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Abstract

Holographic tensor networks model AdS/CFT, but so far they have been limited by involv-
ing only systems that are very different from gravity. Unfortunately, we cannot straight-
forwardly discretize gravity to incorporate it, because that would break diffeomorphism
invariance. In this note, we explore a resolution. In low dimensions gravity can be
written as a topological gauge theory, which can be discretized without breaking gauge-
invariance. However, new problems arise. Foremost, we now need a qualitatively new
kind of “area operator,” which has no relation to the number of links along the cut and
is instead topological. Secondly, the inclusion of matter becomes trickier. We success-
fully construct a tensor network both including matter and with this new type of area.
Notably, while this area is still related to the entanglement in “edge mode” degrees of
freedom, the edge modes are no longer bipartite entangled pairs. Instead they are highly
multipartite. Along the way, we calculate the entropy of novel subalgebras in a particular
topological gauge theory. We also show that the multipartite nature of the edge modes
gives rise to non-commuting area operators, a property that other tensor networks do
not exhibit.
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1 Introduction

Holographic tensor networks [1–8] are toy models of the holographic map from anti-de Sitter
space (AdS) to the dual conformal field theory (CFT). See Figure 1. While imperfect models
in many ways, their simplicity and concreteness have already allowed us to make rigorous
statements about the emergence of spacetime [2,9], the quantum extremal surface prescription
[1,3,10,11], reconstruction complexity [12], and the black hole information paradox [11].

In this note we propose a way to improve these models so that they might continue to
offer insight. So far, perhaps tensor networks’ biggest limitation has been their lack of time
evolution. Straightforward attempts to add interesting local time evolution in the “bulk” fails
to match any local time evolution of the dual “boundary” theory.1 Long term, we would like
to fix this shortcoming, adding time evolution and obtaining a completely explicit instance of
holography.

In pursuit of that goal, we can ask: why have tensor networks failed to include time evolu-
tion, when the AdS/CFT duality succeeds? One glaring difference is that in gravity the diffeo-
morphism constraints make the physical Hamiltonian a local integral along the boundary. This
leads to an easy match to a local Hamiltonian in the dual theory. Therefore, a sensible first
step towards adding time evolution is to construct tensor networks that have this feature of
gravity, with strong enough constraints that something similar happens, allowing us to reduce
the Hamiltonian to a boundary term.

1See [13,14] for discussions of the difficulties in adding interesting time evolution. See [15,16] for one approach
to a solution that does not seem to utilize gravity-like physics in the bulk.
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Figure 1: An example tensor network. On the left is a graph representing the “bulk”
Hilbert space Hbulk, analogous to a discretized version of AdS. The links represent
the geometry. On the right is the “boundary” Hilbert space Hbdry analogous to the
CFT. The holographic tensor network is a linear map V : Hbulk → Hbdry, analogous
to the holographic map.

At first, however, this appears intractable. Tensor networks involve a discretization of
spacetime, which inherently breaks this very diffeomorphism-invariance that we’d like to have.
Nevertheless, in low enough dimensions there is a trick available to us. We can change
variables and describe gravity as a certain kind of topological quantum field theory (TQFT)
[17–19]. The idea is to define a gauge field as a particular combination of the vielbein and
spin connection, transforming the Einstein-Hilbert action into that of an SL(2,R)× SL(2,R)
Chern-Simons theory.2

The advantage is that discretizing the TQFT no longer means breaking diffeomorphism-
invariance. This is because the metric is not a property of the “base space” the TQFT lives on,
and instead is encoded in the dynamical fields. The diffeomorphisms become “internal” gauge
transformations on these fields rather than transformations of the base space itself. Hence
we can try to discretize this TQFT and include it as part of the tensor network’s bulk Hilbert
space.3

We immediately run into a problem. The holographic entropy formula is different in the
TQFT description, in a way that is not obviously compatible with tensor networks. Recall in
AdS/CFT (in time-reversal-symmetric situations), the von Neumann entropy of a CFT subre-
gion B can be computed by [24–26]

S(B) =min
b

�

〈Âðb〉+ S(b)
�

, (1)

where the minimization is over AdS regions b whose boundary ðb is homologous to B, and Âðb
measures the area of ðb. Traditional tensor networks satisfy a similar formula [3], where 〈Âðb〉

2While these theories match at the level of the action, there are important known differences at the level
of the path integral. For example, the natural gauge theory path integral would integrate over configurations
corresponding to non-invertible metrics, which are not included in the gravitational path integral. These subtleties
will not concern us, because it seems they can be addressed by using an appropriately modified TQFT [19] called
the Virasoro TQFT, and our main discussion will not rely on details of any particular TQFT.

3Putting Chern-Simons theories on the lattice is a hard problem in general. However, pure gravity is parity-
invariant. Parity-invariant Chern-Simons theories based on compact groups can be latticized as string-net models
[20], which include the quantum double models we will study below. String-net models are the Hamiltonian
description of Turaev-Viro models [21]. Gravity is not based on a compact group and so doesn’t fall into this
category; some progress for this case has been made in [22,23].
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grows with the number of links cut by ðb. Of course, when we describe the AdS with the
TQFT, the same formula (1) holds. However, in this description the area operator Âðb should
be understood differently! The relevant metric is now a function of the gauge fields; Âðb is a
certain Wilson line [27–31]. When there’s no matter, the theory is topological and this Wilson
line gives the same answer evaluated along any path:

(2)

Another way to say this is that the TQFT lives on a spacetime with a metric that is irrelevant.
The operator Âðb is the area of a surface evaluated in the AdS metric, which is like the target
space of the TQFT. This offers a challenge for tensor networks. We would not obtain an entropy
formula with a property like (2) if we followed perhaps the most straightforward method to
incorporate the discretized TQFT into existing tensor networks, from [4–8]. Those tensor
networks lead to an entropy formula with 〈Â〉 scaling extensively with the number of links
along ðb.4

The point of this note is to solve this problem with the area operator. In Section 3 we
construct a tensor network with a holographic entropy formula like (1), but with an area
operator that is a gauge-invariant function of the fields that encode the metric, analogous to
the one in the TQFT description.

To study this problem, we will not need the full sophistication of SL(2,R) × SL(2,R)
Chern-Simons theory. Instead we will work with a toy model with the same subtlety, a much
simpler topological theory that we describe in Section 2, which we call the “doubly gauged
(DG) model.”5 We then define a linear map from this DG model with matter to a “boundary”
Hilbert space, in Section 3. This bulk-to-boundary map (or “holographic map”) is a new kind
of tensor network. We explain the motivation behind the construction in Section 4.

We start with a setup as in Figure 1, like all holographic tensor network models. There are
two tweaks. First, the bulk Hilbert space now includes a topological lattice gauge theory on
the links. Second, the holographic map (the tensor network) is defined in a different, more
topological way. The boundary Hilbert space is essentially the same as before. The result is
that now boundary entropies satisfy (1) but with a different, topological Â. The minimization
is over where to put the cut ðb relative to the matter.

This new area operator leads to two striking properties of this model, which we now de-
scribe. The first striking property of our model is that its area operators do not commute,
which is a desirable match to gravity [36]. In previous tensor networks, given two overlap-
ping boundary subregions B and C , one could generally find a bulk state such that the area
operators associated to both B and C had arbitrarily small fluctuations. This is impossible
in real AdS/CFT, because of the gravitational constraints. It is also impossible in our tensor
networks, also because of the constraints.

4This sort of extensive contribution is related to the one that appears in the conventional calculations of entan-
glement in TQFTs [32–34], in which entropy is calculated by introducing a lattice regulator, leading to a subregion
entropy with a term proportional to the area of the boundary of the subregion. We do not want to compute en-
tropies this way, because the gravitational entropy should be independent of the way we choose to regulate the
auxiliary space the TQFT lives on [27–31].

5Our doubly gauged models are Kitaev’s quantum double models [35], but with projection onto the ground
space enforced as a constraint.
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(a) (b)

Figure 2: A difference in the entanglement structure of “edge modes” in traditional
tensor networks (Figure 2a) and the tensor networks from this paper (Figure 2b).
We consider two overlapping boundary regions, a blue one and a green one, and
we have drawn their homologous bulk minimal surfaces as dashed lines in their
respective color. In 2a, there are pairs of red dots, each pair associated to a link
and representing bipartite entangled degrees of freedom. The entanglement entropy
across each dashed line grows extensively with the number of links cut. Moreover,
the “area operators” associated to each dotted line generally commute, because they
are associated to the entanglement between different pairs of red dots. In 2b, the
entanglement is no longer bipartite. Instead, the red dots are in one multipartite
entangled state, and the entanglement entropy does not grow extensively across the
dashed lines. Furthermore, the two area operators do not generally commute, be-
cause the allowed four party entangled states with fixed spectrum across the blue cut
will not also have fixed spectrum across the green cut.

The second, related property is that this area term is the entanglement of naturally
multipartite-entangled edge modes. As in all tensor networks, the “area” term in the holo-
graphic entropy formula quantifies the amount of entanglement in the “edge modes” across
the cut. Historically, the edge modes in tensor networks have been local and bipartite: each
link is a projected entangled pair. The area term simply counted the number of bipartite en-
tangled pairs that were separated by the cut (this is why the area grew extensively with the
number of cut links). See Figure 2a. In our new model, this part of the story is completely dif-
ferent. The degrees of freedom entangled across a cut are not in spatially localized, bipartite
entangled pairs, but are in multiparty-entangled states. See Figure 2b.

These multipartite edge modes arise from a choice of factorization. Given a lattice gauge
theory and a cut defining a subregion, there are many prescriptions for embedding the Hilbert
space into one that factorizes across that cut, see e.g. [37–40]. The conventional choice, intro-
duced in [41,42], leads to the insertion of a number of degrees of freedom scaling extensively
with the area of the cut. However, there is one prescription that works differently, discovered
by Delcamp, Dittrich, and Riello (DDR) in [43], see also [44,45]. We utilize this prescription,
along the way generalizing it to new contexts.

This note is organized as follows. In Section 2 we introduce the topological gauge theory.
In Section 3 we turn to tensor networks, explaining our new construction. We also explain
the “commuting areas problem” and how this new construction avoids it. In Section 4 we
discuss factorization of gauge theories and argue that the choices made in the construction of
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the tensor network are fairly rigid. In Section 5 we explain the gravitational description of
our networks (which is somewhat obscure in the gauge theory description), and connect it to
other work such as [46]. In Section 6 we conclude and discuss future directions.

While this manuscript was in preparation, the work [23] appeared. They also discuss
the topological description of gravity in the context of a tensor network, and find a similar
non-extensive area operator. Our works agree qualitatively but explore different aspects. In
particular, in this paper we have a bulk Hilbert space with matter and consider the physics of
overlapping area operators. In [23], while they do not include matter, they use a more realistic
TQFT. It would be interesting future work to combine these constructions.

Notation and conventions

A lattice Λ = {V, L, P} is a set of a collection of vertices V , a collection of links L, and a
collection of plaquettes. A subregion b = {Vb, Lb, Pb} is a set such that Vb ⊆ V , Lb ⊆ L, and
Pb ⊆ P. We will use ðb to denote the set of links connecting a vertex in b to a vertex in the
complement of b.

2 Doubly gauged lattice models

The goal of this note involves incorporating a topological gauge theory into a tensor network.
This section introduces the topological lattice model we will use, and then discusses important
properties, including its algebra of operators and insensitivity to the lattice.

2.1 Hilbert space

First we consider the case without matter. The model is essentially Kitaev’s quantum double
model [35] restricted to the ground space. Let G be a finite group, Σ an oriented 2D surface
(possibly with boundary), and Λ = (V, L, P) be an arbitrary oriented lattice on Σ, where V, L,
and P are the sets of vertices, oriented links, and plaquettes of the lattice respectively. We
restrict to Σ = D2 for this work, though we expect it to straightforwardly generalize to the
cylinder Σ = S1 × I as well. For every ℓ ∈ L, let Hℓ := HG := L2(G) be a Hilbert space
associated to that edge, spanned by the basis {|g〉 : g ∈ G}, which we call the group basis.6

Note that there is another basis for Hℓ that will be convenient later, called the “representation
basis”: By the Peter-Weyl theorem (see e.g. Appendix A of [47] for an introduction), the Hilbert
space decomposes as

HG =
⊕

µ∈Ĝ

Hµ ⊗Hµ∗ , (3)

where Ĝ is the set of irreducible representations (irreps) of G. The representation basis is
spanned by orthonormal states |µ, ij〉 where i, j index the states in Hµ,Hµ∗ respectively. The
Hilbert space associated to the collection of all the links is

Hpre :=
⊗

ℓ∈L

Hℓ , (4)

which we call the “pre-gauged” Hilbert space. This Hpre has a natural basis of states of the
form

�

�g1, . . . , g|L|
�

, (5)

which we will use often.
6It will sometimes be convenient to allow ourselves to reverse the orientation of a link while leaving the physics

unchanged. In general we will refer to the reverse of the link ℓ as ℓ̄, and use the isomorphism between Hℓ̄ and Hℓ

given by |g〉ℓ̄ ∼=
�

�g−1
�

ℓ
. Note that a given set L is only allowed to contain one of ℓ and ℓ̄.
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We define the following operators. The shift operators Lℓ(h) (respectively Rℓ(h)) act on Hℓ
by left (right) multiplying by h (h−1), i.e.

Lℓ(h)
�

�g1, . . . , gℓ, . . . , g|L|
�

=
�

�g1, . . . , hgℓ, . . . , g|L|
�

,

Rℓ(h)
�

�g1, . . . , gℓ, . . . , g|L|
�

=
�

�g1, . . . , gℓh
−1, . . . , g|L|

�

.
(6)

These are sometimes also called the ‘electric’ operators.7 The ‘magnetic’ operators are defined
as follows. Let ρ be a path through Λ, i.e. an ordered collection of vertices {v1, v2, . . . , v|ρ|},
each vertex connected by a link to the one before and after. Let ℓi be the link connecting vi
and vi+1. Let Wρ( f ) be defined to compute the product of the group elements of the edges
connecting the vertices in ρ and then apply the function f : G → C to the product. The
prescription for computing the product is to start at the first vertex and then move along the
edge connecting it to the next vertex, right multiplying by the associated group element, and
inverting that group element if that edge is oriented opposite relative to the direction of travel.
If we call this product gρ ∈ G, then we can write

Wρ( f )
�

�g1, . . . , g|L|
�

= f (gρ)
�

�g1, . . . , g|L|
�

. (7)

One useful function f is the Kronecker delta δh(g) which equals 1 if g = h and 0 otherwise.
We use these to define the operators that appear in the gauge constraints as follows. Define

Av(g) to act on edges that touch v ∈ V by Lℓ(g) (or Rℓ(g)) if the link is oriented away (towards)
v. Let (v, p) denote the counterclockwise path around plaquette p starting at vertex v. Define
B(v,p)(h) =W(v,p)(δh) to annihilate a state where the group element around (v, p) is not h, and
to be 1 on states where it is. For example,

(8)

These operators can easily be shown to satisfy the algebra (known as the quantum double
algebra),

Av(g
−1) = Av(g)

† ,

Av(g)Av(h) = Av(gh) ,

B(v,p)(g)B(v,p)(h) = δg,hB(v,p)(h) ,

Av(g)B(v,p)(h) = B(v,p)(ghg−1)Av(g) .

(9)

To define the physical Hilbert space, we will need the projectors

Av :=
1
|G|

∑

g∈G

Av(g) ,

Bp := B(v,p)(e) ,
(10)

7Note that these two shift operators are related by reversing the orientation of the link, i.e. Lℓ(h) = Rℓ̄(h).
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where v is any vertex adjacent to p and e ∈ G is the identity group element. (Note that when
h= e, B(v,p)(h) depends only on p and not on the choice of v.) These satisfy

Av(g)Av = Av ,

B(v,p)(h)Bp = δ(h, e)Bp ,
(11)

(10) are both projectors by the following argument. By the above equation, AvAv = Av , and by
the invariance of

∑

g∈G under g → g−1 we have Av = A†
v . Likewise, BpBp = Bp and manifestly

Bp = B†
p. Using (9), one can check that for all v ∈ V and p ∈ P, [Av , Bp] = 0.

We now will use these to build projectors onto the “gauge-invariant subspace.” First, for
generality let there be a subset Vbdry ⊂ V of vertices and Pbdry ⊂ P of plaquettes that we will
not impose constraints on. These include plaquettes and vertices at the boundary of Σ and
also any plaquettes that encircle non-trivial cycles of Σ. Let the complements of these sets be
Vbulk and Pbulk. Define the projectors onto the gauge-invariant subspace

A :=
⊗

v∈Vbulk

Av ,

B :=
⊗

p∈Pbulk

Bp .
(12)

A projects onto the subspace satisfying Gauss’s law at each (non-boundary) vertex, and B
projects onto the subspace with a trivial holonomy – i.e. flat connection – around each (non-
boundary) plaquette. Define the physical, “gauged,” Hilbert space

Hphys :=
Hpre

Gauss× Flatness
:= ABHpre . (13)

This equation reflects a very important difference in our perspective compared to much
previous work. In the lattice gauge theory literature, only the A-type, Gauss’s law, constraints
are imposed in the definition of the physical Hilbert space. Similarly, in the literature on
topological phases, it is common to identify our Hpre and Hphys as the physical and ground
state spaces respectively. That is natural from a condensed matter perspective, since there
are no materials whose fundamental theory is topological. However, in the comparison to
(the gauge theory description of) 2+ 1d general relativity, both the Gauss’s law and flatness
constraints are toy models for the diffeomorphism constraints, and so it is important for us
that they are both used to define the physical Hilbert space.8

Including matter changes things as follows. Let ‘site’ denote a pair (v, p) of a vertex and
a plaquette, such that the vertex is on the bottom-left of the plaquette (this is a convention).
Denote by S the collection of sites. To each site we associate a Hilbert space H(v,p), carrying a
representation of the quantum double algebra (9). The pre-gauged Hilbert space is now

Hpre =
⊗

ℓ∈L

Hℓ
⊗

(v,p)∈S

H(v,p) . (14)

The constraints are modified to

Av(g)→ Av(g)Amat,(v,p)(g) ,

B(v,p)(g)→
1
|G|

∑

h∈G

B(v,p)(gh−1)Bmat,(v,p)(h) , (15)

8Readers familiar with the Chern-Simons description of 3d gravity might find this comment a little confusing,
since in that case the diffeomorphism constraints map to flatness constraints on the gauge field. Flatness constraints
in continuum Gk × G−k Chern-Simons theory become both types of constraints in the lattice model [20].
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where the operators Amat, Bmat act on H(v,p) and satisfy the algebra (9). The constraints are
(10), with these new operators on the right hand side. We allow Amat, Bmat to be the iden-
tity operators at some sites, in which case the constraints at those sites are not modified; for
simplicity we also assume that at these sites the matter Hilbert space is trivial, H(v,p) = C.

