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Abstract

Quantum entanglement plays a crucial role not only in understanding Hermitian many-
body systems but also in offering valuable insights into non-Hermitian quantum sys-
tems. In this paper, we analytically investigate the entanglement Hamiltonian and en-
tanglement energy spectrum of a non-Hermitian spin ladder using perturbation theory
in the biorthogonal basis. Specifically, we examine the entanglement properties between
coupled non-Hermitian quantum spin chains. In the strong coupling limit (Jrung ≫ 1),
first-order perturbation theory reveals that the entanglement Hamiltonian closely re-
sembles the single-chain Hamiltonian with renormalized coupling strengths, allowing
for the definition of an ad hoc temperature. Our findings provide new insights into
quantum entanglement in non-Hermitian systems and offer a foundation for developing
novel approaches for studying finite temperature properties in non-Hermitian quantum
many-body systems.
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1 Introduction

Quantum entanglement is a foundational concept that significantly enhances our understand-
ing of many-body physics by elucidating quantum correlations between subsystems. The en-
tanglement reveals concealed connections beyond classical physics. [1, 2] Suppose the total
Hamiltonian H = HA+ HB + HAB is written as summation of the subsystem Hamiltonians HA
and HB, and their interaction HAB. To further analyze the ground-state entanglement proper-
ties, the reduced density matrix ρA = TrB|ψ0〉〈ψ0| usually becomes an essential tool, where
|ψ0〉 is the normalized ground-state of the total Hamiltonian H, and the partial trace is per-
formed on tracing the degrees of freedom of subsystem B. One common measure for quantify-
ing entanglement between the subsystem A and B is the von Neumann entanglement entropy,
defined by Svon = −

∑

iωi lnωi , where ωi is the ith eigenvalue of ρA. For example, in gapless
systems where the low-energy theory is described by conformal field theory, the ground-state
entanglement entropy exhibits a logarithmic scaling behavior with respect to subsystem size.
This scaling allows for extraction of the central charge, a key parameter in the conformal field
theory, which serves as an indicator of the phase transition’s universality class. [3, 4]. For
gapped systems, the ground-state entanglement entropy follows an area law, meaning it is
proportional to the size of subsystem’s boundary.

The entanglement energy spectrum provides a detailed view of the quantum correlations
between subsystems, with the entanglement entropy serving as a condensed summary of the
information contained within this spectrum. The entanglement energy ξi is the ith energy
eigenvalue of a hypothetical Hamiltonian, called entanglement Hamiltonian HE , which is de-
fined by regarding the reduced density matrix as a thermal density matrix of the entangle-
ment Hamiltonian at unity temperature, ρA = e−HE/Z . Where Z is the partition function
that ensures Tr[ρA] = 1. Although the exact form of HE is generally unknown, its eigenval-
ues can be obtained by taking logarithm on the eigenvalues of the reduced density matrix,
ξi = − lnωi− ln Z . The entanglement energy spectrum provides deep insights into topological
systems and can be considered as a kind of ‘fingerprint’ of these systems. [5] This ‘fingerprint’
means that even when the entire system is divided into two halves, a topological system gen-
erates a gapless edge state, and this signature can be observed in the low-energy portion of the
entanglement energy spectrum. [5–8] For example in the 2-dimensional topological systems,
such as the fractional quantum Hall systems, the low-energy portion of momentum-resolved
entanglement spectrum presents the same state counting with the low-energy spectrum of the
edge Hamiltonian. This relationship is known as the renowned Li-Haldane conjecture [9] or
the edge-entanglement spectrum correspondence. [8]

Interesting phenomena related to the entanglement Hamiltonian HE can also arise when
subsystem B is considered a copy of subsystem A, and a strong enough interaction HAB is intro-
duced to create a nearly maximally entangled ground-state between A and B. For example, in
an antiferromagnetic spin ladder where the rung coupling is much stronger than the leg cou-
pling, the ground-state forms multiple rung-singlets, resulting in a nearly maximally entangled
state between the two legs [10–18]. In contrast to the Li-Haldane conjecture in topological
systems, the entire entanglement spectrum has some similarity to the energy spectrum of sub-
system A. Remarkably, under carefully selected parameters, the entanglement Hamiltonian
HE ≈ βHA can be proportional to the Hamiltonian of subsystem A by a constant β . In other
words, the finite temperature properties of an isolated system A can be approximated by the
reduced density matrix ρA obtained from the ground-state of an enlarged system at zero tem-
perature,

