity constraint maximum coupling. Hereby
we thus conclude that indeed the near horizon constraint ensuring regularity of the scalar
field at the horizon prevents the finite radius singularity from lying outside the BH horizon.
Additionally, these numerically obtained maximum values give a theoretical constraint on the
coupling values for the considered scalar mass range. Note that the constraint from Fig. 8 is on
the dimensionless coupling constant (7), hence rescaled by the horizon radius. One can invert
the argument by rescaling with M⊙ and freeing the rh parameter. When fixing the coupling
constant this leads to a theoretical constraint on the minimum black hole mass instead, which
we showed in Fig. 5.

6.2.1 Implications in relation to the coupling and scalar field mass

The results from the right panel on Fig. 8 show the theoretical bound on the coupling as
function of the scalar field mass. As mentioned in Sec. 2.1 a first observational constraint on
the coupling is

p
α ≲ 2.47km for 10−15eV ≲ m ≲ 10−13eV based on the observed GWs from

the first two observing runs of LVK [78].
To compare this constraint on the coupling to our theoretical bound on the coupling con-

stant found in Fig. 8, we find the stated scalar mass range from [78] in terms of the dimen-
sionless mass (17);
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• To convert 10−15eV ≲ m ≲ 10−13eV to the dimensionless m̂, we combine (17) and (4)
resulting in

m̂= meV
rhe
ħhc

, (46)

with meV the scalar field mass in eV .

• Next we approximate the black hole horizons by the Schwarzschild radii which we obtain
noting that the observed black holes from GWTC-1 with LVK lie in the range of stellar
mass black holes 5M⊙ ≲ M ≲ 150M⊙, hence rh ∼ rs = 2GM/c2 lies in the range of
14.8km≲ rh ≲ 443km.

• Substituting above horizon range in (46) we obtain the constraint on the coupling con-
stant in [78] corresponds to the dimensionless mass range 10−5 ≲ m̂≲ 10−1.

Comparing this mass range to Fig. 8 we find our theoretical bound on the coupling extends
to masses larger than m̂ ∼ 10−1, hence the theory bound is the strongest constraint on the
coupling in the large dimensionless mass range.

We can also use the results of the left panel of Fig. 8 to make a rough estimate of the
possible scalar field mass range that would be interesting in relation to observation. From
Fig. 8 we find that beyond m̂∼ 1 the scalar field becomes highly suppressed, which decreases
the likelihood for detection by probing the black hole environment. Hence m̂ ∼ 1 seems the
largest scalar field mass for which there is still significant scalar hair around the black hole.
Then we consider a back of the envelope calculation similar to what was done in [96]. We
assume no restriction on the type of black holes and take all astrophysical black holes which
lie in the mass range 5M⊙ ≲ M ≲ 1010M⊙ again using rh ∼ rS . Substituting this horizon range
and m̂∼ 1 in (46) inverting the equation to compute meV we obtain

1.3× 10−11eV ≳ mϕ ≳ 6.7× 10−21eV . (47)

Massive sGB black holes thus enable exploring a large swath of parameter space of ultralight
dark matter models as this mass range lies within the current bound for these models, see
e.g. [60] for a review.

6.3 Dependencies of black hole properties

6.3.1 Innermost stable circular orbit and light ring

Next, we use the full numerical solutions to analyze the dependence of gauge-invariant quanti-
ties such as the orbital frequency of a test particle at the innermost stable circular orbit (ISCO)
and a photon at the unstable circular orbit (light ring) on the parameters of the theory.

In Appendix F we compute the ISCO and light ring (LR) radii from considering geodesic
motions of test particles and photons, and formulating the dynamics in terms of an effective
potential whose maximum determines the ISCO and LR. Specifically, we calculated the roots
of the second derivative of (F.2) and (F.7) numerically after substituting the solutions for A(r)
and B(r). We convert all expressions to functions of the orbital frequency as it is a coordinate-
independent quantity by contrast to the radius, by using the relationship between the radial
coordinate and frequency from (F.4). In Fig. 9 we show the difference between the orbital
frequencyω at the ISCO/LR in massive sGB and Schwarzschild spacetimes for different scalar
field masses. Note that we give the results in terms of the dimensionless quantity ωrh, there-
fore the Schwarzschild frequencies ωISCOrS = 1/3

p
6, ωLRrS = 2/3

p
3, need to be rescaled

to rh in the same way as described in Sec. 5.1.3.
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Figure 9: The difference in orbital angular frequency at the ISCO (left panel) and
LR (right panel) rescaled by the horizon radius from the Schwarzschild results as a
function of the scalar mass for three different values of the coupling.

From both panels of Fig. 9 we conclude that, as the differences are positive, the orbital
frequencies in massive sGB are larger (corresponding to the ISCO/LR radii being smaller)
than for a Schwarzschild black hole with the same ADM mass. When comparing this to our
result for the behavior of the curvature in the right panel of Fig. 6, we see that for radii around
rISCO/rh ∼ 3, rLR/rh ∼ 3/2 the curvature in massive sGB is less strong than for a Schwarzschild
black hole, and a stable orbit for a test particle/photon can therefore lie closer to the horizon.
This also corresponds to the findings for the ISCO/LR frequencies in the literature on massless
sGB, e.g. in [97,98]. Furthermore, Fig. 9 shows that the difference in the orbital frequencies
becomes smaller for smaller coupling and larger masses, as expected in these limits. As for
other quantities, massless sGB gives the strongest deviations from a Schwarzschild blackhole.