Lattices that we will consider look for example like

(16)

Here, black circles denote bulk vertices and white circles denote boundary vertices. Diagonal
lines connected to gray circles denote which bulk sites come with matter degrees of freedom
[43, 48] – the associated vertex is the one connected to the gray circle by a line, and the
associated plaquette is the one that contains the gray circle. We can think of these gray circles
as being where the matter lives – any site without one has no matter degree of freedom.

It will be important to note how Gauss’s law manifests in the representation basis. Say we
have n links connected to a vertex, all oriented outwards for simplicity. Let there be matter as
well. Recall that each link is spanned by a basis of the form |µ, ij〉, as in (3), and the matter has
some Hilbert space also in general decomposing as a direct sum over Hilbert spaces associated
to irreps, which we might write as spanned by |µ, i, c〉 where i is a representation index (like
the i, j for links) and c is a multiplicity index allowed for generality. The subspace invariant
under the action of A is the one for which all the i indices “fuse together” such that the joint
representation is the trivial irrep. There are only particular combinations of the µ that can
fuse appropriately, and the entanglement in the i indices is greatly constrained. For example,
if n= 3 and there’s no matter, a general state takes the form

∑

µ1µ2µ3
i1i2i3
j1j2j3

Rµ1µ2µ3
j1j2j3

Cµ1µ2µ3
i1i2i3

|µ1, i1j1〉 |µ2, i2j2〉 |µ3, i3j3〉 , (17)

where Rµ1µ2µ3
j1j2j3

are free parameters, but Cµ1µ2µ3
i1i2i3

are the Clebsch-Gordan coefficients, and are
completely fixed, depending only on the group G. The fusion of more than three legs also
has qualitatively similar restrictions, except there tend to be more than one way to fuse the i
indices given the set of µ indices.

2.2 Physical operators

Given Hphys, what do the physical operators look like? The operators (6) are not gauge-
invariant when acting on bulk links. If |ψ〉 ∈Hphys, Lℓ(h) |ψ〉 violates Gauss’s law at a vertex
adjacent to ℓ, since [Lℓ(h), Av] ̸= 0. We can construct the gauge-invariant operators as follows.

First note that a slight generalization of Lℓ(h) will violate Gauss’s law at a different vertex
instead. Given a link ℓ and a path ρ = {v|ρ|, . . . , v1} with ℓ oriented away from v1, let Tℓ,ρ(h)
shift the element assigned to link ℓ by h conjugated by the product of group elements along ρ,

9
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for example for ρ = {v3, v4, v1} and ℓ the link between v1 and v2,

. (18)

We call these transported shift operators. Morally, we are picking an element h ∈ G in the frame
of v3 and then transporting it along ρ to v1. Then at v1 we left multiply the element on ℓ. We
can confirm that Tℓ,ρ fails to commute with Av only for the v at the start of ρ. Transported
versions of the Rℓ(h) can also be constructed. Note the usefulness of these transported shifts:
we can define a shift operator on an arbitrary edge ℓ that commutes with A by starting ρ at
a vertex in Vbdry. However, while boundary anchored transported shifts commute with A, it is
straightforward to show they do not commute with B as long as ℓ borders some p ∈ Pbulk.

We will now define operators that commute with both, called ribbon operators [35,49]. A
ribbon is a set of two paths, one through the graph (the “spine”), the other an adjacent path
through the dual graph (the links intersected by this dual graph path are called the “spokes”).
We draw ribbons with an oriented dashed line along the dual graph path, and shade the space
between the two paths, as below. Given a ribbon γ, we define a ribbon operator as follows.
Let g, h ∈ G. The ribbon operator Fγ(h, g) acts as

(19)

One can confirm this commutes with both A, B except possibly at the end points of γ. Therefore
this operator is gauge invariant if its endpoints are at the boundary.

In the presence of matter degrees of freedom, a ribbon can also end on a site with matter.
Any charged matter has to be dressed with the appropriate ribbon operator, either to another
charge or to the boundary.

An important property of ribbon operators is that they are topological. If two ribbons γ,γ′

share the same end-points and γ can be continuously deformed to γ′ without crossing any
matter excitations, then

Fγ(h, g) = Fγ′(h, g) . (20)

See [49] for a detailed proof.
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2.3 Lattice independence

We now describe a powerful idea that we will use heavily: lattice independence. Above, we
started from a lattice Λ which defined a Hpre and then by extension a Hphys. But ultimately,
we only care about Hphys – the lattice and its associated pre-gauged Hilbert space are just
tools helping us visualize the physical Hilbert space. This is a handy realization because many
lattices lead to the same Hphys! Given a physical Hilbert space, we might as well use whichever
lattice makes it easiest to answer the question at hand.

We will think about lattice independence as follows. Say we start with a latticeΛ1, defining
H(1)pre, projectors A(1) and B(1), and physical Hilbert space Hphys = A(1)B(1)H(1)pre. There are two
“elementary moves” that change the lattice but leave the physical Hilbert space unchanged,
see e.g. [50, 51]. That is, applying one of these elementary moves would give us a Λ2, such
that Λ2 defines H(2)pre and projectors A(2) and B(2) with

A(2)B(2)H(2)pre = A(1)B(1)H(1)pre . (21)

We describe the moves visually here. See Appendix A for a mathematical description.

Move 1: Add (or remove) a vertex An example of this move is

(22)

Note that we can move in either direction.
This isomorphism between physical Hilbert spaces can be understood as follows. Consider

a state where all five links on the left lattice are carrying fixed irreps µ1,...5. Gauss’ law requires
that the five irreps on the five links fuse to the identity irrep, µ1⊗· · ·⊗µ5→ 1. The key fact is
that fusion of irreps is associative. If µ2,3,4 fuse to µ0 and µ1,5 to µ′0, then Gauss’ law requires
that µ0,µ′0 also fuse to the identity. This is only possible if they are conjugate irreps, exactly
like the two ends of a link, µ′0 = µ∗0. The new link then carries the irrep µ0.

In general, the state might be in a superposition of many µ0 (or even many copies of
the same irrep), but this map extends linearly. The new link carries the total electric flux
propagating out of ℓ2,3,4, which can be stated mathematically as

Rℓ2
(h)Rℓ3

(h)Rℓ4
(h)Lℓ0

(h)
�

�

�

Hphys

= 1 , (23)

which is exactly the Gauss’s law constraint on the right lattice. Similarly with the other end of
the new link. To go the other way, we just run the above argument backwards: since fusion is
associative, we don’t need to separately fuse µ2,3,4 and µ1,5.

An illustrative special case of this move is to split one link into two:

(24)

In the irrep basis the map takes the form

Vvertex |µ; ij〉1 =
1

Æ

dµ

dµ
∑

k=1

|µ; ik〉0 |µ;kj〉1 . (25)
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The flux emanating out of ℓ1 (or, more properly, ℓ̄1) is µ, and that is what the new link carries.

Move 2: Add (or remove a plaquette) The move is simply

(26)

If there is a matter degree of freedom in the original plaquette, then we need to make the
decision of which of the two new plaquettes it lives in.

Importantly, it does not matter that we added a link inside of a plaquette that already
existed. We can take an unclosed set of links – which do not form a plaquette and therefore do
not satisfy any flatness constraint – and close them by adding a new link. The new plaquette
satisfies the flatness constraint regardless. The reverse operation is also important: we can
take a plaquette on the edge of a lattice, then remove the outermost link, removing exactly
one plaquette.

Ribbon operator transformation

A ribbon operator F acts on Hphys and therefore must be represented on any associated lattice.
We can ask: given Fγ(h, g) acting onH(1)pre, what is the associated operator onH(2)pre? The answer
is that it is also a ribbon operator, now including the new link if a plaquette was added along
its path. For example:

(27)

In general, the rule is as follows. The ribbon γ is completely specified by its topological
properties, i.e. its end-points, orientation, and position relative to matter degrees of freedom.
The equivalent ribbon on the new lattice is simply the one that has the same properties.
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2.4 Subalgebras and their centers

Now that we have understood the properties of the global system, we turn to subregions and
subalgebras. Given a lattice Λ, a subregion b = {Vb, Lb, Pb} is a subset of vertices, links, and
plaquettes, with Vb ⊆ V, Lb ⊆ L, Pb ⊆ P.9 We wish to associate to b an algebra of physical
operators Ab. The feature of the subalgebra that will interest us most is the center Zb ⊆ Ab,
since that is the part associated to the area operator [10]. (The center is the subalgebra of Ab
that commutes with all of Ab.)

It turns out there are multiple types of subalgebras we will be interested in. In this section
we will explain the simplest, most natural kind of subalgebra. In Section 2.7 and Appendix C
we will explain the other types, and why we consider them. Physically, all of these subalgebras
have in common that their center includes the operator that measures the net electric flux out
of b. This is important, and means we can always find in the center an area operator with this
same physical interpretation.

Given a region b, perhaps the most natural subalgebra to associate to it is all operators on
Hpre that commute with A and B and act trivially on the complementary set of links (Hℓ) and
matter (H(v,p)). This is the type of algebra we consider in this subsection.

We furthermore impose the following restrictions on b for simplicity, in this subsection. We
will specialize to lattices Λ associated to 2D surfaces Σ with the topology of a disk, D2. These
are analogous to Cauchy slices of global AdS3.10 As mentioned in the introduction, ðb is the
set of links connecting Vb to V \Vb. The set ðb forms a dual path in the lattice, which intersects
some plaquettes Pðb. We impose the restriction that ðb is topologically an interval, dividing
the D2 into two pieces. We also require that no plaquette in Pðb contain a matter degree of
freedom. It is possible to make this the case using elementary lattice moves, so there is no loss
of generality, and the subsequent discussion will be simplified with this requirement.

Let γ be a ribbon whose spokes are ðb and whose spine is the path connecting the vertices
in Vb adjacent to links in ðb. The center is generated by the following operators that live on
this ribbon:

Fðb([h]) :=
1
|[h]|

∑

w∈[h]

∑

g∈G

Fγ(w, g) , (28)

where [h] := {w ∈ G : ∃g ∈ G s.t. g−1wg = h} is the conjugacy class of h. A different basis
will be convenient:

Fðb(µ) :=
dµ
|G|

∑

h∈G

χµ(h)Fðb([h]) . (29)

Here µ labels irreducible representations (irreps) of G, and χµ(h) is the character of irrep µ

and element h. A simple calculation shows that these are a set of orthogonal projectors,

Fðb(µ)Fðb(µ
′) = δµ,µ′Fðb(µ) . (30)

We prove these are central in Appendix B, along with other properties, with a straightfor-
ward argument: we write down all operators inAb and then check which commute. Physically,
these operators measure the total electric flux out of a region. µ with larger dimensions cor-
responds to more net flux. Intuitively, these are central because no gauge-invariant operator
confined to a region can change the net flux.

9Note that we can also define a region by drawing a dual path. Just use this definition after adding new vertices
wherever the dual path intersects the lattice.

10It would be straightforward to generalize our discussion to the case where Σ is a cylinder, analogous to the
two-sided black hole. In this setting we can consider subregions bounded by cuts ðb that are topologically S1, and
the center for such subregions was written down in [43]. Much like Fγ(µ) projects onto a sector of fixed electric
flux, the central ribbon operators in this case project onto fixed irrep of the quantum double D(G).
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Let’s convince ourselves that these operators measure the net electric flux using the lattice
independence tools from Section 2.3. Consider as indicated here a subregion b and the ribbon
acting on ðb (note b includes all vertices and links that are even partially inside the circled
region),

(31)

Note that we did not draw the ribbon extending all the way to the boundary vertex. The rules
for these central ribbon operators are that they can end on spokes; the part outside the spokes
is irrelevant because it is summed over. See Proposition B.4.

As explained in Section 2.3, we change nothing by removing plaquettes along the divide
(in the right way). After two applications of (26), we obtain a lattice with just one link along
the path of this ribbon,

(32)

Now we see: the central ribbon operator on the original lattice acts an electric operator (6) on
the single link at the edge of the subregion on the new lattice. Again, nothing physical changed
under each lattice manipulation. All that changed was how we represented the physical Hilbert
space. Therefore the physical interpretation of these central ribbon operators is always the
total electric flux, independent of which (equivalent) lattice we use.

We have explained the central operators of the simplest kind of subalgebra we might as-
sociate to a region b. As mentioned, we will also consider other types of subalgebras to assign
to regions. These we discuss in Section 2.7 (and in more detail in Appendix C). The basic
reason is that we want to associate to all b an algebra in which the center includes operators
measuring the total electric flux out of b, but not operators measuring the flux out of individual
parts. This can make the subalgebra complicated. For example, say we are given a b with two
connected parts b1 and b2, but with b1 and b2 far away from each other. Say we associate
to b1 and b2 the natural algebra described above, and furthermore say we associate to b the
algebraic union of these two subalgebras, Ab = Ab1

∨ Ab2
. This is not what we want. In

the center of Ab are operators measuring the net flux out of b1 and b2 individually. We will
instead consider Ab with even more operators, some of which will fail to commute with the
individual centers of b1 and b2. The only electric flux measurement in the center will be the
net flux out of all of b.

2.5 Overlapping central ribbons don’t commute

One important fact about the central ribbon operators is that they generally fail to commute
with the central ribbon operators of other, overlapping regions. This is important for the
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following reason. In future sections, the entropy we will assign to (some) b will have the
form11

S(b)|ψ〉 = 〈ψ|Âb|ψ〉+ S(b; alg)|ψ〉 , Âb :=
∑

µ

log
�

dµ
�

Fðb(µ) . (33)

The first term is the expectation value of a state-independent operator, and we will refer to
it as the area operator, and the second term is the “algebraic von Neumann entropy” which
we will define later. Two crossing area operators generally fail to commute, which we will
interpret as analogous to the “non-commuting areas” property [36] in gravity. In Section 3.3
we explain this aspect of our tensor network.

We prove that suitably overlapping area operators fail to commute in Appendix B. Here we
show an example. Consider this a and b:

(34)

Say we fix the net flux out of the a region. What happens to the net flux out of b? Can we
simultaneously fix it? For a non-abelian G, the answer is no. Fixing the flux out of a means
projecting onto a state of definite µ for the a region, where µ is the label for the joint repre-
sentation of all links in ða. In general we cannot simultaneously fix the joint representation of
all links in both ða and ðb if a and b are distinct but overlap.

For example, consider a simple lattice with four links connected at one vertex, with regions
a and b each two of the links (remember, they include the entire link if it is even partially
circled):

(35)

Say G = SU(2). Gauge-invariance tells us that all four links must fuse to the trivial irrep, but
there are multiple ways to do this. Consider the case that all four links are in the spin 1/2
representation. This is the familiar setting of four spin 1/2 particles that together are in a
singlet state. To fuse to the spin 0 representation, the two links in a could fuse to µa = 0 or
µa = 1, and in either case the two complementary links have to do the same. But fixing µa
either way gives a singlet state with µb very not fixed. There’s no total spin 0 state with both
µa and µb fixed. The operators that measure them fail to commute.

2.6 Reduced lattices

We can use the lattice deformations described in Section 2.3 to make a ‘minimal’ lattice, which
we call the reduced lattice. We describe the reduced lattice for the disk D2, then argue that any
lattice (embedded in D2) can be deformed to it, and finally describe what the ribbon operators
(and fused ribbon operators) in L(Hphys) look like in this reduced lattice.

11More generally, the entropy will still take this form but with an operator Âb of a slightly different form. Physi-
cally, this Âb still measures the net electric flux out of b.
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Figure 3: Reduced lattice for D2. There are n boundary points denoted by white
circles, and m lollipops. Each lollipop consists of two links connected at a vertex,
with some matter living at that vertex.

The reduced lattice for D2 is as follows.12 It consists of

1. A central vertex that all boundary points are connected to by links.

2. A “lollipop” for every matter degree of freedom, also connected to the central vertex.

See Figure 3.
We change the original lattice to the reduced lattice by using the elementary moves. In

particular, for any plaquette we contract all but one of the links so that the plaquette consists of
one link starting and ending on the same vertex, see Figure 4. If the holonomy around the pla-
quette is flat, then the flatness constraint implies that the state on this link is |e〉. Gauss’s law at
this vertex leaves this link invariant, since e→ heh−1 = e. Thus, this link is a one-dimensional
tensor factor and we can drop it. We do this for all contractible plaquettes, resulting in a new
lattice where all plaquettes are inequivalent.13 In the case when the plaquette contains a mat-
ter degree of freedom, we add a link to separate out a lollipop.14 This gives us the reduced
lattice described in Figure 3 for D2.

Let us see an explicit example. Begin with

(36)

12The reduced lattice for the cylinder is similar, with one extra ingredient. There are two more links, start-
ing as well as ending on the central vertex; all lollipops are between these two links. These two links are both
representatives of the non-contractible loop of the cylinder, one for each boundary of the cylinder.