ρA ≈
1
Z

exp[−βHA] , (1)

where β is the inverse temperature as a function of system parameters.
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It is worth noting that the finite-temperature Density Matrix Renormalization Group
(DMRG) is a well-established numerical method for obtaining the finite-temperature prop-
erties of a system [19]. This method relies on the ancilla trick [20], which involves pairing the
original system with an auxiliary system, known as the ancilla, to create an enlarged system.
In this framework, the initial state is intentionally selected as a maximally entangled pure state
shared between the original system and the ancilla. This state represents the system at infi-
nite temperature. By performing imaginary time evolution on this initial state, the system can
be effectively cooled to finite temperatures. This process enables the calculation of thermal
expectation values.

In contrast, Eq. (1) provides an alternative approach that avoids imaginary time evolution.
By examining the ground state of an enlarged system, it is possible to directly approximate the
original system’s finite-temperature properties, offering a simpler method for studying finite-
temperature behavior from ground-state entanglement alone. This approach could also inspire
experimental designs for simulating finite-temperature properties in real systems.

In this paper, we show that Eq. (1) remains valid for non-Hermitian Hamiltonians. In the
next section, we briefly introduce non-Hermitian quantum mechanics and describe the non-
Hermitian Hamiltonian for the spin-1/2 ladder.

2 Non-Hermitian Hamiltonian

Non-Hermitian systems have become an important multidisciplinary field of study [21–23],
spanning photonics [24], condensed matter physics [25–29], and quantum information sci-
ence. [30–38] A novel approach to studying non-Hermitian systems on a quantum computer
can be achieved by applying post-selection to qubits, enabling non-reciprocal and non-unitary
evolution through controlled qubit operations [39]. Unlike traditional quantum systems,
which are governed by Hermitian Hamiltonians that ensure real eigenvalues and physically
observable energy levels, non-Hermitian systems are described by Hamiltonians that do not
necessarily satisfy this condition. This leads to complex eigenvalues and unique physical phe-
nomena, e.g. exceptional points [40–46] and non-Hermitian skin effect. [47–54] An excep-
tional point (EP) in non-Hermitian systems occurs when two or more eigenvalues and their cor-
responding eigenvectors coalesce, rendering the Hamiltonian non-diagonalizable. This leads
to unique phenomena, such as enhanced sensitivity to external changes [24] and a negative di-
vergence in real part of fidelity susceptibility [42–44] or quantum metric, [55–57] which mea-
sures how ground state changes under perturbations. The non-Hermitian skin effect refers to
the phenomenon where a macroscopic fraction of the system’s eigenstates accumulate at one
edge under open boundary conditions, even in the absence of external fields or disorder [47].
This effect is also commonly observed in systems with nonreciprocal coupling, where particles
or excitations have different probabilities of hopping forward versus backward [48,49].

Mathematically, nonreciprocal coupling is often introduced into a system’s Hamiltonian
through asymmetric hopping terms. [25–27] For instance, in a one-dimensional lattice model,
the hopping amplitude from site j to site j + 1 might differ from the amplitude from site
j + 1 to site j. This asymmetry results in a complex band structure with eigenvalues that
can form loops in the complex plane, leading to the skin effect [53]. In this paper, we study
the following non-Hermitian Hamiltonian H = HA + HB + HAB for spin-1/2 ladder with the
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Figure 1: Schematic representation of the non-Hermitian spin-1/2 ladder with nonre-
ciprocal couplings. All parameters are real and positive. The shaded region indicates
the part of the system on which the partial trace is performed.

nonreciprocal coupling.

HA = Jleg

N
∑

j=1

�

1
2

�

eΨS+j,AS−j+1,A+ e−ΨS−j,AS+j+1,A

�

+∆Sz
j,ASz

j+1,A

�

, (2a)

HB = Jleg

N
∑

j=1

�

1
2

�

eΨS+j,BS−j+1,B + e−ΨS−j,BS+j+1,B

�

+∆Sz
j,BSz

j+1,B

�

, (2b)

HAB = Jrung

N
∑

j=1

�

1
2

�

eΦS+j,AS−j,B + e−ΦS−j,AS+j,B
�

+∆Sz
j,ASz

j,B

�

, (2c)

where N denotes the number of rungs, and Φ and Ψ are real parameters that control the
nonreciprocal coupling between the legs and within each leg, respectively. Jrung and Jleg rep-
resent the coupling strengths between the legs and within the legs. Lastly, ∆ denotes the
XXZ anisotropy strength. Periodic boundary conditions are assumed. In the Hermitian limit,
Φ = Ψ = 0, the ground-state phase diagram has been studied in the literature [58]. We will
mainly focus on the entanglement Hamiltonian in the rung-singlet phase. The schematic rep-
resentation of the non-Hermitian spin-1/2 ladder is shown in Fig. 1.

