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Abstract

Multijet events with heavy-flavors are of central importance at the LHC since many rel-
evant processes—such as tt, hh, tth and others—have a preferred branching ratio for
this final state. Current techniques for tackling these processes use hard-assignment
selections through b-tagging working points, and suffer from systematic uncertainties
because of the difficulties in Monte Carlo simulations. We develop a flexible Bayesian
mixture model approach to simultaneously infer b-tagging score distributions and the
flavor mixture composition in the dataset. We model multidimensional jet events, and to
enhance estimation efficiency, we design structured priors that leverages the continuity
and unimodality of the b-tagging score distributions. Remarkably, our method eliminates
the need for a parametric assumption and is robust against model misspecification—It
works for arbitrarily flexible continuous curves and is better if they are unimodal. We
have run a toy inferential process with signal bbbb and backgrounds ccbb and cccc,
and we find that with a few hundred events we can recover the true mixture fractions
of the signal and backgrounds, as well as the true b-tagging score distribution curves,
despite their arbitrariness and nonparametric shapes. We discuss prospects for taking
these findings into a realistic scenario in a physics analysis. The presented results could
be a starting point for a different and novel kind of analysis in multijet events, with a
scope competitive with current state-of-the-art analyses. We also discuss the possibility
of using these results in general cases of signals and backgrounds with approximately
known continuous distributions and/or expected unimodality.
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1 Introduction

The Large Hadron Collider (LHC) is one of the greatest machines ever built by mankind. State-
of-the-art and forward-looking science and technological knowledge were carefully merged to
craft a Machine that delivers top performance in all aspects. This has been confirmed by its
outstanding performance along the years, including the discovery of the Higgs boson [1, 2].
Having more than a decade ahead, with a few Standard Model milestones and the chimera of
unforeseen discoveries in the horizon, the physics side of the LHC is challenged to exploit to
the fullest every bit of data and information available with tools and techniques at the state-of-
the-art level. This work is directly aimed at contributing in this direction by making the most of
the mutual information contained at the event-by-event level, exploiting prior information in
different ways, and also exploring how to reduce systematic uncertainties by novel data-driven
methods. The ideas deployed in this article are along the lines of considering maximizing the
potential of LHC data as a new frontier in High-Energy Physics, the information frontier.

To this end, we focus on multijet events and the challenge of finding their composition in
terms of classes of possible flavor combinations. This kind of problem occurs often at the LHC
and it has the added complication that simulations often have problems reproducing this type
of events [3,4]. We focus on heavy-flavor tagging (c and b quarks), which is of main interest
at the LHC because of its connection to heavy particles such as the top-quark and the Higgs
boson. This kind of problem is relevant for final states such as for instance tt, hh, tW and Zh
among others, since the signal and its corresponding backgrounds in the multijet channel end
up defining a multijet selection of events with bottom-quark jets, or b-jets.

Tagging b-jets is a complex area in High Energy Physics that seeks to identify jets that
have been initiated by a bottom-quark [5, 6]. It is customary to construct b-taggers [7] that
receive the features of a given jet in an event and return a (b-tagging) score. This score
can be considered as being sampled from different probability distribution functions (PDFs)
depending on whether the jet has been initiated by a bottom-quark (b), charm-quark (c), or
light-quark/gluon (u, d, s or g). The less overlap there is in these probability distributions,
the better the tagger. This kind of problem is usually faced by defining a working-point as
a threshold in this score and then performing the difficult and needed task of calibrating on
data the true positive rate for b-jets and false positive rates for all other non-b jets whose score
results are larger than this threshold.
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In this work, we explore the possibility of, instead of using calibrated working points, using
the available full score PDFs despite knowing that it should be taken as an approximation of
a calibrated curve, which is very difficult to achieve. We develop a new statistical estimation
procedure by flexible Bayesian modeling and exploiting structured prior information. Simul-
taneously, this inference process also returns a posterior for the fraction of events of each class
present in the dataset, which is of prime interest in any physics analysis.

The rationale for pursuing our goal is as follows. The object of study consists of multijet
events, and therefore the dataset consists of tuples of b-tagging scores. Since each one of
the events consists of some combination of the individual jet flavors (light, charm and bot-
tom), then the likelihood for a given event needs the PDFs for each flavor. Since the true
value for these curves is unknown, but we have some prior knowledge of their shapes, we set
these curves as parameters in the inference problem. In doing these we show how to take
advantage of physical features such as continuity and unimodality to be able to infer arbitrary
(nonparametric) continuous curves. The classes in the multijet events are each flavor combi-
nation allowed by the physical problem, which is usually a few, and in particular much fewer
than all the mathematical possible combinations. Henceforth, as a mixture model problem,
the likelihood for one event is the sum of the probability for each class times the probability of
the given scores in that class. With the likelihood for the dataset one can then infer a density
estimation for the parameters, which are the score PDFs for each flavor and the fraction of
events for each class.

One of the central problems is the inference of the score PDFs for each jet flavor, or individ-
ual components, in the mixture model. In this article, we discretize in bins these curves and
we study four modeling strategies. The first is to model these PDFs as being sampled from a
Dirichlet distribution a priori; the second is as being sampled from a self-normalized Gaussian
process; the third as being a weighted mixture of unimodal curves; and the fourth as a strict
unimodal using priors from the previous case. The structured priors in these strategies, which
come from shape constraints and/or prior regularization, yield an inner structure to the model
that leverages the inference results. Statistically speaking, these models share the same likeli-
hood while the difference comes from the prior. In contrast to the common misunderstanding
of Bayesian inference that either the prior does not matter with enough sample size or the
prior needs to be avoided for it comes from subjective specification, here we adopt a hierarchi-
cal Bayes approach, where the structure of the prior does help extract more information from
a limited amount of data, and we are effectively learning the prior using the observed data
via the pattern of the smoothness or the shape. When there is a structured shape of the true
score PDFs, it is important for the model to use such structure in the estimation. Standard fre-
quentist statistical tools assume exchangeability between bins, or shrink bin height estimates
towards a global model in the absence of data. Our structured prior approach is better able to
capture much more of the true score PDF shape especially in bins with limited observations.