6.3.2 ADM mass and scalar charge

Lastly we consider the analysis of the obtained ADM mass MADM = 1/2A′∞ and scalar
monopole charge ϕ′∞ defined in (37). We obtain these quantities from the numerical so-
lutions as described in Sec. 4.2 for different masses and coupling. The ADM mass and scalar
charge are relevant e.g. in effective action descriptions for black hole binary systems [55],
where the two bodies are reduced to center-of-mass worldlines augmented with additional
parameters that are matched to physical properties of the full configuration and capture its
coarse-grained effects. In the massless case, the scalar charge is defined to be the coefficient
of the 1/r term in the asymptotic falloff of the scalar profile. However, for massive scalar fields
the asymptotic limit has an exponential decay (37) and the definition of the charge must be
adapted. We consider here the convention of [65], which is still based on the decaying tail
of the scalar field solution and defines the charge to be the prefactor of the exponential ϕ′∞
as given in (37). As described in Sec. 4.2, matching the solution to the asymptotic limit for
the scalar field is more susceptible to the choice of integral region used for the matching than
the metric functions. In practice we therefore limited the construction of ϕ′∞ to m̂≤ 1, as for
larger values the solution outside the black hole horizon has already fallen off to nearly zero
and it is not possible to unambiguously match to (37) to determine ϕ′∞. In principle one could
obtain the charge in this regime by working with the solution in the interior of the horizon,
however as we mentioned in Sec. 6.2 the m̂ ≲ 1 regime is the most interesting, therefore we
limited our analysis to this regime. We show the results of these calculations for the ADM mass
and scalar charge as function of the scalar field mass in Fig. 10.
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Figure 10: The amount of scalar charge (left panel) and ADM mass (right panel)
as function of the dimensionless scalar field mass m̂ for three different values of the
coupling.

From the Fig. 10 we see that both the scalar charge and ADM mass become less sensitive
to the scalar field mass for smaller values of the coupling. Both are also proportional to the
coupling, where for vanishing coupling constant, the scalar charge vanishes and the ADM mass
goes to 1/2rh as expected.

7 Conclusion

In this paper we performed a systematic study of various features of static, spherically sym-
metric black holes in sGB with a massive scalar field. This is a more natural scenario than
assuming a massless field, as has been the focus of the majority of previous work, except for a
few numerical examples. The scalar field mass introduces an additional scale in the problem
and gives rise to richer features of the spacetime and scalar condensate. For the first time, we
calculated perturbative solutions in a small coupling expansion up to third order in α̂ and com-
pared this to full numerical solutions for the spacetime and scalar field. The small-coupling
approximation yields more direct analytical insights into intriguing features that arise, while
the numerical solutions capture fully nonlinear regimes. To compute numerical solutions, we
used a bisection method to approach the scalar field solution with the desired asymptotic fall-
off behavior at spatial infinity and a shooting method to obtain the metric potentials with
the correct near-horizon and asymptotic behaviors. By extending the full numerical solutions
inside the horizon, we found that the metric potentials and scalar field diverge at a finite ra-
dius. From analyzing the Kretschmann and contracted Weyl tensor curvature invariants we
concluded that these divergences coincide with a genuine curvature singularity. The loca-
tion of this singularity depends on the coupling constant and the scalar field mass, where for
smaller couplings and higher masses the singularity moves closer to the center of the black
hole. The location of the singularity also impacts the performance of the small-coupling per-
turbative solution, which we found to be viable for small couplings, large scalar masses, and
large distances from the black hole. These trends can be attributed to the fact that at large
distances and for small coupling, the scalar and nonlinear curvature effects decrease, and for
large scalar masses the scalar field decouples from the metric and the GB contribution to the
action becomes a total derivative with no dynamical impact.

For finding the black hole solution, in addition to the condition of asymptotic flatness one
requires the scalar field to be regular at the horizon. This leads to conditions relating the
amount of scalar field at the horizon to the coupling constant, black hole radius and scalar
field mass. We discussed these conditions in the massless, linearized, and exact cases and
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interpreted them for the maximum value of the dimensionless coupling constant allowed for
each choice of parameters. Inverting this argument led to a lower bound on the mass of the
black hole. We found that introducing the scalar field mass leads to the existence of black hole
solutions for larger couplings or conversely, for a fixed coupling, the domain of black holes
extends to lower masses, see also [71]. By comparing these near-horizon conditions for the
scalar field to the parameters corresponding to the finite radius singularity being located at
the black hole horizon, we found that both lead to bounds on the maximum dimensionless
coupling constant. We found that the near horizon condition and the singularity bound agree,
concluding that requiring regularity of the scalar field on the horizon is coupled to censoring
the finite radius singularity behind the horizon. Comparing these theoretical bounds on the
coupling with the first observational constraint on massive sGB [78] we concluded that for
stellar mass black holes, for masses m̂> 10−1, our theoretical results provide the most stringent
bounds to date. Additionally, in the case of the scalar Compton wavelength being larger than
the black hole radius, the numerical matching between the near horizon and asymptotic limits
shows that the actual values lie well below these bounds. On the other hand, for Compton
wavelengths smaller than the black hole radius, the amount of scalar hair at the horizon in the
exact calculations turns out to be identical to the maximum value determined by the regularity
constraint.

