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Abstract

This review paper utilizes renormalization group techniques for signal detection in
nearly continuous positive spectra. We emphasize the universal aspects of the analogue
field-theory approach. The primary objective is to present an extended self-consistent
construction of the analogue effective field-theory framework for data, which can be
interpreted as a maximum entropy model. In particular, we leverage universality argu-
ments to justify the Z2 symmetry of the classical action, highlighting the existence of
both a large-scale (local) regime and a small-scale (nonlocal) regime. Secondly, in re-
lation to noise models, we observe the universal relationship between phase transitions
and symmetry breaking near the detection threshold. Finally, we address the challenge
of defining the covariance matrix for tensor-like data. Based on the cutting graph pre-
scription, we note the superiority of definitions that rely on complete graphs of large
size for data analysis.
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1 Introduction

Renormalization group and AI. Techniques of data analysis are mainly considered as useful
tools for physicists in order to investigate experimental results comprising a massive number
of data, which is of great importance nowadays in applied domain. One of the purposes of this
paper is to emphasise that data analysis can be also viewed as a physical problem involving
an unconventional Euclidean field theory. Moreover, such a framework is specially adapted
to an analysis by the renormalization group (RG), the specificity of the theory bringing new
and challenging issues. In physics, the RG is a general concept relevant to tackling problems
involving a very large number of interacting degrees of freedom [1–5]. All the technical incar-
nations of this concept aim to perform the same thing: to approximate the exact (but generally
partially known) description by a simple but effective theory where the relevant variables from
statistical or quantum states are extracted. This theory ignores some details, which are irrel-
evant at a given level of description regarding some experimental precision. In other words,
RG aims to identify physical states that cannot be distinguished experimentally, the basin of
attraction of the effective description defining an equivalence class of microscopic states. As
a general concept, RG has a numerous range of applications among them statistical mechan-
ics of critical phenomena, glassy and out-of-equilibrium systems, turbulence, particle physics,
quantum gravity, etc [6]. Consequently, it appears that RG is more than a technical trick, it is
a conceptual key for understanding the modern physics.

Gell-Mann and Low [7] first proposed the concept of RG when using the reflection about
scale transformations in quantum electrodynamics in particle physics. Later, Kadanoff and
Wilson [8–11] applied the conception of RG into statistical mechanics of critical phenomena.
They proposed to replace the global description of the system involving integral’s overall wave-
length with a sliced description, integrating momenta gradually into slices containing a few
numbers of modes. Integrating out degrees of freedom with short wavelengths provide an
effective description for the remaining long wavelengths degrees of freedom, involving effec-
tive Hamiltonian. Therefore, RG transformations proceed by eliminating degrees of freedom
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Figure 1: Illustration of the Kadanoff’s block-spin RG transformation T : Spins in the
initial lattice with spacing a are averaged into blocks of four spins, and interactions
between spins are replaced by interactions between blocks with spacing 2a.

through a coarse-grained description. The Kadanoff’s “block-spin” delivers another incarna-
tion of the same “coarse-graining” approach: for Ising model, it proposes to replace the sum
over all spin configurations with constrained sums having fixed average values in the interior of
cells. Figure 1 recalls the general strategy for the standard Ising model on a square lattice. Av-
eraging into blocks of four spins, the initial Hamiltonian H(J , a,φ) for some spin configuration
φ and coupling J is transformed as an effective Hamiltonian H(J ′, 2a,φ′) = T [H(J , a,φ)],
describing interactions into blocks. The iteration of this transformation maps Hamiltonians
onto Hamiltonians (i.e. models onto models), all encoding the same long-distance physics but
describing interactions between very different objects.

All these RG specific realizations/applications underline its general concept that is able to
extract relevant features for systems involving a very large number of interacting degrees of
freedom. For this reason, the RG is considered as a clever way to dilute the information and
with strong connections with information theory [12–16], showing its evolution within large
number of applications.

Wilson’s partial integration procedure is not necessary to construct RG. Indeed as identified
by Wegner from a reflection about reparametrization invariance, RG transformations can be
viewed as a suitable change of variables between so-called “fields”; and “couplings”; [17–19].
In other words, and without loss of generalities, RG is a reparametrization of the partition
function. Information theory provides a nice explanation of why RG trajectories are relevant:
the RG flow corresponds to a form of entropic dynamics of field configurations, mathematically
equivalent to a local application of the statistical inference with maximum entropy prescription
[20,21].

Indeed, the inference problem of recovering the microscopic distribution from the partial
knowledge of the large-scale effective theory is equivalent to finding the equivalence class
of microscopic distributions in its basin of attraction. Quantitatively, the ability to provide a
clear distinction between two large-scale asymptotic states starting in two different equivalent
classes depends on the property that the relevant perturbations survive or not at a large scale.
This relevance moreover can be understood intrinsically from information theory, accordingly
to a suitable notion of “distance” between states in the information geometric point of view,
where state space looks like a differential manifold with metric given by the Fisher information
2-form [15,22]. In that setting, a computable measure of (relative) distinguishable is provided
by the relative entropy, and the notion of equivalent class can be thought as follow: states
having “distance” smaller than some working precision being said equivalents [13,23,24].

3

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.077


SciPost Phys. Core 7, 077 (2024)

The last modern important application of the RG probably concerns artificial intelligence
(AI). Indeed, just in the past decade the number of publications linking RG, data analysis
and machine learning has significantly increased1 [25–35], regardless whether it is used for a
simple analogy (for instance to interpret the behaviour of neural networks) or as a basis for a
new approach. It is not surprising that RG and AI techniques have non-vanishing intersections:
all techniques of modern data analysis aim to extract relevant (i.e. exploitable) regularities of
correlated datasets of very large dimensions such as RG do. Note that RG provides not only
a dimensional reduction but also a non-trivial clustering through the existence of different
universality classes. Even only for this perspective, it is justified to search for links between
the methods of the RG in physics and those of AI.

In this regard, an interesting relation between these two techniques has been established
with many machine learning tools, especially with principal component analysis (PCA). PCA
is one of the most popular methods to suppress redundancy and denoising in a raw dataset.
There are many incarnations of the general PCA strategy, which has been extensively used
since more than one hundred years in various scientific domains [36], in particular: condensed
matter physics [37], high- energy physics [38–40], quantitative finance [41, 42], biology and
neuroscience [43,44], chemistry [45,46], geology [47], computer vision [48], random matrix
theory [49], machine and deep learning [50,51].2 Basically, PCA works as a linear projection
along the vector space spanned by eigenvectors corresponding to the larger eigenvalues of
the covariance matrix. Standard PCA however works efficiently for datasets whose covariance
matrix’s spectrum exhibits a few numbers isolated spikes out of a bulk made of delocalized
eigenvectors. In that way, a very small number of modes captures the most relevant features
of the covariance.

State of the art. This publication is continuation of several studies, not only ours, aiming to
exploit the complementary between PCA and RG to tackle the problem of signal detection in
nearly continuous spectra. A first tentative to connect them was investigated in [29, 52–54].
The authors interpret the arbitrary separation between noise and information as a physical
cut-off, Λ, and investigate the scaling behaviour of couplings when this cut-off changes. To
construct the RG flow, they propose to describe correlations in complex datasets throughout
an interaction of statistical field theory at equilibrium with Z2 symmetry, describing an un-
conventional kind of matter filling a fictitious space of dimension 1. The interacting particle
spectrum is moreover assumed to be given by the eigenvalues of the covariance matrix of
data. For a dataset taking the form of a suitably mean-shifted and normalized N × P matrix
X = {Xai}, with a ∈ {1, · · · , P} and i ∈ {1, · · · , N}, the covariance matrix C is defined as the
average of X T X , describing correlations between type-i variables. The spectrum of the covari-
ance matrix provides a non-trivial notion of scale, from which we can construct a Wilsonian
coarse-graining, integrating out smallest eigenvalues at first following a suitable slicing. Fol-
lowing the standard definition, we call deep ultraviolet (UV) the region of small eigenvalues
and deep infrared (IR) the region of large eigenvalues. We could have expected that for a
purely noisy datum the Gaussian fixed point would be stable and that any deviation from the
Gaussian distribution would be irrelevant from coarse-graining. Indeed, seeing a noisy signal
as “the least organized as possible” (i.e. having maximum entropy), it is therefore tempting
to associate information as an underlying organization for which interactions would be likely
to account.

1The given list is far from exhaustive.
2The range of applications is at least as numerous as the one of the RG.

4

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.077


SciPost Phys. Core 7, 077 (2024)

Nevertheless, it has been shown that this naive expectation is wrong. For instance, the
analytic MP law, in the large eigenvalue region of the spectrum (deep IR), quartic and sixtic
local perturbations are relevant.3 The situation is even worse in the small eigenvalue region
(deep UV), where the number of relevant couplings becomes arbitrarily large, and canonical
dimensions take arbitrary large values. These conclusions are as universal as MP’s law and
are essentially insensitive to the sparsity for eigenvalues for simulated random behaviours.
Furthermore, this observation does not concern only MP. In [55], non-analytic noises for ten-
sorial data have been investigated and exhibit similar behaviour regarding the instability of
the Gaussian behaviour.
Another surprising observation is that a strong enough signal merged in some universal noise
makes quartic and sixtic couplings irrelevant and the Gaussian distribution stable. Thus, it is
possible to characterize the presence of a signal in a spectrum by the asymptotic properties of
the physical states they underlie. These observations were however confined to dimensional
aspects and should require further investigations of the RG flow of these theories.

In [52–55], the authors exploited the effective average action (EAA) method [6, 56–60]
in this unconventional context. The originality of this framework is to focus on the effective
action for integrated-out degrees of freedom rather than on the classical action for remain-
ing degrees of freedom. Hence, the bare (i.e. the microscopic) action is left unchanged but
infrared contributions are suppressed from the effective action, including quantum effects.
Mathematically the interpolation between UV and IR physics is provided by the effective av-
erage action Γk, the effective action for integrated-out degrees of freedom up to the scale k.
In contrast to the previous picture where the UV cut-off Λ looks like a separation between
information and noise, the cut-off k looks like an IR rather than a UV cut-off. This change of
point of view corresponds also to a change of paradigm: in some sense, the authors focus on
determining what the “noise” is rather than what the “information” is. It should be noted, that
this difference is not just convenient for technical reasons. The noise models are likely more
general than the signal patterns.

Regarding the use of nonperturbative techniques, there are essentially two arguments to
justify it. The first one is that we expect that the perturbation theory fails due to the relevance
of some interactions in the deep IR for purely noisy spectra. The second one is that the effective
Hamiltonian, as those obtained following Wilson-Kadanoff strategy, is a very abstract object.
In contrast, working with the EAA, Γk allows us to make easy contact with physically relevant
quantities like effective potential. EAA has been considered in [53–55] for RG investigations
based on spectra obtained as a controlled deformation around analytic MP law. The surprising
lessons of these investigations are summarized by the following “empirical” statement:

Empirical statement 1 Concerning the effective local matter field whose particles density spec-
trum is given by the empirical eigenvalue distribution of the data’s covariance matrix (assumed
positive and nearly continuous), it has been observed that:

• For purely noisy data, only local quartic and sixtic couplings can be relevant to marginal
in the large eigenvalue region (IR) domain. Moreover, there is a non-vanishing compact
region around the Gaussian fixed point where all trajectories end toward the Z2 symmetric
phase.

• A strong enough signal makes the quartic and sixtic local couplings irrelevants. Moreover,
it induces a lack of symmetry restoration in the deep IR, for some trajectories which end
continuously toward a broken phase. Hence the strength of the signal plays the role of the
inverse of the temperature β = 1/T in the physics of phase transitions.

3By local interactions, we mean here “interactions at contact point”. An extended discussion is provided in
section 3.

5

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.077


SciPost Phys. Core 7, 077 (2024)

It is important to realize that these results do not depend on specific details of any special
problem. Nonetheless, they stress a general feature of nearly continuous spectra in the vicinity
of the Universal MP law. One can think that it is a specific property of the MP law, which is
only one example of a universal model of practical interest. The results reported in [53–55]
point out that these conclusions are in fact not restricted only to the MP law. Investigating the
case of a noise materialized by a random tensor considered in the mathematical formalism of
the tensorial PCA [61–64], the authors have confirmed the conclusions of statement 1.