13Another way to arrive at the reduced lattice is via the fusion basis lattice of [43, 48]. For D2, they find a
tree lattice with one node for every boundary vertex and one lollipop for every plaquette with a matter degree of
freedom. They show that the different assignments of irreps for links on the lattice specifies a complete basis for
the physical Hilbert space. Our reduced lattice can be obtained from this tree by removing all but one bulk vertices
on the ‘trunk.’

14When constructing the reduced lattice for a more general manifold, some plaquettes may be non-contractible
because it surrounds a hole in the manifold. In that case, do not remove it.
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Figure 4: We contract all but one link of any plaquette, so that the plaquette consists
of one link. If there is no matter inside, we can get rid of the link. If there isn’t, we
split it off into a ‘lollipop.’

As before, black circles denote bulk vertices, white circles denote boundary vertices, and di-
agonal lines connected to gray circles denote which bulk sites come with matter degrees of
freedom. First,

(37)

Here we have used the move (26) to remove one link from each of the plaquettes without
matter. Next,

(38)
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We have used (22) to remove two vertices, consolidating the graph. Next,

(39)

Here we have removed four more vertices with (22), two from each remaining plaquette. Next,

(40)

We again used (22) to remove two vertices, one from each plaquette. To reduce clutter we
have suppressed 10 of the 12 boundary vertices and each of their links, indicated by “· · · ”.
Finally,

(41)

We added in two vertices using (22). This graph is now in the form (46).

2.7 Subalgebras revisited

We are now in a position to discuss the general kinds of subalgebras we might assign to a
subregion b. For better or for worse, our tensor network construction will not allow us to
consider only subalgebras of the simple kind from Section 2.4. Indeed, the tensor network
will satisfy a holographic entropy formula like

S(B) =min
b

�

〈ψ|Âb|ψ〉+ S(b; alg)
�

, (42)

where the minimization is over a set of bulk subregions b, each candidate b including a differ-
ent set of matter legs. What’s important is that given each b, there is an associated subalgebra
(determined by the details of the tensor network). The particular subalgebra is important, and
for example affects the precise value of the algebraic entropy S(b; alg).

18

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.070


SciPost Phys. Core 7, 070 (2024)

The general subalgebras we’ll consider are defined as follows. Say we are given a reduced
lattice as in Figure 3. We pick some subset of “boundary links” (connected to white circles)
and lollipops to be a subregion b̃. To this b̃, assign the natural kind of algebra from Section
2.4, which we’ll call Ab̃. Now, convert the reduced lattice to a more regular “full” lattice. The
algebra Ab̃ becomes an isomorphic algebra we’ll call Ab acting on this full lattice. Ab can be
associated to a subregion, which we can call b – indeed it still involves operators acting on a
particular set of matter legs, for example. However, it is not generally just the set of physical
operators acting trivially outside b. We explore these algebras in more detail in Appendix C.
What is important is this: the center consists of operators measuring the net electric flux out
of b, and does not include operators measuring the electric flux out of subregions of b.

3 The tensor network

We are now prepared to present our main result: a tensor network with a novel, topological
kind of area operator in its holographic entropy formula. This is desirable because it permits
the interpretation that the lattice of the tensor network is analogous to the discretized geom-
etry on which the TQFT description of gravity lives (which should be irrelevant to physical
quantities, like the CFT entropy). One concrete advantage of this area operator is that it does
not suffer from the “commuting areas problem” of other tensor networks, as we’ll explain. A
related noteworthy feature is that – because it is topological – this area operator’s expectation
value need not grow with the number of cut links, indicative of the fact that the entanglement
accounted for by this area operator is not that of bipartite pairs associated to each link, a point
we will discuss in detail in Section 4.

3.1 The model

The setup is as follows. Say we are given a system as in Section 2, with some Hphys defined on
some lattice. We regard this as the bulk Hilbert space. We define the boundary Hilbert space as
the set of links with one end in Vbdry, and let the tensor product of these links be the boundary
Hilbert space. In other words, letting (x y) denote the link connecting vertices x and y ,

Hbulk :=Hphys ,

Hbdry :=
⊗

y∈Vbdry

H(x y) . (43)

Our goal is to define a map V : Hbulk→Hbdry. For example,

(44)
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The V we define has three steps, which we’ll list and then explain:

1. It fully reduces the lattice as in Section 2.6.

2. It (isometrically) embeds Hphys into the pre-gauged Hilbert space associated to this re-
duced lattice.

3. It acts random tensors 〈T | on each lollipop factor.

We can draw this sequence of steps as

(45)

Note these steps are schematic – for example, the true reduced lattice of the starting lattice
would only have two lollipops in the next stage. We now explain the steps in detail.

First, without loss of generality we can imagine Hphys described by a fully reduced lattice,
as explained in Section 2.6. This requires no physical operation on Hphys; it simply requires
using a particular Hpre. There are in general multiple ways to reduce the lattice which do not
correspond to the same Hpre. However, any choice will work, and there is a finite amount
of data involved in specifying which reduced lattice we wish to use and which steps we take
to obtain it from the original lattice, and so we will proceed as though some choice has been
made, and we have a lattice of the following form:

(46)

Second, we embed this lattice into the pregauged Hilbert space,

(47)

(Strictly speaking, Hpre also lifts the Gauss constraint within each lollipop, so we should really
not draw them still connected at their black circles. However, it will not make a difference in
the later steps, and so we will continue to draw them as though they satisfy Gauss’ law at their
respective vertices.) Let us give a simple example to illustrate what this means. Say there is
no matter, m = 0. In this case, that means a map H⊗n

G /Gauss → H⊗n
G . Embedding into the

pre-gauged Hilbert space now simply means that we lift the Gauss constraint – and now the
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Hilbert space factorizes. For example, if n = 2 the bulk Hilbert space would be spanned by
states |µ, ij〉, and the embedding into the pre-gauged Hilbert space would mean the map

|µ, ij〉 7−→
dµ
∑

k=1

|µ, ik〉 |µ,kj〉/
q

dµ . (48)

Now let’s reintroduce matter to the bulk Hilbert space. Then Hpre is not the same as Hbdry,
because it also includes the lollipop factors. We need to get rid of them, and we would like to
do so in a way that is conducive to obtaining a holographic entropy formula (for example, we
do not want to simply destroy the information contained in those factors). We accomplish this
by acting random tensors on the extra factors. This is the third and final step of the map.15

We define the random tensors and their action as follows. After the embedding into Hpre,
we have n+m factors: the n “boundary” links which form a set we’ll call f∂ and the m lollipops
which form a set we’ll call flol. Call the set of all such factors f = f∂ ⊔ flol. To act with random
tensors means to act with the operator ⊗i 〈Ti| for i ∈ flol indexing the lollipops. This eliminates
the lollipop factors. These 〈Ti| are each “gaussian random tensors” that we define as follows,
following [52]:16 given some fixed basis, every entry of the dual vector 〈Ti| is an independent
complex Gaussian random variable, i.e. can be written as (x + i y)/

p
2 where x and y are

independent real Gaussian random variables of mean 0 and variance 1.17

3.2 Holographic entropy formula

Having defined our tensor network, we now argue it has a holographic entropy formula

S(B)V |ψ〉 =min
b

�

〈ψ|Âb|ψ〉+ S(b; alg)|ψ〉
�

, (50)

where the second term is the algebraic von Neumann entropy defined below. This is similar
to traditional random tensor networks [3], but novel in three ways.

The first novelty is that the minimization over bulk regions b is slightly different. We do
not consider all possible cuts through the lattice homologous to B. Instead, each candidate b
is a different collection of matter legs. The minimization is really over which matter legs are
included. This roughly translates to a minimization over bulk regions.

The second novelty is that given a subregion b, the subalgebra Ab we associate to it is not
always the natural one described in Section 2.4. This is for reasons discussed in Sections 2.4
and 2.7 and Appendix C.

The third novelty is that the area operator Âb is quite different than in traditional tensor
networks. It is no longer sensitive to the geometry of the lattice. It is now a certain physical
operator in the DG model of Section 2, in the center of the algebra Ab. In particular, it is

15As we will mention when deriving the holographic entropy formula, this only preserves the information if the
original state was sufficiently nice. In particular, it needs to have a large amount of electric flux (relative to the
amount of bulk entropy) from each lollipop to the boundary legs. This is like the usual random tensor network
requirement that the bond dimension of in-plane legs be sufficiently large relative to the amount of bulk entropy.

16This is different from [3], which did not use Gaussian random tensors but instead chose tensors at random
from the Haar measure. These are the same distribution up to a normalization. The Gaussian random vectors
〈Ti | have norm ∥〈Ti |∥ that is independent of the normalized vector 〈Ti |/∥〈Ti |∥, and these normalized vectors are
distributed uniformly. Hence the models agree up to normalization.

17Explicitly, each lollipop Hilbert space is a sum over irreps R of the quantum double flol,i = ⊕RHR,i . Denoting
a basis as |R, I〉, we are taking 〈Ti |R, I〉 to be a Gaussian random variable. We can decompose 〈Ti | into an irrep
probability and a tensor in each irrep as

〈Ti | :=
∑

R

p
pR




tR,i

�

� ,



tR,i

�

� ∈H∗R,i . (49)

The prescription outlined above is equivalent to averaging over both pR as well as



tR,i

�

� with a correlated weight.

21

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.070


SciPost Phys. Core 7, 070 (2024)

the operator that measures the net electric flux flowing out of b. Therefore it is topological,
only caring about its placement relative to matter degrees of freedom. Let us be more specific.
When Ab happens to be of the simple kind described in Section 2.4, Âb is the ribbon operator

Âb =
∑

µ

log
�

dµ
�

Fðb(µ) , (51)

where Fðb(µ) is the projector onto the fixed µ state defined in (29). More generally, Âb is a
different kind of operator that we call a “fused ribbon operator”,

Âb =
∑

µ

log
�

dµ
�

F fused
ðb (µ) , (52)

where F fused
ðb (µ) is defined in Appendix C.

Let us now derive the holographic entropy formula (50). As a warmup, consider the lattice
(46) with n = 2, m = 0. That is, two links attached at a vertex. Recall that we obtain the
boundary Hilbert space simply by isometrically embedding this into the pre-gauged Hilbert
space, HG → HG ⊗HG . Simple as it is, this embedding of Hphys → Hpre already exhibits a
holographic entropy formula.18 Say we have a state |ψ〉 ∈Hphys⊗HR for this two link Hilbert

space and an arbitrary reference system R. We have a corresponding state | eψ〉 ∈Hpre⊗HR. Say
we select one of the HG factors in Hpre and call it B, and we wish to compute the entropy of B
in the state | eψ〉. As we know, Hphys does not factorize, instead taking the form HG⊗HG/Gauss,
which we can decompose as

Hphys =
⊕

µ

�

Hbµ ⊗Hbµ

�

, (53)

where µ labels eigenvalues of the “electric” operators. Hence a general state in the bulk Hilbert
space takes the form

|ψ〉=
∑

µ

p

pµ
�

�ψµ

�

, (54)

where
∑

µ pµ = 1 and

�

�ψµ

�

=
dµ
∑

i,j=1

cµij |µ; ij〉bµbµ
, (55)

with
∑

ij|c
µ

ij | = 1. The state in the (factorizing) boundary Hilbert space HG ⊗HG takes the
form

J |ψ〉=
∑

µ

p

pµ

dµ
∑

i,j,k=1

cµij
Æ

dµ
|µ; ik〉B |µ;kj〉B . (56)

By direct computation we see that the entropy of B equals

S(B)J |ψ〉 =
∑

µ

pµ log dµ −
∑

µ

pµ log pµ +
∑

µ

pµS(bµ)|ψµ〉 . (57)

We combine these last two terms into the “algebraic von Neumann entropy” S(b; alg)|ψ〉, for

algebra Ab = ⊕µ
�

L(Hbµ)⊗1bµ

�

. Then we see this takes the form

S(B)J |ψ〉 = 〈ψ|Âb|ψ〉+ S(b; alg)|ψ〉 , (58)

where
Âb =

∑

µ

log
�

dµ
�

Fðb(µ) . (59)

18This is not surprising in light of [10]. This bulk to boundary map is an isometry with complementary recovery.
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Here Fðb(µ) is the central ribbon projector (29) in this case acting only on the one link inter-
sected by ðb, which is the only link in Hbulk.

The case with n > 2 links is completely analogous. The only difference is that the blocks
in the decomposition (53) are now related to eigenvalues of the central ribbon operator (29).
It is the total electric flux out of B that matters in both cases – in the two link case that just
happens to be measured by a single link operator. Therefore, for a connected region B like the
three links indicated here:

(60)

the formula becomes (58) with area operator (51), and the path ðb labelled as γ in (60). If
B is disconnected, the formula is still (58) but the area operator is (52). The difference arises
from the topology: when B is disconnected there isn’t one normal ribbon operator that acts
on the links in B but not its complement. Nonetheless, it is still physical to ask what is the net
electric flux out of B, and that is what the fused ribbon operator (52) does.

Now we consider the case with matter. It will be convenient to write explicitly the division
of the map V into multiple parts, say V = T J . The implicit first step is to map the given lattice
into the reduced lattice – this does not require an explicit operator in V because both lattices
represent the same Hphys. The second step is to act J , which embeds Hphys→Hpre. The final
step is T , which acts the random tensors.

Say we are given a state |ψ〉 ∈Hbulk. Letting 〈T |= ⊗i∈Flol
〈Ti|, we can write T = 1∂ ⊗〈T |.

The factor 1∂ indicates that T acts trivially on f∂ . The state on Hbdry is

V |ψ〉= (1∂ ⊗ 〈T |)(J |ψ〉) = (1∂ ⊗ 〈T |) |Jψ〉 , (61)

and we can write

V |ψ〉 〈ψ|V † = (1∂ ⊗ 〈T |) |Jψ〉 〈Jψ| (1∂ ⊗ |T 〉)
= tr [(1∂ ⊗ |T 〉 〈T |) |Jψ〉 〈Jψ|] .

(62)

Now given a boundary subregion B ⊆ f∂ let’s compute the kth Renyi entropy Sk(B)V |ψ〉.
This is defined as follows: given a state |φ〉 ∈HB⊗HB, with ρ := trB |φ〉 〈φ| the density matrix
of B, we have

Sk(B)|φ〉 :=
1

1− k
log

tr
�

ρk
�

tr[ρ]k
, (63)

for k ∈ (0, 1) ∪ (1,∞). We care about this because there is a way to compute it in random
tensor networks using standard techniques [3, 52], and the limit k → 1 is the von Neumann
entropy.

Let Sk be the symmetric group on k elements, and let R(π) denote the representation of
π ∈ Sk on H⊗k which acts by permuting the kets according to π. We will write Ri(π) for i ∈ f
when it acts on (k copies of) factor i, and also RB(π) when it acts on (k copies of) B (similarly
for B). Let τ denote the cyclic k-cycle

τ= (12 . . . k) . (64)
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Now, notice
trB[ρ

k] = tr
�

(RB(τ)⊗ RB(e)) |φ〉 〈φ|
⊗k� . (65)

Furthermore, note an important property of Gaussian random tensors:

E
�

|Ti〉 〈Ti|
⊗k�=

∑

π∈Sk

Ri(π) . (66)

Here E denotes the expectation value over the ensemble of tensors. Now let |φ〉= V |ψ〉 and
compute

E tr
�

ρk
�

= E tr
�

(RB(τ)⊗ RB(e)) |φ〉 〈φ|
⊗k�

= E tr
�

(RB(τ)⊗ RB(e))(1∂ ⊗ |T 〉 〈T |)
⊗k |Jψ〉 〈Jψ|⊗k�

= tr
�

(RB(τ)⊗ RB(e))E
�

(1∂ ⊗ |T 〉 〈T |)⊗k
�

|Jψ〉 〈Jψ|⊗k� .

(67)

To simplify further, we introduce the set

SB,σ :=
�

{πi}i∈F : πi ∈ Sk, where πi = σ, for i ∈ B and πi = e, for i ∈ B
	

, (68)

for anyσ ∈ Sk. An element of SB,σ is an assignment of πi to each i ∈ f, subject to the constraint
that all i ∈ f∂ are fixed: i ∈ B have πi = σ and i ∈ B have πi = e, the identity element. Using
(66), we have

E tr
�

ρk
�

=
∑

{πi}∈SB,τ

tr

�

⊗

i∈f
Ri(πi) |Jψ〉 〈Jψ|

⊗k

�

. (69)

Now we will make an assumption to simplify the calculation:19 replica symmetry. Under the
assumption of replica symmetry, every i ∈ f is assigned either the element τ or e. Let us denote
by ∆ the set assigned τ (which always includes B), and ∆ the set assigned e (which always
includes B). Let C(B) denote the set of all assignments ∆. Then we can further simplify

E tr
�

ρk
�

=
∑

∆∈C(B)

tr
�

(R∆(τ)⊗1∆) |Jψ〉 〈Jψ|
⊗k�=

∑

∆∈C(B)

e−(1−k)Sk(∆)|Jψ〉 . (70)

We can plug this into (63) to obtain the average Renyi entropy. A typical selection of tensors
〈T | will lead to an answer very close to this average [3], and so we have effectively computed
the Renyi entropy for a given draw of 〈T | with high probability. This is as much as we need to
say about computing the Renyi entropy.

Now we turn to computing the von Neumann entropy S = limk→1 Sk. We simplify again
by making a second assumption: the validity of the saddle point approximation,

E tr
�

ρk
� !
= e−(1−k)Sk(∆m)|Jψ〉 , (71)

where ∆m ⊆ f is some fixed set of factors, and the symbol
!
= denotes the assumption. Specifi-

cally, we assume that (70) is well-enough approximated by a single ∆ (which we call ∆m) for
all k such that we get approximately the right von Neumann entropy by neglecting all of the
others:

S(B)V |ψ〉
!
= S(∆)|Jψ〉 = lim

k→1
Sk(∆)|Jψ〉 . (72)

19This assumption will be valid for some states |ψ〉 but not all, see e.g. [53]. In our model, nice states include
those with large amounts of electric flux relative to matter entropy, and fairly simple flux patterns. We choose to
make this assumption because it neglects subtleties that are not special to this model, and it allows us to more
concisely demonstrate what’s special about this model.
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This assumption is valid for many states and choices of B, as in traditional random tensor
networks [3], and in this note we will not attempt a full discussion of when it is valid. From
now on we will drop the ! above the =, leaving the saddle point approximation implicit.