Using the results for the amount of scalar hair near the horizon we could make a rough
estimation of the scalar field mass range that could be promising in the light of observation.
We found that this mass range includes the current scalar particle models. Lastly we analysed
how the ISCO radius, light ring radius, ADM mass and scalar monopole charge depend on the
scalar field mass and coupling constant.

For future work, the study of black holes in sGB could be extended to include next to the
scalar field mass, also the self interaction term in the scalar potential or one could add different
interactions e.g. study the optical channel, including the interaction with light. Considering
massive scalar fields in other promising modified gravity contexts would be interesting as well.
Furthermore, obtaining rotating black hole solutions would be a next exploration. This would
lead to the opportunity to study the possibility of superradiance instability in the context where
the massive scalar field is also coupled to the spacetime curvature. Our work contributed
to the first exploratory studies of sGB black holes with massive scalar fields. The full and
perturbative numerical solutions can be used in further studies of black holes in massive sGB
and in modelling compact binary systems in these theories, extending the work of [79–81] to
include massive scalar fields. Furthermore our analysis and numerical method related to the
massive scalar cloud configuration can be applied to massive scalar fields in a broader context
and our results on the ADM mass and scalar monopole charge can be useful in the effective
field theory description of compact binaries. In direct continuation of this work the analysis of
the gravitational radiation from compact objects in massive sGB can be explored, contributing
to the efforts of probing the strong field environments of black holes in the search for beyond
GR signatures.
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A Explicit expressions for equations

In this appendix we show the explicit equations that were not given in the main text for the
sake of readability.

A.1 Field equations

The explicit components of the modified Einstein equations (8) with (9) in terms of the met-
ric (11) are given by

G t
t = −

1
r2
+

e−B(r)

r2
−

e−B(r)B′(r)
r

,

Gr
r = −

1
r2
+

e−B(r)

r2
+

e−B(r)B′(r)
r

,

Gθθ = Gϕϕ =
e−B(r)

�

rA′(r)2 − 2B′(r) + A′(r)(2− rB′(r) + 2rA′′(r))
�

4r
,

T t
t = −

e−2B(r)

r2

�

ϕ′2
�

r2eB(r) + 4α f ′′(ϕ)
�

eB(r) − 1
��

− 2α f ′(ϕ)
�

B′(r)ϕ′(r)
�

eB(r) − 3
�

−2ϕ′′(r)
�

eB(r) − 1
��

+
�

eB(r)mrϕ(r)
�2�

,

T r
r =

e−B(r)ϕ′(r)
�

ϕ′(r)−
2e−B(r)

�

eB(r)− 3
�

α f ′(ϕ)A′(r)

r2

�

− (mϕ(r))2 ,

Tθθ = Tϕϕ = −
e−2B(r)

r2

�

ϕ′2(r)
�

reB(r) − 2α f ′′(ϕ)A′(r)
�

− 4α f ′(ϕ)
�

A′2(r)ϕ′(r)

+2ϕ′(r)A′′(r) + A′(r)
�

2ϕ′′(r)− 3B(r)′ϕ′(r)
��

+ e2B(r)m2r2ϕ(r)2
�

.

(A.1)

The scalar field equation (10) becomes

2rϕ′′(r) +
�

4+ rA′(r)− rB′(r)
�

ϕ′(r) +
α f ′(ϕ)e−B(r)

r

��

eB(r) − 3
�

A′(r)B′(r)

−
�

eB(r) − 1
� �

2A′′(r) + A′2(r)
��

− 2eB(r)m2rϕ(r) = 0 .
(A.2)

A.2 Master equations in A and ϕ

In Sec. 4, we rewrote the modified Einstein equations as a system of second order differential
equations (36), where the right hand sides are given by the functions

f (r,ϕ(r),ϕ′(r), A′(r)) =
�

4e4B(r)m4ϕ(r)3
�

eB(r)r − 4α f ′(ϕ)ϕ′(r)
�

r4 − 8e4B(r)
�

−1+ eB(r)
�

m4αϕ(r)4 f ′(ϕ)r3

− e2B(r)m2ϕ(r)
�

eB(r)r − 4α f ′(ϕ)ϕ′(r)
� �

4eB(r)
�

r2ϕ′(r)2 + eB(r) − 1
�

− 3A′(r)

×
�

eB(r)r + 2
�

−3+ eB(r)
�

α f ′(ϕ)ϕ′(r)
��

r2 + 8e2B(r)ϕ′(r)
�

eB(r)r +
�

−5+ eB(r)
�

α f ′(ϕ)ϕ′(r)
�

×
�

r2ϕ′(r)2 + eB(r) − 1
�

r + 2e2B(r)m2ϕ(r)2
�

−e2B(r)
�

rA′(r) + 4
�

ϕ′(r)r3 − 6

×
�

3− 4eB(r) + e2B(r)
�

α2A′(r) f ′(ϕ)2ϕ′(r) +α f ′(ϕ)
�

4eB(r)
�

�

−1+ eB(r)
�2
+ 4r2ϕ′(r)2

�

+ rA′(r)
�

4ϕ′(r)2
�

eB(r)r2 + 2
�

−1+ eB(r)
�

α f ′′(ϕ)
�

− 5eB(r)
�

−1+ eB(r)
����

r
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+ eB(r)αA′(r)3 f ′(ϕ)
�

r − 4α f ′(ϕ)ϕ′(r)
� �

eB(r)r + 2
�

−3+ eB(r)
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Á

�
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eB(r)r2
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, (A.3)

and

h(r,ϕ(r),ϕ′(r), A′(r)) =
�

4e4B(r)m4ϕ(r)3
�

eB(r)r − 4α f ′(ϕ)ϕ′(r)
�

r4 − 8e4B(r)
�

−1+ eB(r)
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m4αϕ(r)4 f ′(ϕ)r3
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� �
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�

eB(r)r +
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, (A.4)

with eB(r) given by (35).
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A.3 Near-horizon expansion in 1/A′