Purpose of this paper. This paper follows (continues) the previous bibliographic line. Writ-
ten for a physicist audience, its first goal is to provide a complete and as self-contained as
possible presentation of the underlying field theory. In particular, we propose a derivation of
the field theory framework which exploits the universality of models of noise from an explicit
construction using large binary datasets, looking like a kind of Ising model familiar to physi-
cists. The second main goal of this paper is to provide solid evidence for a generalization of
the Empirical statement 1 through a systematic investigation of different well-known noise
models. The challenges and motivations underlying this study are fully discussed in Section 2.

Remark for the physicist reader: Even if we voluntary adopted a physicist-oriented redac-
tion, we opted for a pedagogical approach in order to make it more accessible to a wider
public, and notably specialists closer to information theory or artificial intelligence, who could
be interested in our study.

2 Motivations and outline

2.1 Short review on the spiked matrix models

The spiked matrix model [65–67] illustrates the paradigmatic problem of understanding the
eigenvalue distribution of a matrix built as a few numbers of prominent eigenvectors planted
into a random matrix. So far to be as simple as one can suspect, this model provide a very useful
statistical model for PCA. In a famous paper [68], Péché, Ben-Arous and Baik showed that in
the Wishart ensemble the spiked model exhibits a sharp phase transition when the strength
of the signal materialized by the spike reach some critical value. Detection and recovering
are allowed only from this point and below this critical value the larger eigenvalue remains
embedded in the bulk of the delocalized eigenvectors. This section start with a short review of
the one-spike matrix models and the underlying phase transition, focusing on the simplified
case of the Gaussian Wigner model (GWM) disturbed with a single deterministic vector. More
concretely we materialize the data that we are aiming to investigate as a N × N real random
matrix Q whose entries split as a sum of two contributions:

Q i j = βuiu j +
1
p

N
Mi j , (1)

where u = (u1, · · · , uN ) ∈ RN , |u| = 1 is a suitably normalized vector, and M is a N × N real
orthogonal matrix whose entries are assumed to be randomly distributed accordingly to the
Gaussian orthogonal ensemble (GOE) i.e. off-diagonal entries are distributed accordingly to
N (0,1) whereas the diagonal entries are distributed as N (0,2).4 β ∈ R+ materializes the size
of the signal.

4We recall that the notation N (x ,σ2) means normal law with means x and standard deviation σ2.
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We denote as {λµ} the set of eigenvalues of Q. The “unspiked” model β = 0 corresponds
to a white noise, and for N →∞, the empirical eigenvalue distribution µE(λ) (λ ∈ R) defined
as:

µE(λ) =
1
N

∑
µ

δ(λ−λµ) , (2)

converges weakly in statistic toward the Wigner semi-circle law µW (λ):

µW (λ) =
1

2π

√
4−λ21[−2,2] , (3)

where 1[−2,2] is the windows distribution, equals to 1 in the interval λ ∈ [−2, 2] and to 0
otherwise. In general, for β ̸= 0, we have the following theorem [66,68]:

Theorem 1 Let Q = βuuT + M/
p

N a spiked Wigner matrix with u2 = 1 and M ∈ GOE. We
have:

• For β ≤ 1, the largest eigenvalue of Q converge almost surely toward 2 as N →∞ with
Tracy-Widom distribution of order N−2/3.

• For β > 1, the larger eigenvalue converge almost surely toward β + 1/β > 2 as N →∞,
accordingly to a Gaussian error function of order N−1/2.

In the point of view of signal detection, this result means that:

1. As soon as β > 1, the signal can be easily detected and recovered using standard iterative
methods and PCA is optimal.

2. For β < 1 however, signal detection and recovering are almost impossible in practice,
except under some assumptions about the prior but in that case PCA is never optimal.

3. For the critical value β = 1 consistency tests exist to distinguish the spike, see [69].

Despite the fact that we focused on the Gaussian ensemble, the previous statement hold for
many random symmetric matrices as the size of the matrix approach infinity, provided that
entries are i.i.d random variables with zero mean and finite variance. This leads to the real
symmetric Wigner ensemble Wig(O(N)). More precisely: [66,67]:

Definition 1 The real symmetric Wigner ensemble Wig(O(N)) is a non-vanishing set of statistical
models for real and symmetric random matrix, and M ∈Wig(O(N)) if and only if:

• Entries Mi j are i.i.d randomly distributed with zero mean (E(Mi j) = 0).

• Standard deviation for M12 equals 1 (E(M2
12) = 1).

• Momenta of the distribution are all bounded (E(TrM k)<∞),

where E denotes the standard statistical averaging.

In this respect, Wigner law is a consequence of the universality of large size random matrices
as the central limit theorem is for scalar probabilities. Let us enunciate the complete statement
[66,70–72]:

Theorem 2 Let Y = M/
p

N with M ∈Wig(O(N)) a random symmetric N ×N matrix. Then, as
N →∞, the empirical distribution µE for Y ’s eigenvalues spectrum converge weakly in statistic
toward the Wigner semicircle law µW .
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Figure 2: Illustration of the convergence toward universal laws. On both sides we
show eigenvalues histograms for Wigner (on the left) and white Wishart (on the
right) matrices of size 104. The blue lines materialize the limit Wigner semi-circle
(µW ) and MP (µM P) laws.

The Wigner semicircle law is an universal feature of a matrix ensemble which is (almost)
independent of the measure. An another well know universal law for random matrix will be
discuss in the next section: the Marchenko–Pastur (MP) law. It describes the convergence of
the density spectrum in the white Wishart orthogonal ensemble (i.i.d WOE) defined as follows:

Definition 2 The white WOE is the set of statistical models for positive definite N × N matrices
of the form:

Y =
1
P

X X T , (4)

and Y ∈ WOE if and only if X is a N × P matrix having i.i.d distributed reals entries5 (higher
momenta being assumed finite as well).

The MP theorem state that:

Theorem 3 In the limit P, N →∞, keeping the ration N/P = α ≥ 1 fixed, the empirical dis-
tribution µE converge in statistic toward the almost surely MP distribution µM P , with support
between [λ−,λ+]:

µM P(λ) =
1

2πσ2

√
(λ−λ−)(λ+ −λ)

λα
1[λ−,λ+] , (5)

where λ± = (1±
p
α)2.

Figure 2 illustrates the convergence toward the Wigner and MP laws. Theorem 1 generalizes
for other universality class, and for N → ∞ the position λout of the outlier in the density
spectrum is given by:

λout = g−1(1/β) , (6)

where g−1 denotes the inverse of the Stieltjes transform g6 [67]. For low-rank perturbation
moreover, the law generalizes again as:

λout = g−1(1/βk) , (7)

where βk denotes the strength of the k-th deterministic perturbation – the detection level being
for βk > β

∗
k := g(λ+), where λ+ is the surely largest eigenvalue in the spectra. The existence

5Non-Wishart matrices can be defined more generally as [67]: E(X i j Xkl) = Cikδ jl , for some covariance matrix
C with zero means and finite variance σ2.

6The Stieltjes (or Cauchy) transform of a N×N matrix A is defined as 1/N times the trace of the matrix resolvent:
GA(z) = (zId− A)−1.
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of universality theorems explains why mathematical methods of random matrix theory are
powerful in practice for PCA. Indeed, universality means that statistical features of datasets
do not depend on the specificity of distributions but on the finiteness of momenta. With this
respect, it should come as no surprise to observe that universal distributions fit almost perfectly
empirical noisy spectra in many practical situations involving datasets with large dimensions.
Real data are by nature noisy and components of eigenvectors of universal distributions are
delocalized, with maximum entropy density,7 hence they contain no information and provide
the best mathematical incarnation of what is noise.

In counterpart and as it is the case for the one-spike matrix model discussed above, in-
formation are materialized with localized eigenvectors.8 Universal distributions provide thus a
good mathematical incarnation for purely noisy data.

Historically, this universal behavior has been stressed in nuclear physics with the works of
Wigner, Dyson, Gaudin, Mehta and others [71]. These pioneer studies have shown the uni-
versality of the Wigner surmise for a large number of an interacting particle following partially
unknown laws. Since, universality has been observed in almost all the domains of science,
from nuclear physics to biology, chemistry or economy.

To conclude this survey, we would like in particular to comment on sparsity. For N →∞
we stated that the largest eigenvalue converge almost surely toward a value λ+, equals to
2 in Wig and (1 +

p
α)2 for MP. For universal distributions which behave asymptotically as

µ(λ)∼ (λ+−λ)δ for N large enough, and for reasons that we will further develop in the next
section, we introduce the following definition:

Definition 3 For an universal distribution µ(λ) behaving as a power law µ(λ) ∼ (λ+ − λ)δ in
the vicinity of λ+, we call d0 := 2δ+ 2 the asymptotic dimension of the distribution.

The thickness δλ := |λmax − λ+| between the largest eigenvalue and λ+ can be estimated by
the observation that µ(λmax)δλ must be equals to 1/N , the minimal separation from which
we can distinguish two eigenvalues [67]. This leads to:

δλ∼ N−
2

d0 . (8)

For the Wigner and the MP distributions, it is easy to check that critical dimensions are equals
δ = 1/2, d0 = 3 and δλ ∼ N−2/3. Note that d0 = 3 is actually a general feature for convex
potentials except at the critical points, see [67,74].

2.2 The nearly continuous spectra issue

Standard PCA tools work well for spectra involving one or a few discrete spikes. In such a
situation, a very small number of eigenvalues capture a large fraction of the total variance
materialized by a gap in eigenvalues, for some K = Λ in the fraction:

ζ(K) :=

∑K
µ=0λµ

Tr C
. (9)

7For the Gaussian ensembles, eigenvectors are completely delocalized means that all their entries can not be
greater than the typical size ∼ N−1/2. The condition is moreover extremely sharp in probabilities, and for each
element, ui of the eigenbasis B = {u1, · · · , un}, the infinite norm follows the probability laws:

P
(
∥uk∥∞ ≥

Nα

p
N

)
≤ N−D ,

for some D,α > 0. See [73].
8i.e. almost deterministic, having a Gaussian distribution with a small width (of order

p
N in the Wigner

ensemble).
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Figure 3: On the left: Typical empirical spectrum exhibiting some localised spikes out
of a bulk (in red) made of delocalized eigenvectors. The cut-off K = Λ provides a
clean separation between delocalized eigenvectors (noise) and localized ones (infor-
mation). On the right: Arbitrariness in the choice of the cut-off Λ in nearly continous
spectra.

In that equation C denotes the covariance matrix and {λµ} the set of its eigenvalues. For
concreteness, we focus on datasets displaying as a N × P matrix X = {Xai}, where indices
a and i runs respectively along the sets {1, · · · , P} and {1, · · · , N}. Assuming the matrix X
suitably mean-shifted, we define the covariance matrix C as in the Wishart ensemble as the
N × N matrix

C =
X T X

P
, (10)

where T means standard transposition. Note that for datasets having high variances, to avoid
that variable with large variance dominate the PCA, it is suitable to work with the reduced
matrix:

C̃i j =
Ci j√
CiiC j j

, (11)

called correlation matrix [36]. Figure 3 (on the left) illustrates qualitatively the situation where
some discrete spikes capture a large fraction of the covariance matrix and dimensional reduc-
tion provided by PCA works well.

In this paper we are wondered mainly about the opposite situation - meaning where the
number of spikes is large enough and the spectrum almost continuous. In practice, this hap-
pens as soon as a large number of relevant features display in restricted windows of eigenvalue.
In that setting, the gap for ζ(K) vanishes and standard PCA fails to provide a clean separation
between noisy degrees of freedom and relevant ones. It is important at this stage to stress that
this situation is far from be marginal: covariance matrix with eigenvalues spectra almost con-
tinuous [29,75–78] are actually much more common. Note that noisy and relevant degrees of
freedom fail to decouple for nearly continuous spectra is reminiscent of the non-decoupling of
physical scales occurring for instance in statistical mechanics of critical phenomena for mag-
netic systems. We will discuss further this analogy at later stage.

Regarding the problem of signal detection, standard algorithms, based for instance on the
Python package “randomly”, exploit the universal features of random matrices (MP and Tracy-
Widom distribution for the qualitative illustration in Figure 4), to distinguish noisy degrees of
freedom from others. Such a method works in practice but has some disadvantages, among
them:

1. It requires in principle a well quantitative understanding of different kinds of noise.

10

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.077


SciPost Phys. Core 7, 077 (2024)

2. It has to be able to deal with the sparsity of the data, which is especially relevant for
nearly continuous spectra, the strip of length N−

1
1+δ having a non-vanishing entangle-

ment with relevant eigendirections.