This work is divided as follows. In Section 2 we write down the mathematical formu-
lation of the model, its parts, and the aforementioned strategies. We first describe the one-
dimensional model and then the D-dimensional model. In Section 3 we show the results of
the paper. First, we show a toy one-dimensional model that only works, and to some extent, in
the unimodal models. Then we show the results for a four-dimensional case and we infer all
relevant features with all four models. Section 4 contains discussions of the results and their
prospects, and Section 5 details the conclusions of the work. All the results of this article and
the corresponding scripts to obtain them, have been placed for downloading and reproduction
in the Github repository [8].



https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.076

SC|| SciPost Phys. Core 7, 076 (2024)

2 Inferring mixtures of continuous and unimodal distributions

2.1 One-dimensional problem

Before the realistic discussion on the multijet events, we start with a one-dimensional task:
Given a sample of N independent identically distributed (IID) observations x,..., Xy, where
x, € R, we assume the density as a K-component mixture.

K
Xn "'Zwkpk(')~ (D
=1

The model contains three sets of free parameters:
* K, the number of mixture components,
* pi(+), the individual density component,
* Wy, the mixture weight.

In the physics problem we consider, each density component corresponds to one jet flavor. For
now, we fix K and make inference on p;,k =1,...,K and their weights.

If each py(-) is specified by a parametric model, p,(-|u), the inference is trivial through a
maximum likelihood estimate:

N K
Igavlvleog (Z Wkpk(xn|Uk)) :
7 on=1 k=1

But this parametric approach fails in practice for two reasons: First, the parametric model
pr(+|uy) is rarely correctly specified; indeed the shape of the distribution is often of a central
interest. Second, due to the discrete nature of the observation, the data we have often comes
in a histogram: Without loss of generality, we assume the support of x is compact, 0 < x < M,
and we only measure the binned counts y,,: the counts of x, in an interval [m,m + 1), i.e.,

N
ym=ZH(m—1§xn<m), m=1,...,M.

n=1

In this paper, we only consider discretized observations. It is equivalent to viewing
x, = |x,]| having support on integers 1,2,...,M, and y,, = er\l’:l 1(x,, = m). Since x,
is assumed to be discrete, each mixture component p(x) is a probability mass function on
(1,2,...,M), and is characterized by uz,, = px(x = m), the probability of the m-th bin in the
k-th mixture component.

The log likelihood is easy to write by a categorical distribution:

M K
log p(ylu,w)= Y (ym log( Wk.ukm)) : (2)
k=1

m=1

We are facing non-identification in the likelihood: We can re-distribute probability masses
across mixture components, as long as the quantity ZIk(:l Wi lm is invariant. What remains
left is the prior specification, which plays a central role in identification. Here we outline four
structured prior specifications.
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2.1.1 Dirichlet model

The individual probability masses u;,,, are on a simplex. That is, for any k,

M
Mgm = 0, Z“kmzl'
m=1

The Dirichlet distribution is the easiest prior:
Uk1, - -+ > Uiy ~ Dirichlet(a.), k=1,...,K, 3)

where a; are hyper-parameters that control the concentration of each mixture component. A
bigger a; entails a more spiky probability distribution. In the experiments, we often set a; to
match the shape of a Beta distribution.

2.1.2 Gaussian process model

Despite its simplicity, one key drawback of the previous Dirichlet prior is its lack of topological
modeling: it treats each bin u,,, as exchangeable. Since the underlying probability density
function should be smooth, we want to use the bin locations as extra information, and make
partial pooling across nearby bins. To that end, we consider a Gaussian process prior. The
first step is to perform a softmax transformation and convert the constrained simplex vectors
u into an unconstrained parameter f:

) @

S exp(Bm)

We typically set f;; = 0, and for all remaining m > 1, fB,, € R will be unconstrained free
parameters in the model to learn.

To encode the “distance” of bins, we can adopt a simple exponential kernel Gaussian pro-
cess prior:

Ukm

2
Br. ~ GP(f (), K(-,-));  Cov(Brm,> Bkm,) = O’% P (_M) , ®

in which o} and p; are the hyper-parameter controlling the length-scale and scale, encoding
how smooth each individual density component is, and can potentially change by k. The mean
function f (-) is either chosen to be zero, or a given Beta distribution.

2.1.3 Unimodal model

Perhaps a more physically meaningful design is to require each individual component to
be unimodally shaped. To encode this shape constraint, we still perform the softmax
transformation (4). Because this transformation is monotonical, it is sufficient to enforce

the vector (Bxq,.-.,PBry) to be unimodal. For each k, we introduce a discrete parameter
l, € {1,2,...,M} that represents the mode of the k-th density, and M — 1 non-negative in-
crements &y, €ER",m=1,...,M — 1. First set

Bri =0,

thenforl<m<I1—1,
Brm = Br(m+1) — Okm >
andforl+1<m<M,
Brm = Pr(m—-1) — Ok(m—1) -

5
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This design ensures that after the transformation, ., is unimodal given any realization of [
and &y,,.

The mode [; can be placed a uniform prior over {1,2,..., M}, and the increments can be
modeled as independent Gaussian in the prior:

61m ~ normal(0,gy).

In the inference phase, we compute the posterior of free parameters p({wy}, {lx}, {Oxm}y)-
This task is typically achieved in modern programming languages such as Stan, in which the
discrete parameter is handled via marginalization.

2.1.4 Point estimate from unimodal prior

The full Bayes outcome from (2.1.3) is a mixture of unimodal densities, integrating over the
uncertainty of mode location [; and increments dy,,. Sometimes either for computation cost
or for interpretation, we would wish the inferred density functions uy,, to be unimodal. A

quick remedy is to first fit the full Bayes model, and pick [, = arg max,, Pr(l;, = m|y), and refit
the model using the plug-in estimate p({w;}, {&im Y, {lk})-

2.2 D-dimensional problem

The extension to D dimensions of the above problem consists in having N observations
X1,...,Xy, Where x,, € R? and each one of its components corresponds to a one-dimensional
variable as defined in Eq. 1. Hence, we extend Eq. 1 to

K
Xy~ > wipk(), (6)
k=1

where pi(-) is a D-dimensional vector whose components, depending on the class, are some
specific combination of p,4(-). That is, the classes in the one-dimensional problem become the
individual components of the new classes in the D-dimensional problem. In this multidimen-
sional problem we number the individual components with d = 1...D, and use k to number
the K classes; in particular wy is not the same in Egs. 1 and 6. The K classes are distinguished
by their specific combination of the individual components. The physics of the problem deter-
mines which are the combinations of the individual components that are present as the classes
in the problem.

Since each class can have a different combination of individual components, then in princi-
ple the number of parameters would increase through w; because of the number of classes K.
However, being the problem D-dimensional, the number of observations increases consider-
ably. If we bin each individual component in M bins, then the observations correspond to a
D-dimensional histogram with M bins. In the physical problem worked out in this paper, the
classes are determined by the nature of the problem and correspond to a few specific combina-
tions of the individual components in each class. Therefore the problem becomes identifiable
because observations increase more than free parameters.