Due to the non-Hermitian nature of the system, where H† ̸= H, the time evolution of the
wavefunctions is driven by both H and H† simultaneously. This results in the following time
evolution equations: ∂

∂ t |ϕ
R(t)〉=−iH|ϕR(t)〉, and ∂

∂ t |ϕ
L(t)〉=−iH†|ϕL(t)〉. Note that }h≡ 1 is

set. Consequently, in analogy to standard linear algebra, the eigenvectors of a non-Hermitian
Hamiltonian are generalized into biorthogonal left and right eigenvectors, satisfying the fol-
lowing eigenvalue equations: H†|ψL

n〉= E∗n|ψ
L
n〉 and H|ψR

n〉= En|ψR
n〉, with the biorthonormal

condition: 〈ψL
n|ψ

R
m〉=δnm. [23] In non-Hermitian quantum mechanics, observables are de-

fined through the expectation value 〈ψL|O|ψR〉, involving both left and right eigenvectors.
This biorthogonal framework naturally extends to the definition of the reduced density matrix
in a bipartite system. For a system divided into subsystems A and B, the reduced density matrix
(RDM) of the ground-state for subsystem A is defined as

ρA = TrB|ψR
0〉〈ψ

L
0 | . (3)

Note that Tr[ρA] = 1, since 〈ψL
0 |ψ

R
0〉= 1.

This biorthogonal definition of the RDM immediately raises a key issue: the RDM itself
becomes non-Hermitian, meaning that its eigenvalues, ωi , are generally complex. Even when
the total Hamiltonian has PT symmetry and the ground-state energy is real [21], the eigen-
values of the RDM in typical cases remain complex. As a result, appropriate definitions of
generic entanglement entropy of both von Neumann type and Rényi type have been proposed
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by Tu, Tzeng and Chang to account for these complex eigenvalues. [30]

STTC = −
∑

i

ωi ln |ωi| ,

S(n)TTC =
1

1− n
ln

�

∑

i

ωi|ωi|n−1

�

.
(4)

These entropies Eq.(4) effectively capture the negative central charge in non-Hermitian critical
systems through the logarithmic scaling. [30,31]

The entanglement Hamiltonian HE defined by ρA = e−HE/Z is also non-Hermitian, and
the entanglement energy ξi is complex in general. The real part of the entanglement en-
ergy can be obtained directly as Re[ξi] = − ln |ωi| − ln Z , and the entanglement entropy
Eq. (4) can be seen as the expectation value of the real part of the entanglement energy,
STTC =

∑

iωiRe[ξi] + ln Z .1 However, the imaginary part of the entanglement energy cannot
be easily determined, as the logarithmic function becomes multi-valued. To gain further insight
into this complexity, in the following section, we directly derive the entanglement Hamiltonian
of the non-Hermitian spin-1/2 ladder using perturbation theory for the rung-singlet phase,
where the ground state is adiabatically connected to the limit case of Jrung≫ 1.

3 Entanglement Hamiltonian

3.1 Perturbation theory

The non-Hermitian spin-1/2 ladder Hamiltonian is given by Eq.(2). In the limit of Jrung≫ 1,
the interaction between legs A and B at each rung j defines the unperturbed Hamiltonian
H0 = HAB =

∑N
j=1 h j

0, where

h j
0 = Jrung

�

1
2

�

eΦS+j,AS−j,B + e−ΦS−j,AS+j,B
�

+∆Sz
j,ASz

j,B

�

, (5)

and the Hamiltonians of the legs A and B, H1 = HA+HB, are treated as perturbation. The left
and right eigenvectors of the single-rung Hamiltonian Eq.(5) are

|sx
j 〉=

1
p

2

�

eσ(x)Φ |↑〉 j,A |↓〉 j,B− |↓〉 j,A |↑〉 j,B
�

, (6a)

|t+x
j 〉= |t

+
j 〉=|↑〉 j,A |↑〉 j,B , (6b)

|t0x
j 〉=

1
p

2

�

eσ(x)Φ |↑〉 j,A |↓〉 j,B+ |↓〉 j,A |↑〉 j,B
�

, (6c)

|t−x
j 〉= |t

−
j 〉=|↓〉 j,A |↓〉 j,B , (6d)

where x = L, R labels the ‘left’ and ‘right’, respectively, and

σ(x) =

¨

+1 , if x = R ,

−1 , if x = L .
(7)