3. Related in part to the above concerns, relevant eigenvectors are strongly mixed with
delocalized eigenvectors of the bulk.

Figure on the left illustrates the third point qualitatively. On the right we provided a con-
crete example, adding large rank L deterministic matrix to a purely Gaussian N × N Wishart
matrix M :

Q = M +
L∑
k

βkukuT
k , (12)

the strengths βk of the deterministic perturbations |uk| = 1 being adjusted to display rele-
vant features almost continuously from the surely maximal eigenvalue λ+ of M in the large N
limit, encouraging the non-decoupling between different scales of the spectrum. This implies
a strong mixing between eigenvectors of M and the deterministic vectors uk, having for a con-
sequence to dilute information between a very large number of components [79,80].
Embedded within the entanglement, even if around the value λ+ predicted by the most ap-
propriate universal noise model (the MP law in the Figure) is cut, we cannot argue that, in
general, what is on the left is noise and what is on the right is information. Regarding the
signal detection and recovering, the difficulty can be traced from the intrinsic computational
hardness of finding optimal k-means clustering (the simple planar k-means problem being,
for instance, NP-Hard, see [81]). This is in substance the origin of arbitrariness illustrated in
Figure 3.

As pointed out in the introduction, in physics, the goal of RG is to analyses large scale
regularities by ignoring microscopic details exactly such as PCA and clustering aim to do. The
combination of these approaches can be done at the formal level. For instance, the Kadanoff
block-spin approach above-mentioned, and more broadly the coarse-graining underlying the
Wilson approach, is nothing but a kind of clustering cleverly organized following a hierarchy
inherited from the existence of an intrinsic notion of scale. For this reason, it can be expected
that RG could be a powerful method to extract relevant features of an almost continuous
dataset, in complement to standard methods, and this is besides exactly what RG does in
ordinary field theory.

Fields theories involves generally continuous spectra for particles. RG shows relevant mat-
ters and interactions regarding the shape of such spectra. As a concrete example: the standard
euclidean scalar field theory in Rd , which describe equilibrium fluctuations of the real scalar
field φ : Rd → R through the Gibbs state:

p[Φ]∝ e−S[Φ] , (13)

for some field configuration Φ= {φ(x)}, with classical Ginzburg-Landau [Zinn-Justin] action:

S[Φ] :=
1
2

∫
Rd

dd x φ(x)(−∆+m2)φ(x) +
g
4!

∫
Rd

dd x φ4(x) , (14)

for some coupling constant g for the quartic term, m2 is the mass of the free particles and
∆ denotes the standard Laplacian ∆ =

∑d
i=1 ∂

2/∂ x2
i . In the vicinity of the Gaussian line9

where g is almost zero, it is well known that the relevance of the coupling constant for the
coarse-graining depends on the dimension of the background space d and more precisely of
the dimension’s sign of the coupling constant [82]. For the model described by (14), the di-
mension of g is [g] = d − 4, the notation [A] being defined such that [∆] = −2. For d > 4,

9The Gaussian line is parametrized by the value of the mass m2, which is always relevant.
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Noise Signal

µ(λ)

λ

Λ
Marchenko–Pastur

Figure 4: Covariance matrix for nearly continuous datasets. On the top Qualitative
illustration of the deviations from the universal MP law (in blue), obtained by com-
pletely randomize the data matrix. On the bottom: Illustration for a spectrum ob-
tained by adding large rank deterministic matrix to a purely Gaussian Wishart noise.

the quartic interaction is irrelevant, meaning that for sufficiently large scale, the theory is es-
sentially Gaussian. In contrast, for d < 4, the interaction increases, and the RG flow is repealed
from the Gaussian line g = 0. This simple example highlights the connection between space
dimension and the relevance of operators. However, in the computation of the integrals for
rotationally invariant models, the dimension of space appears in practice essentially through
the momentum distribution ρ(|p⃗ |) = (p⃗ 2)

d
2−1, or more precisely through the spectral distri-

bution of the kinetic operator Ĥ0 := −∆+m2 whose eigenvalues are E2 = p⃗ 2 +m2 and the
density spectrum ρ̃(E2) is:

ρ̃(E2) =
ρ(
p

E2 −m2)
2
p

E2 −m2
. (15)

In terms of the original distribution p[Φ] this corresponds to a coarse-graining, and the coarse
grained field:

ψ(E) :=
∫

dd pδ(E −
√

p⃗ 2 +m2)φ(p⃗ ) , (16)
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which induce an effective distribution p̃[ψ]:

p̃[ψ]∝
∫ ∏

p⃗

[dφ(p⃗ )]δ
(
ψ(E)−

∫
dd pδ(E −

√
p⃗ 2 +m2)φ(p⃗ )

)
e−S[Φ] , (17)

where
∏

p⃗ [dφ(p⃗ )] denotes the path integral measure.
Figure 5 (on the left) shows the typical shape of the distribution ρ̃ for d = 5 and d = 3.

On the right side of the figure we show the same region of the spectrum for degrees of free-
dom labelled with the eigenvalues of the free propagator Ĥ−1

0 , corresponding to the density
µ̃(1/E2) := ρ̃(1/E2)/(E2)2. The figure have to be compared with Figures 3 and 4. Hence,
one can almost say that, regarding the power counting, the intrinsic ability of couplings to
survive along the RG flow depends on the shape of the distribution (which depends on d) and
indirectly on the background space dimension. In other words, the shape of the distribution ρ̃
– i.e. the (free) energy density spectrum of particles filling the space Rd – decides essentially
if interactions are relevant or not in the vicinity of the Gaussian region. Hence, varying the
dimension, the shape of the distribution change, as well as the large scale description of the
considered field.10

From that standpoint, ordinary field theory provides an explicit example of a situation
where RG may extract relevant features for degrees of freedom associated with a continuous
spectrum. One could even go further by imagining a situation where the effective dimension of
the background space would depend on the energy scale, and the shape of the spectrum would
thus change along with the flow. This situation is quite similar to the one of the continuous
spectra that we mentioned above in Figure 3 and 4, which are not power laws globally and
stress the point of view adopted in this paper.

The previous observation suggests a correspondence with the signal detection issue for
nearly continuous spectra and relevance of RG trajectories for a field theory. Indeed, one
could consider an effective field, describing some matter filling an abstract space and whose
interacting particle density spectrum would be given by the density µ(λ); this density playing
the same role as µ̃(1/E2) for the nearly Gaussian example (14)).11

This field theory would provide an effective description of the underlying degrees of free-
dom, whose dataset describe correlations. Degrees of freedom can be very different for two
different sets of data: they may describe - but not limited to - either interactions between genes
in a cell, neurons in a brain fragment or asset prices for financial markets. Once again, it is a
reminiscent of what happens in physics. Ising model, magnetic systems and lattice gas provide
elementary examples by describing the interaction between very different kinds of degrees of
freedom, the Ising spin being very far from the true description of atomic forces in a magnet or
molecular forces in a braid of DNA [83]. These models have similar properties for long-range
scales and are also effectively described by field theory (14) for large scales [3]. One may
expect the same kind of universality for the field theory that we aim to consider and, despite
the strong difference between degrees of freedom of different datasets, that they can obey to
the same effective description through a field theory. The universality of the field theoretical
description is therefore essential to validate the approach. Indeed, from this approach the
question is not about the research for information that can be find in the spectrum but rather
focusing on identifying the nature of interactions and the kind of effective physics that can
be construct on such a spectrum. If these two questions seem very different, the scope of the
second is however universal.

10This argument assume that the form of the interactions is fixed, as well as the underlying locality principle
used to construct them.

11Note that we do not associate µ(λ) with the free spectrum but rather with the interacting spectrum because we
expect that the covariance matrix describes non-Gaussian correlations.
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Figure 5: Eigenvalue density spectrum for a scalar field theory. On right: Energy
density spectrum ρ̃(E2) for free particles with mass m2 = 1 in dimension d = 5 (in
blue) and d = 3 (in orange). On left: Eigenvalue density spectrum µ̃(1/E2) of the
free propagator Ĥ−1

0 for d = 5 (in blue) and d = 3 (in orange).

Such a field theory has been introduced in [29, 52], where the authors focused on local
interactions in the momentum space. With regard to the continuity of these aforementioned
articles, this paper aims to provide another derivation highlighting the role of the non-local
contributions in sections 3. Moreover, we provide extended numerical investigations and ap-
plication in sections 4 and 5.

2.3 Working methodology

This paper is organized as follows:

• The section 3 gives arguments in favour of an effective description by a field theory ex-
ploiting the universality of noise models and the simplest of statistical inference meth-
ods: the maximum entropy estimate.

• The section 4 in turn presents the basis of the non-perturbative RG formalism. In par-
ticular, a suitable definition of “dimensionless flow” will be introduced through a gen-
eralization of the notion of canonical dimension, taking into account an intrinsic scale
dependence.

• Finally, the section 5 gives the result of detailed investigations around different common
noise models, underlining therefore the universal value of the empirical proposition 1.
We will also show that in the field of tensorial PCA, the RG approach allows justifying
the efficiency of some tensorial invariants over others, giving thus an alternative point
of view to the recent work [84].

3 Analogue field theory for spectral analysis

Analogue models in physics allow to simulate a large number of phenomena, closely relating
to real problems for which experiments could be difficult to carry out. A famous example
is provided by general relativity, for which analogous models of condensed matter physics
have made it possible to simulate the behavior of extreme objects such as black holes [85].
Conversely, these analogue models have been a fruitful source of inspiration for still open
issues, such as that of quantum gravity for instance. [86, 87]. We propose here an analogous
model of field theory for data science, knowing that the choice of such a model is not unique.
Such as it is with analogous gravity, we expect that it will depend on the phenomena we want
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to simulate and the precision of the experiments. In this article, and unless explicitly stated
otherwise, the reader should keep in mind that we are more interested in the “threshold” of
detection of a signal, where it is most likely to be found, it is, at the level of the “tail” of the
spectrum.

We will begin by discussing a simple but instructive example of “binary” data material-
ized mathematically by spins arranged on an arbitrary network. This kind of formalism was
used recently by Schneidman, Berry, Segev and Bialek as a statistical description of neurons
activity in the brain [75–77,88], where authors considered a coarse-graining approach. Even
though we focus on a different formalism and philosophy, their results back up our approach.
For such a simple model, an effective field theory can be easily derived through a maximum
entropy estimator [15,20,21] fixing the shape of the probability distributions as a generalized
Gibbs state from statistical inference, based on the knowledge of partial information (2-point
correlations) on the system.

In the following of this section, we generalize the construction and propose an efficient
model able to reproduce data correlations in the experiment described in the next section 5.
As an important insight, let us mention that the resulting effective field theory exhibits differ-
ent behavior in the tail of the spectrum, where it seems legitimates to look at interactions like
local monomials, as in the heart of the bulk, where a specific non-locality appears as a conse-
quence of the non-locality of eigenvectors. Our goal is to understand, from this formalism of
field theory, how the shape of the distribution influences the tendency of certain operators to
strengthen or on the contrary to disappear depending on the experimental scale and how this
can be related to the detectability of a signal. We insist on the close relationship this theoret-
ical construction has with experience, and that a complete understanding of the material of
the present section also requires reading the experimental section 5.

3.1 Maximum entropy estimator for spins

Now assume an abstract network G looking as a connected graph with N nodes. To each node
i of the network that we call site, is attached a binary variables si = ±1 (see Figure 6). We
denote as σ := {s1, s2, · · · , sN} a typical state of the system (i.e. a typical configuration of
spins). The number of states is Ω = 2N which increases rapidly with the number of sites N .12

An ideal random network should explore freely all these configurations, but we conjecture it
is not the case by assuming the existence of a global organization materialized by a probability
distribution p(σ) over theΩ spin configurationsσ. Therefore, global Gibbs entropy is bounded
by the entropy of the ideal random network:

SG := −
∑
σ

p(σ) ln(p(σ))≤ N ln(2) , (18)

the subscript “G” being for “Gibbs”.13 The network must be large enough to use methods
of statistical mechanics and, in particular, we assume the number of a required experiment
to fix all the parameters in probability distribution p(σ) is too large to be considered. The
best compromise we can do in such a way is to estimate the probability distribution about a
few experiments, by laying down for instance several correlations. The underlying form of
statistical inference is exactly what is supported by standard statistical mechanics, as Jaynes
stressed in its works [20, 21], viewing the statistical mechanics through the filter of infor-
mation theory as an inference problem based on the maximum entropy estimate (MEE).14

12Eddington number estimate the number of atoms in the Universe as ∼ 1080. Then, the number of states for a
network having N ∼ 270 sites is larger than the number of atoms in the Universe.