In the near horizon limit, the expansion of the second order differential equations (36) in
terms of 1/A′(r) resulted in (39) with the coefficients given by

a = −6α2m4r4ϕ(r)4 f ′(ϕ)2 − 2αm2r2ϕ(r) f ′(ϕ)
�

2α f ′(ϕ)ϕ′(r) + r
�2 −m2ϕ(r)2

×
�

4αr5 f ′(ϕ)ϕ′(r) + 4α2r2 f ′(ϕ)2
�

r2ϕ′(r)2 − 4
�

− 16α4 f ′(ϕ)4ϕ′(r)2

− 16α3r f ′(ϕ)3ϕ′(r) + r6
�

+ 4αr3 f ′(ϕ)ϕ′(r) + 2α2 f ′(ϕ)2
�

2r2ϕ′(r)2 − 3
�

+ r4 ,

b =
�

m2r2ϕ(r)2 − 1
� �

4α2 f ′(ϕ)2
�

2m2r2ϕ(r)2 − 3
�

− 8α3m2rϕ(r)2 f ′(ϕ)3ϕ′(r)

+ 2αr3 f ′(ϕ)ϕ′(r) + r4
�

,

c = αm4r3ϕ(r)4 f ′(ϕ)
�

r − 4α f ′(ϕ)ϕ′(r)
�

−m2r2ϕ(r)
�

2α f ′(ϕ)ϕ′(r) + r
�2

−m2ϕ(r)2
�

2αr2 f ′(ϕ)
�

r2ϕ′(r)2 + 1
�

− 8α3 f ′(ϕ)3ϕ′(r)2 − 12α2r f ′(ϕ)2ϕ′(r)

+ r5ϕ′(r)
�

+α f ′(ϕ)
�

2r2ϕ′(r)2 + 3
�

+ r3ϕ′(r) .

(A.5)

A.3.1 Regularity condition

Requiring regularity of the scalar field at the horizon lead to (40) for the derivative of the
scalar field at the horizon with coefficients

A= −4α2m4r3
hϕ

4
h f ′(ϕh)

2 −m2rhϕ
2
h

�

r4
h − 12α2 f ′(ϕh)

2
�

− 4αm2r3
hϕh f ′(ϕh) + r3

h ,

B = 4α f ′(ϕh)
�

−m2ϕ2
h

�

r4
h − 4α2 f ′(ϕh)

2
�

− 2αm2r2
hϕh f ′(ϕh) + r2

h

�

,
(A.6)

C = 16α4m2ϕ2
h f ′(ϕh)

4
�

m2r2
hϕ

2
h − 6

�

+ 48α3m2r2
hϕh f ′(ϕh)

3 + 8α2r2
h f ′(ϕh)

2
�

2m2r2
hϕ

2
h − 3

�

+ r6
h . (A.7)

B Theoretical arguments for a monotonically decreasing
linearized scalar profile

With similar arguments as in the discussion in [64], one can deduce that the solution to (21)
has to be a monotonically increasing function in terms of u or decreasing in terms of r. We
start from the linear-in-coupling equation of motion (21) hence work in the dimensionless
parameter u defined in (16). We are searching for solutions with a finite behavior at the
horizon u = 1 and an asymptotically flat solution at infinity u = 0 as found in (28). This
involves the following considerations:

1) Once the solution becomes negative it can only become more negative, and cannot increase to
zero again

Suppose that the solution for the scalar profile becomes negative. To change sign again to
positive values requires the existence of a minimum at negative field values. Multiplying (21)
by (−1) leads to

(1− u)ϕ1′′ −ϕ1′ =
m̂2ϕ1

u4
− 3 f ′(ϕ0)u2 . (B.1)

If there is an extremum for negative ϕ1, we have ϕ1 < 0 and ϕ1′ = 0 there. Hence at this
location in between the boundaries

(1− u)ϕ1′′ =
m̂2ϕ1

u4
− 3 f ′(ϕ0)u2 . (B.2)
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Now the right hand side is < 0 and thus ϕ1′′ < 0, since (1− u) ≥ 0. Therefore, if there is
an extremum for negative ϕ1 it has to be a (local) maximum. This implies that field can only
become more negative, which is incompatible with the required asymptotic behavior. Thus, for
a positive coupling to have a solution that falls off to zero, the scalar field has to stay positive.