The likelihood in the D-dimensional problem is the sum of the mixture weights for each
class, wy, times the product of the individual components PDFs of that class, evaluated at the
measured b-tagging scores. In the cases of classes in which the individual components are not
the same, since the measured scores are not assigned to any component, one has to average
over all possible permutations. Therefore, the expression for the log likelihood is

N K 1 D
Zlog (Z Wy — Z l_[pd(scoreid ) s (7
k=1

n=1 PEM perm =1
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where score;, is the b-tagging score of the d-th jet in the i-th allowed permutation within
each class. py(score;, ) is the evaluation of the corresponding individual component PDF in
the measured score.

The model contains then the same three sets of free parameters as in the previous case
(c.f. Eq. 1), with the differentiation that now the classes correspond to D-dimensional combi-
nations of the individual components. The model also contains the specification of the com-
binations in each one of the classes, which in this work is taken as fixed prior knowledge that
comes out from the nature of the problem.

3 Multijet events with flavor-specific classes

In this section we implement the tools described above in simplified problems of datasets
consisting of one jet or multijet events in which finding out the jet flavor, the event class
and the dataset composition is part of the problem. This kind of problem occurs often in
collider physics and it can be encountered in LHC searches such as, for instance, pp — tttt,
pp — ttW, pp — tth, pp — hh and many others. We describe some of the phenomenology
and experimental tools utilized in these problems and explain how they can be matched to
be used in scenarios as detailed in Section 2. We then present a simple problem of N events
with one jet per event (the one-dimensional problem), and then a richer problem with four
jets per event (the D=4-dimensional problem). As discussed in Section 2.2, we find that the
richer inner structure of the latter, is more fertile to be exploited with the proposed tools. The
problems and solutions presented are a proof of concept, we discuss in Section 4 possible paths
to take these ideas to a production level.

3.1 Jet flavor tagging

Jet tagging, especially heavy-flavors such as bottom-quark b, is an important area in collider
physics programs, since its tools and results are used to reconstruct particles such as the top-
quark or the Higgs boson. The main objective in this field is to recognize whether an observed
QCD jet has been initiated by a b-, c-, light-quark, or a gluon. This classification problem has
a long history of methods that have been continuously improving over the years. The latest
developments consist mainly of a multivariate analysis (usually a neural network) that uses
many features in the jet and in the event to assign a score to the jet. Then each kind of jet
has a different probability distribution on this score, permitting to filter jets and events in
order to perform physics analyses. Creating these tools and algorithms is a sophisticated field
driven nowadays mainly by the ATLAS [5] and CMS [6] collaborations at the LHC. It should be
mentioned that in recent years there has been progress in using pseudo-continuous b-tagging
(see e.g. [9,10]), showing the power of using many working points. However, these proposals
still work in the same way as a fixed-point calibration, but calibrating in a few (usually ~ 4)
points.

We take as a departure point for our toy-model analysis the b-tagging performance results
by ATLAS using the GN1 constructed variable [11,12]. This result, whose relevant features
are summarized in Fig. 1, uses Monte Carlo simulations for the hard scattering, radiation,
hadronization, showering and the detector to learn a classification algorithm. In order to use
the results in Fig. 1 in a physics analysis, a working-point (dashed vertical lines) is defined
and it is further calibrated to account for biases and uncertainties. As a matter of fact, the
distributions in the figure are expected to have some distortions because of many systematic
uncertainties such as for instance tracking efficiencies, pile-up, and many others (see for in-
stance [13]). In addition, one also knows that these distributions depend on the final state.
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Figure 1: b-tagging scores for light-, c- and b-jets in the ATLAS variable GN1 [11,12].
Along the model and problem presented in this paper we use the c- and b-curves from
this plot.

Henceforth, the results in Fig.1 should be taken as an approximated guide of what the real
distributions are in data.

For the sake of simplicity, and for the purposes of the proof-of-concept pursued in this
work, we take the distribution curves in Fig. 1 as true distributions from which we sample
synthetic data.! We sample the data from a probability density function determined by these
curves; i.e. we do not use any physics Monte Carlo to sample the data. To emulate a scenario
in which one does not have access to the true distributions, as it is in real data, we do not use
as input information these true curve values at any point in the analysis, except for assessing
the algorithm performance. Depending on the model we use as prior knowledge different
combinations of the following features: shifted distribution curves (which do not match the
true ones, as it is the case in real scenarios), the continuity and smoothness of these curves,
and/or their expected unimodality. To avoid label switching along the inference process we
also use that their modes have some sorting in the GN1 (b-tagging) score. (Label switching is a
well known problem in mixture models [ 14] that arises because of a symmetry in the likelihood
due to switching of parameters, and is usually addressed by some artificial constraints.) In the
case of multijet events we also use as prior knowledge that the jets in one event cannot be of
any flavor combination, but only some specific combinations; as it would be in a real analysis
where one knows which are the expected backgrounds and their jets flavor combination. We
find that this is fertile prior knowledge since it relates the dependence of the GN1 scores in a
given event to the information that one pursues to extract from the dataset.

In the following paragraphs we present and solve two problems using the different models
and tools described above. In Section 3.2 we address the 1D problem, whose outcome is not
good but settles down the proposed idea. In Section 3.3 we solve the problem of four jets per
event, whose solution is enhanced by the multidimensionality of the problem, as discussed in
Section 2.2.

3.2 1D: One jet per event

Let us suppose that we have N events, each event consisting of one jet whose flavor could
be either ¢ or b. Here the jet flavor plays the role of the one-dimensional class or individual
components in Section 2. We have chosen to work with only two flavors for the sake of sim-

1Observe that in the framework proposed in this article we use as true distributions the ones that would be the
(surely) biased priors when addressing the real data.


https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.076

SC|| SciPost Phys. Core 7, 076 (2024)

plicity, and we use ¢ and b to make it more challenging because c is the one that looks more
alike to b in Fig. 1. The extension to three flavors is straightforward to implement, although
its convergence and performance should be correspondingly computed and analyzed. In each
event we measure the GN1 score corresponding to the given jet. The objective is to obtain:
i) the true distributions from which the data has been created; and ii) the fraction of events
coming from each one of the one-dimensional classes, namely c-jets and b-jets.