To finish computing S(B)V |ψ〉, we must evaluate S(∆)|Jψ〉 for a given configuration∆. This
∆ has two parts: the degrees of freedom that are also in Hbulk which we’ll call b1, and the
part that’s introduced by the embedding into the pre-gauged Hilbert space, which we’ll call
b2. Exactly as in (53), the bulk Hilbert space decomposes into blocks, once again with µ the
eigenvalue of the ribbon operator acting on ∂ b, associated to the total electric flux between b
and its complement. So, we can again write

|ψ〉=
∑

µ

p

pµ
�

�ψµ

�

b1,µb1,µ
. (73)

In the embedding into the pre-gauged Hilbert space, we tack on a factor that we’ll write as
�

�χµ
�

∈Hb2,µ
⊗Hb2,µ

, giving a state

|Sψ〉=
∑

µ

p

pµ
�

�ψµ

�

b1,µb1,µ

�

�χµ
�

b2,µb2,µ
. (74)

Computing S(∆)|Jψ〉 hence gives

S(b)| eψ〉 =
∑

µ

pµS(b2,µ)χµ +
∑

µ

pµS(b1,µ)ψµ
−
∑

µ

pµ log pµ . (75)

Recalling that trb2,µ

�

�χµ
� 


χµ
�

� = 1/dµ, and that under the saddle point approximation
S(B)V |ψ〉 = S(∆)|Jψ〉 for the ∆ minimizing the right hand side, we finally arrive at

S(B)V |ψ〉 = 〈ψ|Â|ψ〉+ S(b; alg)|ψ〉 , (76)

where Â= ⊕µ log
�

dµ
�

1b1,µ
and S(b; alg)|ψ〉 =

∑

µ pµS(b1,µ)ψµ
−
∑

µ pµ log pµ. This completes
the argument that our tensor network satisfies the holographic entropy formula (50), if we
start from the reduced lattice, i.e. neglecting the first step of (45).

We now argue that the holographic entropy formula continues to hold if we start from
a general lattice. The first step of (45), changing to the reduced lattice, does not change
anything physical about Hbulk or the fact that the minimization in (50) is over which matter
legs get included in the region b. All that changes is what the physical operators look like
on the lattice. When b is a single connected region in the reduced lattice, its algebra Ab is
straightforward, and maps to the natural subalgebra of a single connected region in the full
lattice. However, in the more general case that b in the reduced lattice is disconnected, the
algebra Ab is different. We explain the details in Appendix C. Intuitively, we have defined the
algebra to include the net electric flux out of the region b but not out of its sub-parts.

3.3 Non-commuting area operators

As pointed out in [36], traditional tensor networks fail to match the “non-commuting area
operators” property of AdS/CFT. Say in AdS/CFT we consider two boundary regions A and B
that overlap, and a state |ψ〉 of the AdS bulk. We can consider the holographic entropy formula
for each:

S(A) = 〈ψ|Âa|ψ〉+ S(a)|ψ〉 ,

S(B) = 〈ψ|Âb|ψ〉+ S(b)|ψ〉 ,
(77)

where a and b are bulk regions that minimize the respective right hand sides. It turns out that
one can in general find a bulk state |ψ〉 such that Âa has very small fluctuations [54, 55] (or
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in which Âb has very small fluctuations). Specifically, given some ϵ > 0 we can in general find
a state such that 〈ψ|Â2

a|ψ〉− | 〈ψ|Âa|ψ〉|2 < ϵ.20 This was a fortunate discovery for traditional
tensor networks, because their area operators have very small fluctuations (in fact zero, for
most tensor networks). One can imagine these “fixed-area” states of gravity are in this limited
sense the correct AdS analog of traditional tensor networks.

However, it was pointed out in [36] that this tensor network / fixed-area state analogy only
goes so far. In gravity, one can argue (using the gravitational constraint equations) that there
does not exist a state |ψ〉 with very small fluctuations for the area operator of every boundary
region simultaneously. In particular, the area operators of overlapping regions cannot both
have small fluctuations. We can’t find states with arbitrarily small fluctuations in both Âa and
Âb. This is different from traditional tensor networks, which can have small fluctuations across
all cuts simultaneously.

Our tensor network improves this situation. In it, it is not possible to find a non-trivial
bulk state that is an eigenstate of overlapping boundary subregions. This is because the area
operators of overlapping boundary regions are overlapping ribbon operators (or fused ribbon
operators) and will not commute, as explained in Section 2.

4 Multipartite edge modes

In this section, we attempt to clarify the choices made in the construction of the tensor network
in Section 3. One might wonder, for example, why we chose (unconventionally) to construct
the tensor network based on the reduced lattice rather than the original extended lattice. Or
where is the beloved relation between geometric area and the length of the cut?

Here, we motivate our choices by studying entanglement in the DG model. As in all gauge
theories, there are multiple prescriptions for defining the entanglement of a subregion. Of all
these prescriptions, we are specifically interested in those that involve a factorization map, i.e.
embedding the gauge theory into a larger, factorizable Hilbert space. This is because that’s
what tensor networks do! The boundary Hilbert space in Section 3 was the product of factors,
H⊗n

G . The holographic entropy formula computes the entropy of these factors. Therefore it is
by definition computing the entropy using a factorization map – the entropy of a subregion in
a factorizable Hilbert space that the DG model has been embedded into.

Edge modes are what we call the new degrees of freedom present in the factorized Hilbert
space but not the original gauge theory Hilbert space. There are multiple known ways to define
such factorization maps, each of which can be said to introduce different kinds of edge modes.
However, as we’ll argue, most factorization maps will fail to match certain properties we need
in the holographic entropy formula. Their edge modes will have the wrong entanglement
structure. In fact, we can essentially narrow down which factorizations of the DG model could
give certain desired properties, down to the particular factorization map we employ in Section
3. This argument is the point of this section – with the goal of motivating the perhaps surprising
choices we made in Section 3.

Let us summarize our reasons for two of the choices we made in Section 3:

1. Usually, entanglement in quantum double models is defined by a local factorization map
on the original lattice. We do not do this.

The reasons are twofold. Using this local factorization map, the von Neumann entropy of
a region b contains the two terms (|ðb| − 1) log |G|. The first term is a problem because
– as we argued in Section 1 – the size of the cut in the original lattice does not have

20To be safe, one should really keep ϵ sufficiently large relative to exp(−O(1/G)), to stay within the regime of
semiclassical gravity.
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a relevant gravitational interpretation. The second term is also a problem because it
makes the entanglement growth sub-extensive in a way that poorly matches AdS/CFT.
We explain this in Section 4.1.

2. We define the holographic map by first deforming the original lattice to the reduced one.

We motivate this in Section 4.2 with a tension between the non-local bipartite factoriza-
tion and crossing cuts.

These do not appear as distinct steps in our construction, as the first choice is implemented
by the second, but we motivate them separately. There is also a third, conventional, choice,
which is that we factorized the bulk by embedding Hphys into the Hpre of the reduced lattice.
This is a particular choice of edge modes on the reduced lattice. Surprisingly, it turns out that
this is forced upon us by the above two choices, as we outline in Section 4.3 and prove in
Appendix E.

Let us begin by giving some more careful definitions. Suppose we have many subalgebras
A1...n ⊆ L(Hphys)with some network of inclusion relations (which could be fairly complicated).
In general, many of these subalgebras may have non-trivial centers.

To calculate the entropy of an algebra with center, say A1, we first calculate a reduced
density matrix by embedding Hphys ,→ H1 ⊗H1′ , using a factorization map J1 [56, 57]. The
entanglement entropy takes the form [10,38].21

S(H1)J1|ψ〉 = 〈ψ|A(J1)|ψ〉+ S(A1; alg)|ψ〉 , (78)

for some operator A(J1) in the center A1 ∩A′1.
A multipartite factorization map J is an embedding of Hphys ,→Hfact such that all the alge-

bras JA1...nJ† act on tensor factors of the Hilbert space Hfact. As we will see below, there can
be multipartite factorization maps that are not built out of products of bipartite factorizations.
When this is the case, we say that the map introduced ‘multipartite edge modes.’ One point of
this section is to argue that if we want to incorporate a DG model into a tensor network as a
toy model for gravity, then the edge modes we introduce should be multipartite.

4.1 Bipartite factorization

Issue with local factorization

Previous work on entanglement in gauge theories has introduced a factorization map [32,33,
37–39,41,42], which consists of (48) for every link in ðb. Let us call this the local factorization
map. We now explain why this map has undesirable properties for building toy models of
gravity, expanding on the discussion in [43].

Let b be a subregion of D2, and let there be no bulk charges. The von Neumann entropy
with the local factorization map is [32–34,59]

Sloc(b) = |ðb| log |G| − log |G|+ Snonloc(b) , (79)

where Snonloc(b) is going to be the entropy in our factorization defined momentarily.22

Both of the first two terms are problematic for appearing in a holographic entropy formula.
The extensive first term in (79) depends on the number of links in the lattice. This is the
length of ðb in the discrete metric we have introduced to regulate the topological field theory.

21Alternatively, we can work abstractly in the language of generalized traces [58]. All of the literature on bipartite
entanglement with centers [10,37–39,41,42,48] can be translated into this language. We have not attempted to
translate the multipartite story below into this language; it is not straightforward.

22In the absence of matter, Snonloc can be thought of as the entropy of boundary degrees of freedom [34], since
the central ribbon operator at ðb can be deformed to hug the boundary ∂̃ b.
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Figure 5: The different bulk regions that appear for the calculation of the tripartite
information. Positive contributions on the left and negative ones on the right. The
entanglement wedge and its boundaries are colour-coded. While the boundary ∂Σ
is drawn as a line for simplicity of notation, in the actual calculation, we take it to
be S1.

However, the area of the extremal surface is just a specific Wilson line in the Chern-Simons
formulation [28, 29].23 The central ribbon measuring the amount of electric flux flowing out
of b is such an operator, and its contributions to the entropy show up only in Snonloc.

Suppose you are not convinced by this argument, taking the perspective that the whole
reason tensor networks have been useful is the area law entanglement. But then you run into
a second problem, which is the second term in (79). If we want to interpret the first term as
A/4GN , the second term is an entirely unwelcome −1/4GN . Furthermore, this negative term
is the famous topological entanglement entropy [32,33], and its value is a state-independent
constant that depends only on the anyon fusion algebra, so we cannot even get rid of it. There
is no analog of this violation of extensivity in the HRT formula.

This leads to unwelcome behaviour not just in the von Neumann entropy, but also in other
entropic quantities, as pointed out for example in [46]. Consider three contiguous boundary
intervals B1,2,3 in a 2d CFT. The tripartite information is

I3(1 : 2 : 3) := S1 + S2 + S3 − S12 − S23 − S13 + S123 , (80)

where S1 = S(B1) etc. The classic calculation of this quantity in AdS/CFT [60] shows that24

S2≪ S1,3 =⇒ I3∝ S2 . (81)

Now assume that we have a tensor network with a holographic entropy formula where we
minimize (79) over bulk regions of the correct homology class, using for example the construc-
tion of [7]. Assume that the entanglement wedges of the various regions are topologically the
same as you would find in AdS/CFT, see Figure 5. Then, the tripartite information is

I3 = − log |G|+ I3,ð + I3,nonloc , (82)

23For completeness, let us briefly describe the Wilson line introduced in these works. Denote by
∂ B := ∂ ðb = ∂ ∂̃ b the corners of b. ∂ B consists of two points on the boundary, and the Wilson line stretches
between them. Then, the Wilson line is the Euclidean quantum mechanical path integral of a particle on
SL(2,R) × SL(2,R), propagating along ðb. The irrep of the Wilson line is encoded in the mass and spin of the
particle, and the initial and final states of the particle at the two points on ∂ B are defined by Ishibashi states within
the highest-weight irrep the particle lives in. This particle localizes to a saddle-point in the large mass limit, and
the saddle-point corresponds to a bulk geodesic; the on-shell action is proportional to the length of the geodesic.

Our central ribbons are a little different from the Wilson lines, in that they project onto certain values of the
irrep flowing through ðb. Furthermore, our central ribbons should be valued not in highest-weight irreps but
in principal series irreps [27, 30, 31]. However, both our central ribbon and their Wilson line measure the same
quantity; in the presence of matter, the HRT formula with both constructions become quantum minimal surface
formulas as in Section 3. So, the construction of [28,29] is enough to show that area is an operator in the algebra
of the topological field theory, though the precise operator might be harder to pin down at the full quantum level.

24If the three regions have lengths l1, l2, l3, the tripartite information in the vacuum is

I3 =
c
3

log
l1 l2 l3(l1 + l2 + l3)

(l1 + l2)(l2 + l3)l2(l1 + l2 + l3)
l2→0
−−→−

c
3

�

1
l1
+

1
l3

�

l2 .
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Figure 6: A lattice that makes the calculation of entanglement of the region bounded
by the thick green bars and the boundary easy. We have used lattice deformations to
make the bulk of the region a single plaquette. The flatness constraint is imposed for
this plaquette, since it is in the bulk. We decompose the state in terms of the ‘half-
loop’ holonomies, shown as grey arrows. Left: the subregion intersects the physical
boundary once. Right: it intersects the physical boundary twice, but that doesn’t
change the argument.

where I3,ð is the contribution of the extensive term (which behaves similarly to the area term
in gravity) and the last term is the same combination of Snonloc. Both of these last two terms
satisfy (81).25 However, the first term does not, so (82) overall fails to satisfy (81).

To prove (82), we can use (79) for the regions B1,2,3, B12, B23, B123, since all of their entan-
glement wedges have the same topology. While the formula was not originally proven for the
topology of b13, which is a strip connecting B1 to B3, it remains true by the following argument,
following [33, 38]. Let us recall the derivation of the form (79), say for b2. We deform the
lattice as in the left of Figure 6, so that there is one plaquette in the bulk; the controlled uni-
taries from Appendix A that implement this deformation act only within b2. The Hilbert space
is labelled in terms of the group element around the half-loops, labelled as grey arrows. Each
half-loop at ðb2 is completely unconstrained in the density matrix, except that the product of
all of them is e, by flatness of the plaquette. Going to a sector of fixed holonomies at ∂Σ, the
reduced density matrix is maximally mixed over a |G||ðb2|−1-dimensional subspace, labelled by
half-loop configurations satisfying the single constraint. The last term in (79) is the entropy
of these boundary holonomies. This argument only relies on the bulk region having topology
D2, so it goes over to the strip of b13.

A non-local factorization map

We define a new factorization map, following [43], that is non-local on ðb. Let us describe it
in some detail for a connected subregion b on D2. Use the elementary lattice moves in Section
2.3 to make ðb cut a single link as in Figure 7. In that case, the central ribbon F(µ) is just a
projector onto that link being in the irrep µ. And then the factorization map is simply

J |µ, ij〉=
1

Æ

dµ

∑

k

|µ, ik〉 |µ,kj〉 , (83)

on this link. This is the usual (local) factorization map of lattice gauge theory [41,42] for the
single link; but the lattice moves we did first make it a different way to factorize the original
lattice.

Another way to think about this is in terms of the original lattice. In that case, the edge
modes we introduce are collective modes that live on the entire cut rather than local degrees

25The second satisfies (81) for the same reason as the holographic entropy. For the third term, note that as we
shrink B2 the volume of b2, and therefore its maximum entropy shrinks also.
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Figure 7: We deform a lattice so that ðb is a single link.

of freedom at different points on the cut, in sharp contrast to the local factorization map. The
lattice deformation is helpful because it allows us to give a local description of this non-local
edge mode.

We show in Appendix D that this factorization map, unlike the local one, has the property
(81) (assuming that the tripartite information is negative).

4.2 Bipartite factorizations can fail to commute

Another issue with bipartite factorization maps is that they generally don’t combine uniquely
into a multipartite factorization map.

Let A be an algebra acting on a finite dimensional Hilbert space H. Assume A has a non-
trivial center, i.e. A ∩A′ contains more than multiples of the identity operator on H. Any
operator in this center can be written as a linear combination of a set of commuting projectors
Pα (see e.g. [10]). They must commute, since the center is a commutative algebra.

Let J : H→HB ⊗HB be a factorization map with respect to A, i.e. an isometry such that
A acts on HB and its commutant A′ acts on HB.26 Such a factorization map can be written in
the following way. For |ψ〉 ∈H,

J |ψ〉=
∑

α

Pα |ψ〉Bα
p B

α

p
⊗ |χα〉Bα

f B
α

f
, (84)

where we have used a decomposition HB = ⊕α(HBα
p
⊗HBα

f
)⊕HBr

, and similarly for HB. The
central projectors Pα act on HB1

⊗HB1
. What’s important here is that the central projectors Pα

enter crucially into the definition of the factorization map J .
Now say we have two algebras A1 and A2 both acting on H, with central projectors Pα1

and Pα2
respectively. Let

J1 : H→HB ⊗HB ,

J2 : H→HC ⊗HC ,
(85)

be factorization maps, with respect to A1 and A2 respectively. We are interested in acting
both factorizations on H. This can work as follows. Say we first act J1. How does J2 act on
HB ⊗HB? Because J1 was an isometry, we can consider the operator J2 pulled through J1.
More explicitly, the action of J2 on J1H is defined using the projectors J1Pα2

J†
1 . This allows us

to define J2J1H, which embeds H into a Hilbert space with more than two factors. However,
because [Pα1

, Pα2
] ̸= 0, in general J2J1H ̸= J1J2H! We cannot in general construct a unique

multipartite factorization map by the product of all bipartite factorizations. Factorizing in a
different order leads to a different final Hilbert space.