2) The positive scalar field cannot have an extremum
Next, we consider the case where the scalar field starts out positive. At a local maximum

for a positive scalar field we have ϕ1 > 0 and ϕ1′ = 0. Evaluating (21) at this location results
again in (B.2). For a local maximum the second derivative should be negative, hence the right
hand side should be negative as well. This implies the following inequality at the maximum

m̂2ϕ1

u4
< 3 f ′(ϕ0)u2 . (B.3)

Moving towards the horizon at u = 1 after a local maximum means ϕ1 decreases and u in-
creases. Therefore the left hand side of the inequality (B.3) decreases and the right hand side
increases so the inequality holds. There cannot be an minimum because in that case (B.3)
would need to flip. Thus, the inequality holds up to the horizon. This further implies that the
slope of the profile at the horizon is negative or zero. However the differential equation at the
horizon is

−ϕ1′ = m̂2ϕ1 − 3 f ′(ϕ0) . (B.4)

Because the inequality (B.3) still holds at the horizon, the right hand side of (B.4) is negative.
This implies from (B.4) a nonzero positive derivative at the horizon, which is in contradiction
with the consequences of the inequality discussed above. Therefore, there cannot be a local
maximum for positive field values.

If the solution had a local minimum for the positive scalar field, it would require a local
maximum as well to have an asymptotic fall off to 0, which we just argued cannot be the case.
This means that having a local minimum would lead to a diverging solution at infinity.

3) The derivative of the scalar field at the horizon needs to be positive (or negative when working
in r)

From the arguments above, the scalar field at linear order in the coupling needs to be
positive and cannot have local maxima or minima. Therefore the derivative of the scalar field
at the horizon at u = 1 needs to be positive to be able to connect to zero at infinity, because
a negative derivative at u = 1 leads to a ever increasing (or partly constant) function going
inwards to infinity, never reaching zero.

C Numerical methods

In this appendix we describe in detail the two numerical methods used to obtain the pertur-
bative and full solutions discussed in Sec. 3 and 4. Additionally a discussion on numerical
precision tests is given.

C.1 Bisection method

Firstly in section 3.1.2 we describe solving the scalar field equation at linear order in the cou-
pling. As described in this section the asymptotic limit of the solution for the linearized scalar
field has an exponentially growing and decreasing mode (28). If not obtaining the initial con-
dition for which this growing mode is exactly zero, there will always be a large radial distance
at which the growing mode takes over and the solution diverges. Therefore a slight numerical
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inaccuracy already leads to a divergence. Obtaining the exact solution is hard, however ap-
proaching the right initial condition is relatively easy. In this section we describe how one can
approach the right initial condition which corresponds to the exponentially decaying solution.

The differential equation (21) is approached as an initial value problem, starting the inte-
gration at an infinitesimal distance from the horizon u = 1− 10−5. The initial conditions are
given by (24). For a fixed mass and coupling, we vary the constant ϕ1

h to find the solution that
has an asymptotically flat limit. We obtain this by first determining an interval of ϕ1

h for which
the asymptotic behavior switches from positive infinity to negative infinity. By decreasing this
interval, the estimate of ϕ1

h corresponding to an asymptotically flat solution improves. We
implement this through the following algorithm, for each choice of m̂:

• Make an initial guess ϕ1
h obtained by extrapolating (28) with ϕ̄1

∞ = 0 and computing
its value at the horizon.

• Check if the solution corresponding to this guess diverges to positive or negative infinity.

• Incrementally increase (decrease) ϕ1
h if the solution with the initial guess diverges neg-

atively (positively) and check the divergence behavior at each step.

• When reaching a step for which the divergence flips sign, defining this value as ϕ1
h, f l ip,

calculate ϕ1
h,new = (ϕ

1
h,ini t ial +ϕ

1
h, f l ip)/2.

• Use this mean value ϕ1
h,new as the new initial guess, decrease the step size every iteration

by one order of magnitude.

• Continue these iterations until the guess saturates, where more iterations result in more
accurate solutions.

In Fig. 2 we show the solution of (21) running the bisection method described above dif-
ferent number of times. One can see that for more cycles, the diverging behavior happens
for smaller u/larger r. In principle, extending to infinite cycles, one would obtain the actual
decaying solution. However the estimation for ϕ1

h would only differ infinitesimally, hence it
is accurate enough to cut of the number of cycles at a finite value. In our analysis in section
3.1.2 and 4 we execute 15 cycles. This means that the estimation for ϕ1

h differs with an order
of magnitude of 10−14 from the estimate at 14 cycles. This estimate therefore has very high
accuracy, however the main reason applying this many cycles is to push the diverging behav-
ior relatively close to u = 0 without making the computational time too long. The linearized
scalar field solution is substituted in the higher order field equations and therefore the diverg-
ing behavior works through in the solutions for the metric functions and higher order scalar
field as well. Therefore to get an accurate perturbative solution for as largest range of u as
possible, around 15 cycles or more is advised.

C.2 Shooting method

For numerically calculating the perturbative solution to the metric functions in section 3.2 and
the full solution in section 4, we use the so called shooting method. In this section we describe
in more detail what this method entails.

The shooting method can be used as a numerical method to solve differential equations
with a boundary value problem. This is the case for the modified Einstein equations for which
we constructed the behavior of the metric functions at the boundaries; the near horizon and
asymptotic limits. An additional requirement is that the solution does not have the instable be-
havior with respect to the initial conditions as is the case for the scalar field equation described
in the previous section.
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Figure 11: Solution for B̄2 with m̂= 1. The shooting method resulted in Ā2
h = 0.295

as initial condition in (31).