13It would be more appropriate to speak of Shannon entropy in this context, where information theory plays an
important role, but we have chosen to refer to Gibbs, more familiar to physicists.

14Note that the maximum entropy estimate minimizes the relative entropy (or Kullback-Leibler divergence) with
the uniform distribution in the bound (18).
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Figure 6: A typical abstract network decorated with spins si to each nodes.

Concerning the missing information due to our partial knowledge (materialized by the prob-
ability), the maximum entropy distribution is the less structured as possible and the less con-
strained one, with some experiences able to falsify its efficiency.

Consequently and applied to our model, we can draw the following developments. It will
be assumed that we have only partial knowledge about the statistics of the distribution, as it is
the case in many practical situations. For our purpose we assume to know the first and second
momenta, namely the average spins µ = {µi} and the standard deviation matrix (covariance
matrix) C = {Ci j}: ∑

σ∈Ω
p(σ)si = µi ,

∑
σ∈Ω

p(σ)(si −µi)(s j −µ j) = Ci j . (19)

The covariance matrix C materializes mathematically the correlations between spins i and j.
However, it is a simple exercise to show that the distribution p̄(σ) which maximizes SG under
constraints (19) takes the form:

p̄(σ) =
e−H(σ)

Z
, (20)

for some kind of Hamiltonian given by:

H(σ) := −
1
2

N∑
i, j

siKi js j +
N∑

i=1

hisi , (21)

and the partition function Z reads as:

Z :=
∑
σ∈Ω

e−H(σ) . (22)

The (ill-posed) inverse problem to find the pair {Ji j , hi} which solve equations (19) is a very
hard task [23, 24]. In practice, they can be estimated from standard Monte-Carlo simula-
tions. One difficulty comes from the observation that experiments have finite precision; for
this reason, the solution cannot be unique. On the contrary, several solutions might be able
to simulate the 2-point correlations between spins at a given level of precision, and cannot be
distinguished.

As pointed out in the last paragraph, such a maximum entropy model has been consid-
ered recently in a series of papers [75–77] to describe the electric activity of neurons in the
brain. Experimentally, the correlation function between neurons is estimated by constructing
time sample δx i(t) for neuron (i) (suitably mean-shifted), for a discrete-time t. The authors
considered a specific coarse-graining to extract relevant features of the distributions, looking
as a block-spin partial integration. More precisely, they construct coarse-grained distributions
p̄(σ̃), by replacing the original variables si with:

si → s̃i∝
N∑

j=1

 Λ∑
µ=1

u(µ)i u(µ)j

 s j , (23)
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where u(µ)i is the i-th component of the (normalized) eigenvector associated to the eigen-
value λµ. The effective description p̄(σ̃) is then obtained by averaging over spin configurations
σ keeping σ̃ = {s̃i} fixed.15 Interestingly, the authors showed that probability distributions of
coarse-grained variables undergo a non-Gaussian form, suggesting that collective behavior
of neurons is well described by a non-Gaussian fixed point for correlation spectrum exhibit-
ing power-law dependencies for large eigenvalues. Note that similar observations have been
done for 2D Ising model on a rectangular lattice [89,90], making numerical simulations using
Metropolis algorithm as time-evolution. Their results show that the spectral density changes
shape in the vicinity of the critical temperature, behaving like a power law, whereas it agrees
with the predictions of the theory of random matrices for high temperature (the MP law).

The efficiency of such a coarse-grained description is not a surprise, RG aiming to describe
emergent physics from effective models, ignoring the underlying microscopic interactions. A
moment of reflection suggests that, even though this model has been derived in a specific
context, it must be largely independent of the nature of data involved, at least on a large-
scale. This is due to the existence of universal laws, which blinds spectres to the specificity’s
of data.

The correlation spectrum for the 2D Ising model at high temperature provides an elemen-
tary example. The characteristics of this spectrum have nothing to do themselves with the
Ising model. From this observation and for a particular type of data, it should be imagine that
we have constructed a probability distribution model able to decide whether a signal is present
in the corresponding spectrum, assumed to be in the vicinity of a universal noise like MP. This
could be achieved for example by investigating what kind of correlations survive along the RG
flow.16 Then, the universality of the spectra implies that this model will also be able to detect
the presence of a signal for data of any other nature, as long as the corresponding spectrum
remains in the vicinity of the same universal noise. However, it transpires then a difficulty
from this interpretation.

For the binary model for instance, if we consider that the predictions of the model have
a universal scope it follows that the binary variables si are directly attached to the starting
problem. To be useful, such a model have to be embedded in a framework that represents a
good limit (from the RG point of view) for a large variety of models – see Figure 7. In physics,
a large number of discrete models seem to be well described by a field theory within a suitable
limit, and we will therefore seek to build such an effective model.

This observation is the motivation underlying the series of papers [52–55], whose state-
ment 1 summarizes the main conclusions. The links between field theory and the Ising model
can be formally constructed. We recall here a classical derivation which will prove to be in-
structive in the following. Using the standard Hubbard-Stratonovich transformation:

e−H(σ)∝
∫ +∞
−∞

[
N∏

i=1

dφi

]
e−

1
2

∑N
i, j φi K

−1
i j φ j

N∏
j=1

e(−h j+φ j)s j , (24)

where we assumed that K−1 exist, i.e. det K ̸= 0 and where we introduced the
field Φ = {φ1, · · · ,φN}. The sum over the spin configurations can be performed∑
σ e

∑
j(−h j+φ j)s j =

∏
j 2cosh(φ j − h j). This leads to an effective model, describing random

configurations for Φ. For a centered distribution we have to set hi = 0, and the corresponding
probability density P(Φ) reads as

P(Φ) =
1
Z

exp

−1
2

N∑
i, j

φi(K
−1
i j −δi j)φ j −

1
12

N∑
i=1

φ4
i +O(φ6

i )

 , (25)

15Using a step function to impose the constraint ensure that σ̃ variables remain spins.
16That will be our point of view in the rest of this paper, see the next subsection.
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where:

Z =
∫ +∞
−∞

[
N∏

i=1

dφi

]
exp

−1
2

N∑
i, j

φiK
−1
i j φ j +

N∑
i=1

ln(2cosh(φi))

 . (26)

In terms of these new variables Φ, the correlation functions between spins read as:

Ci j = 〈tanh(φi) tanh(φ j)〉 . (27)

We insist again that this formal construction, which one finds in several standard textbooks
[91–93] to justify the passage to a field theory for the Ising model, rests on the fact that the
inverse K−1 exist. For the Ising model, this manipulation is only justified on a large scale (in
the vicinity of the transition), when K(p⃗ )∝

∑d
ℓ=1 cos(pℓ) (the Fourier transform of K) can be

expanded to a power of p: K(p⃗ )∼ (2d+ p⃗ 2)+O(p4
ℓ ), which is invertible. The derivation does

not need to be rigorously made. Indeed, in regard to RG universality, essential features for the
effective description we are looking for are mainly the form and structure of the interactions.

3.2 Analogue effective field theory candidates

In this section, we construct an effective field theory framework able to mimic the correlations
in datasets around universal noises. Such field theory and the resulting RG are expected to
be as simple as possible and able to save considerable computing time compared to usual
numerical methods.17 The theory of fields that we propose here is probably far from being
the only one possible nor even from being optimal from the point of view of what such a
formalism could allow learning, however our aim here is to show what such a formalism can
bring, without worrying about whether it is optimal or not. We will discuss essentially two
kinds of regimes where interactions can be suitably expanded in terms of local and non-local
monomials in the eigenspace of the covariance matrix. The local approximation has been
largely discussed in the reference papers [52,54], and a large part of this section is therefore
devoted to a presentation of the non-local sector of the theory.

3.2.1 Gaussian model

We consider a dataset E whose correlation matrix is assumed to have a nearly continuous
spectrum. We assume that, at a sufficiently large scale of description i.e. after a large number
of steps in the RG, the data E can be approximated by a field Φ = {φ1,φ2, · · · ,φN} with N
components and having 2-point function components Gi j := 〈φiφ j〉 equals to the components
of the correlation matrix C:

〈φiφ j〉 ≡ Ci j , (28)

where the notation 〈F(Φ)〉means averaging with respect to some probability distribution p(Φ):

〈F(Φ)〉 :=
∫
[dΦ] p(Φ)F(Φ) , (29)

with [dΦ] :=
∏N

i=1 dφi . The correlation matrix C at this scale is assumed to be cut off from its
most ultraviolet degrees of freedom (from these smallest eigenvalues). We recall the definition
of UV and IR scales given above in the introduction:

Definition 4 The spectrum of the correlation matrix C, assumed to be nearly continuous, pro-
vides a canonical notion of scale. UV scales correspond to small eigenvalues and IR scales to
large eigenvalues. Moreover the largest eigenvalue λ+ bounding the spectra from above, define a
canonical correlation length ξ=

√
λ+.

17This computational advantage of the RG was recently pointed out in the study of Brownian motion, [94, 95]
and spin glass dynamics [34].
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Figure 7: Steps A-C (A’-C’) describe how to construct a maximum entropy estimate
for binary like data whose statistics features are close to MP law. From step C, we can
construct an RG map that describes how couplings change with scale (defined by the
spectrum itself, “ultraviolet” scales corresponding to small eigenvalues and “infrared”
scales to large eigenvalues of the correlation matrix). If the relevance or irrelevance
of couplings changes for MP law is disturbed with a small signal, one can establish a
criterion to decide if a binary dataset blind a signal (step D). Because the spectrum
that we consider cannot be distinguished from another spectrum close to the same
universal noise, the relevance criterion must be held for datasets of different nature
(D’). This suggests the existence of effective universal models of the “field theory”
type, capturing most of the characteristics of particular maximum entropy models
and avoiding any special considerations on the precise nature of the data (E).
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Based on constraint (28), the MEE takes the form:

p(Φ) =
1
Z

exp

−1
2

N∑
i, j=1

φi Di jφ j

 , (30)

with Z = (2π)N/2/
p

det D. MEE (30) agrees with the constraint (28) if Ci j = D−1
i j . Note that,

because we assume to work at scale large enough, one expects the matrix C invertible, and the
zero eigenvalues removed from the coarse-graining, as discussed at the end of the previous
section 3.1. The Gaussian model (30) fix the form of higher correlations functions from Wick
theorem: odd functions vanish and even functions decompose as the sum of the product of
2-point correlations function:

〈φiφ jφkφl · · · 〉= Ci j × Ckl × · · ·+ perm, (31)

where perm runs over all allowed pairing of indices. The matrix C , being assumed to be
symmetric and positive. It is diagonalisable and eigenvectors u(µ) can be suitably normalized:

N∑
j=1

Ci ju
(µ)
j = λµu(µ)i ,

N∑
i=1

u(µ)i u(µ
′)

i = δµµ′ . (32)

For purely random matrices,18 the components of the eigenvectors are uniformly distributed
on the sphere SN−1. It is suitable to work in the spectral representation, and to introduce the
field Ψ whose components ψµ are defined as:

ψµ :=
N∑

i=1

φiu
(µ)
i . (33)

For a purely noisy data, it is equivalent to apply a random rotation on the vector Φ: Ψ = OΦ,
for O being Haar distributed over the group O(N). In that respect, the MME (30) reads as
p(Ψ)∝ e−H(Ψ), with:

H(ψ) =
1
2

N∑
µ=1

ψµ(λµ)
−1ψµ . (34)

For positive defined matrices, on which we focused on this paper, λµ > 0. Let λ+ = ξ2 the
larger eigenvalue. It is convenient to write the propagator λµ as:

λµ =
1

p2 +m2
, (35)

with m2 := ξ−2. The “momentum” p is positive definite p ≥ 0, and its larger value p = Λ
define the smallest eigenvalue of the spectra:

λ− =:
1

Λ2 +m2
. (36)

This larger value p = Λ plays the role of a UV cut-off in the field theory language. It defines
the microscopic scale, which moves away along with RG flow. Formally, the fieldψµ looks like
the field that we called ψ(E) in section 2.2, equation (16).