26In the language of [10], J defines an operator-algebra quantum erasure code with complementary recovery,
with respect to A.

30

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.070


SciPost Phys. Core 7, 070 (2024)

Figure 8: The lattice deformations that we need to factorize intersecting regions are
incompatible.

Let us see this concretely in the DG model. Split the disk into four regions b1...4 as in
Figure 8. We are interested in the subregions b1 b2 and b2 b4. The non-commutativity of the
bipartite factorization maps for these two subregions can be seen in the fact that the elementary
lattice moves required to achieve each bipartite factorization are different. For example, if
we change to a lattice with only one link along ð(b1 b2), then we have two semicircles that
separately need to factorize to split b2 from b1 and b4 from b3, which would create two total
links along ð(b2 b4). We cannot draw a lattice where both ð(b1 b2) and ð(b2 b4) consist of only
one link.

Though it might seem cartoonish, this problem is the central one. To make it more precise,
take a state where there are fixed irreps µ1...4,µ12 flowing out of b1...4, b1 b2. Furthermore,
take each of b1, . . . b4 to consist of a single link, so we have four links total. We can decompose
this state into a superposition of states with fixed irrep µ23 flowing out of b2 b3 using the
F -matrices [20]27

�

�

�

�

�

�

+

=
∑

ν

Fµ1µ2µ
µ3µ4ν

�

�

�

�

�

�

+

. (86)

For the quantum double model, the F -matrix is the 6 j-symbol of G; more generally, it is part
of the definition of the tensor category that defines the topological phase [61]. For a non-
Abelian theory, the right hand side generically has many non-zero terms. Thus, we cannot
simultaneously fix the irreps flowing out of b1 b2 and b2 b3. This is a manifestation of the fact
that the corresponding central ribbons don’t commute, as we argued in Section 2.4.

We might try to deal with this by introducing one set of edge modes for every segment
ðbi ∪ ðbi+1 of the subregion boundaries. For example, in Figure 9, we could factorize all the
links crossing the blue lines. But, as detailed in [44], factorizing more than one link cutting
ðb1, even if it is just two links, gives rise to the negative contribution in (79). The entropy will
again run afoul of (81).

This is an important obstacle to constructing a tensor network with non-commuting
area operators. A tensor network acts on a bulk Hilbert space that does not factorize, and
maps it to a boundary Hilbert space which is simultaneously factorized across all partitions.

27Our convention for the F -matrices do not exactly match those in [20]. This will not affect any of the following
discussion. The only important thing is that (86) is a unitary change of basis.
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Figure 9: In local factorization maps, we can introduce edge modes for every segment
of the boundary of a region.

It is implementing some multipartite factorization map – but which one? As we have argued,
it cannot be some product of bipartite factorizations. It must be something more sophisticated
and inherently multipartite, introducing “multipartite edge modes.”28

We accomplish this in the tensor network of Section 3 by embedding Hphys into the Hpre
of the reduced lattice. This different kind of factorization is the main idea in this work that
allowed us to define tensor networks with the desired properties.

On the reduced lattice, (86) is modified in a simple way. Instead of being a relation be-
tween different lattices, it is now a relationship between different bases for Hphys. The relation
remains true in Hpre, because the physical state is given by the fusion of the four irreps via
Clebsch-Gordan coefficients. Taking the inner product of (86) with




µ1, i1, j1; . . .µ4, i4, j4
�

� J
makes it a relation between Clebsch-Gordan coefficients and 6 j-symbols of the group that is
known to be true.

4.3 Bootstrapping the multipartite edge modes

The above discussion explains why our TN is constructed using the reduced lattice. Now we
ask: can we further justify the factorization map we use on the reduced lattice? This is not
possible for bipartite edge modes, as noted in [40]. It turns out that in the multipartite case the
factorization map is much more constrained. In Appendix E, we prove that the factorization
map is unique given certain assumptions. The assumptions are that the edge modes introduced
by the factorization map depend only on the total irrep flowing out of the region, and that the
edge mode state for the identity irrep is factorized. Let us give an overview of the logic here.

The basic idea is that we can take all possible equations of the form (86) for an arbi-
trary number of boundary vertices and apply the factorization map. Each of these equations
becomes an equation for the matrix elements of the factorization map J , and the only solu-
tions to this whole set of equations is the CG coefficients. This is related to what is known as
Tannaka-Krein duality, which says that a group can be reconstructed from the fusion rules and
F -matrices of its irreps. A helpful review is [65].

We prove a weaker statement than either of the above, but it does say that the required
edge modes are (up to local unitaries) those we use in our factorization map. We take reduced
lattices with 2n boundary links, all in the irrep µ, such that they fuse to the identity in pairs.

28The connection between non-commuting modular Hamiltonians and multipartite entanglement was also ex-
plored in [62–64].
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This state can be written in two ways
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Then, calculating the entropy in two ways, we find consistency only when the edge modes are
maximally mixed with rank dµ.

This concludes our motivation for our tensor network construction. We had to transform
to the reduced lattice because otherwise we would either run afoul of holographic tripartite
information or not know how to uniquely factorize overlapping regions. The factorization map
on the reduced lattice had to be the one we used because the multipartite edge modes in the
DG model are highly constrained.

5 Gravity interpretation

Unlike traditional tensor networks, our tensor networks need not be a tiling of hyperbolic
space. Instead, the connectivity in our tensor networks is analogous to the geometry on which
a TQFT lives; that is, it’s not fundamentally important. An advantage is what we’ve argued
in this paper: edge modes with more gravity-like properties, leading for example to non-
commuting area operators. The disadvantage is that the physical, gravitational interpretation
of the state is less clear. In this (largely qualitative) section, we aim to clarify this interpretation.

We use the fact that 3d general relativity is genuinely a topological theory, albeit one that
is not included in the set of DG models. However, we expect that qualitative aspects of our re-
sults do generalize (with appropriate refinements). The difficulties with overlapping bipartite
factorization that we encountered in Section 4.2 are a consequence of non-trivial F -matrices,
which exist also in other topological theories and also GR [22, 23]. There is an interesting
similarity between the algebraic structure of our tensor network and that introduced in [46],
as we will argue below. Finally, we view the uniqueness of edge modes formalized in theorem
E.2, which holds for a large class of topological phases (though not GR), as a toy model for
the reason that low-energy gravity ‘knows’ about the UV entropy but not its microstates. Thus,
while the rest of this section has not yet been made precise, we expect that it is possible to do
so.

Comparison with conventional RTNs

The first major difference between our tensor networks and traditional ones is that in the tradi-
tional ones each link is a fixed segment of a fixed curve, and its bond dimension is interpreted
as the area of the segment. Even when the area is a non-trivial operator it is a sum of areas
of segments with fluctuating bond dimension. In our tensor networks, however, the area of
the entire quantum minimal surface is the expectation value of a single, non-local, topological
operator. As justification for this claim, we point to the works [23,27–31], which showed that
the topological Wilson lines and irrep data are related (in the semi-classical limit) to the area of
quantum extremal surfaces and not to arbitrary surfaces.29 There is nothing that corresponds
to the area of a fixed segment of a QES, or the area of a non-extremal surface.

29 [28, 29] showed that their Wilson lines localised to geodesics, but their Wilson lines are different from our
area operator, see footnote 23. [23, 27, 30, 31] showed that factorizing across cuts of specific topological classes
(roughly the same as those we have considered) gave entropy equal to the area of the QES in the same topological
class. There is less work in the presence of matter; in two dimensions, [66] established the relationship between
the irrep flowing across the cut and the area of the QES of the same topological class. We will also discuss an
important subtlety in this statement due to matter around Figure 12.

33

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.070


SciPost Phys. Core 7, 070 (2024)

Figure 10: If we imagine the lattice as being embedded in AdS, then the diffeomor-
phism constraints (left) and Hamiltonian constraints (right) move the lattice around.
Since the constraints in the TQFT are semi-classically these two types of constraints,
we argue that our TN is a toy model for a superposition of embeddings of the lattice.

The area being a topological operator means that it takes the same value on any two
topologically equivalent cuts. This can seem confusing, however, since multiple topologically
equivalent cuts on the same lattice then correspond to the same geodesic in the bulk. The
apparent puzzle can be resolved by remembering that the gauge field in the CS description
is the metric, meaning that the group element on a link (which has non-zero fluctuations)
is related to a length.30 Secondly, any physical state has non-zero fluctuations of the group
element, due to Gauss’s law. Thus, a state in the topological theory on the lattice describes a
superposition of embeddings of the lattice into the spacetime.

An important caveat with this last statement, and also the rest of this section, is that we do
not have a precise gravitational interpretation of the fully quantum topological theory. So, all
of these statements are true only in the semi-classical limit of the TQFT, where the coupling
constant goes to zero and we restrict attention to coherent states.

This superposition presumably includes all ways of embedding the lattice into a Wheeler-
deWitt patch. The reason to believe this is that the gauge constraints of the Chern-Simons
action are (on-shell) equivalent to the Hamiltonian and momentum constraints of gravity, and
both of these generate translations of points on a Cauchy slice; momentum constraints gener-
ate diffeomorphisms of the Cauchy slice, and the Hamiltonian constraint generates translations
of the Cauchy slice within the WdW patch. See Figure 10. Since we work with gauge-invariant
states, they must be dual to superpositions over all embeddings of the lattice in the WdW patch.
This also explains why two different ribbons on different sets of links can correspond to the
same geodesic. The expectation value of our area operator on a certain cut agrees with the
expectation value of a geodesic, but that does not mean that the links that the operator is
supported on are dual to the geodesic.

Let us see how this works for the simplest case, the reduced lattice for D2 without matter.
The central ribbon on one link b1, and that on two links b1 b2, measure the areas of two
spacelike-separated surfaces, as shown in Figure 11. Mathematically, this is because the irreps
µ1,µ2 on two boundary links might be entangled to produce only a subset of µ1 ⊗µ2, so that
〈Â12〉 < 〈Â1〉+ 〈Â2〉. So the links b1, b2 should neither be interpreted as the surface X1 ∪ X2
nor as the surface X12. But different operators on these two links reproduce properties of either
of these surfaces.31

30It’s not quite a length, since the gauge field also has the spin connection in it. It exactly becomes a length for
a geodesic; more generally, it is the length of a topologically equivalent geodesic. The connection between length
of a geodesic and a mixture of length and spin connection (related to extrinsic curvature) of a different curve is
the subject of [67].

31The most ‘classical’ lattice is the fusion basis lattice of [43, 48]; in that case, each link can be assigned a
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Figure 11: Central operators on individual links b1, b2 measure the area of different
HRT surfaces, but the central operator on b1 ∪ b2 measures the area of a completely
different extremal surface that is spacelike-separated from both of them. Thus the
two links should not be associated to individual extremal surfaces, even in the clas-
sical limit.

new puri�cation

of

Figure 12: We can calculate the “area” of any cut, but that might not correspond to
the length of any geodesic that exists in the spacetime. However there could be a
purification of the bulk region where the geodesic exists. On the left, the green central
ribbon is the minimal one, whose value should be related to the length of a geodesic.
The blue ribbon is topologically inequivalent, and there may not be a geodesic with
the right end-points in that topological class. However, there is a different purification
of the region b1 between the blue ribbon and the boundary, where there should be a
geodesic of the same topological class.

Another potentially confusing point is that there are generically more topological classes of
central ribbons than QESs, as shown in Figure 12. For example, if there are two matter excita-
tions very close together but very far away from any QES, there is a ribbon that separates these
two excitations but no QES between them. In that case, the area operator is not measuring
the area of a QES in the geometry, but seems to be related to the outer entropy [68–70] or
the holographic covariant entropy bound [67]. It is the area of a QES that would exist in a
different geometry where one of the matter excitations has been taken away.32

particular QES. For example, in Figure 11, b1 and b2 would fuse to a third link, let’s call it b12, such that the irrep
flowing out of b1 b2 is the irrep on b12. Thus, a fusion basis lattice can be said to be lattice-dual to a non-intersecting
network of geodesics, as pointed out also in [23]; b1, b2, b12 would correspond to X1, X2, X12 respectively. However,
the central ribbon operator on b12 equally can be represented on b1∪b2, and so there’s still an element of convention
to the identification.

32This is true when there is a normal surface between the two excitations; trapped surfaces are more confusing,
and would likely require more explicit computations.
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A gauge theory of intertwiners

On a related note, there are fascinating connections between our construction and the alge-
braic story of [46,71]. They conceptualize the quantum error-correcting structure of AdS/CFT
as an approximate version of Doplicher-Haag-Roberts theory, which is the algebraic approach
to gapped theories with superselection sectors. The restriction of CFT operators to code sub-
space operators is implemented by a ‘conditional expectation,’ which in the DHR case is a
restriction to operators that don’t change the superselection sector.

Consider first the case without matter. There are two algebras acting on the links, L(Hbdry)
and L(Hphys); consider the latter as the vacuum superselection sector of the former. The
conditional expectation fromL(Hbdry) toL(Hphys) is implemented by Gauss’s law at the central
vertex.33 For two boundary regions B1, B2, the physical algebra A12 ∈ L(Hphys) of the two
regions is bigger than the algebra union A1 ∨A2 ∈ L(Hphys) of the two subregion algebras
separately. The difference is made up of operators that create a charge in B1 and an anti-charge
in B2, called intertwiners in the DHR theory. For B1, B2 adjacent, these intertwiners are made
up of all ribbon operators that begin in B1 and end in B2. In the general case, it is the subset
shown in Figure 16.34

Note that DHR theory deals with the boundary theory, but we are giving bulk descriptions
of the objects involved: the TQFT is a bulk gauge theory of boundary intertwiners. This is
perhaps not a surprise, since there is a reconstruction theorem relating DHR models in 1+ 1
dimensions and tensor categories [72].

What is perhaps more novel is this. Since error-correction in AdS/CFT is approximate
[73, 74], we have to back away from this limit of an exact bulk gauge theory of intertwiners,
while keeping the bulk structure. This is hard, because bulk matter makes the theory non-
topological and therefore harder to make holographic; adding the random tensors seems to
be a way to mitigate this problem and allows us to back away from the topological limit while
keeping holography. It would be interesting to understand these connections in detail.

6 Discussion

We have constructed a map
Hbulk→Hbdry , (88)

with the following properties: First, the bulk Hilbert space Hbulk consists of a topological
theory coupled to matter. Second, boundary entropies satisfy a holographic entropy formula

S(B)V |ψ〉 = 〈ψ|Â(b)|ψ〉+ S(b; alg)|ψ〉 , (89)

in which the minimization is over different sets of matter legs, and the area operator Â is a
(topological) operator measuring the net electric flux out of B∪b. This is desirable if we would
like a tensor network that represents a discretization of the topological quantum field theory
(TQFT) description of 2+1d gravity, because in that description the area of the Ryu-Takayanagi
(or quantum extremal) surface will correspond to some topological operator in the TQFT. As a
byproduct, in this model the area operators of overlapping boundary regions fail to commute,
as in gravity but not traditional tensor networks [36].

One could worry: isn’t changing the area operator ruining the usefulness of tensor net-
works? Wasn’t their whole point that boundary entropies were related to the cut through the
graph that intersected the fewest links – resembling the Ryu-Takayanagi formula? A map with

33For general lattices, this is a closed ribbon around the boundary.
34They also define a dual set of ‘twists.’ In the DG model, these are also ribbon operators.
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a topological area operator goes against that, so what is its point? The point is that the area
operator in this model is still in line with the Ryu-Takayanagi formula. We still interpret Â
as measuring the geometric area, and we still are using random tensor networks to construct
a map with an entropy formula minimizing (89). The only difference is that the TQFT de-
scription obscures the geometry of the gravitational description – so it is no surprise that what
is geometric area in the gravitational description can be a topological operator in the TQFT
description.

The reason the geometric description is obscured is twofold. First, our tensor networks
do not introduce bulk-local degrees of freedom where there should be none. The matter-free
theory is topological, so there is no need to add local tensors in this case. Secondly, our tensor
networks are toy models for states invariant under the Hamiltonian constraint of gravity, and
should be compared not with Cauchy slices but Wheeler-deWitt patches.

One oddity of our tensor networks is the particular subalgebras it minimizes over in the
holographic entropy formula. While our tensor network has many desirable properties, these
subalgebras seem fairly strange, as we discuss in Section 2.7 and Appendix C. It would be
nice to better understand the gravitational analog of these subalgebras, or how to construct a
tensor network that minimizes over more natural subalgebras.

The broader question of interest is constructing a tensor network with matching local dy-
namics on both sides of the map, akin to AdS/CFT. We believe the model in this paper will
help with this, because it includes constraints that are more gravity-like. Perhaps one way to
proceed will be to combine with this model the insights of [15,16].

Having explained our main result and the broader question, let us summarize some impor-
tant physics we learned along the way. The first lesson is that there is a qualitative difference
between bipartite and multipartite edge modes. Abstractly, this arises from tensions between
additivity and duality in local algebras in the code subspace [46]. The second, and most im-
portant, lesson is this: to model holography, we might need multipartite edge modes. The fact
that the centers of overlapping regions fail to commute poses a challenge for purely bipartite
edge modes.

These lessons lead to a number of structural questions. Remember, historically, that the
bipartite edge modes were originally studied in gauge theories [37–39, 41, 42, 75], but then
were shown to be a general feature of error-correcting codes with bipartite code spaces [10]
and holography [76]. Perhaps we should regard this work as the first half of the same historical
progression, for multipartite edge modes. Can we construct a general theory of multipartite
edge modes and prove that they are needed in holography? What do multipartite edge modes
look like in the gravitational phase space, analogous to [75] and follow-ups? Does the theorem
in Appendix E generalize to a statement inferring a unique entropy function from a set of
subalgebras? Understanding the multi-local operator that is dual to the soap-films of [77] will
likely be useful to learn about these questions.