1In PT-symmetric non-Hermitian systems, if the bipartition does not break the PT symmetry, the reduced density
matrix remains PT-symmetric, meaning that its eigenvalues ωi are either real or come in complex conjugate pairs.
Consequently, the partition function Z is real.
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Let |ψL(0)
0 〉 and |ψR(0)

0 〉 denote the left and right ground states of the unperturbed Hamiltonian

H0, with the corresponding ground state energy E(0)0 = −NJrung(
1
2 +

∆
4 ). Here, we assume

∆> −1. The ground state is a product of singlet states on each rung,

|ψx(0)
0 〉=

⊗

j

|sx
j 〉 . (8)

Using first-order perturbation theory, the corrected ground state can be written as,

|ψx
0〉 ≈ |ψ

x(0)
0 〉+ |ψ

x(1)
0 〉 , (9)

where the left and right first-order correction terms are,

〈ψL(1)
0 |=

N
∑

j=1

∑

n̸=0

〈ψL(0)
0 |H1|ψ

jR(0)
n 〉

E(0)0 − E(0)n

〈ψ j L(0)
n |

=
Jleg

4Jrung

N
∑

j=1

�

2e−Φe−Ψ

1+∆
. . . 〈t+j |〈t

−
j+1| . . .+

2e−ΦeΨ

1+∆
. . . 〈t−j |〈t

+
j+1| . . .−∆ . . . 〈t0L

j |〈t
0L
j+1| . . .

�

,

(10a)

|ψR(1)
0 〉=

N
∑

j=1

∑

n̸=0

|ψ jR(0)
n 〉
〈ψ j L(0)

n |H1|ψ
R(0)
0 〉

E(0)0 − E(0)n

=
Jleg

4Jrung

N
∑

j=1

�

2eΦeΨ

1+∆
. . . |t+j 〉|t

−
j+1〉 . . .+

2eΦe−Ψ

1+∆
. . . |t−j 〉|t

+
j+1〉 . . .−∆ . . . |t0R

j 〉|t
0R
j+1〉 . . .

�

.

(10b)

Where, the dots represent the singlet states on each rung. |ψ j L(0)
n 〉 and |ψ jR(0)

n 〉 denote the
excited states of the unperturbed Hamiltonian H0 = HAB, and E(0)n are the corresponding en-
ergies. Specifically, the excited states with non-zero contributions to the corrections are

|ψ j(0)
1 〉= . . . |t+j 〉|t

−
j+1〉 . . . ,

|ψ j(0)
2 〉= . . . |t−j 〉|t

+
j+1〉 . . . ,

|ψ j x(0)
3 〉= . . . |t0x

j 〉|t
0x
j+1〉 . . . ,

(11)

where x = L, R, and the corresponding eigenenergies are

E(0)1 = E(0)2 = Jrung

�

(1+∆)− N
�

1
2
+

1
4
∆

��

,

E(0)3 = Jrung

�

2− N
�

1
2
+

1
4
∆

��

.
(12)

The reduced density matrix ρA defined in Eq. (3) can be approximated as,

ρA≈ ρ
(0)
A +ρ(1)A = TrB

�

|ψR(0)
0 〉〈ψ

L(0)
0 |+ |ψ

R(1)
0 〉〈ψ

L(0)
0 |+ |ψ

R(0)
0 〉〈ψ

L(1)
0 |

�

=
1

2N

 

1−
4Jleg

Jrung(1+∆)

N
∑

j=1

�

1
2

�

eΨS+j,AS−j+1,A+ e−ΨS−j,AS+j+1,A

�

+
1
2

�

∆+∆2
�

Sz
j,ASz

j+1,A

�

!