For this reason, it is tempting to introduce a more fundamental representation, playing
the role of the states ψ(p⃗ ). This however poses the problem of the dimension of the space

18i.e. Purely noisy data, suitably materialized by random matrices of Wigner or Wishart kinds for instance.
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Rd in which define such a quantity of movement p⃗ (i.e. The number of components that
we have to give for the quantity p⃗ ). A way to define it is to observe that the asymptotically
usual model of noise behaves like a power law. As noticed in definition 3 for instance, MP has
asymptotic dimension d0 = 3 and momenta are distributed accordingly to Fourier modes of a
3-dimensional space. However, such a way raised an another issue, because the distribution
shape changes as we move toward the UV scale. Strictly speaking, it makes sense only in the
deep IR. One can think, to circumvent the difficulty to understand deviations from the power-
law as corrections to the derivative expansion, that can be resumed to an effective distribution
ρ(p2).

However, this interpretation is not yet satisfactory. Indeed real distributions have to di-
verge from MP’s asymptotic behavior, and the asymptotic dimension is most likely not to be an
integer. One could then seek to make sense of such a non-integer dimension on the side of frac-
tal geometry19 [96], but everything would become unnecessarily complicated. A way to avoid
this difficulty is to set d = 1 i.e. to understand p⃗ as a relative number p ∈ R and the corre-
sponding field ψ(p) as a non-conventional matter field filling this abstract space of dimension
1. Physically, this is equivalent to doubling the number of states, and for each eigenvalue λµ
we have two solutions (+|pµ|,−|pµ|). This doubling of states will facilitate the construction of
interactions in the next section. For now, let us just note that the new Hamiltonian:

H̃(ψ) =
1
2

∑
pµ

ψ(pµ)(p
2 +m2)ψ(−pµ) , (37)

reproduce exactly the same correlations as the initial Gaussian model (30) from Wick theo-
rem. Within this approximation fixing the effective dimension of space to 1, we obviously lose
the relation between momentum distribution and space dimension. However, the asymptotic
dimension d0 is not physically relevant in general. For instance in the previous section 3.1, we
noticed that 2-point correlation spectrum for 2D Ising model at high temperature follows the
MP law and, then, the dimension of the background field d = 2 does not coincides with the
asymptotic dimension of the distribution d0 = 3.

3.2.2 Nearly Gaussian distribution for noisy data

Gaussian distribution generally fails to provide a good estimate, and Wick theorem predictions
break-down for usual data sets, where correlations higher than 2-points cannot be reduced as
a product of 2-point ones. This failing invites to consider non-Gaussian corrections to the
Hamiltonian. Indeed, as announced in the introduction (see Empirical statement 1), we will
see that the Gaussian fixed point is unstable even for non-structured (i.e. purely noisy) data.
However, there is no one single way to disturb a Gaussian measure.

Effective model in the large-N limit. Because we focus on the MME, the probability measure
have to remain an exponential law, and the Hamiltonian (37) receives monomial contributions
involving more than two fields. The discussion of Section 3.1 may suggest to us the path to be
followed. Indeed, we showed that, for a model able to describe correlations for a purely MP
law, interactions like φn

i emerges naturally. Thus, a first attempt could be, in replacement of
(30):

p(Φ) =
1
Z

exp

−1
2

N∑
i, j=1

φi D̃i jφ j −
g4

4!

∑
i

φ4
i −

g6

6!

∑
i

φ6
i + · · ·

 , (38)

where the kinetic kernel D̃ differs from the exact one D := C−1 by quantum corrections:

Ci j = D̃−1
i j +O(g4, g6, · · · ) . (39)

19The Kock curve provides an elementary example, having dimension d ≈ 1.26.

21

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.077


SciPost Phys. Core 7, 077 (2024)

Each term generated by couplings g4, g6 and so on, are deviations from the Gaussian predic-
tions. For couplings small enough, deviations are expected to be small and D̃ is close to C−1,
and the eigenbasis of the two matrices are essentially the same. In terms of the field Ψ defined
by equation (33) (where we assume {u(µ)i } is the eigenbasis of C), the Hamiltonian reads:

H[Ψ] =
1
2

N∑
µ=1

ψµ(p
2
µ +m2)ψµ +

∑
{µi}

V (4)µ1µ2µ3µ4
ψµ1

ψµ2
ψµ3

ψµ4
+O(ψ6) , (40)

where we introduced the symbols V (2n)
µ1···µ2n

defined as:

V (2n)
µ1···µ2n

:=
N∑

i=1

u(µ1)
i u(µ2)

i · · ·u
(µ2n)
i . (41)

For purely noisy data suitably materialized by random matrices of Wigner and Wishart kinds,
for instance, eigenvectors are delocalized with entries not greater than ∼ N−1/2 [73] and the
corresponding rotation eigenmatrix is asymptotically Haar distributed on the group O(N) for
large N .20 Hence for large N , the sum in (41) is almost zero in general.

However, moment of reflection shows that two special configurations for indices
{µ1, · · · ,µ2n} are relevants. First of all, when all indices are equals i.e. µ1 = µ2 = · · · = µ2n.
In that way, because |uµi | ∼ N−1/2,

V (2n)
µ···µ ∼

∑
i

(N−1/2)2n = N1−n . (43)

The second relevant configuration is for indices equals pairwise. Because eigenvectors are
uniformly distributed on the sphere SN−1 they must be invariant by rotation (in law), and the
averaging of quantities like u(µ)i u(µ)j (for fixed (i, j)) reads:

〈u(µ)i u(µ)j 〉 ≈
1
N

N∑
µ=1

u(µ)i u(µ)j =
1
N
δi j . (44)

Hence, setting µ1 = µ2, µ3 = µ4 and so on, we must have again:

V (2n)
µ1µ1···µ2n−1µ2n−1

∼ N−n
∑

i

1= N1−n . (45)

In that way, V (4)µ1µ2µ3µ4
reads as:

V (4)µ1µ2µ3µ4
≈

1
N

(
δµ1µ2

δµ2µ3
δµ3µ4

+δµ1µ2
δµ3µ4

+δµ1µ3
δµ2µ4

+δµ1µ4
δµ2µ3

)
, (46)

and: ∑
{µi}

V (4)µ1µ2µ3µ4
ψµ1

ψµ2
ψµ3

ψµ4
∼

3
N

 N∑
µ=1

ψ2
µ

2

+
1
N

N∑
µ=1

ψ4
µ . (47)

The validity of approximation (46) can be numerically checked. Table in particular 1 sum-
marizes simulations for different configurations of indices µi . We show in particular that for
the quartic vertex neglected configurations are of order 1/N2 whereas the leading ones are of
order 1/N .

20Without additional information the distribution of s = u(µ)i as i varies can be estimated again with a maximum
entropy distribution, the Porter-Thomas distribution:

p(s) =
e−

s2
2

p
2π

. (42)
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µ1 µ2 µ1 µ2 µ1 µ2

Figure 8: Feynman diagrams contributing to the one-loop self energy. The dotted
edges materialize the Wick contractions with propagator λµ. Solid edges materialize
contractions of field indices.

Table 1: Numerical simulation of four-point correlations functions (S4, S2 and S1)
of eigenvectors. On the table, S4, S2 and S1 correspond respectively to the terms
where four, two and one different eigenvectors are involved. In this table, we indicate
the mean and standard deviation values of these functions obtained by randomly
choosing four eigenvectors (106 samples) from the 1500 ones of a typical empirical
covariance (of size 1500× 1500) of a random matrix.

S4 S2 S1

−1.509× 10−8 ± 1.721× 10−5 6.667× 10−4 ± 4.910× 10−5 0.002± 8.315× 10−5

Quantum corrections. For such a quartic model quantum corrections can be easily investi-
gated for large N . Relevant one-loop diagrams for 2 points functions are pictured on Figure 8
for the two kinds of vertices. These verices are pictured with solid edges materializing Kro-
necker delta defining how the field indices are contracted. Dotted edges on the other hand
materialize Wick contractions, with propagator Cµν = λµδµν. The first diagram on the left
behaves as ∼ δµ1µ2

N−1∑
µλµ ≡ δµ1µ2

N−1Tr C . The second and third diagrams however be-
have as ∼ δµ1µ2

N−1λµ1
∼ δµ1µ2

N−2Tr C , where we used self averaging property of random
matrices. Then, in the large N limit, the two last contributions on the right are of order 1/N
with respect to the first one. More generally, contributions that create a large enough number
of faces21 will contribute significantly to the perturbation series and, for this reason, we can
discard the vertex

∑N
µ=1ψ

4
µ in (47), whose contributions are always irrelevant for the contri-

butions of the non-local term. Hence, we conclude that in the large N limit, purely noisy data
could be described by the nearly Gaussian distribution:

p(Ψ) =
1
Z

exp

−1
2

N∑
µ=1

ψµλ
−1
µ ψµ −

g4

8N

 N∑
µ=1

ψ2
µ

2

+O(ψ6)

 . (48)

The remaining interactions - sextic, octic and so on - can be explicitly constructed in the same

way, and we get ∼ 1
N n−1

(∑
µψ

2
µ

)n
for a monomial contribution involving 2n fields.

Interestingly, the interactions of the resulting field theory exhibit an effective O(N) symme-
try. As the explicit construction above shows, this is a consequence of the delocalized nature
of the eigenvectors, implying that field configurations are defined as ψµ :=

∑
i u(µ)i φi are

rotationally invariant.

21Faces are conventionally defined as closed cycles.
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It is instructive to investigate how perturbation theory relies on the spectra of D̃−1 and C .
The standard perturbation theory as described in any quantum mechanics textbook22 give us
the shifts of these quantities due to quantum corrections. We define the symmetric matrix
εΞi j := Ci j − D̃−1

i j =O(g) the quantum corrections to the free propagator D̃−1
i j , the parameter

ε being assumed to be “small” and set it to 1 at the end of the computation. If we denote as
λµ and u(µ)i on one hand, and has λ̃µ and ũ(µ)i on the other hand respectively the eigenvalues
and eigenvectors of matrices C and D̃−1, then:

λµ = λ̃µ + εΞµµ + ε
2
∑
ν̸=µ

|Ξµν|2

λ̃µ − λ̃ν
+O(ε3) , (49)

and:

u(µ)i = ũ(µ)i + ε
∑
ν̸=µ

Ξµν

λ̃µ − λ̃ν
ũ(ν)i +O(ε2) , (50)

where Ξµν :=
∑

i, j Ξi j ũ
(µ)
i ũ(ν)j . In particular:∑

i

u(µ)i ũ(ν)i = δµν +O(ε2) . (51)

Let us investigate how relevant contributions of the perturbation theory modifies the eigen-
values and eigenvectors. Using (48), the order g correction to the 2-point function reads:

〈ψµψν〉= λ̃µδµν +Ξµν , (52)

where, following the discussion before equation (48), the relevant contribution at order g in
the large N limit for Ξµν corresponds to the diagram on left in Figure 8. It is a simple exercise
to show that:

Ξµν = −λ̃2
µ

g
4

(
1
N

∑
µ

λµ

)
δµν→−λ̃2

µ

g
4

(∫
µ(λ)λdλ

)
δµν . (53)

Hence, off-diagonal contributions in (50) and (49) vanish, and:

λµ = λ̃µ − λ̃2
µ

g
4

(∫
µ(λ)λdλ

)
+O(g2) . (54)

This is the standard Dyson equation, corresponding here to a global shift of mass. Indeed,
defining λ−1

µ := p2
µ +m2 and λ̃−1

µ := p̃2
µ + m̃2, the previous equation reads:

1
p2
µ +m2

=
1

p̃2
µ + m̃2

−
1

p̃2
µ + m̃2

g
4

(∫
µ(λ)λdλ

)
1

p̃2
µ + m̃2

+O(g2) , (55)

or:
1

p2
µ +m2

=
1

p̃2
µ + m̃2 + g

4

(∫
µ(λ)λdλ

) +O(g2) , (56)

meaning that p2
µ = p̃2

µ and:

m2 = m̃2 +
g
4

∫
µ(λ)λdλ+O(g2) . (57)

22This is an elementary calculus that we can found for instance in [97].
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Exploiting the delocalized structure of eigenvectors for a noisy dataset, we saw in this sec-
tion how to construct a non-local theory space valid near the Gaussian regime. Although one
expects that the domain of validity of the corresponding theoretical space is not as restrictive
as the assumptions of the derivation, the later does not allows its scope. In particular, it seems
quite difficult to consider distributions having large non-Gaussian effects. In the following
section 3.2.3, we will propose an alternative to get away from the Gaussian point. To spoil
its conclusions, this construction focus only on the tail of the spectrum (the deep IR), where
it can be suitably approached by a power-law distribution. In that limit, one expect that the
effective model behaves as an ordinary field theory,23 and ultra-local interactions involving a
Dirac delta conservation for the effective momentum pµ are quite natural. The assumption to
be close to the Gaussian point is removed, but in counterpart the UV scales are totally hidden
for us. Hence, we identified two different regimes:

• A non local regime, valid in the vicinity of the Gaussian point for noisy datasets.