Let us end with some other interesting, but more specific, questions and directions for
future work. We’d like to be able to interpret quantities in our model, like the area commutator,
in terms of gravitational quantities. This could likely be done in the model of [23]. On a related
note, the lattice model we have used as the base for our tensor network is related in spirit to
loop quantum gravity [43, 48], and perhaps we can also import some insights from there.
Another interesting question is to identify the operator analogous to our central ribbons in
the Virasoro TQFT of [19], and see whether the factorization maps of [23,30,31] are related
to these operators. As a first step, the analog of our factorization map in Chern-Simons is
being studied [78]. It would also be interesting to study whether a model like ours realizes a
quantum extremal surface formula, rather than just quantum minimality.35 Finally, we could

35We would like to thank Jing-Yuan Chen, Bartek Czech, Alex Frenkel, Xiao-Liang Qi and Gabriel Wong for
discussions on similar points.
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mock up identity block domination of the CFT using specific string-net models, and see which
gravity features we get from there.

Finally, we need to understand what we have learned about higher dimensions. Likely the
connection to the story of [46] will be crucial in doing so.
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A Lattice deformations

Recall that we think about lattice independence as follows. Say we start with a lattice Λ1,
defining H(1)pre, projectors A(1) and B(1), and physical Hilbert space Hphys = A(1)B(1)H(1)pre. There
are two “elementary moves” that change the lattice but leave the physical Hilbert space un-
changed, see e.g. [50, 51]. That is, applying one of these elementary moves would give us a
Λ2, such that Λ2 defines H(2)pre and projectors A(2) and B(2) with

A(2)B(2)H(2)pre = A(1)B(1)H(1)pre . (A.1)

Each move is an isometry (or co-isometry, in the reverse direction) that we can write down
explicitly. To do so, we introduce the following controlled multiplication operators:

Definition A.1. Let HC
∼= HT

∼= HG . Given the bipartite Hilbert space HC ⊗HT , we call
the first factor the “control” and the second factor the “target” when using the following four
controlled multiplication operators:

CI I ,C T |h〉C |g〉T := |h〉C |gh〉T , (A.2)

CIO,C T |h〉C |g〉T := |h〉C
�

�h−1 g
�

T , (A.3)

COI ,C T |h〉C |g〉T := |h〉C
�

�gh−1
�

T , (A.4)

COO,C T |h〉C |g〉T := |h〉C |hg〉T . (A.5)

The two elementary moves are as follows.
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Move 1: Add (or remove) a vertex

(A.6)

Concretely, we define the isometry Vvertex : H(1)pre→H(2)pre in a two step process. First, we tensor

onto our state |ψ〉 ∈H(1)pre the state |1〉 ∈HG , where

|1〉 :=
1

p

|G|

∑

g∈G

|g〉 , (A.7)

is the state corresponding to the trivial irrep. Second, we act controlled multiplication opera-
tors with the control being this new factor and the target being a set of links attached to this
vertex and all adjacent to each other. It doesn’t matter the order in which we act these. In
(A.6), the targets would be the g5 link and the g1 link (or the g2, g3, g4 links). Which of the
four control operations we use depends on the orientations of the two links. If they are both
oriented “in” towards the vertex, then we use CI I (the I I stands for In-In). If the control is
oriented in but target out, we use CIO (for In-Out), and so on. In total, in (A.6) we’d have

Vvertex |g1〉1 |g2〉2 |g3〉3
�

�g4

�

4 |g5〉5 = CI I ,05CI I ,01 |1〉0 |g1〉1 |g2〉2 |g3〉3
�

�g4

�

4 |g5〉5

=
1

p

|G|

∑

g0∈G

|g0〉0 |g1 g0〉1 |g2〉2 |g3〉3
�

�g4

�

4 |g5 g0〉5 . (A.8)

It is easy to confirm this satisfies Gauss’s law at both new vertices (if the original vertex satisfied
Gauss’s law), as well as any flatness constraint in any adjacent plaquettes that satisfied it in
the original lattice.

Removing a vertex happens by reversing the steps. In (A.6), we would remove the g0 link
by first acting with C−1

I I ,05C−1
I I ,01, then acting with 〈1|0. Note this is not an isometry, so we may

be surprised that this leads to a sensible one-to-one identification of physical operators. Indeed
it does. The key point is that no matter what state we start with in ABHpre, acting C−1

I I ,05C−1
I I ,01

is sure to put link 0 in the state |1〉0. In other words, V †
vertex might not be an isometry on Hpre,

but it’s bijective on the physical subspace.
An important special case of this move is to split one link into two:

(A.9)

In this case,

Vvertex |g1〉1 =
1

p

|G|

∑

g0∈G

|g0〉0
�

�g−1
0 g1

�

1 . (A.10)

Note that in the irrep basis this takes the form

Vvertex |µ, ij〉1 =
1

Æ

dµ

dµ
∑

k=1

|µ, ik〉0 |µ,kj〉1 . (A.11)
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Move 2: Add (or remove) a plaquette

(A.12)

Concretely, we again proceed in two steps. In the first step, we append to |ψ〉 ∈ H(1)pre the
state |e〉 ∈ HG , where e is the identity group element. Second, we move counterclockwise
around the plaquette that was just formed (if two were formed, pick one), at each link act-
ing a controlled multiplication operator, with the new link as the target. Which controlled
multiplication depends on the orientations of the two links. If the new link is oriented clock-
wise (respectively counterclockwise), then the target is I (respectively O). If the other link is
oriented clockwise (respectively counterclockwise), then the control is O (respectively I). In
(A.12), we would start by appending |e〉0 and then acting CI I ,50. Then we would act CI I ,10 and
then CI I ,20. In total we’d have

Vplaq |g1〉1 |g2〉2 |g3〉3
�

�g4

�

4 |g5〉5 = CI I ,20CI I ,10CI I ,50 |e〉0 |g1〉1 |g2〉2 |g3〉3
�

�g4

�

4 |g5〉5
= |g2 g1 g5〉0 |g1〉1 |g2〉2 |g3〉3

�

�g4

�

4 |g5〉5 .
(A.13)

It is straightforward to see that the new plaquette has trivial holonomy. Here, g−1
0 g5 g1 g2 = e.

We can see that Gauss’s law is satisfied at the two modified vertices (if they satisfied Gauss’s
law before) by writing out the states before and after explicitly.

To remove a plaquette, we perform the inverse operations. Here we’d act

〈e|0 C−1
OO,50C−1

OO,10C−1
OO,20 . (A.14)

This is not an isometry on Hpre, but it still defines a one-to-one identification of physical states
and operators.

Note that it did not matter that we added a link inside of a plaquette that already existed.
It would have worked to take an unclosed set of links – which do not form a plaquette and
therefore do not satisfy any flatness constraint – and close them by adding a new link. The new
plaquette satisfies the flatness constraint regardless. The reverse operation is also important:
we can take a plaquette on the edge of a lattice, then remove the outermost link.

Ribbon operator transformation

A ribbon operator F acts on Hphys and therefore must be represented on any associated lattice.
We can ask: given Fγ(h, g) acting onH(1)pre, what is the associated operator onH(2)pre? The answer
is that it is also a ribbon operator, now including the new link if a plaquette was added along
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its path. For example:

(A.15)

One way to see how Fγ(h, g) maps is to recall that Vplaq = C |e〉0, where C is a unitary and ℓ0
is a new link introduced in the identity element state. Then we know that what we want is an
operator O that satisfies

∀|ψ〉 ∈Hphys , OV |ψ〉= V Fγ(h, g) |ψ〉 . (A.16)

This is satisfied by the anzats O = C(10 ⊗ Fγ(h, g))C†. In the plaquette example (A.15), we
have C = CIO,10COO,20, COO,30, and we compute

C(10 ⊗ Fγ(h, g))C† |g0, g1, g2, g3〉= C(10 ⊗ Fγ(h, g))
�

�g−1
3 g−1

2 g1 g0, g1, g2, g3

�

= δg(g1)C
�

�g−1
3 g−1

2 g1 g0, g1, hg2, g3

�

= δg(g1)
�

�g−1
1 hg1 g0, g1, hg2, g3

�

= Fγ′(h, g) |g0, g1, g2, g3〉 .

(A.17)

We see that Fγ(h, g) has become a larger ribbon operator on γ′, which passes across the g1
link to act on the g0 link.

Equivalence of the Hilbert spaces

Now let us sketch the argument that the two elementary moves of Section 2.3 leave the physical
Hilbert space unchanged, and that each physical operator maps 1-to-1 to a physical operator
in the new Hilbert space. Consider Vvertex. Let Λ1 = (V1, L1, P1) and Λ2 = (V2, L2, P2) be two
lattices related by a move as in (A.6). Without loss of generality, say in Λ1 there is an n-valent
vertex v1 ∈ V1 with incident links ℓ1,ℓ2, · · ·ℓn all pointing in toward v, while in Λ2 there is an
m+1-valent vertex v2 with m< n incident links ℓ0,ℓ1, · · ·ℓm with ℓ0 pointing out from v2 while
the rest point inwards, and an n−m-valent vertex v′2 with incident links ℓ0,ℓm+1,ℓm+2, · · · ,ℓn,
with all pointing inwards toward v′2.
Λ1 and Λ2 define pre-gauged Hilbert spaces H(1)pre and H(2)pre respectively. Moreover, in our

initial lattice Λ1, we have the constraint projectors

A(1) =
⊗

v∈V (1)bulk

A(1)v ,

B(1) =
⊗

p∈P(1)bulk

B(1)p ,
(A.18)
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defining the physical Hilbert space H(1)phys
:= A(1)B(1)H(1)pre. Similarly, Λ2 comes with constraint

projectors A(2) and B(2). Crucially, A(2) is very much like A(1) except that A(1) acts on v1 while
A(2) instead acts on v2, v′2. B(2) is like B(1) except possibly one or two plaquettes now also
involve the new link ℓ0. By construction,

Vvertex : H(1)pre→H(2)pre ,

V †
vertex : H(2)pre→H(1)pre .

(A.19)

What we wish to show is that in particular

Vvertex : A(1)B(1)H(1)pre→ A(2)B(2)H(2)pre , (A.20)

V †
vertex : A(2)B(2)H(2)pre→ A(1)B(1)H(1)pre . (A.21)

To show (A.20), recall that when acting Vvertex we first append an ancilla in the state |1〉, and
then we act unitary controlled multiplication operators. Say we start with state |ψ〉 ∈ H(1)pre

that satisfies A(1)B(1) |ψ〉. After appending the ancilla ℓ0 but before the unitaries, we have the
state

|1〉0 ⊗ |ψ〉1···m ∈HG ⊗H(1)pre , (A.22)

which satisfies

L0(g)⊗ (⊗n
i=1Ri(g)) |1〉0 ⊗ |ψ〉1···n = |1〉0 ⊗ |ψ〉1···n , (A.23)

Rg(0)⊗11···n |1〉0 ⊗ |ψ〉1···n = |1〉0 ⊗ |ψ〉1···n . (A.24)

To complete the action of Vvertex we then act with the unitary operator

C :=
∏

i∈{m+1,··· ,n}

CI I ,0i . (A.25)

It follows that
C(R0(g)⊗11···n)C

†Vvertex |ψ〉= Vvertex |ψ〉 . (A.26)

We compute that

CI I ,0i(R0(g)⊗1i)C
†
I I ,0i = R0(g)⊗ Ri(g) , (A.27)

and therefore

C

 

1
|G|

∑

g∈G

R0(g)⊗11···n

!

C† = A(2)
v′2

. (A.28)

We have shown A(2)
v′2

Vvertex |ψ〉 = Vvertex |ψ〉. Now we want to show the same for A(2)v2
. We

compute
CI I ,0i(L0(g)⊗ Ri(g))C

†
I I ,0i = L0(g)⊗1i . (A.29)

This implies

C
�

L0(g)⊗ (⊗n
i=1Ri(g))

�

C† = L0(g)⊗ R1(g)⊗ · · · ⊗ Rm(g)⊗1m+1 ⊗ · · · ⊗1n . (A.30)

It follows that A(2)v2
Vvertex |ψ〉= Vvertex |ψ〉. All that is left is to argue B(2)Vvertex |ψ〉= Vvertex |ψ〉.

This follows because the introduction of |1〉 does not change any of the holonomies, and the
action of C also preserves the holonomies.

The reverse direction (A.21) and the analogs for the B constraints can be shown similarly.
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(a) Example of a left joint. (b) Example of a right joint.

Figure 13: The two types of joints between two ribbons.

B Central ribbon operators

Central ribbons

Here we derive the form of the central ribbon operators for a bipartition of the disk into two
regions b and b. We assume that both b, b are topologically D2, and ðb = ðb is topologically
an interval.

Theorem B.1. The center of the algebra Ab associated to b is

Fðb([h]) =
1
|[h]|

∑

w∈[h]
g∈G

Fγ(w, g) ,

where [k] is the conjugacy class of k ∈ G, and γ is a ribbon whose spokes are ðb, and whose spine
is the path connecting the vertices in Vb adjacent to links in ðb.

Note that two ribbons Fγ1
([h]), Fγ2

([h]), where γ1 and γ2 are anchored to the same bound-
ary endpoints, are the same ribbon provided that it is possible to deform γ1 into γ2 without
passing through any charges.

First, we need some results and definitions that appear in [49]. We say that we have a
left joint when two ribbons diverge outwards from a common point, as shown in Figure 13a.
Similarly, we have a right joint when two ribbons converge towards a common point, as shown
in Figure 13b. Then we can use the following result from [49]:

Proposition B.2. Let γ1 and γ2 be ribbons satisfying a left joint relation. Then they satisfy the
following commutation relation:

Fγ1
(h, g)Fγ2

(k,ℓ) = Fγ2
(hkh−1, hℓ)Fγ1

(h, g) . (B.1)

Let γ3 and γ4 be ribbons satisfying a right joint relation. Then they satisfy the following
commutation relation:

Fγ3
(h, g)Fγ4

(k,ℓ) = Fγ3
(k,ℓg−1h−1 g)Fγ4

(h, g) . (B.2)

To prove our theorem, we need a number of intermediate results. The first is that the
ribbons of interest are the center of a particular set of ribbon operators,

Proposition B.3. Consider two ribbons γ,γ′ that satisfy either a left-joint or a right-joint rela-
tion. Then, for k ∈ G, the ribbon operators

Fγ([k]) =
1
|[k]|

∑

k∈[k]
l∈G

Fγ(k, l) , (B.3)

commute with all possible ribbon operators on γ′ and γ.
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Proof. We look for a ribbon on γ that has this property

Fγ,c =
∑

k,l∈G

f (k,ℓ)Fγ(k, l) . (B.4)

Imposing commutation with an arbitrary ribbon on γ′ by plugging this into (B.1) yields
the condition

∀h, f (k, l) = f (hkh−1, hl) . (B.5)

The two combinations of k, l invariant under this set of transformations are the conjugacy class
[k] and l−1kl, so we find f (k, l) = f ([k], l−1kl).

The product of two operators on the same ribbon can be easily worked out to be

Fγ(k, l)Fγ(h, g) = δl,g Fγ(kh, l) . (B.6)

Imposing commutation of (B.4) with Fγ(h, g) gives

Fγ,c Fγ(h, g) =
∑

k∈G

f ([k], g−1kg)Fγ(kh, g)

=
∑

k′∈G

f ([k′], g−1hk′h−1 g)Fγ(hk′, g)

= Fγ(h, g)
∑

k′∈G

f ([k′], l−1hk′h−1l)Fγ(k
′, l) . (B.7)

In the second line, we have defined k′ = h−1kh and used the invariance of the sum under
conjugation. The last line only equals Fγ(h, g)Fγ,c if we take

f (k, l) = f ([k]) . (B.8)

The right joint condition doesn’t yield any additional constraints.

This proposition will be sufficient to prove our theorem in the case without matter. To
include matter, we need some more results.

Proposition B.4. Central ribbon operators live on a special type of ribbon. The ribbon γ can
end on a spoke, as long as that spoke borders only one plaquette in Pbulk, like

(B.9)

Below, we state this concisely as “central ribbons end on a spoke.”

Proof. We can see this directly from our definition. Focusing on ℓ2 in (B.9), the operator can
be written as

Fðb([h]) =
1
|[h]|

∑

w∈[h],g∈G

Tℓ1,ℓ̄4
(w)Tℓ1ℓ2,ℓ̄5

(w)Tℓ1ℓ2ℓ3,ℓ̄6
(w) . (B.10)
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Remembering that the operator Fℓ1
(e, g1) projects the link ℓ1 to the value g1, we can write the

summand as

Tℓ1,ℓ̄4
(w)Tℓ1ℓ2,ℓ̄5

(w)Tℓ1ℓ2ℓ3,ℓ̄6
(w) =

∑

g1∈G

Fℓ1
(e, g1)Lℓ̄1

(g−1
1 wg1)Tℓ2,ℓ̄5

(g−1
1 wg1)Tℓ2ℓ3,ℓ̄6

(g−1
1 wg1) . (B.11)

We exchange the g1 and w sums, then define w′ = g−1wg and use
∑

w =
∑

w′ (because we are
summing over a conjugacy class) to find that

Fðb([h]) =

�

∑

g1

Fℓ1
(e, g)

�

1
|[h]|

∑

w∈[h],g∈G

Lℓ̄1
(w)Tℓ2,ℓ̄5

(w)Tℓ2ℓ3,ℓ̄6
(w) . (B.12)

The operator in the brackets is the identity operator, since it is a sum over a complete set of
projectors. Thus, we find that the central ribbon has no action on ℓ1, justifying our claim.

The proof extends straightforwardly to arbitrary ribbons γ.

The qualitative reason is this: we need to end a generic ribbon operator on Vbdry because
it violates Gauss’s law at the end-point. But the sum over conjugacy classes already makes it
commutes with Gauss’s law. We will call these special ribbons that don’t end on Vbdry while
still supporting physical operators central ribbons.