In order to apply the techniques and models described in Section 2 we use a dataset consist-
ing of N = 500 events and we divide the GN1 span in 14 bins. We decide to use this number of
bins to have a good balance between the smoothness and jaggedness of the histogram for the
data [15]. Along this work we indicate each bin with a point in its center and plot lines joining
these points. The dataset is created with 80% of its events corresponding to the c-jet class and
20% to the b-jet class. After binning the data, this one consists of N = 500 numbers between
1 and 14. See more details in the Github repository [8]. We have used the statistical software
Stan to perform the inference, and scripts can be found in Ref. [8]; also in Appendix B we
describe some relevant details on the hardware and simulation processes.

As a first benchmark model to estimate the densities we use Dirichlet distributions (Sec-
tion 2.1.1) as priors for the ¢- and b-distributions on GN1. We set the Dirichlet a parameters
such that their means correspond to beta functions with parameters a, 8 = 4.5, 10.2 (class c)
and 4.5, 2.25 (class b), which are the dotted lines in the upper row (left and central panels)
in Fig. 2. These means are curves that do not match the true curves from which the synthetic
data is sampled. The challenge is to determine whether the posterior approaches the true
distributions. Observe that this model can only exploit the information coming from the prior
means. Since Dirichlet distribution does not provide correlation because of bin proximity, then
the model cannot exploit the expected continuity of the curves. This latter can also be seen in
the jagged lines in the priors and posteriors for the c- and b-distributions in the upper panel
in Fig. 2. Moreover, as it can be seen in the central panel, the posterior distributions for the c-
and b-distributions do not represent any noticeable improvement with respect to the priors.
The relevant reasons are that the Dirichlet distribution is too flexible in neighboring bins and
that one jet per event does not contain valuable information on the inner structure of the data.
The posterior on the classes fractions in the sample (right panel) approaches the correct value
in absolute units, however this is solely because of the prior means which have some similitude
to the true curves.

As a second model, we use the Gaussian process model in Section 2.1.2. We use as the
mean of the Gaussian the same beta functions as above which are also the dotted lines at the
second row (left and central panels) in Fig. 2. The covariance matrix hyperparameters are
(along this work) set to 2p2 = 3 and 02 = 0.25 for both classes (see Section 2.1.2), and
we use an ordered vector [16,17] in the fifth bin to fix that in this bin the c¢-distribution
is greater than the b-distribution. An ordered-vector is a vector-valued random variable that
has support on ordered sequences. We have also tested inferring o and p as parameters, but
the running time increases considerably with no noticeable improvement in the results, and
with some difficulties in the convergence of the chains as indicated by the R parameter [18]
(see Github [8]). Therefore in this model we are using the prior knowledge of i) shifted
distributions with some proximity to their true values and ii) continuity. The results for the
inference are plotted in the second row in Fig. 2. We see in the central plot that again there
is no noticeable improvement, mainly because of the non-identifiability of the problem. The
convergence for the sample fractions has similar results and explanations as the previous case
using Dirichlet priors.

As a third benchmark model we use the Unimodal model presented in Section 2.1.3. This
model has the virtue that exploits i) continuity and ii) (mixture of) unimodality, however it
is not guided by a prior mean. In any case, we use prior knowledge to also set an ordered
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Figure 2: Problem of N events with one jet per event, which can be either from class
c or b. The problem is addressed with the four described models: (from top to bot-
tom) Dirichlet, Gaussian process, Unimodal and Point-Estimate. The left and center
columns indicate the priors and posteriors on the c- and b-distributions, respectively.
The right column shows the prior and posterior for the fractions of events with a c-jet
(only posterior is filled). As expected from the discussion on the identifiability in the
1D problem, we find practically null improvement in the Dirichlet and Gaussian pro-
cess models for recovering the posteriors of the c- and b-distributions. The Unimodal
model, starting from an agnostic prior, recovers a posterior with similar shape to the
true curves. As we show in the next Section, this performance it is improved with
many jets per event since the dependence between them at the event-by-event level
provides profitable information for the inferential process.
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vector as in the Gaussian process case. This helps to avoid label-switching [14]. We see in
this model that the posterior approaches the true values in comparison to the corresponding
priors in the left column of the same row, even in a one-dimensional problem. This is an
important achievement and one of the reasons behind it is that unimodal classes break the
non-identifiability if the data is not unimodal. We find better agreement with the c-distribution
because it has more data in the sample.

The fourth proposed model is the Point-Estimate (Section 2.1.4), which corresponds to
the bottom row in Fig. 2. This model exploits the maximums obtained in the Unimodal model
for each class and samples strict unimodal curves with their mode in the most likely mode
in the previous case. Since one starts with the prior from the Unimodal model, then there is
not much improvement when comparing the posterior to the prior. In any case, there is a fair
approach to the true curves, just as in the Unimodal model.

We have used this one-dimensional problem to deploy a simplistic version of the presented
framework in a relatively simple scenario. The inference results for the one-dimensional case
are not good, except in some cases in the Unimodal instance. This was expected from the
discussion in Section 2. In the next Section we analyze the multidimensional case within a
framework inspired by a physical problem.

3.3 4D: Four jets per event, a toy problem

Having studied the 1D case, we extend to the 4D case in this section. This corresponds to hav-
ing four jets per event. As a guide to construct the data we get inspired by the pp — hh — bbbb
process, where some of the backgrounds are such that in the four jets at the true level there are
either 0, 2 or 4 b-jets. Although in the real process the backgrounds and the physics are much
more sophisticated, the observation that an odd number of b’s at the true level is very rare,
allows us to consider a simplified model in which the classes can only be cccc, ccbb and bbbb.
One of our interests is to obtain the mixture weights for these classes in the dataset. (For our
purposes we drop the bar over the quark since we assume equal GN1 distribution for quark
and anti-quark jets.) Having only these three classes at the true level yields an important piece
of information to be exploited by the models, since now the dependence at the event-by-event
level provides profitable knowledge about the inner structure of the data.

In this 4D scenario data corresponding to N events consists of N 4-tuples. We work with
N =100, 250 and 500. We use the same hyperparameters as the 1D case, namely the prior
means, o and p for the Gaussian process model, and the same mechanism to avoid label-
switching through an ordered vector. For the sake of comparing these three cases, we use
the same number of bins for all the cases. We find that using 24 bins, although it is above
the ideal for N = 100, works quite well for larger N. We can see this just from the data,
by analyzing its smoothness and jaggedness, as discussed above. Notice that the 24-bin case
yields a considerably better curve resolution than the 14-bin case in the 1D problem.