The shooting method is based on reframing the problem as an initial value problem with
variable initial conditions. One integrates outwards to obtain the solution of this initial value
problem for different guesses of the initial condition and evaluates the solution at infinity until
these values at infinity agree with the boundary condition in the asymptotic limit. To describe
this in more detail let us describe this for the specific case of solving the t t component at
second order in the coupling for the metric function B̄2 as is done in section 3.2. The boundary
conditions are given by (31) and (32), where we can vary the near horizon constant Ā2

h.

• Construct a function f [Ā2
h, u] of the differential equation solver from the black hole hori-

zon outwards to infinity, in this case for the t t component of (A.1) with initial conditions
at the horizon following (31) with Ā2

h as variable.

• Define the function of the asymptotic limit g[u] as in (32).

• Then define h[Ā2
h] = f [Ā2

h, 0] − g[0] the difference between the solution to the initial
value problem and the asymptotic limit evaluated at infinity u= 0.

• Find the root(s) of h, the value of Ā2
h corresponding to the root is the correct initial

condition to the boundary value problem and substituting this value for Ā2
h in f gives

you the correct solution for B̄2(u).

In our case the outer boundary lies in the asymptotic limit, however as one substitutes the
linearized scalar field solution in the differential equations at higher orders in the coupling,
the divergence behavior at finite u of this scalar field also works through in the higher order
equations. Therefore in practice instead of evaluating function h at infinity, evaluate the func-
tions at smallest possible u before the divergence in ϕ1 starts. This does slightly deteriorate
the accuracy of the perturbative solution.

Following this calculation results in the following solution for B̄2 for a mass of m̂= 1.

C.3 Numerical precision tests

In this section we describe in more detail the used numerical method for the numerical inte-
grator mentioned in Sec. 3, 4. We used the MATHEMATICA numerical integrator NDSolve for
solving the boundary value problems in the perturbative and exact contexts. To obtain the
numerical solutions for the metric functions and scalar field on itself the standard machine
precision and “StiffnessSwitching” method in the NDSolve environment are sufficient, and no
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Table 2: Working from left to right, the different settings for the Method, WorkingPre-
cision, AccuracyGoal and PrecisionGoal within the NDSolve function, for finding the
configuration mitigating the effect of numerical inaccuracy.

Methods WorkingPrecision AccuracyGoal PrecisionGoal

“Adams” 5 20 20

“BDF” 15 25 25

“ExplicitRungeKutta” 25 30 30

“ImplicitRungeKutta” 30

“SymplecticPartitionedRungeKutta” 40

“MethodOfLines” 50

“Extrapolation”

“DoubleStep”

“LocallyExact”

“StiffnessSwitching”

“Projection”

“OrthogonalProjection”

“IDA”

“StiffnessSwitching”, Method→
{“ExplicitRungeKutta”, Automatic}
“TimeIntegration”→
{“ExplicitRungeKutta”,

“DifferenceOrder”→ 8}
“TimeIntegration”→
“ExplicitEuler”

“PDEDiscretization”→
{“MethodOfLines”, “SpatialDiscretization“

→{“TensorProductGrid”,

“MinPoints”→ 1000}}
“PDEDiscretization”→
{“MethodOfLines”, “SpatialDiscretization”

→ {“FiniteElement”}}}

problems arise for the solutions and its derivatives. However, we encountered problems with
numerical stability of the solutions in follow up calculations, more specifically when com-
puting the percent difference of the Kretschmann scalar in Fig. 6. This arose as oscillatory
behaviour of the final numerical function describing this percent difference. We therefore set
up a (non-exhaustive) sweep over the different methods and working precision for the ND-
Solve environment to conclude which setting could mitigate this effect. Working from left to
right we checked the following configurations, shown in Table 2.

We executed the tests in the following manner. We set up a module function with the
boundary value problem for the exact field equations as described in Sec. 4 that computes the
solution for the metric function A(r) and ϕ(r), with the method, WorkingPrecision, Accuracy-
Goal and PrecisionGoal as variables. In the same module we compute the percentual difference
of the Kretschmann scalar in massive sGB substituting the solutions, with the Schwarzschild
curvature invariant. From random test we had already found the oscillations due to limited
numerical precision to worsen for smaller choices of the coupling constant, hence we chose to
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do the tests for α̂= 0.01, and to keep the running time manageable, we choose a small scalar
field mass m̂ = 0.01. Additionally from the sample tests we found that some of the methods
in Table 2 that did improve on the numerical inprecision issues, did not give output for the
default WorkingPrecision, therefore in general we set the WorkingPrecision and MachinePreci-
sion to 30. First we computed the percent difference function up to r/rH = 10 for the different
methods in the first column of Table 2 with the AccuracyGoal and PrecisionGoal on default.
We selected the method for which the function did not diverge at the horizon and which mit-
igated the oscillation the most, which resulted in “TimeIntegration” → {“ExplicitRungeKutta”,
“DifferenceOrder”→ 8}.

Then we repeated the calculation specifying to this method, now varying the WorkingPre-
cision found in the second column of Table 2. For precision below WorkingPrecision = 25
in combination with above chosen method, the correct solution for the boundary value prob-
lem is not found, minimal precision of WorkingPrecision = 25 is required. The oscillations
got damped for higher values of the precision as expected, from WorkingPrecision = 30 and
onwards the oscillations up to r/rH = 10 are smoothed out completely.