. (13)

Thus, the reduced density matrix can be written in terms of the Hamiltonian of subsys-
tem A,

ρA ≈
1
Z

exp[−β H̃A] =
1
Z

�

1− β H̃A+
1
2!
β2H̃2

A −
1
3!
β3H̃3

A + · · ·
�

. (14)
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Compare Eq. (14) with Eq. (13), we obtain the ad hoc inverse temperature

β =
4

1+∆
1

Jrung
≪ 1 , (15)

and the Hamiltonian of the subsystem A

H̃A = Jleg

N
∑

j=1

�

1
2

�

eΨS+j,AS−j+1,A+ e−ΨS−j,AS+j+1,A

�

+ ∆̃Sz
j,ASz

j+1,A

�

, (16)

which is in the form of XXZ interaction with a renormalized parameter ∆̃ = 1
2(∆+∆

2). The
partition function is Z = Tr[exp(−β H̃A)] = 2N .

3.2 Discussion

We make some remarks regarding the derivation: For the spin ladder Eq. (2) considered in
this paper, the renormalized anisotropy parameter remains unchanged, i.e., ∆̃ = ∆, when
∆= 1 or 0. In these specific cases, the entanglement Hamiltonian is exactly equal to the sub-
system Hamiltonian, H̃A = HA. When Ψ = Φ = 0, our results are consistent with those from
earlier studies [13], reproducing the known Hermitian case. Even when non-Hermitian cou-
plings are introduced with non-zero Ψ and Φ, the overall behavior remains remarkably similar,
confirming that the methods and conclusions from the Hermitian regime can be successfully
extended to non-Hermitian systems without major deviations. In the general non-Hermitian
case, if one wishes to ensure that H̃A = HA, a simple approach is to choose the inter-subsystem
Hamiltonian HAB as a Hermitian and isotropic Heisenberg interaction.

HAB = Jrung

N
∑

j=1

S⃗ j,A · S⃗ j,B . (17)

This allows the reduced density matrix to reflect the exact form of the subsystem Hamiltonian
without any parameter renormalization. A particularly interesting scenario arises when HA
and HB are both Hermitian, while only the inter-subsystem coupling HAB is non-Hermitian,
specifically with parameters Ψ = 0 and Φ ̸= 0. In this case, despite both the total Hamiltonian
and the reduced density matrix being non-Hermitian, all the entanglement energies remain
real. This situation is quite rare and demonstrates an unusual interplay between Hermitian
and non-Hermitian components in the system.

4 Conclusion

The entanglement Hamiltonian, whose eigenvalue spectrum is known as the entanglement
energy spectrum [5], plays a crucial role in revealing quantum correlations between subsys-
tems in many-body systems. Understanding its analytical form is essential for gaining deeper
insights into the nature of quantum entanglement and for facilitating entanglement Hamilto-
nian tomography [59]. However, obtaining the entanglement Hamiltonian is often challeng-
ing, especially in non-Hermitian systems, where it can be complex and non-Hermitian itself.
While studies on non-interacting systems, such as the non-Hermitian Su-Schrieffer-Heeger
(SSH) model [34, 60], have made progress in deriving the entanglement Hamiltonian, the
challenge is even more pronounced in interacting systems, where many-body effects add sig-
nificant complexity. Although the real part of the entanglement energy can be derived from
the eigenvalues of the reduced density matrix as Re[ξi] = − ln |ωi| − ln Z , capturing the full
entanglement Hamiltonian remains crucial for exploring the deeper properties of quantum
many-body systems.
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In this paper, we explore the entanglement Hamiltonian of a non-Hermitian spin ladder
system using perturbation theory, providing an analytical approach to this difficult problem.
Remarkably, we find that the entanglement Hamiltonian in the non-Hermitian case can be ap-
proximated by the Hamiltonian of subsystem A, indicating that the thermal density matrix of
an isolated non-Hermitian system A can be derived by the partial trace of an enlarged system.
Our work offers new insights into the study of quantum entanglement in non-Hermitian sys-
tems, potentially facilitating the development of advanced approaches for investigating their
finite-temperature behavior.

Although non-Hermitian systems exhibit many phenomena absent in Hermitian systems,
such as exceptional points (EP) and the non-Hermitian skin effect, many features of Hermitian
systems persist in non-Hermitian counterparts when appropriately generalized. For instance,
the entanglement entropy in critical systems still follows a logarithmic scaling [30,31], fidelity
susceptibility diverges near phase transitions or EPs [42, 43], and machine learning methods
can be transferred from Hermitian to non-Hermitian systems [61]. In our work on entangle-
ment Hamiltonians, we extend the Hermitian case to non-Hermitian systems and find that, for
a nearly maximally entangled ground-state, the results remain consistent with the Hermitian
case.
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