In the scenario worked out in this section we have three classes (cccc, ccbb and bbbb),
hence the mixture weights distribution in the sample is conveniently plotted in a two-
dimensional simplex (from a three-dimensional space). Therefore to show the true fraction,
and the prior and posterior distributions for the fractions in the sample, we work with his-
tograms in the simplex. To define these histograms in the simplex we have divided each class
fraction into 11 bins in the first set of plots (Figs. 3-6). This yields a total of 11 x 12/2 = 65
bins, since the three fractions should add to one. We are using a totally agnostic prior knowl-
edge in the fractions, which assigns to each bin the uniform probability of 1/65 ~ 0.015. We
plot colored contour-curves on the simplex based on the counting on these bins. In each sim-
plex plot we indicate how much the density distribution increases when going from the prior
to the posterior at the true bin. This is an indicator of how much the posterior is better in
estimating the true fraction. In the small signal fraction plots (Fig. 8) we have used 100 bins
in order to have a suitable resolution.
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Figure 3: Problem of N events with four jets per event, which can be from either of the
classes cccc, ccbb or bbbb. Figure shows the learning stages using a Dirichlet model.
The upper row corresponds to the prior knowledge on the c¢- and b-distributions
(left), and uniform mixture weights of each one of the classes in the sample (right).
The red cross in the simplex indicates the true value for the class mixture weights.
The following rows correspond to the posterior knowledge of the same properties
after having seen N = 100, 250 and 500 events, respectively. See text for the Actual

data’ and for the binning in the simplex plots.
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Figure 4: Learning flavor mixtures for Gaussian process model. Same details as in
Fig. 3.
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Figure 5: Learning flavor mixtures for Unimodal model. Same details as in Fig. 3.
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We show the results for the c- and b-distributions in a plot with GN1 in the horizontal
axis. In these plots we also show how the data was actually sampled in the dataset through
red and blue dots (see below in Figs. 3-6). This visualization should be handled with care
since each dot represents the fraction of times that any of the jets in the event in the given
individual component had the given GN1 score. That is, these dots can only be visualized in
synthetic data where one has the true label of each data point. Observe that there is a loss of
information because we are projecting into one dimension a four-dimensional result.

Finally, to test the presented framework in more imbalanced conditions and against usual
methods, we also run the inference model on samples with 10% and 1% bbbb fractions, and
we compare its classification power against cut-based methods.

3.3.1 Results

We have computed the inference for the presented 4D problem using the models proposed
in Section 2. In all cases we have started with a given prior knowledge and then computed
the posterior after seeing N = 100, 250 and 500 events. We have verified the expected and
general pattern that increasing N and including more prior knowledge improves the posterior
matching to the true parameter values. The results are shown in Figs. 3-6.

Considering the posterior for the c- and b-distributions in the b-tagging score GN1, we
can see in the left column in the Figs. 3-6 that the Dirichlet model (Fig. 3) does not have
such a good performance as the others in recovering the true distributions. This is mainly be-
cause this model does not require these curves to be continuous, which yields variability in the
neighboring bins. The Gaussian process model (Fig. 4) incorporates the notion of continuity
in the sampling through the off-diagonal terms in the covariance matrix, which provides an
important improvement in the posterior similitude to the true curves. The Unimodal model
incorporates continuity and (Dirichlet-weighted mixture of) unimodal curves, which it can be
expected when using physically meaningful variables to distinguish the classes. In the ana-
lyzed case we use the outcome of the GN1 Neural Network, where the unimodality is slightly
compromised for the c-curve. We further discuss this point in the next section. Finally, the
Point Estimate model is tailored to sample strictly unimodal curves, as can be seen from the
priors in the upper row in Fig. 6. Observe the considerable improvement for these models
from the 1D case in Fig. 2 to the presented 4D case, in which the dependence of the multidi-
mensional data at the event-by-event level provides crucial information to go from the priors
(upper rows in Figs. 3-6) to the posteriors (other rows in the same figures). These improve-
ments can be seen at the individual component level (left row in the aforementioned figures)
and at the fraction level (right row in the same figures). We find that the Gaussian process,
Unimodal and Point Estimate models have an approximately equal level of convergence in the
problem studied in this article.

It is worth observing that these results show that even if the prior knowledge on the c- and
b-distributions does not correspond to their true distributions, the inference process retrieves
the correct curves and fraction within the corresponding uncertainty.

To quantify and analyze the convergence to the true c- and b-distributions in GN1 for all
models and also 1D and 4D scenarios, we have summarized in Appendix A the results in Fig. 10.
For each run, we plot on the vertical axis the root mean square (RMS) distance between the
true curve and the posterior samples averaged in all bins and classes. As a metric to assess a
density estimation on the true values we proceed as follows. For each run, we sample datasets
from the posterior with equal number of events as in the data, and from there we compute the
density on the true curve averaged for all bins and classes, plotting the exponential of the mean
of the logarithm of this probability. See Ref. [8] for details on these metrics. As it can be seen
from Fig. 10, the posterior convergence improves as N increases and as we use models that
include more prior knowledge; in this case the continuity. This plot summarizes and quantifies
the posterior convergence for the c- and b-distributions for all models and scenarios.
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Figure 6: Learning flavor mixtures for Point Estimate model. Same details as in Fig. 3.

16


https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.076

SC|| SciPost Phys. Core 7, 076 (2024)

«  Region with correct label

«  Region with incorrect labels Posterior- to prior-density ratio @ True fraction bin
Labels OK H

;2 Labels switched 0.175 - [ Dirichlet (83.3% > 1)

®  Dirichlet runs .
Gaussian Procees runs Gaussian Process (90.0% > 1)
Unimode runs 0.150 - Unimode (90.0% > 1)

0.125 A

=}
=
o
IS}

i

Fraction

0.075 A

0.050 A

|
i

L

T T T T T T

0 10 20 30 40 50 60
Ratio posterior / prior

0.025 4

0.000

O gt

%

2
%
Qg
%
‘6
g

Figure 7: Left: Mean fractions for 30 runs of N = 250 events using Dirichlet,
Gaussian-process and Unimodal models. We plot in magenta cross the correct mix-
ture fraction and in black crosses the other five label switching points in the simplex.
The green region shows the area in which each class fraction is closest to its true frac-
tion. Right: Distribution of the ratio of densities from posterior to prior in the correct
fraction bin (at the magenta cross in the left plot) for all 30 runs in each model. We
see that the Dirichlet and Gaussian process are the models whose fractions means are
closer to the correct fraction (left plot), however, all models yield an approximately
similar improvement for the probability in the correct fraction bin (right plot).