• A local regime, valid at the tail of the spectrum, but without additional assumption on
the spectrum or on the size of the coupling.

These two limits are incompatibles and point out one of the greatest difficulties for data
field theory as soon as one seeks to move away from the Gaussian distribution. Indeed, con-
struct a theory space valid only for a restricted regime of the couple field theory/dataset seems
like the best compromise, and how to move away from the Gaussian point will depend on this
regime. Yet it is not too surprising as in the modern conception of field theory we are used to
think that the validity of a field theory model is only effective in a restricted range of energy.
Indeed, this is not an aspect specific to field theory, but more broadly in elementary physics.
For instance, it is well known that the form of the friction forces depends on the speed: lin-
early if the latter is low and quadratically when it is high, without any possibility to switch
continuously from one to the other. In that context, the unusual is not that the field theory
has - maybe - a limited scope, but that the domains of validity seem to be very narrow.

Remark 1 The results we obtained about the 4-point correlations of the eigenvectors show that
they practically do not overlap, which is consistent with their delocalized character for a random
matrix. One could hope to use this property to detect the signal directly. For example, study how
the Si of the table 1 change when a signal is added. We would then observe that the last sum
S4 is really sensitive to the presence of a signal. This sensitivity can be seen as a limitation of
the non-local model, but one could not use it as a detection criterion since the values need to be
“calibrated” by pure noise but also because their sensitivity threshold is well below the error bars.
It is one of the strong points of formalism that we develop to present universal criteria defining a
noise.

3.2.3 Local field theory approximation
Concluding remarks. Instead of considering the full spectrum we are focusing on its tail
i.e. the region of small momenta pµ ≈ 0 which corresponds, from the ordinary field theory
perspective, to large distance physics. In many instances (see section 5), the spectrum behaves
asymptotically as a power law ρ(p)∼ (p2)δ.

For purely noisy data we often have24 δ = 1/2 except at critical points (see definition 3
and [67]). Recalling that momentum distribution is ρRd (p⃗ ) = (p⃗ 2)

d−2
2 in a space of dimension

d, the exponent δ can be formally converted as a dimension: d0 = 2δ+ 2. This dimension is
equals to 3 for δ = 1/2, but has no reason to be an integer in general. If it is an integer the

23For which momenta distributions are power laws as well.
24This is in particular the case for MP and Wigner distributions.
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problem matches however exactly with an ordinary field theory. On a concrete example, now
consider a purely noisy distribution well described by the MP law with d0 = 3.

As argued in section 3.1 that the standard Ising model provide a good MEE we expect, for
large scales, the model well described by an effective field theory like (25). For such a model,
fields interact locally (i.e. at the same spatial index i), and a typical interaction reads as
Vn =

∑
iφ

2n
i . In Fourier modes, for systems where it is well defined, this interaction becomes:

V (d)n ∼
∑

{p⃗1,··· ,p⃗2n}

δ
( 2n∑

i=1

p⃗i

) 2n∏
i=1

ψ(p⃗i) . (58)

In cases where d0 is an integer, it is suitable to understand p⃗ as a d-dimensional vector (p⃗ ∈ Rd)
but as pointed out before, this is not generally the case. Moreover, even if the asymptotic
dimension is an integer which can be suitably interpreted as the dimension of some background
space, only the tail of the spectrum is concerned, and the identification breaks as we investigate
on UV scales.

Note that in such case some arrangements are still possible by expanding the true distribu-
tion ρ(p2) in power of p2. This is for instance allowed concerning the MP (see equation (5))
law which reads as [52]

ρM P(p
2) =

√
λ+λ−

2πασ2

(p2)1/2

(p2 + 1/λ+)2

(
λ+ −λ−
λ+λ−

− p2
)1/2

, (59)

and for small enough p2,

ρM P(p
2)≈

√
λ+λ−

2πασ2
λ2
+(p

2)1/2
(
1+ a1p2 + a2(p

2)2 + · · ·
)

. (60)

This difficulty was raised on in the previous section and has been solved by fixing the effective
dimension to 1. In that way, we avoid the difficulty to define the effective (and generally non-
integer) dimension of the space to which p⃗ belongs. In counterpart the elementary volume in
momentum space remains ρ(p2)pdp rather than dp as it should be in dimension 1. Typical
interaction (58) therefore becomes:

V (1)n [ψ]∼ V̄ (1)n [ψ] :=
∑

{p1,··· ,p2n}

δ
( 2n∑

i=1

pi

) 2n∏
i=1

ψ(pi) , (61)

and we introduce the following definition:

Definition 5 The local theory space is the functional space spanned by interactions V (1)n defined
by (61). A local functional H[ψ] then admits the following expansion:

H[ψ] := N
K∑

n=1

u2n

N n
V̄ (1)n [ψ] , (62)

for some coupling constant {u2n}.

The origin of the factor 1/N n−1 will be motivated in section 4. We were able to argue that
at least some models exhibiting these interaction can reproduce a completely noisy spectrum,
like MP. By the same universality arguments discussed in Figure 7, we expect the validity of
the model to go beyond the specific framework of its construction. Thus, and if it is true that
in some particular cases this model constitutes a good approximation of field theory, around
a universal noise, then this same model should be able to serve as a basis for any problem in
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the neighbourhood of the same universality class. For this reason, we expect the local model
to be a good approximation when trying to highlight the presence of a signal at the tail of
the spectrum. The whole section 4 is dedicated to the study of the non-perturbative group,
corresponding to this theory space for a wide variety of spectrum around ordinary noise models
and showing the relevance of the local approximation.

4 Effective average action for local theory

In this section, we discuss the investigations by the RG. We work in the functional renormaliza-
tion group (FRG) formalism, which gathers a whole set of techniques and effective equations
translating the dependence of interactions on the observation scale in the Wilsonian point of
view. In this framework, the RG is conceived as a progressive partial integration of the degrees
of freedom, the integrated effects (UV) being hidden in the values of the coupling constants. In
the ordinary case, this RG is well defined when the degrees of freedom can be unambiguously
labelled to define a unique physically relevant integration order. Nevertheless, in standard
field theories, such as the one described by the action (14), this labelling is given by the spec-
trum of the kinetic operator H0 := −∆2 +m2, the large eigenvalues corresponding to the UV
scales being integrated first.

For the field theory we are now focusing on, the relevant spectrum will be the interacting
2-point function, i.e. the matrix, C . We will choose to integrate over the large moments pµ to
build the effective theory valid in the IR. Although unconventional and posing some technical
difficulties, basing the partial integration on the empirical distribution of C rather than upon
the kinetic matrix D̃−1 lies on the fact that the latter is essentially unknown. Indeed, D̃−1 is
related to C by the following equation:

C = D̃−1 + D̃−1ΣD̃−1 + D̃−1ΣD̃−1ΣD̃−1 + · · · , (63)

where the self-energy Σ = O(G) contain the 1PI information on quantum corrections (G
denoting the set of coupling constants).

The reverse inference problem to determine D̃−1 from the knowledge of C is expected
hard. Difficulty comes from the fact that a solution is generally not unique, and that the so-
called irrelevant operators playing a negligible role on a large scale. Moreover, the accuracy at
which the large scale solution is measured is not infinite, the basin of attraction of UV theories
admitting this limit in regard to the experimental errors is large enough [3] - see Figure 9. We
say that RG has a large river effect [98]. In that way (63) looks as a big constraint along the
flow, linking UV scales where 2-point function is D̃−1 and IR scales where 2-point function is
C . It is expected that such a constraint cannot be solved exactly, and we need approximations
to deal with it.

All our investigations in this paper focus on different versions of the local potential approx-
imation. In this approximation and in the symmetric phase, only the mass has a non-trivial
flow for 2-point functions, and all the eigenvalues of the D̃ matrix are translated by the same
constant:

C−1
i j ≈ D̃i j +κ(G)δi j , (64)

the constant κ summing all the quantum effects. The numerical results of the next section will
show the consistency of this assumption.

In this paper, we will limit ourselves to studying the existence or non-existence of phase
transitions as a function of signal strength, focusing essentially on the shape of the effective
potential, and assumption (64) seems no so restrictive. From the Wilsonian point of view, the
RG can be understood as a mapping between Hamiltonians at different scales of description,
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Microscopic theories
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Figure 9: Basin of attraction of the IR theory.

the notion of scale being fixed by the spectrum of the two-point function. There are many prac-
tical incarnations of this idea, one of the best known being the Polchinski equation [11] which
describes precisely the evolution of the Hamiltonian when degrees of freedom are partially
integrated within an infinitesimal window.

However, in practise and in particular when one is interested in non-perturbative phenom-
ena, the framework of the effective average action (EAA) method25 through the formalism of
Wetterich-Morris [56, 57] is preferred. This method offers, in the non-perturbative sector, a
better convergence properties than the Polchinski equation [99].26 The central object of the
EAA method Γk is the effective action for integrated out (i.e. UV) degrees of freedom, thus in-
terpolating between the microscopic Hamiltonian H and the global effective action (i.e. IR) of
the Γ model, including all quantum corrections and usually defined as the Legendre transform
of the free energy W := ln Z .

A motivation justifying the non-perturbative formalism use was the surprising observation
that the couplings all become strongly relevant in the deep UV (see Figure 10). Thus, even if
we focus on studying the IR behavior first (where the signal is located!), we cannot exclude the
possibility that the flow was carried very far from the Gaussian point. Finally, it should be noted
that the fact that a small number of couplings (essentially sextic and quartic – see empirical
statement (1)) survive in the IR also justifies the vertex expansion that we will preferentially
use in this study, upstream of more elaborate methods capable of considering the deep UV.

We note to conclude the approximation schemes we will consider in the next sections
(vertex expansion and local potential approximation) are well known in the literature (see [98]
for instance). However, we have chosen, in view of the unconventional characteristics of the
theory and because we do not assume the reader to be familiar with this formalism, to give
many details on the construction of the flow equations.

25We use the terminology “action” to designate IR quantities. We call for instance “effective action” the generating
functional of 1PI diagrams Γ , reserving the name “Hamiltonian” for UV quantities. The two definitions coincide
when no fluctuations are integrated out.

26Note that the philosophy underlying the Wetterich-Morris approach differs from the Wilson-Polchinski strategy.
In the Wilson-Polchinski point of view, degrees of freedom are progressively integrated-out from UV to IR scales,
and the microscopic description (the classical hamiltonian H) changes at each steps. In the Wetterich-Morris point
of view on the other hand, the microscopic hamiltonian is left unchanged, but IR contributions to the classical
action are progressively removed.
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4.1 The Wetterich-Morris equation

The effective action Γ [M], which describe IR physics is defined as the Legendre transform of
the free energy W[χ] := ln Z(χ),

Γ [M] +W[χ] =
∑
µ

χ(−pµ)M(pµ) , (65)

where the classical field M = {M(pµ)} is:

M(pµ) =
∂W [χ]
∂ χ(−pµ)

. (66)

The starting point of the EAA method is to modify the microscopic Hamiltonian H[ψ] by
adding a mass term ∆Hk[ψ],

∆Hk[ψ] =
1
2

∑
µ

ψ(pµ)rk(p
2
µ)ψ(−pµ) . (67)

It depends both on the momentum pµ and a continuous and positive index k ∈ [0,Λ]. This
index have the dimension of a momentum and will play the role of a IR cut-off scale. The upper
bound Λ corresponds to the UV cut-off, materializing the microscopic scale but not coincide
necessarily with the difference 1/λ− − m2 discussed in Section 3.2.1, equation 36. We thus
build a continuous family of models, admitting in principle the same physics at large distances,
and interpolating smoothly between UV and IR scales:

Wk[χ] := ln
∫
[dψ]e−H[ψ]−∆Hk[ψ]+

∑
µ χ(−pµ)ψ(pµ) . (68)

The momenta scale rk(p2
µ) is designed to provides an operational description of the coarse-

graining procedure and its design much satisfy the following requirements:

1. rk=0(p2) = 0 ∀p2, meaning that for k = 0, Wk ≡ W , all the fluctuations are inte-
grated out.

2. rk=Λ(p2) ≫ 1, meaning that all fluctuations are frozen with a very large mass in the
deep UV.