The last intermediate result is the following:

Proposition B.5. The central ribbon operator Fðb([k]) on one side of a cut is the same as an
equivalent ribbon operator Fðb([k

−1]) on the opposite side of the cut. Thus this operator lives
in both algebras.

For example, the two ribbons in

(B.13)

are related in this way.

Proof. The fundamental fact we need is that the electric operator on one side is the same as
the transported shift acting on the other side, Rℓ(h) = Tℓ,ℓ(h−1). More generally, denoting by
ρℓ the path obtained by adjoining ℓ to the end of ρ,

Tρ,ℓ(h) = Tρℓ,ℓ̄(h
−1) . (B.14)

Then, specializing to the example,

Fðb(h) =
1
|[h]|

∑

w∈[h],g∈G

Tℓ̄1,ℓ̄1
(w−1)Tℓ2ℓ̄5,ℓ5

(w−1)Tℓ2ℓ3ℓ̄6,ℓ6
(w−1) . (B.15)

But the parallel-transport along ℓ2ℓ̄5 (ℓ2ℓ3ℓ̄6) is the same as the parallel-transport along ℓ̄4ℓ7
(ℓ̄4ℓ7ℓ8), and so we can shift the first argument in each T operator accordingly. Then, by the
same argument as in the proof of Proposition B.4, we can get rid of the ℓ̄1. We then find the red
ribbon in (B.13), where the shift parameter is summed over [h−1] instead of [h], as claimed.
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Again, the proof extends to other ribbons in a straightforward way.
Note here the importance of our requirement that the dual path ðb not intersect any pla-

quettes containing matter. If any of them did contain matter, then we couldn’t use flatness and
the argument would not go through.

Now we are ready for the following proof.

Proof of Theorem B.1. First, consider the case without matter, since the argument is more di-
rect. We first remember that the center commutes with every operator in b, and that the
algebra of b is generated by the ribbon operators. We consider three types of ribbons: those
that share no end-points with γ, those that share one, and those that share two. Operators
on ribbons that share no end-points with γ can always be deformed so that their support has
no intersection with γ. Those that share one, which we will call γ′, can be deformed so that
γ,γ′ satisfy either a left-joint or a right-joint relation. γ and γ′ cannot cross per se, since such
a γ′ would leave b. Finally, any ribbon that shares both end-points with γ is topologically the
same as γ itself. So, the non-trivial commutation relations to check are exactly those checked
in Proposition B.3. This proves it in this case.

In the presence of matter, there are many more topologically inequivalent ribbons in b. So
we opt for an indirect argument. Notice that any operator supported entirely in b is in the com-
mutant A′b of the algebra Ab of operators supported in b, for the simple reason that spacelike-
separated operators commute. Furthermore, the center is defined exactly as Zb = Ab ∩A′b.
Proposition B.5 shows that our ribbons satisfy this property.

Finally, we have to show in both cases that these operators generate the full center. Firstly,
note that only ribbon operators containing (a) no projection along the magnetic part and (b)
a sum over the electric parameter weighted by a class function can be deformed out of b. We
need the first because if the ribbon projects the spine then it has a non-trivial action on a link
in Lbdry; and we need the second to run the argument that proved Proposition B.4 to make the
electric action not depend on a link in Lbdry (in our example, this link is ℓ1). And if an operator

has a non-trivial action on a link in Lbdry ∪ b, then it cannot be supported entirely in b.
Thus, the only candidates are operators that have the same structure as our central ribbons,

but supported on some ribbon γ′ that is topologically distinct from γ. It can be topologically
distinct for two reasons. The first is that there is some matter excitation between the two.
In this case, the operator on γ′ cannot be deformed to b because it cannot cross the matter
excitation. The second reason γ′ might be topologically distinct is that it does not share both
end-points with γ. In that case also, we cannot deform it to have support only in b. As an
example, take the same lattice as before but a different choice for b,

(B.16)
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Now, the blue ribbon is no longer supported on ðb; trying to deform it towards the boundary
of b, we get first the red and then the green ribbon. The reason is that the operator has non-
zero commutation with the holonomy shown as a thick gray arrow in (B.16). (Note that this
holonomy is a boundary-anchored Wilson line, and therefore it’s gauge-invariant.)36 But this
requirement causes the green ribbon to have the horizontal parts above and below, so that
it is always partly supported in b. So only a ribbon supported on ðb itself can be deformed
to b.

Irrep basis

It turns out that a Fourier-transformed set that measures the total irrep flowing out of b is
more useful for us.

Theorem B.6. The central ribbons,

Fðb(µ) =
dµ
|G|

∑

[k]∈G

χµ(k)Fðb([k]) , (B.17)

are a complete, orthonormal set of projectors,

Fðb(µ)Fðb(ν) = δµνFðb(µ) ,
∑

µ

Fðb(µ) = 1 . (B.18)

Proof. We first prove that they are projectors. Unpacking the definition, Fðb(µ) can be written
as

Fðb(µ) =
dµ
|G|

∑

h,g∈G

χµ(g)
1
|[h]

∑

w∈[h]

Fγ(w, g)

=
dµ
|G|

∑

h,g∈G

χµ(g)Fγ(h, g) . (B.19)

Here, γ is the ribbon associated to ðb, as defined in the main text. To go from the first line to
the second, we use

∑

h∈G |[h]|
−1 f ([h]) =

∑

h∈CG
f ([h]) and

∑

h∈CG

∑

w∈[h] f (w) =
∑

h∈G f (h).
Taking the product of two irrep ribbons,

Fðb(µ)Fðb(µ
′) =

dµdµ′

|G|2
∑

g,h,g ′,h′∈G

χµ(h)χµ′(h
′)Fγ(h, g)Fγ(h

′, g ′)

=
dµdµ′

|G|2
∑

g,h,h′∈G

χµ(h)χµ′(h
′)Fγ(hh′, g)

=
dµdµ′

|G|2
∑

g,h̃

�

∑

h′
χµ(h̃h′−1)χµ′(h

′)

�

Fγ(h̃, g) . (B.20)

In the last line, we have defined h̃= hh′ and used
∑

h,h′ =
∑

h̃,h′ .
To evaluate the quantity in the square brackets, we need to expand the characters in terms

of representation matrices χµ(h) = Dµ

ii (h), summation assumed. These representation matri-
ces have the following orthogonality property,

∑

h

Dµ

ij (h)D
µ′

i′j′(h
−1) =

|G|
dµ
δµµ

′
δij′δji′ . (B.21)

36This non-commutation is the true reason such a ribbon cannot be in the center. For a ribbon supported on ðb,
this holonomy is contained in neither Ab nor A′b, allowing our ribbons to be central.
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We apply it as follows,
∑

h′∈G

χµ(h̃h′−1)χµ′(h
′) = Dµ

ji (h̃)
∑

h′∈G

Dµ

ij (h
′−1)Dµ′

i′i′(h
′)

= Dµ

ji (h̃)
|G|
dµ
δµµ′δii′δji′

=
|G|
dµ
χµ(h̃)δµµ′ . (B.22)

Plugging this back in to (B.20), we find the orthogonality of projectors, as advertised.
To prove completeness of the set of projectors we use character orthogonality in the fol-

lowing form
∑

µ

dµχµ(h) =
∑

µ

χµ∗(e)χµ(h) = |G|δh,e . (B.23)

We use this to evaluate
∑

µ

Fðb(µ) =
1
|G|

∑

h∈G

∑

µ

dµχµ(h)Fðb([h])

= Fðb([e]) = 1 . (B.24)

Fðb([e]) is the identity operator because it neither shifts nor projects any links.

Non-commutation relation

We claim that two intersecting central ribbons, corresponding to γ and γ′, fail to commute.
Again, by intersecting we mean that γ and γ′ intersect at one point, as all other cases can
be deformed to this case assuming that the path of deformation does not pass through any
charges.

Theorem B.7. The central ribbons Fγ([h]) and Fγ′([k]) fail to commute. Here γ and γ′ denote
paths on the lattice that intersect exactly once.

Proof. One way to show this is to just directly commute the two ribbons past each other using
the left and right joint relations. We will instead take the following route because it has a
nicer interpretation. Letting |ψ〉 be any state on the lattice, we will show this by directly
demonstrating that Fγ([h])Fγ′([k]) |ψ〉 is not equal to Fγ′([k])Fγ([h]) |ψ〉.

Note that the only places where the operators can possibly not commute are on the two
links, a and b, located at the intersection of the two ribbons, as in the following diagram. Here
both a and b are located on the incoming spines of their respective ribbons.

We will also label the elements on these two links as a and b, so that |a〉 |b〉 is the part
of |ψ〉 that we are concerned with. Without loss of generality we take a to be located on the
spine of γ′, and b to be located on the spine of γ. We can also break up the paths as γ= γ1aγ3
and γ′ = γ2 bγ4, i.e. into a piece that comes before the link and piece that comes after the link.
We let gγ1

denote the product of all the elements on the links in γ1 in the order traversed by
the ribbon, and similarly we let gγ2

denote the same quantity for γ2. Then

Fγ′([k])Fγ([h]) |a〉 |b〉= Fγ′([k])
�

�

�b−1 g−1
γ1

hgγ1
ba
¶

|b〉

=
�

�

�b−1 g−1
γ1

hgγ1
ba
¶

�

�

�a−1 b−1 g−1
γ1

h−1 gγ1
bg−1
γ2

kgγ2
b−1 g−1

γ1
hgγ1

bab
¶

=
�

�b−1hba
� �

�a−1 b−1h−1 bkb−1hbab
�

, (B.25)
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Figure 14: Two ribbons that intersect exactly once. We will call the links bordering
the intersection point a and b, so that the path of the blue ribbon can be written
in the form γ = γ1aγ3, and the path of the red ribbon can be written in the form
γ′ = γ2 bγ4.

where to get to the last line we took h→ g−1
γ1

hgγ1
and k→ g−1

γ2
kgγ2

. Similarly,

Fγ([h])Fγ′([k]) |a〉 |b〉= Fγ([h]) |a〉
�

�

�a−1 g−1
γ2

kgγ2
ab
¶

=
�

�

�b−1a−1 g−1
γ2

kgγ2
ag−1
γ1

hgγ1
a−1 g−1

γ2
kgγ2

aba
¶

�

�

�a−1 g−1
γ2

kgγ2
ab
¶

=
�

�b−1a−1kaha−1kaba
� �

�a−1kab
�

,

(B.26)

where we again took h→ g−1
γ1

hgγ1
and k→ g−1

γ2
kgγ2

.

These two expressions are not equal. We can see this clearly by taking G to be some
continuous Lie group. In that case, we can write h = eiεH ≈ 1+ iεH and k = eiεK ≈ 1+ iεK .
Then

F [h]c (γ)F
[k]
c (γ

′) |a〉 |b〉=
�

�b−1hba
� �

�a−1kab+ ε2 gH

�

, (B.27)

for some gH , and similarly

F [k]c (γ
′)F [h]c (γ) |a〉 |b〉=

�

�b−1hba+ ε2 gK

� �

�a−1kab
�

, (B.28)

for some gK .

C General subalgebras

As stated in Section 2.4, in general when we consider a subregion b of the lattice, the sub-
algebra we associate to that b is not just the set of physical operators that act trivally on its
complement b. It is instead a larger subalgebra which includes some operators that act non-
trivially on b. In this appendix, we describe this subalgebra and its center in detail.

The fundamental principle is that these subalgebras do correspond to subregions of the
reduced lattice. Once we convert the reduced lattice back to the full lattice, that subalgebra
turns out to be this novel type, not the one we would most naturally ascribe to a subregion.
That said, this is indeed a natural subalgebra to assign to (disconnected) b if you were in-
terested in having the center of that subalgebra include the operator that measures the net
electric flux out of b.
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Figure 15: An example of the setup for this section.

The summary description of these subalgebras is as follows. Say b has n connected re-
gions. These subalgebras are the algebraic union of the natural subalgebra associated to each
connected region, along with a network of Wilson lines connecting all of these subregions in
pairs. These Wilson lines allow us to compare the electric flux leaving each subregion. The
center is generated by “fused ribbon” operators that measure the total electric flux leaving all
the subregions.

Subregion subalgebras on the reduced lattice

We use the notation of Section 3 for the parts of the reduced lattice. It has n vertices v1 . . . vn,
with corresponding links ℓ1 . . .ℓn oriented out of the central vertex; together these links form
the set f∂ . There are also m lollipops l1 . . . lm, which form the set flol. In our figures, we will
label ℓr with r and lr with r ′. Together, f= f∂ ∪ flol consists of f1 . . . fn+m, numbered clockwise
around the central vertex.

The set of subregions we minimize over in the TN are subsets b ⊆ f. We split b into
contiguous sets b1 . . . bp. By convention, b1 = f1 ∪ . . . f|b1|. Similarly, we split the complement

b into b1 . . . bp, also arranged clockwise.

Subalgebras for each component

For a factor fi ∈ f∂ , the algebra Afi
(projected to the gauge-invariant subspace) is the set of

operators that act on the boundary vertex,

Afi
=
�

Rfi
(h)|h ∈ G

	′′
=
⊕

µ

L(Hµ) . (C.1)

Note that, when we factorize, fi will actually be the Hilbert space of the entire link, but the
gauge-invariant algebra on a single link is that on just one end of the link.

For a factor fi ∈ flol, the algebra consists of the closed ribbon operator that measures the
quantum double charge of the matter, and the operator that measures the irrep of the stem.
Call the algebra of closed ribbons Ai,cl; the details will not be important to us. To describe the
rest, name the three links on the lollipop ∫i , ⌊i , 〈i (the stem, boundary and heart),

(C.2)
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The other set of operators measures the total electric flux leaving the lollipop,

L∫i
(µ) :=

1
|G|

∑

h

χµ(h)L∫i
(h) . (C.3)

We can use Gauss’s law to rewrite the electric operator as a ribbon

L∫i
(µ) = R∫i

(µ∗) =
1
|G|

∑

h∈G

χµ(h)T⌊i ,∫i
(h)T〈i ,∫i

(h)T⌊̄i ,∫i
(h)

= (C.4)

Along with Ai,cl, these operators generate Afi
.

Now consider a contiguous region bi . Apart from the operators on each factor, there are
now also ribbon operators Fγ(h, g), γ ⊆ bi ,

Abi
=
�

Fγ(h, g)
�

�γ ⊆ bi

	′′∨

f∈bi

Af . (C.5)

Under lattice deformations, these contiguous regions map to those considered in Section 2.4,
and the center Zbi

is generated by irrep ribbons Fðbi
(µ) of the sort defined there.

The full subalgebra

With multiple components, the algebra Ab is made out of three types of operators.

1. The additive algebra Ab1
∨ · · · ∨Abp .

2. The Wilson lines Fℓ̄iℓ j
(e, g),∀

�

fi , f j

	

⊆ f∂ ∩ b. An example is shown in blue in Figure 16.

3. The transported shifts T∫i ,ℓ̄1
(h) acting on the stem of lollipop fi , with group element

transported from v1. An example is shown in green in Figure 16. As in (C.4), we can
transport it to shift 〈i and ⌊i (on both ends) similarly to (C.4).

The crucial fact is that we have arbitrary ribbons in each component, but only a subclass of
those that cross between components. This subclass is the one that doesn’t contain any electric
action; we call these the magnetic ribbon operators and the others electric ribbon operators.37

These can be used to parallel-transport all electric actions to any boundary vertex in b. We
denote a group element parallel transported along γ as hγ, so

Lℓ(hγ) = Tγ,ℓ(h) . (C.6)

The central operator is the fused ribbon operator

Fðb(µ) =
1
|G|

∑

h∈G

χµ(h)
∏

fi∈b

Lfi (h) . (C.7)

37A more accurate name would be ‘non–purely magnetic,’ but we opt for the shorter name.
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Figure 16: Examples of non-local operators in a region consisting of the links num-
bered 1,3, 6 and the lollipop labelled 1′. In blue, a Wilson line from 1 to 3. In green,
a shift acting on the stem of 1′, transported to the boundary end of link 6.

If fi ∈ flol, then Lfi = L∫i
. The reason we call it a fused ribbon operator is as follows. We can

see from the definition that it measures the total electric flux leaving b. This irrep arises in the
fusion of the fluxes leaving individual components, µ1 ⊗ . . .µp → µ. This can be seen at the
level of the operator by defining the ribbons in each component

Fðbr ;v1
(h,1) :=

∏

f j∈br

Lf j
(hℓ̄1
) . (C.8)

Here, 1 denotes the function 1(h) = 1. We can use the fact that the character is a class function
to parallel transport the group element to v1 in (C.7); as a result, we can write

Fðb(µ) =
1
|G|

∑

h∈G

χµ(h)
p
∏

r=1

Fðbr ;v1
(h,1) , Fðbr

(µ) =
1
|G|

∑

h∈G

χµ(h)Fðbr ;v1
(h) . (C.9)

This is the sense in which the central operator for b is a fusion of the central ribbons in the
separate components.

Mapping to the original lattice

We are also interested in the algebra and center on the original lattice. It will be instructive to
begin with some examples.

Basic examples

First, consider n= 4, m= 0, and take b = ℓ1∪ℓ3, as shown in Figure 17. Do the “add a vertex”
move, such that ℓ1 and ℓ3 are separated by the new link, which we call ℓ0. The constraints on
the new lattice are Lℓ1

(h)Lℓ4
(h)Lℓ0

(h) = Lℓ2
(h)Lℓ3

(h)Rℓ0
(h) = 1, and so the electric operator

on this new link is neither in Ab nor in Ab. As a result, the magnetic operator is in both
algebras (or rather, since it is not gauge-invariant on its own, it appears as a component of
some operator in both algebras). This is important, since this magnetic operator is required to
parallel transport a shift on ℓ3 to v1 or parallel transport a shift on ℓ4 to v2. Mathematically,

Ab =Aℓ1
∨Aℓ3

∨
¦

Fℓ̄1ℓ0ℓ3
(e, g)

©

, Ab =A′b =Aℓ2
∨Aℓ4

∨
¦

Fℓ̄2ℓ0ℓ4
(e, g)

©

. (C.10)

We can also derive this explicitly using the unitaries in appendix A; the Wilson line in the
reduced lattice maps to that in the bigger lattice. To find the central operator in the new lattice,
we write the one on the reduced lattice as in (C.9), with Fðℓ1;v1

= Rℓ1
(h) and Fðℓ3;v1

= Tℓ3,ℓ̄1
(h).
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Figure 17: An example where the reduced lattice consists of four links.