Considering the posterior for the fractions of each one of the classes cccc, ccbb and bbbb,
we should read the right column in Figs. 3—6. We can see that in all cases the posterior distri-
bution for the fractions is close to the true value in absolute distance, which is a good indicator.
If one analyzes how it changes the probability in the true bin from the prior to the posterior,
we also see that in all cases it increases. This quantifies the improvement in the posterior prob-
ability compared to the prior probability in the true fraction bin. We collect all these results
in Appendix A in Fig. 11. Despite some statistical fluctuations, we also observe a pattern that
corresponds to more probability in the true fraction as one increases the number of events.

To bolster the presented results we show in Appendix A the Fig.12 with the same summary
plots for a few other runs using different seeds. We find that essentially the same pattern is ob-
served. All the presented runs have specific seeds and can be reproduced with the information
and scripts in [8].

In Fig. 7 we perform a exploratory analysis to compare the model behavior in retrieving the
correct fraction for the classes in the dataset. We do not include the Point Estimate model since
its behavior is very similar to Unimodal, from which it is derived. We study in the left panel of
this figure the model robustness to avoid label-switching, and in the right panel its robustness
to increase the posterior density in the true bin. We see in the left panel that the Unimodal
model may have its posterior mean (cyan points) shifted from the true fraction (magenta
cross), however we see in the right panel that its increase in probability at the true bin is as
good as the other models. Dirichlet and Gaussian process models have a good centering of
their posteriors around the true fraction and mostly without label-switching.

Finally, in order to test the inference power in more realistic situations in which the signal
class—usually bbbb—has a smaller fraction, we also run the inference model in samples with
10% and 1% bbbb fractions. We present these results in Fig. 8 for N = 500 and using the
Unimodal model (the full plots dataset as in Figs. 3—6 can be found in Ref. [8]). We observe
that also in these cases the inference runs correctly in the distributions (not shown) and more
important in the small fractions. We find that the background class ccbb, whose fraction is not
small, is playing a key role to provide information on the individual b-component distribution,
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which is simultaneously used to infer the very small bbbb fraction. It is worth also noting that
we start with an agnostic uniform prior on the fractions, whereas in a real case one still has
room to improve by using some prior information on the expected fractions for the classes.

3.4 Comparison to cut-based methods

In order to assess the potential convenience and advantages of the presented Bayesian method
in real physics problems, it is useful to compare it to usual cut-based methods used at the LHC.
To make a fair comparison, we compare the classification performance of (the usually) signal
bbbb events in our Bayesian and the cut method. We use for this comparison the sample
with N = 500 events and 10% bbbb signal fraction. We consider this sample to have large
backgrounds while still having enough signal events (~ 50) to have smooth plots.

In the usual cut-based method, in order to have a high bbbb purity sample, analyses select
events by requiring that all four jets have a b-score above some threshold. This is the case, for
instance, in the pp — hh — bbbb analyses in Refs. [19] and [20]. Therefore, one can assess
the performance of such a classifier by constructing a Receiving Operating Characteristic (ROC)
curve as the mentioned threshold is varied. In each selected sample one has a different True
and False Positive Ratios, which draws the so-called ROC curve.

In the Bayesian framework one has that events are modeled as being sampled from a dis-
tribution. In this case, being a mixture model, there is a latent variable z, whose outcome
determines the class for the n" event (see for instance Refs. [21,22]). One can easily com-
pute the probability for this variable conditioned on the outcome of the whole data X, and in
particular on its corresponding measured data x,. Using Bayes theorem

p(xnlzn,X/n)p(zan/n)
p(xnlx/n)

p(zn|X) :p(znlxn:X/n) = 5 (8)

where X, includes all data but the n'" event, although in the practice we approximate it by
the whole data without causing any noticeable bias. The first factor in the numerator is easily
computed using the posterior samples from the inference problem to numerically evaluate the
following expression

p(xnlzn;X/n) = J P(Xn|zn>Pc>Pb)P(Pc,Pb|X/n) dpc dpb . C)

The second factor in the numerator of Eq. 8 is obtained analogously, but integrating out on the
parameters that estimate the fractions, whereas the denominator is the result of integrating
out z, in the numerator. In this way, one can compute Pr(z, = bbbb|X) for each event and use
this probability as a parameter to define a Bayesian tagging score for the bbbb class. We can
use a threshold on Pr(z, = bbbb) to select events in the sample and therefore a ROC curve
that evaluates this classifier.

The ROC curves indicates the classification ability to identify the bbbb events. We show
these curves from our Bayesian and the cut method as the solid-blue and solid-red lines, respec-
tively, in the left panel in Fig. 9, where it can be seen that the Bayesian classifier outperforms
the cut-based one. Moreover, the Bayesian framework can also work as a classifier for the
other classes in the problem (ccbb and cccc). We show the classifying performance for those
classes as well with their corresponding ROC curves in the right panel in Fig. 9.

Observe that the aforementioned ROC curves require the true labels of the events. How-
ever in a realistic situation, we do not have true labels and we can only estimate ROC curves.
It is interesting to study the level of agreement between the estimated ROC curve and the true
ROC curve. In the cut-based method the estimated curve is computed from the priors of the
individual c- and b-components by calculating the probability of having four b-tagged for a
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Figure 8: Case with 10% (left) and 1% (right) bbbb signal fraction in the sample
to showcase the inference power still with a small signal fraction. The results are
inferred through the Unimodal model and correspond to N = 500 events and an ag-
nostic flat prior on the fractions, as in the previous figures. Interestingly, the inference
of a small fraction in the bbbb signal class is assisted through the ccbb background
class which, instead of being an issue, becomes a leverage to infer the individual
b-component and therefore, simultaneously, the bbbb fraction. The complete set of
results for these fractions can be found in Ref. [8].

given threshold in the tagging score. Using the priors mean for the c- and b-components from
the previous section, this yields the dashed-red curve in the left panel in Fig. 9. Whereas for
the Bayesian framework one can do as follows: since one has a posterior on all the parameters,
one can simulate new synthetic data with labels and then compute a Bayesian ROC curve using
labeled synthetic data.? This ROC curve is plotted as dashed-blue in the same plot. Observe,
therefore, that the ROC curve estimation has better agreement in the Bayesian framework
than in the cut-based one. This is also an important result, since a biased ROC curve induces
biased results. Also notice that the Unimodal inference model only uses as prior information
unimodality, continuity and that in the first bins the individual c-component has larger prob-
ability than the b-component, to avoid label switching. Thus in case that the priors mean on
the c- and b-components varies, the blue lines remain the same, wheres the dashed-red will
shift along the ROC plane. We should remark that the disagreement between dashed-red and
solid-red originates in the discrepancies between prior and true distributions for the ¢ and
b individual components, which is one of the central problems addressed with the methods
presented in this work.