Lastly we repeated the computation for the above mentioned method and
WorkingPrecision = 25 for different values of the AccuracyGoald and PrecisionGoals given
in the last two columns of Table 2, choosing values comparable to the set WorkingPrecision.
Both tested separate from each other and in the different combinations, checking what config-
uration of these settings mitigated the oscillatory behaviour that is still present at this Work-
ingPrecision. We found no observable improvement on the oscillatory behavior from these
two settings. Hence specifying WorkingPrecision = 30 on itself results in sufficient numerical
precision. The default setting for the AccuracyGoal and PrecisionGoal are both set as half the
WorkingPrecision. For larger distances than r/rH = 10 the precision still might be too lim-
ited but in principle one could solve this issue by improving on the precision settings. Note
we also did not explore every permutation of settings, however for our purposes computing
the solutions with method “TimeIntegration”→ {“ExplicitRungeKutta”, “DifferenceOrder”→ 8},
WorkingPrecision= 30 and AccuracyGoal, PrecisionGoal on default, suffices.

D Additional analysis of perturbative solutions

In addition to the analysis in Sec. 5.1 we discuss in this appendix the perturbative solution
in more detail, comparing the solution up to different orders in the coupling with the exact
numerical case. The difference between the solutions is most noticeable in the near horizon
region, where the spacetime curvature, see Fig. 6, is strongest and the scalar field energy
density the highest, see Fig. 7.

Starting with the metric function Ā as defined in (18) with the perturbative solution
rescaled to variable r with the method described in Sec. 5.1. The left and right panel of Fig. 12
show the metric function near the horizon for α̂= 0.2 and m̂= 0.01 and m̂= 0.1 respectively.
We zoom in on the region near the horizon as there the differences between the curves is most
noticeable, for larger radial distances the curves coincide in all cases below as expected. In
both panels of Fig. 12 one can see that the perturbative curves lie below the exact solution
and above the Schwarzschild solution. Including corrections to higher order in the coupling
for the perturbative solution results in the curve lying slightly closer to the exact solution as
one would expect. The roots of the curves correspond to the respective horizon radii. Similar
as we showed in 3 the horizon radius for the exact solution is smaller than the perturbative
and Schwarzschild horizons. Furthermore from both panels of Fig. 12 we find the horizon
radius shifts towards the horizon of the exact curve for higher corrections to the perturbative
solution.
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Figure 12: The solution of metric function Ā close to the horizon, comparing the
exact, perturbative solution up to α̂3, up to α̂2 and the Schwarzschild solution re-
spectively.
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Figure 13: The solution of ϕ close to the horizon, comparing the exact, perturbative
solution up to α̂3, up to α̂2 and the linearized solution respectively.

In Fig. 13 we show the perturbative solution of the scalar field up to linear, quadratic and
cubic order in the coupling compared to the exact solution for α̂ = 0.2 and m̂ = 0.01 and
m̂ = 0.1 respectively. In both panels we find that the perturbative solution approaches the
exact solution from below and again becomes more accurate with increasing orders in α̂, as
one would expect. Furthermore, comparing the left and right panel we find the a smaller
difference with the exact solution for larger scalar field mass where the improvement is more
noticeable than for the metric function in Fig. 12. For the case of the scalar field we do not
find any particular change comparing the second order solution (green curves) to the cubic
order solution (pink curves). This is interesting as for the latter, the corrections to the metric
function first contribute to the scalar field solution, see Table 1.

From the analysis in this appendix together with Sec. 5.1 we can conclude that the dif-
ference of perturbative solution with the exact solution becomes smaller for small values of
the coupling, large values of the scalar field mass and/or large distances from the horizon.
The comparison does not show any qualitatively new non-perturbative behaviour that would
not be captured by the perturbative solution when adding higher order corrections to increase
accuracy.
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Figure 14: Maximum allowed value of the scalar field at the horizon as a function of
the scalar field mass from the requirement of preventing a naked singularity (squares)
and the near horizon constraint (40) (dots).

E Additional analysis near horizon constraint and finite radius
singularity

In this appendix we discuss in more detail how we obtained the right panel of Fig. 8 and Fig. 14
below. The aim of Sec. 6.2 and this appendix is to compare the near horizon constraint that
ensures the regularity of the scalar field at the horizon and the requirement of censoring the
finite radius singularity behind the black hole horizon. In the following step-by-step procedure
we explain how we obtained the maximum coupling and maximum ϕh values for each value
of the scalar field mass in Fig. 8 and Fig. 14.

1. For a fixed mass m̂ and an initial guess α̂ = 0.1 , we computed the solution to (36) for
the scalar field and metric functions.

2. Subsequently, we check the position of the finite radius singularity for the computed so-
lutions by calculating the Kretchmann scalar and check where it diverges, see Sec. 6.1.1.
We find that for the studied scalar mass range and this initial guess for the coupling, the
singularity lies inside the horizon radius.

3. We increase α̂ and repeat the steps above for each choice of the scalar field mass up to
the solution for which the curvature singularity lies on the horizon. This identifies the
largest possible α̂ = α̂sing.

max to prevent a naked singularity for a certain scalar field mass.
These values give the green square points in the right panel of Fig. 8.