3. rk(p2) ≈ 0 for p2/k2 < 1, meaning that high energy modes with respect to the scale k2

are essentially unaffected by the regulator. In contrast, low energy modes must have a
large mass that decouples them from long-distance physics.

The first two conditions ensure that we find the two effective descriptions at the boundaries:
on the one hand in the deep UV where physics is described by H, and on the other hand in the
deep IR where physics is described by the effective action Γ . The interpolation between them
is achieved by the effective averaged action Γk defined as:

Γk[M] +Wk[χ] =
∑
µ

χ(−pµ)M(pµ)−
1
2

∑
µ

M(pµ)rk(p
2
µ)M(−pµ) , (69)

such that Γk=0 ≡ Γ and, from the conditions on rk, Γk=Λ ∼ H. Γk, as k varies describes a
trajectory through the theory space (see Figure 9), and the different couplings change, there
variations being described by the Wetterich-Morris equation:

Γ̇k =
1
2

∑
µ

ṙk(p
2
µ)
(
Γ
(2)
k + rk

)−1
(pµ,−pµ) , (70)
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the dot being defined as:

Ẋ ≡
dX
d t

:= k
dX
dk

. (71)

Up to the assumption that we work into the local theory space, equation (70) is exact.
Unfortunately, solving it exactly is reputed to be a difficult or impossible task, even for

simple problems. Obtaining nonperturbative information on the flow behavior therefore nec-
essarily requires approximations. Although there are general methods, most of them have to
be adapted to each problem, and we will in the next section examine how these methods can
be applied to the unconventional field theory we consider.

Let us conclude this section with a remark. The equation (70) involves a sum over mo-
menta pµ. Because we will focus on the N ≫ 1 limit in our calculations and simulations,
one expects to be able to substitute the discrete sum by an integral invoking the density∑
µ →

∫
ρ(p2)pdp. This substitution however ignores the “zero” mode associated to the

eigenvalue λ+ = 1/m2. The RG in this context is best understood as describing the evolution
of the effective couplings coupling the zero modes. Thus, the smallest value of k does not have
to be strictly zero but stops at the eigenvalue just above the zero modes, the spacing between
the eigenvalues being of the order of 1/N , we would rather have k ∈ [∼ 1/

p
N ,Λ]. Hence,

for large N :

Γ̇k = N
∫ ∞

0
dpρ(p2)pṙk(p

2)
(
Γ
(2)
k + rk

)−1
(p,−p) , (72)

where we put the upper limit to +∞, assuming the windows of momenta allowed by ṙk is
quite restrictive. This situation is reminiscent of finite geometry models, which is not surprising
since the integral on the modes is well bounded 1

N

∑
µ 1∼

∫
ρ(p2)pdp =O(1). If we think for

example of a one-dimensional lattice theory with periodic boundary conditions, the moment
is quantized as pn =

2πn
N , N denotes the number of sites.The difference between two values

is then equal to 2π/N , and the number of moments equal to
∑

n 1 = N , the “volume” of the
network.

4.2 Scaling dimensions

The notion of scale plays an essential role insofar as the RG aims precisely at determining the
scale dependence of physical laws. In this context, we have fixed the scale by the moment
pµ. Another important piece of information for the RG is the way couplings change in the
neighbourhood of a fixed point when quantum corrections are negligible. In the vicinity of
the Gaussian fixed point, this dependence defines the scaling dimension. We are aiming to
generalize the standard definition in this context.

As a first looks, we focus on the symmetric phase, where M = 0 is assumed to be a stable so-
lution of the quantum equations of the move. In that phase, expansion around vanishing clas-
sical field is allowed, and from the expected Z2 symmetry of the microscopic model (see (25)),
it must contain only even couplings. In that way, one expects that odd vertex function Γ (2n+1)

k
vanish identically. Taking the second derivative for M of Wetterich-Morris equation (70), we
have:

Γ̇
(2)
k (pµ1

,−pµ1
) =

1
2

∑
pµ

ṙk(p
2
µ)G

2
k(p

2
µ)Γ

(4)
k (pµ,−pµ, pµ1

,−pµ1
) , (73)

where:

Gk(p
2
µ) =

(
Γ
(2)
k + rk

)−1
(pµ,−pµ) , (74)

and where we assume to work into the local theory space.
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First, it is worth noting that the mass in the deep IR, corresponding to the inverse of the
largest eigenvalue and defined by the condition

m2 := Γ (2)k=0(0, 0) , (75)

must behave like any eigenvalue under a global dilation of the spectrum. In other words, m2

must have the same scaling behavior as Λ2. Hence, the 2-point function at zero momenta,

u2(k) := Γ (2)k (0, 0) , (76)

must have the same scaling as k2, and we define the dimensionless mass ū2 as:

u2(k) =: k2ū2(k) . (77)

Following the standard definition in field theory, this means that the scale dimension of the
mass u2 is 2.

We shall now return to the equation (73). Assuming that ṙk allows only a narrow window
of moments around k2, and that k2 ≪ 1 following the fact that we are only interested in the
tail of the spectrum, we expect to be able to neglect the dependence in pµ in Γ (4)k , replacing pµ
by 0. Finally, in the local potential approximation, Γ (4)k must have the form of a local vertex,

Γ
(4)
k (p1, p2, p3, p4) =

u4(k)
N

δp1+p2+p3+p4
, (78)

accordingly to the definition 5. We assume to work in the large N limit so that we can suit-
ably replace the sum by an integral involving density ρ(p2). For a power-law distribution
ρ(p2) ∼ (p2)δ, the remaining loop integral behaves as k2δ+2. Hence taking into account the
scaling dimension for u2 and setting pµ1

= 0, we conclude that explicit k-dependence on both
sides of the flow equations cancels if g2 ∼ k2−2δ – i.e. if g2 has scaling dimension dg2

= 2−2δ.
For an ordinary field theory in dimension d, δ = d/2− 1, and we recover the ordinary power
counting dg2

= 4− d.
In our case, the situation is not quite so rosy. We suppose that the distribution of pµ is given

by ρ(p2), which is not a power law. As we pointed out above, it is exactly as if the effective
dimension of the space depended on the scale. Under these conditions, it is impossible to
imagine getting rid of the explicit scale dependence completely. The best compromise can be
imagined is to move this dependence to the level of the linear term in the coupling, through a
canonical scale-dependent dimension.

In this paper, we will focus on step regulators, rk(p2)∝ θ (k2 − p2), where θ (x) denotes
the ordinary Heaviside step function, equals to zero for x < 0 and equals to 1 for x > 0. In
that way, the scaling factor L(k) for the loop integral involving in (73) behaves as:

L(k) =
∫ k

0
ρ(p2)pdp . (79)

For a power law distribution we recover L(k)∝ k2δ+2 knowing that the time t of the flow
defined by (71) is d t∝ d ln L. We generalize this definition, by replacing the time d t = d ln(k)
by a new time τ defined by:

dτ := d ln

(∫ k

0
ρ(p2)pdp

)
. (80)

For a power law distribution we get dτ = (2δ + 2)d t. To be more concrete, we consider the
Litim regulator:

rk(p
2) := z(k)(k2 − p2)θ (k2 − p2) , (81)
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where we included the wave function renormalization effects z(k) and which we will cov-
ered later on in the next section. If we work with this regulator in the symmetric phase, the
contributions of effective propagators G(p2

µ) drop out the integral as a factor (1+ ū2)−1. More-
over, because the internal loop has no dependency with respect the external momenta, the
anomalous dimension must have a vanishing flow:

ż = 0 . (82)

Hence, making the substitution t → τ, it is easy to check that canonical dimension for u2(k)
is multiplied by t ′, where the notation X ′ denotes the derivative with respect to τ, and we
denote the new scaling dimension as

dimτ(u2) := 2t ′ . (83)

In that way, the contribution proportional to u4 receives the scale-dependent factor
ρ(k2)k−2(t ′)2. This equation will be derived with full details in the next section and the
reader may assume it at the present stage. Getting rid of the explicit scale dependence in the
loop term thus amounts to defining the locally dimensionless coupling as:

ū4 := u4
ρ(k2)

k2

(
d t
dτ

)2

. (84)

Using ū4 instead of u4 in the flow equation for u4 hence introduce a linear contribution
−dimτ(u4)ū4, with:

dimτ(u4) := −2
(

t ′′

t ′
+ t ′

(
1
2

d lnρ
d t
− 1
))

. (85)

The flow equation for u4 in turn fix the τ-dimension of u6, and we define the local dimension-
less sextic coupling as:

u6 k2

(
ρ(k2)

k2

(
d t
dτ

)2
)2

=: ū6 . (86)

Hence, replacing u6 with ū6 in its own flow equation introduce the linear term −dimτ(u6)ū6,
with:

−dimτ(u6) := 2
d t
dτ
+ 4
(

t ′′

t ′
+ t ′

(
1
2

d lnρ
d t
− 1
))

. (87)

The same argument can be generalized, and for u2p a simple recurrence leads to:

−dimτ(u2p) := 2(p− 2)
d t
dτ
− (p− 1)dimτ(u4) . (88)

To anticipate the forthcoming extended discussions of Section 5, we illustrate the behavior
of canonical dimensions here for the MP distribution. Figure 10 provides a numerical plot of
dimτ(u2n) for MP distribution, the observed behavior being qualitatively the same for other
choices of parameters, and in fact, very similar for other models of noise. In the deep IR i.e.
in the domain corresponding to large eigenvalues, we can see that only a few couplings - the
quartic and sextic ones - are relevant in agreement with the empirical statement 1. This is
not too surprising. Indeed the momentum distribution behaving as (p2)δ with δ = 1/2, and
the canonical dimensions for a power law being dimt(u2p) = 2(1 − (p − 1)δ), we find that
relevant couplings are for p = 1,2, 3, the last case corresponding to a marginal coupling with
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Figure 10: The canonical dimension for MP distribution with α = 1 and σ = 0.5.
The purple curve corresponds to the MP distribution ρM P(p2).

vanishing scaling dimension. What we obtain in that limit, a field theory having a few numbers
of relevant directions is the most current one in field theory.27

In contrast, in the deep UV, i.e. in the domain of very small eigenvalues, the canonical
dimensions become positives for an arbitrarily large number of interactions. This corresponds
to a dimension crisis, meaning in the RG language, that an arbitrarily large number of couplings
become relevant toward the IR scales, with arbitrary larges values. In such a regime the flow
is no longer predictive since an arbitrarily large number of couplings must be initially fixed,
and the truncations become arbitrarily large. We have two regimes, a “good” IR regime and
a “bad” UV regime, a pessimistic estimate of the transition point between these two regimes,
k =: Λ0 being given by the scale where the canonical dimension of u8 cancels, i.e.[

d t
dτ
−

3
4

dimτ(u4)
]

t=ln(Λ0)
= 0 . (89)

Our field theory was not intended to be more than an effective model valid at large distances
anyway, but it is interesting to note that the theory sets its limits in a way. Our field theory
was not intended to be more than an effective model valid at large distances anyway, but it is
interesting to note that the theory sets its limits in a way. Numerically, we find for MP that this
limit corresponds to the eigenvalue domain λ ∼ λ+/3. To summarize, the theory shows the
existence of two regions. A region that we will call the learnable region (LR), for k < Λ0. In
this region, only u4 and u6 are relevant and the theory seems to be effectively predictive. On
the contrary, for k≫ Λ0, what we will call the deep noisy region (DNR), the number of relevant
couplings becomes arbitrarily large, and the values taken by the dimensions also diverge.

27Once again, we assume that the form of interactions is fixed in this argument. In general, the power counting
depends on the form of the interactions.
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4.3 Local potential approximation

In this section, we introduce the local potential approximation (LPA) to construct solutions of
the exact Wetterich-Morris equation (70). To begin we focus on the zero vacuum expansion,
assuming to be in the symmetric phase. This assumption allows deducing flow equation in a
simple form, with zero anomalous dimension to all orders. This formalism will allow famil-
iarizing the reader with the specificity of the field theory that we consider, and in particular to
highlight technical points discussed in the previous section about scaling dimension. However,
because numerical investigations of section 5 show that a symmetry breaking is expected for
a strong enough signal, we extend the formalism outside of the symmetric phase and con-
sider expansion around the non-zero vacuum. All our derivations assume the validity of the
derivative expansion (DE) [98]. We discuss the validity of this assumption in section 5 and, for
this, we provide an explicit derivation for anomalous dimension, which does not vanish in the
non-symmetric phase.