4 Discussion

The ideas presented in the previous sections are a novel application in High Energy Physics
using and adapting tools from the Statistics and Computer Science fields. As such, they have
prospects to be further developed within the presented framework as well as applied in dif-
ferent areas of High Energy Physics or others. We discuss these prospects in the following
paragraphs.

2Another naive possibility is to use the probability of each event to belong to each class as a soft-assignment to
estimate the number of events from each class in each selection. However, this method estimates number of events
using the same variable that one varies to select events for the ROC curve, and therefore inducing an expected bias
in favor of an overestimated ROC curve. We thank M.Szewc for this observation.
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ROC curves for bbbb classifiers ROC curves for all classes in Bayesian framework
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Figure 9: Left: Comparison of ROC curves between the usual cut-based method (red)
and the presented Bayesian method (blue) as classifiers for bbbb events. In the usual
cut-based method one selects bbbb events by requiring that all jets have a b-score
larger than a given threshold, whereas in the Bayesian method one has a posterior
for a latent variable for each event, z,, which indicates the probability of each event
to belong to each class. Solid curves represent the true ROC curves using the true
labels for each event, whereas dashed lines represent the more realistic case in which
one does not have the true label for each event (see text). The solid-blue being above
the solid-red indicates that the Bayesian method is a better classifier. The agreement
between the dashed-blue and solid-blue (in comparison to the red ones) indicate
that the Bayesian method is less biased in estimating the ROC curves. Right: As a
byproduct of the Bayesian method, one can also classify the events in each one of the
available classes using z,. Here we show the classification power of the method for
each one of the classes through their respective ROC curve. (In both plots we use the
Unimodal model with N = 500 events and 10% bbbb fraction.)

The first observation is on some of the results in the one-dimensional problem in Sec-
tion 2 (Fig. 2). We have found that if the data is not unimodal, then the Unimodal model
can recover some aspects of the mixture distributions, even without the multidimensionality
leverage. However, it does not have enough information to extract the details from the true c-
and b-distributions in a univocal manner, as expected. In any case, this inference that starts
from agnostic priors it could be potentially improved. It would be interesting to further de-
velop and understand in which cases one could use the unimodality leverage to extract better
details from the mixture model. This could include using more prior information on the curve
shapes, using more physically meaningful variables to have smoother curves, and including
this in the modeling accordingly, among other techniques that should be investigated.

With respect to the 4D examples, it is worth analyzing what is leveraging the inference re-
sults. There are a few features that should be mentioned. On one hand, being the events four-
dimensional and the four scores conditionally independent, reduces considerably the number
of unknowns. Here conditionally independence means that once the class has been assigned
(cccc, ccbb or bbbb), each b-tagging score is sampled independently of the outcome of the
others; there is no covariance matrix to be inferred. On the other hand, the four conditionally
independent observables in each one of the three classes, come only from two distributions,
the c- and b-individual components. This reduces still more the number of unknowns.

The results in this article are connected to the results in Ref. [22], in which it is shown
how Bayesian techniques generalize and improve some customary High Energy Physics tools
for data analysis. In the present work, we have extended the aforementioned analysis by gen-
eralizing that the jets b-tagging score probability distribution can have arbitrary continuous,
preferably unimodal, distributions. This result implies an important approach to the applica-
tion of the proposed method in realistic analyses.
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The current article, as Reference [22], are both building blocks that aim to construct a
different approach to measure pp — hh — bbbb by fully exploiting the available information
in the data. Of course, this is a large enterprise that needs many building blocks. Further
improvements are in the pipeline and include the treatment of some of the systematic un-
certainties that may yield dependence among the in-principle conditionally independent ob-
servables. Progress in including systematic correlations in a mixture model can be found in
Ref. [23], whose scheme could be transferable to this case. For a realistic analysis, all system-
atic uncertainties need to be studied, understood and modeled, and all relevant backgrounds
included in the model. The most challenging background is non-resonant bbbb, because of its
irreducibility in the jets flavor. Observe that despite that in current ATLAS [24] and CMS [25]
pp — hh — bbbb analyses this is the only main background, within the proposed Bayesian
framework more backgrounds could play an important role in the analysis. This is because
the proposed Bayesian techniques are such that many signal events that are tagged as 3b in
the non-Bayesian framework, will enter into the analysis because of the soft-assignment en-
hancement (see discussion in Ref. [22]) that allows the inclusion of more signal events in the
analysis. Current analyses for the proposed pp — hh — bbbb channel using fixed b-tag work-
ing points, with efficiency 0.77 as in [24], end up loosing a 1 —0.77% part of the signal events
(i.e. 65% of the bbbb are discarded). Another point that should be considered in expanding
the present analysis for a realistic application is that many times a jet can lie beyond the tag-
ging limit (usually |n| = 2.5), which in the practice would break the hypothesis that flavors
come in pairs. Although this is unlikely for one jet, having four jets makes it more likely. A
possibility to overcome this difficulty without neglecting these events, consists in using also in
the model the invariant masses of the jet pairs, as indicated in [22]. In this way we can assign
in the likelihood a probability distribution for a jet that lies beyond |n| = 2.5 to be flavor-
paired with another jet by studying their invariant mass within the knowledge of the system
under study. As a final observation of improvements that should follow the present results
we should mention that in a real study one should perform a posterior predictive check (see
for instance [21,26]). This study computes the probability of the data to have been sampled
from the proposed model using the inferred parameters. Therefore, being a measure of the
compatibility between the model and the data.

One of the achievements of the study presented in this work is to extract the correct indi-
vidual c- and b-distributions. However, in the state-of-the-art of b-tagging techniques, these
distributions are not physically meaningful, but instead an output from a multivariate classifier.
Moreover, our developed tools include leverage for unimodal distributions, something more
expected from a physically meaningful variable that could be used to distinguish the individual
components. Henceforth, we find that the proposed algorithms may be favored if instead of
using a multivariate classifier one uses more meaningful variables, such as Secondary Vertex
(SV) taggers, Impact Parameters (IP2D, IP3D) [27,28], soft-lepton taggers [28] or some com-
bination of physical variables. Such a project would be further favored by the fact that all the
distributions for the physical variables can be simultaneously inferred at once using Bayesian
inference. In contrast to current analyses in which the b-tagging performance is determined
separately to the pp — hh — bbbb analysis.