4. Additionally, from the solution for the scalar field for this configuration of the parame-
ters, we identify the maximum allowed amount of scalar hair at the horizon for which

the singularity is censored ϕα̂
sing.
max

h . These values give the green square points in Fig. 14.

5. Now we substitute ϕα̂
sing.
max

h at each choice for the scalar field mass in the near horizon
constraint (40) and solve the inequality ϕ′h < 0 for the coupling obtaining α̂hor.constraint

max .
These values give the black dot points in the right panel of Fig. 8.

6. Similarly we substitute α̂hor.constraint
max in the near horizon constraint (40) for each choice

of the scalar field mass and solve the inequality ϕ′h < 0 for the scalar field value at the

horizon obtaining ϕ
α̂hor.constraint

max
h . These values give the black dot points in the right panel of

Fig. 14.
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We see from Fig. 14 that for masses m̂< 1, the constraints from the curvature singularity and
regularity of the field at the horizon on the maximum ϕh coincide. For slightly larger masses,
the cusp feature arises in the horizon constraint. The origin of this cusp is the same as the
cusps shown in the dashed curves in the left panel of Fig. 8. As explained in Sec. 6.2 this cusp
corresponds to a bifurcation point for value of ϕh for which ϕ′h < 0, but we only consider the
bottom branch to be physical. In the mass regime around the cusp, the requirement of not
having a naked singularity is a stronger constraint than the near horizon requirement. For
the maximum allowed coupling in the right panel of Fig. 8, both cases agree for the range
of masses we studied. Hence we conclude that the maximum coupling is not sensitive to the
choice of ϕh as this discrepancy between the squares and dots does not arise there.

F Calculation of the ISCO and light ring radii

In this appendix we show how one can determine the ISCO radius and light ring radius
in Schwarzschild coordinates and the corresponding orbital frequencies. This is used in
Sec. 6.3.1.

The ISCO radius can be determined from the effective potential. Starting from a static
spherically symmetric metric (11), one can write down the normalization of the four velocity
gµν ẋµ ẋν = −1. Before writing this down explicitly we can use the symmetries of the space-
time, e.g. as the metric components are independent of φ and t there are two constants of
motion E = −eA(r) ṫ and L = r2φ̇, the energy and angular momentum per unit mass. As the
conservation of (the direction of) angular momentum requires the motion of a particle to be
planar, together with rotational symmetry, one can fix the motion to be equatorial with θ = π

2 .
Substituting these quantities in the normalization condition we obtain

eB(r) ṙ2 = −1+ e−A(r)E2 −
L2

r2
,

ṙ2 = Ve f f (r) ,
(F.1)

with

Ve f f (r) = e−B(r)

�

−1+ e−A(r)E2 −
L2

r2

�

, (F.2)

the effective potential as (F.1) now describes the equation for a classical particle moving in
potential Ve f f (r).5 Additionally to the effective potential we can write down the radial com-
ponent of the geodesic equation

ṙ2 +
eA(r)′

2eB(r)
ṫ2 −

r2′

2eB(r)
φ̇2 = 0 . (F.3)

For finding the innermost stable circular orbit we are interested in circular orbits and therefore
ṙ = r̈ = 0. Substituting these conditions in (F.3) and using this equation to construct the

angular frequency ω= φ̇
ṫ results in

ω2 =
eA(r)′

r2′
. (F.4)

5In the literature there are slightly different interpretations of Ve f f e.g. sometimes the E2 term is treated sep-
arately or the sign might be opposite. The definition of (F.2) intuitively makes sense as for large L there are two
extrema which correspond to circular orbits. The extremum closest to the horizon correspond to a maximum and
hence the unstable orbit and the outer extremum to a minimum, the stable orbit. The innermost stable orbit is
found at the point where the two extrema coincide, hence for this purpose the different interpretations generally
do not matter. However the interpretation of the extrema in this way of defining the effective potential makes
most sense.
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Then combining (F.1), the condition for circular orbits, the definitions of the constants of
motion and (F.4) we find for the energy and angular momentum per unit mass for circular
orbits

E = −
−eA(r)

p

eA(r) − r2ω2
,

L =
r2ω

p

eA(r) − r2ω2
.

(F.5)

Now Ve f f (r) has two extrema, the inner extremum is a maximum corresponding to an unstable
circular orbit and the outer with a minimum an thus a stable circular orbit. The minimum
radius for this stable circular orbits happens when these two extrema coincide, this is when
the second order derivative of Ve f f (r) has a root. Therefore taking the second order derivative
to r of (F.2) treating E and L as constants of motion, followed by substituting (F.5) and finding
the radius that corresponds to the root results in rISCO. Substituting this radial coordinate
in (F.4), one obtains the orbital frequency at the ISCO radius, which is in contrary to the
radius a coordinate independent quantity.

Finding the light ring is a bit more straight forward. Photons travel along null paths ds = 0,
additionally we are interested in circular orbits dr = 0 and for similar arguments as before we
can set θ = π/2 hence dθ = 0. This simplifies the equation for null paths to

φ̇2 =
eA(r)

r2
. (F.6)

Additionally from the radial component of the geodesic equation in circular orbits we obtained
(F.4), substituting this in (F.6) gives

eA(r)′

r2′ =
eA(r)

r2
, (F.7)

solving for r results in rLR. Substituting this radial coordinate in (F.4), one obtains the orbital
frequency at the light ring radius.
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