Figure 18: Second example.

This generalises to larger lattices; we define b1...4 to be regions on the larger lattice as
in Figure 17. We include a Wilson line on the path ρ13 that connects b1 to b3. The central
operator straightforwardly generalises (C.9)

Fµ
12 =

1
|G|

∑

h∈G

χµ(h)Fðb1
(h,1)Fðb2

�

Tρ13
(h),1

�

. (C.11)

As a second example, consider two matter degrees of freedom, as shown in Figure 18. b
consists of b1 = ℓ1 ∪ ℓ2 and b2 = l1, labelled 1′ in the figure. For Fðb2;v1

in the fused ribbon
operator, we use (C.4) to deform it as in the rightmost arrow of the figure. This is the ribbon
deformation shown in the rightmost arrow of Figure 18. Following this through the lattice
deformations, we find

Fµ

ðb =
1
|G|

∑

h∈G

χµ(h)Fðb1
(h,1)Fðb2

�

hγ,1
�

. (C.12)

First we remove a vertex (second arrow) and add five vertices (all but one of the ones adjacent
to the red links). The add/remove a vertex move acts on a transported shift by transporting a
shift to the same origin vertex (v1 in this case); the path of the parallel transport includes the
original path along with a subset of the new links.

This can be found without explicit computation. Remember that the central operator is a
fusion of central ribbon operators, all parallel-transported to the same vertex. Notice that b
on the reduced lattice separates b1 = ℓ3 ∪ ℓ4 ∪ ℓ5 from b2 = ℓ6 ∪ l2 (labelled 2′ in the figure).
Similar to how electric ribbons can’t cross from b1 to b2, they can’t cross from b1 to b2. Thus,
(a) the central ribbons that make up the fused ribbon must surround b1, b2 respectively without
surrounding anything else, and (b) the parallel-transport path should separate b1 from b2.
The central ribbon surrounding b1 is no different from that considered in Section 2.4. To find
the one surrounding b2, we first note that a central ribbon must end on links which border
only one plaquette in Pbulk. There are three such ribbons surrounding l1 on the larger lattice,
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Figure 19: A big lattice where b contains a matter degree of freedom deep in the
lattice, along with its corresponding reduced lattice.

σ in Figure 18 along with the following ribbons,

(C.13)

but only one of them does not separate ℓ5 from ℓ1...3. Here, it is important to remember that
the green ribbon shifts the group element on the link it ends on, and that link cannot be used
for parallel-transporting in the complement region. Similarly, there is only one path from the
end of this ribbon to v1 that separates b1 from b2.

A complicated example

Finally, we should consider the possibility that the matter degree of freedom is deep in the
original lattice. Unlike the above case, the central ribbon passing through the matter link
cannot live on just one plaquette, since commutation with the plaquette constraints requires
that central ribbons end on links bordering only one element of Pbulk. On the reduced lattice,
it does live on just the one plaquette in the lollipop. When we go back to the original lattice,
we have to use (A.15) to extend the ribbon while modifying the lattice.

Let us see an example, shown in Figure 19. On the reduced lattice, b has three components,
b1 = ℓ2, b2 = ℓ3 and b3 = l6.38 Similarly, b has three components b1 = l2, b2 = l3 . . .ℓ10
and b3 =

�

l7 . . .ℓ1

	

. The relations between the numberings was found by explicit lattice
transformations (not shown here, in order to preserve the reader’s sanity). Note that the
correspondence is not unique.

Because ℓ2 and ℓ3 separate l2 from the rest of b, the Wilson line connecting them must go
around the corresponding matter vertex. This tells us how to parallel transport
Fðb2
(h,1) = L3(h) to v2 to fuse the ribbons.

38The numbering is off from previous conventions by 1, due to a clerical error that propagated till it was too late
to change it. Please bear with us.
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The situation with b3 = l6 is more interesting. We have to be very careful that the central
ribbon avoids all matter links, while ending at the right place on the boundary. To find the
right end-point, note first that l6 lies between ℓ10 and l7. So the ribbon should separate these
two. However, it must not separate ℓ10 and l5. Visually, it is clear that the only ribbon which
satisfies this property must change orientation! The simplest way to deal with this to add new
links like the red on in Figure 19. Then the central ribbon as drawn has the right properties.39

The central operator is the fusion of the three ribbons, parallel-transported along the purple
paths.

Finally, there is the issue of the physical interpretation of the central ribbon operator for
b3, Fðb3

(µ). In the reduced lattice, it clearly measures the electric flux leaving b3; but this is
not so clear in the original lattice.

The lessons

The algorithm to map the central operator is as follows. First, remember that there is a unique
bijective correspondence between matter degrees of freedom and boundary vertices on the
two lattices. Labelling these physical degrees of freedom in the same way on both lattices, Ab
on the original lattice is not the algebra of all operators in some subregion. Each Abi

is, but
there are also some magnetic operators connecting the different components. The set of extra
magnetic operators are the ones that don’t commute with electric ribbons that cross from bi
to b j .

The central ribbon for each component can be fixed using the topological properties as
above. We might need to add a small number of new links to easily describe the corresponding
operator. The area operator is the fusion, like in (C.9), of ribbon operators surrounding each
component bi .

A subtlety with our tensor network

Let us look again at Figure 19, keeping in mind that we are building a tensor network for
the boundary links. Suppose we define the tensor network using the lattice deformations
shown there and find upon minimization that the entanglement wedge of the boundary region
B = ℓ2 ∪ ℓ3 is the region b. Notice the following oddity: the region B is a contiguous set of
boundary links in the original lattice (and it is also contiguous in the reduced lattice once we
project out the lollipops). However, two subregions of B are topologically separated by the
dressing of the matter l6.

This never happens in AdS/CFT. If B is an interval, then any two points in B can be con-
nected through the bulk by a path that doesn’t leave the entanglement wedge. In particular,
in the continuum TQFT description, all Wilson lines stretching between any pair of points in B
which are homotopic to a sub-interval of B are included in the entanglement wedge subalgebra.
(They measure things like two-point functions and entanglement of subintervals [28,29].) So,
our tensor network is a bad toy model for gravity if subalgebras like this form the entanglement
wedge. It will be important to address this in future work.

There is a second oddity. Suppose, in the example of Figure 19, that the lollipop l2 was
also included in b. In that case, even though the plaquettes containing l2 and l6 are adjacent
to each other, the algebra does not contain ribbons stretching from l2 to l6. The central ribbon

39Alternatively, one could mathematically define a twisted ribbon on the original lattice. Just use the relation
between left actions and right actions on the links being shifted twice, along with flatness of the new plaquettes
bounded by red links.
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operator is then

(C.14)

Despite the bulk region being contiguous, the algebra is still a fused subalgebra of two subal-
gebras dressed to different parts of the boundary.

We look forward to dealing with these subtleties in future work. For now, let us note that
we can get around this by restricting our matter to be electric. That means that the flatness
constraints are not modified. In the example of Figure 19 (where we return to the case where
l2 is excluded from b), note that the green ribbon around l6 shifts the links below it twice,
once with a left-multiplication and once with a right-multiplication. If the matter doesn’t have
magnetic charge, the parallel transport around the plaquette containing l6 is equivalent to a
parallel transport along the link itself (by the flatness constraint). Now, note that for any link ℓ

Lℓ(h)Tℓ,ℓ̄(h) |g〉ℓ =
�

�hg(g−1h−1 g)
�

= |g〉 . (C.15)

Thus, the green ribbon only acts as a shift on the matter,

(C.16)

The only role of its spine is to parallel transport the group element. But, because of flatness, the
exact path of parallel transport is immaterial; only the origin (in this case, ℓ2) matters. Thus,
the fused ribbon can be deformed to completely avoid the plaquette containing l7, opening up
a path for a ribbon to cross between the two components of b,

(C.17)

Let us sketch the general argument. For general matter, the reason thatAb does not include
general ribbons from ℓ2 to l6 is that they are not adjacent on the reduced lattice. But this is
somewhat arbitrary, since different lattice deformations can result in different reduced lattices.
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The ordering of the boundary vertices is of course fixed, but the ordering of the lollipops is not
so. We state without proof that we can move the lollipop around on the reduced lattice with a
braiding unitary.40 A braiding of a quantum double charge (which general matter that modifies
both types of constraints carries) and electric charge is not trivial, but the braiding of electric
charges with each other is [35]. Denoting quantum double charge with R, R⊗ µ ̸= µ⊗R.41

Thus, if the matter is purely electric, then we can braid all the matter lollipops to be adjacent
to one of the boundary links we began with, and the unitary is trivial.

D Tripartite information in the DG model

We show that there are four-party states such that the tripartite information (80) satisfies (81).
Consider a reduced lattice with four links b1...4, in a state |ψ〉 such that the states Fðbi

(µ) |ψ〉
are factorised between bi and the complement, so that all the entanglement entropy is edge
mode entropy.

Assume that the four links have fixed irreps µ1...4. This is a reasonable approximation for
holography, where we can make the fluctuations of four non-overlapping extremal surfaces
small to leading order in GN .

Let us then calculate a bound on the tripartite information. The positive contributions are

Sr = log dµr
, r = 1,2, 3 , S123 = S4 = log dµ4

. (D.1)

The negative contributions can be bounded above as

Sr2 ≤ log dµr
dµ2

, r = 1,3, 4 , (D.2)

since the fusion of the two irreps µ2,µr necessarily gives a subspace of µr⊗µ2. Using S13 = S24,
the tripartite information can be bounded below

I3(b1 : b2 : b3) =
4
∑

r=1

Sr −
∑

r=1,3,4

S2r ≥ −2 log dµ2
. (D.3)

Thus, (81) must be satisfied, as long as I3 is negative.
We have to fine-tune the group and class of states to make I3 ≤ 0 and match holography.

We have not done so in this work, and hope to do so in later work. However, this argument
shows that once we make the relevant choices to make I3 ≤ 0, the tripartite information
automatically has the right limit.

E Uniqueness of the factorization map

Our factorization map might seem like an obvious consequence of the gauge-theoretic descrip-
tion, but we should be more careful. This obviousness comes from the fact that we defined the
physical theory using unphysical gauge degrees of freedom, and the factorization map consists
of re-introducing some of these. However, this is not a unique affair; for example, there are
dualities in which the same physical system can arise from gauging different groups on the
two sides of the duality.

40An example of this can be found in the appendix of [43] for an example.
41This is not the tensor product physicists are used to. The notation ⊠ is common in the Hopf algebra literature

for this abstract tensor product.
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Furthermore, in the bipartite case, there is in fact an irreducible ambiguity. The center is
a commutative algebra, and so there is, a priori, no constraint on the edge modes [40]. [40]
also found that, in JT gravity, the inclusion of matter resolves this ambiguity. [54] showed that,
once we fix the edge mode von Neumann entropy, the entanglement spectrum of each |χα〉 in
(84) is completely fixed by the form of holographic Rényi entropies. In this section, we show
a similar uniqueness theorem for the edge modes we have introduced in this work. Our basic
tool is the consistency of the multi-party factorization.

The fusion multiplicities of the irreps are defined by µ⊗ ν = ⊕ρρ⊕Nρ
µν . The identity irrep

1 satisfies Nν
µ1 = δ

ν
µ. There is an important relation between the fusion multiplicities Nρ

µν and
the quantum dimensions, see [79] for a physicists’ explanation,

Proposition E.1. [80,81] Regard the fusion multiplicities with one index µ fixed as a matrix,

(Nµ)
ρ
ν

:= Nρ
µν . (E.1)

Then, the quantum dimension is the largest eigenvalue of this matrix. In other words, there is
a set (aρ), such that

(Nµa)ν = dµaν , and lim
n→∞

(Nn
µ)

ρ
ν = dn

µaνa
ρ . (E.2)

Our uniqueness theorem is the following:

Theorem E.2. Consider the DG model (without matter) on a reduced lattice for D2 with m links,
and call its Hilbert space Hm. Assume the existence of a factorization map J : Hm ,→ H⊗m

ℓ
, for

some Hℓ, satisfying the following two properties:

1. For any subset b, define Hb as the tensor factor of H⊗m
ℓ

on which Ab lives. The first
condition is that for any state |ψ〉 ∈Hm,

J |ψ〉=
∑

µ

Fðb(µ) |ψ〉 ⊗ UU ′
�

�χµ
�

, U ∈ L(Hb), U ′ ∈ L(Hb) , (E.3)

where µ is valued in the irreps of G and
�

�χµ
�

is a state in an auxiliary bipartite Hilbert
space Hµ,l ⊗Hµ,r , such that both the state and auxiliary Hilbert space are completely fixed
by µ. U , U ′ are isometries that embed this abstract bipartite state into the H⊗m

ℓ
.

2. |χ1〉 is a factorized state.

Then,
�

�χµ
�

=
1

Æ

dµ

dµ
∑

i=1

|i〉 |i〉 . (E.4)

Proof. Since our final aim is to prove a statement about the edge mode state
�

�χµ
�

, we can
choose a specific lattice and state |ψ〉 that are most convenient for us.

Take a reduced lattice with 2n links. We will work in the limit n → ∞. Call the links
ℓ1...n,ℓ1̃...ñ, and let them all be oriented out of the central vertex. Denote by γr the path ℓ̄rℓr̃ .
Define the subregions b := ℓ1 ∪ . . .ℓn and br := ℓr ∪ ℓr̃ .

The state we work with is the following:

|ψ0〉 :=
n
∏

r=1





∑

g∈G

Dµ

ij (g)Fγr
(e, g)



 |1〉⊗2n . (E.5)
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Here i, j are some fixed indices in Hµ that won’t play a role below. It is useful to abstract away
the lattice and keep track of only the fusion structure,

|ψ0〉=

�

�

�

�

�

. (E.6)

The state can also be written as
�

�

�

�

�

=
∑

ν

√

√

√

dν
dn
µ

�

Nn
µ

�ν

µ
∑

a=1

�

�

�

�

�

, (E.7)

a denotes the various copies of ν that appear in the fusion, and each copy is orthogonal.
We calculate the reduced density matrix ρ, and more specifically trρq, of the region b in

two ways, using the two representations of the state. We have implicitly used J (acting on the
original 2n links) to define ρ. Similarly, we define ρr as the density matrix for br .

The first calculation follows simply from the fact that the irrep flowing out of the region
br is the identity irrep. This is because Fγr

∈Abr
, and the operator Fðbr

(µ′) that measures the
irrep is in the center of Abr

, so

Fðbr
(µ′) |ψ0〉= δµ′,1 |ψ0〉 . (E.8)

As a result, ρr is a pure state, meaning that

ρ =
n
⊗

r=1

ρℓr
=

n
⊗

r=1

UχµU† . (E.9)

Finally, this means that

trρq =
�

trχq
µ

�n
=⇒ [trρq]1/n = trχq

µ , (E.10)

where we have defined χµ as the reduced density matrix of
�

�χµ
�

on one of the factors.
The second calculation uses the second representation of the state in (E.7). Using the fact

that each total irrep ν and each copy of ν is orthogonal, the reduced density matrix is

ρ =
∑

ν

dν
�

Nn
µ

�ν

µ

dn
µ











�

Nn
µ

�ν

µ
∑

a=1

1
�

Nn
µ

�ν

µ

�

�

�

�

� � �

�

�

�











⊗

χν (E.11)

:=
⊕

ν

pνρν ⊗ UχνU† ,

where ρν is the object in square brackets and pν is the scalar prefactor. In the limit n→∞,
we can use Proposition E.1 to simplify

pν =
dν
�

Nn
µ

�ν

µ

dn
µ

n→∞
−−−→ dνa

νaµ ,

ρν =
1

�

Nn
µ

�ν

µ

n→∞
−−−→

1

dn
µa

νaµ
. (E.12)
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Then,

trρq =
∑

ν

pq
ν trρq

ν trχq
ν =

∑

ν

dq
ν(aνaµ) trχ

q
ν

dn(q−1)
µ

=⇒ [trρq]1/n =
1

dq−1
µ

. (E.13)

In the first line, we have used tr (1d/d)
q = d1−q, and in the second line we have used the fact

that the numerator in the rightmost expression on the first line does not scale with n in any
way.

Comparing (E.10) and (E.13), we find

trχq
µ =

1

dq−1
µ

=⇒ χµ =
1dµ

dµ
. (E.14)

This means that
�

�χµ
�

can be written as (E.4) in some basis, proving our claim.

We expect that a version of this theorem holds in a much more general class of topological
field theories than doubly gauged models. Topological field theories (including the DG model)
are believed to be specified by unitary fusion categories, see [61,82] for an introduction. We
have not assumed any particular braiding relations between the excitations, and so we can
apply it to any unitary fusion category. In general, quantum dimensions need not be integers,
and the trace on the edge mode Hilbert space might be a quantum trace. Our theorem allows
this possibility (since we never used cyclicity of the trace). The result that generalizes is the
fact that trχq

µ = d1−q
µ . There is some evidence that quantum traces are relevant in gravity, with

edge modes satisfying this statement [30,31,83].
Finally, this result should be compared to the result of [40], which states that adding matter

fixes the entropy of the edge modes. In our model, our result states that the entropy of the
edge modes is fixed by the structure of the multipartite algebra. We can also consider our
result to be a theorem fixing the edge mode entropy by incorporating matter effects, if we
imagine that all the excitations live on bulk matter degrees of freedom.
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