Using more than one physically meaningful variable to distinguish the individual compo-
nents does not represent a large complication in the Gaussian processes techniques, where
one can implement Gaussian Random Fields. However, it may yield some difficulties when
attempting to model and sample prior unimodal distributions in more than one dimension.
This should be studied in more detail in future works.
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Finally, and in general, one should envisage that the presented techniques that yield good
inference in mixture models with arbitrary, continuous and preferably unimodal distributions,
could play important enhancements in other areas. For instance, in observables where QCD
corrections play an important role, one could start with the current order computation of some
given distributions, and let the algorithm infer the true distributions for each class by seeing
the data. Such a project on QCD corrections could be validated by starting with LO distri-
butions and verifying whether the inference approaches the NLO or further order available
distributions. Such a work would be favored if the process has independent observables that
can provide multidimensionality and conditionally independence to the problem.

5 Conclusions

We have implemented a Bayesian framework to extract distributions and fractions in a mixture
model of multijet events with different flavor combinations, at collider data. We have shown
that, even if the b-tagging score distribution for each flavor is unknown and arbitrary, one can
exploit its expected continuity and in some cases unimodality to infer its true distribution. This
inference needs more than one jet per event to exploit the leverage provided by the multidi-
mensionality of the problem, and it is also notably favored by the prior knowledge of the jet
flavors expected in each class. The method also extracts the correct fraction of each class in
the sample. Being both, the distributions and the fractions, variables of interest in a physics
analysis.

We have implemented four models to infer binned b-tagging score distributions and the
fraction of each class in a dataset consisting of N = 100, 250 and 500 events with four jets per
event. The allowed classes correspond to the cccc, cchb and bbbb flavor combinations. In a
Dirichlet model, we find that the lack of correlation in neighboring bins negatively affects the
inference of the c- and b-distributions, whereas the inference for the fraction yields a result
relatively close to the true fraction value. In a Gaussian process model, where continuity is ex-
ploited through the multivariate normal covariance matrix, we find that c- and b-distributions
and the fraction are correctly extracted through the presented algorithm. We have developed
a Unimodal model that samples a mixture of strictly unimodals weighted through a Dirichlet
with small parameters, which yields mostly unimodal distributions. This model also correctly
extracts the c- and b-distributions and the fraction. Using the Unimodal model as prior we have
defined a Point-Estimate model which is strictly unimodal and also performs correct extraction
of the relevant distributions and fraction in the problem. We summarize the performance of
the models in Figs. 10 and 11, and we also show the summarized results for other seeds in
Fig. 12. We find in all cases the same general pattern: inference works correctly as described
above, and the posterior for the individual distributions and the fraction approaches the true
value as the number of events N increases. We stress that this is achieved by starting with a
biased or agnostic prior and just seeing the data with the correct model for it, demonstrating
that the method could be robust to extracting the correct distributions and fractions in a real
scenario in which one also starts with a prior knowledge that in general does not match the
true values. This result is useful to reduce the impact of Monte Carlo simulations, as well as
to eventually reduce the need for calibrated b-tagging working points.

We have discussed which points should be studied to apply the present analysis in a real-
istic scenario. Among the most important we find a systematic potential dependence between
the jets scores in the same event, as well as understanding and modeling systematic uncer-
tainties in general. We also discussed how the present results could contribute to improving
the measurement of pp — hh — bbbb, and some other prospects in utilizing the proposed
techniques.
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We find that the presented algorithms and especially the Unimodal model could enhance
its performance if instead of using a multivariate result to perform b-tagging, one uses more
physically meaningful variables, such as for instance Secondary Vertex or Impact Parameter
taggers. In this case not only the unimodality in the distributions would be better established,
but also one could work out together and simultaneously the inference for the tagging algo-
rithm and the mixture model, improving the overall algorithm performance. Moreover, in this
case the inference on the distributions would be on a physically meaningful variable and there-
fore the resulting posterior c- and b-distributions would have a physical meaning that could
also be exploited. This will be studied in a future project.

The obtained results suggest that multijet physics analyses could be improved by exploiting
information in the data and different aspects of prior knowledge that have been previously dis-
regarded. We have shown that this is the case within some simplifications and approximations,
and we conclude that further work to approach more realistic scenarios could achieve more
robust results which could be applied in a real data analysis being competitive with current
LHC physics analyses.
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A Additional results as plots

Additional plots (Figs. 10-12) to better visualize and understand the scope of the proposed
method.
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Figure 10: Summary plot for all models and scenarios posterior convergence on c-
and b-distributions in GN1. See text for details.
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Figure 11: Summary plot for all models and scenarios posterior convergence to the
classes fraction in the samples. Observe that in contrast to Fig. 10, in this plot each
point refers to only one parameter (the classes fraction) and not an average over
many (each bin in the c¢- and b-distributions), therefore we should expect a more
fluctuating plot. In any case, it can be recognized as a pattern in which the perfor-
mance improves with data (N) and by including more prior knowledge in the models.
Here the horizontal axis indicates the ratio of posterior to prior probabilities in the
bin where lies the true fraction. See text for details.
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Figure 12: Summary results in distributions and fractions for three different random
seeds. Plots are similar to Fig. 10 and 11, but for different data realizations because
of changing the random seed. We observe the same general pattern.
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B Computational considerations

Along the presented benchmark problems and models, we have used Hamiltonian Monte Carlo
(HMCQ) through the library Stan [29] to numerically compute posteriors in each presented
framework. All the required scripts are available in the Github repository [8]. In any case, a
few details are pointed out in this section.

We have used the Stan command line version cmdstan 2.33.1, which has robust docu-
mentation and allows a straightforward interaction with the kernel. We have used a commer-
cial desktop computer with 20 threads i9 and a RAM memory of 64 GB. We have not used
GPU.

In most of the cases we have used four independent chains to run the inferential problem,
with 1k samples to warm up and 1k samples for the posterior. Our most important variable
to diagnose the inference is R [18] whose convergence to one determines the good mixture of
the chains and defines an unbiased posterior. In most cases we obtain R < 1.02, and in a few
cases R ~ 1.05.

To optimize the running time and fully exploit the available threads, we have programmed
parallel computation within each chain. The details are found in each of the . stan scripts in
Ref. [8].

Running times in the aforementioned commercial desktop are as follows. For the Dirich-
let, Unimodal and Point-Estimate model, running time ranges between 2 to 20 minutes for
N = 100, 250 and 500. On the other hand, the Gaussian process model runs have taken
from one to two days, with time increasing from N = 100 to N = 500 events, because of the
resources consumed of multivariate normal sampling in many dimensions.
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