4.3.1 Symmetric phase expansion

In the symmetric phase, Γk can be expanded in power of M . It is suitable to introduce the
following decomposition: Γk[M] = Γk,kin[M]+Uk[M], where Γk,kin[M], the kinetic part, keeps
only the quadratic terms in M and Uk[M], the potential, is a sum of monomials with powers
of M higher than 2. In the LPA, Uk[M] is assumed to be a purely local function accordingly to
the definition 5. Moreover, we assume that Uk is an even function, i.e. Uk[M] = Uk[−M]. For
the kinetic parts Γk,kin[M], whose inverse propagates the local modes, we assume the validity
of the (DE), and make the ansatz:

Γk,kin[M] =
1
2

∑
p

M(−p)(z(k, p2)p2 + u2(k))M(p) , (90)

where z(k, p2) expands in power of p2 as z(k, p2) = z(k) +O(p2).
In this section, we focus on the first order of the DE and keep only the term of order (p2)0

in the expansion of z(k, p2). Moreover, in the symmetric phase, as we will do explicitly in the
next subsection, the flow equation for z(k) vanishes exactly. It is therefore suitable to fix the
normalization of fields, such that z(k) = 1∀ k.

The derivation of the flow equations follows the strategy explained in the previous section.
Taking the second derivative of the Equation (70) with respect to M(pµ) leads to the flow
equation (73). Then, taking successive derivatives, we generate flow equations for higher
vertex function, but the flow for Γ (2n)

k involving Γ (2n+2)
k , the hierarchy does not stop anywhere.

To stop it, we must truncate the flow, i.e. project it into a finite-dimensional subspace, by
posing:

Γ
(2M)
k = 0 , (91)

up to a given M . In that section we will consider explicitly the truncation around M = 3,
taking into account only local sextic effective interactions:

Γk[M] =
1
2

∑
p

M(−p)(p2 + u2(k))M(p)

+
u4(k)
4!N

∑
{pi}

δ

(∑
i

pi

)
4∏

i=1

M(pi)

+
u6(k)
6!N2

∑
{pi}

δ

(∑
i

pi

)
6∏

i=1

M(pi) . (92)
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From this one, we straightforwardly deduce that:

Γ
(2)
k,µ1µ2

= δpµ1
,−pµ2

(
p2
µ1
+ u2(k)

)
, (93)

and:
Γ
(4)
k (pµ1

, pµ2
, pµ3

, pµ4
) =

g
4!N

∑
π

δ0,pπ(µ1)+pπ(µ2)+pπ(µ3)+pπ(µ4)
, (94)

where π denotes elements of the permutation group of four elements. Note that the origin
of the factors 1/N and 1/N2 can be easily traced now. Indeed, as we will see just below,
the 1/N in front of u4 ensures that (73) can be rewritten as an integral in the large N limit,
involving the effective distribution ρ(p2). In the same way, the 1/N2 in front of u6 ensures
that all the contributions to the flow of u4 receive the same power 1/N . The argument can be
easily generalized, and we understand the origin of the factor 1/N n−1 in definition 5 for u2n.
Finally, the division by 1/(2n)! ensures that the symmetry factors of the Feynman diagrams
match exactly with the dimension of its discrete symmetry group.

The effective propagator can be easily computed:

Gk(p
2
µ) =

1
p2
µ + u2 + rk(p2

µ)
. (95)

Moreover, we choose to work with the Litim regulator (81) which turns out to be a convenient
choice for doing analytical calculations. The choice of the controller is known to be a serious
problem, which can lead to non-trivial and pathological dependence of the results [98]. The
fact is that, although the Wetterich equation formally implies certain independence for the
choice of the controller, the truncation itself can introduce a strong dependence, even when
k → 0. The Litim regulator will therefore be the easy solution. Moreover, focusing on the
shape of the effective potential and not on the computation of critical exponents, we expect
the dependence on the regulator to be fewer [100].

The flow equation for u2 can be deduced from (73) setting external momenta to zero. We
obtain:

u̇2 = −
1

2N
2k2

(k2 + u2)2
∑
pµ

θ (k2 − p2
µ)Γ

(4)
k (pµ,−pµ, pµ1

,−pµ1
)
∣∣∣∣
pµ1
=0

. (96)

The factor 1/N in front of the sum allows to convert it as an integral:

˙̄u2 = −2ū2 −
2u4

(1+ ū2)2
1
k4

∫ k

0
ρ(p2)pdp , (97)

where ū2 := k−2u2 and where we used the expression (94) for Γ (4)k . Using the time flow τ

defined by (80), we get:

dū2

dτ
= −2

d t
dτ

ū2 −
2u4

(1+ ū2)2
ρ(k2)

k2

(
d t
dτ

)2

. (98)

Hence, using definitions (84), we obtain:

dū2

dτ
= −2

d t
dτ

ū2 −
2ū4

(1+ ū2)2
. (99)

The flow equation for the coupling u4 can be deduced following the same strategy. Taking the
fourth derivative with respect to M of the flow equation (70) and discarding the odd functions
which vanish in the symmetric phase, we thus obtain:

du4

dτ
= −

2u6

(1+ ū2)2
ρ(k2)

(
d t
dτ

)2

+
12u2

4

(1+ ū2)3
ρ(k2)

k2

(
d t
dτ

)2

. (100)
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Taking into account definition (86), the equation reads as:

dū4

dτ
= −dimτ(u4)ū4 −

2ū6

(1+ ū2)2
+

12ū2
4

(1+ ū2)3
. (101)

Finally, we get for u6, setting u8 ≈ 0, we have:

dū6

dτ
= −dimτ(u6)ū6 + 60

ū4ū6

(1+ ū2)3
− 108

ū3
6

(1+ ū2)4
. (102)

4.3.2 Non-zero vacuum expansion

Future numerical investigations show the limits of the development in the vicinity of the zero
vacuum. Also in this section, we extend the formalism to the case of a non-zero vacuum.
This formalism is particularly suitable for investigations in the deep IR, and we will assume
that the vacuum only affects the zero component M(pµ) ∼ Mδµ,0, neglecting the momentum
dependence of the classical field M(pµ). This approximation works well at a large scale, where
a symmetry breaking scenario is expected, requiring an expansion around a non-vanishing
vacuum M ̸= 0. For this reason, we consider the following parameters:

Uk[χ] =
u4(k)

2!

(
χ − κ(k)

)2

+
u6(k)

3!

(
χ − κ(k)

)3

+ · · · (103)

We denoted as κ(k) the running vacuum. The global normalization is chosen such that, for
M0(p) = Mδp0, Γk[M = M0] = NUk[χ], and Nχ := M2/2. The 2-point vertex Γ (2)k moreover
is defined as:

Γ
(2)
k,µµ′ =

(
z(k)p2 +

∂ 2Uk

∂M2

)∣∣∣∣
M2=2Nχ

δpµ,−pµ′ . (104)

Note that we introduced the anomalous dimension z(k), which has a non-vanishing flow equa-
tion for κ ̸= 0. This equation replaces the formula (93), the second derivative of the potential
playing the role of an effective mass. The flow equation for Uk can be deduced from (70),
setting M = M0 on both sides. For large N , taking the continuum limit, we get:

U̇k[M] =
1
2

∫
dp2 k∂k(rk(p

2))ρ(p2)

(
1

Γ
(2)
k + rk

)
(p,−p) . (105)

In the computation of the flow equations, it is suitable to rescale the dimensionless couplings

ū2p→ z−pū2p , (106)

for instance ū2 := z−1k−2u2. This ensures that the coefficient in front of p2 of the kinetic action
remains equal to 1. This additional rescaling adds a term nη(k) in the flow equation, where
η, the anomalous dimension is defined as:

η(k) :=
ż(k)
z(k)

. (107)

Despite that the computation is thereby greatly simplified, the factor z in front of the regulator
(81) does not have to affect the boundary conditions for k = 0 and k =∞, namely:

Γk=∞→ H , and Γk=0→ Γ . (108)
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In particular, the first one of this conditions requires that rk≫1 ∼ kr , for some positive r. This
is obviously the case for z = 1 because rk≫1 ∼ k2. But the dependence of z on k can break this
condition. This may happens if the flow reach a fixed point with anomalous dimension η∗ ̸= 0.
The anomalous dimension behaves as z(k) = kη∗ and rk≫1 ∼ k2+η∗ . Hence, the requirement
r > 0 imposes in turn:

η∗ > −2 , (109)

that we call regulator bound. Note that this is a limitation of the regulator, not of the method.
Moreover, the flow equation being intrinsically non-autonomous, no exact fixed points are
expected and the criterion should be more finely defined. Generally, the LPA at the lowest order
in the DE makes sense only in regimes where η remains small enough, for |η|≳ 1 [100,101].

RG equation for η = 0. As a first approximation we focus on standard LPA, setting z(k) = 1
or equivalently η = 0. From (105), we arrive to the following expression for the effective
potential flow equation:

U̇k[χ] =

(
2
∫ k

0
ρ(p2)pdp

)
k2

k2 + ∂χUk(χ) + 2χ∂ 2
χ Uk(χ)

. (110)

As discussed in the previous section, we express it in terms of the flow parameter τ, to obtain:

U ′k[χ] = k2ρ(k2)
(

d t
dτ

)2 k2

k2 + ∂χUk(χ) + 2χ∂ 2
χ Uk(χ)

. (111)

Accordingly with the definitions adopted in the symmetric phase, we define the scaling of the
effective potential as:

∂χUk(χ)k
−2 = ∂χ̄ Ūk(χ̄) , χ∂ 2

χ Uk(χ)k
−2 = χ̄∂ 2

χ̄ Ūk(χ̄) , (112)

leading to:

U ′k[χ] =
(

d t
dτ

)2 k2ρ(k2)
1+ ∂χ̄ Ūk(χ̄) + 2χ̄∂ 2

χ̄ Ūk(χ̄)
. (113)

The equation (112) fixes the relative scaling of Uk and χ. The previous relation fixes further-
more the absolute scaling, in sense that flows equations must have to be invariant under a
global reparametrization. This leads to:

Uk[χ] := Ūk[χ̄]k
2ρ(k2)

(
d t
dτ

)2

. (114)

In order to find the appropriate rescaling for χ, we define χ̄ as χ = Aχ̄ for some scale depen-
dent factor A. Global invariance imposes:

Uk[χ] := Ūk[A
−1χ]k2ρ(k2)

(
d t
dτ

)2

. (115)

Expanding in power of χ on both sides, we find for the linear term:

∂χUk(χ = 0)χ = ∂χ̄ Ūk[χ̄ = 0]χ̄k2ρ(k2)
(

d t
dτ

)2

, (116)

or, from (112):

∂χUk(χ = 0)χ = ∂χUk(χ = 0)χA−1ρ(k2)
(

d t
dτ

)2

. (117)
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Then, assuming ∂χUk(χ = 0)χ ̸= 0, we obtain finally:

A= ρ(k2)
(

d t
dτ

)2

, (118)

and:

χ = ρ(k2)
(

d t
dτ

)2

χ̄ . (119)

This equation in turn fixes the dimension of κ, which have to be the same as χ. Finally, the
flow equations for the different couplings can derived from definitions:

∂ Uk

∂ χ

∣∣∣∣
χ=κ
= 0 , (120)

∂ 2Uk

∂ χ2

∣∣∣∣
χ=κ
= u4(k) , (121)

∂ 3Uk

∂ χ3

∣∣∣∣
χ=κ
= u6(k) . (122)

The first equation means that we require to make the expansion around a local minimum of
the effective potential. The two other equations are a consequence of the parametrization for
Uk. To derive the flow equations for dimensionless couplings, it is suitable to work with a flow
equation with fixed χ̄. The flow equation (113) is however written at fixed χ. To convert one
into the other, let us observe that:

U ′k[χ] = ρ(k
2)
(

d t
dτ

)2[
Ū ′k[χ̄] + dimτ(Uk)Ūk[χ̄]− dimτ(χ)χ̄

∂

∂ χ̄
Ūk[χ̄]

]
, (123)

where dimτ(Uk) and dimτ(χ) denote respectively the canonical dimension of Uk and χ. To
compute them we return on the definition of dimensionless quantities. Explicitly:

dimτ(Uk) = t ′
d
d t

ln

(
k2ρ(k2)

(
d t
dτ

)2
)

, (124)

and

dimτ(χ) = t ′
d
d t

ln

(
ρ(k2)

(
d t
dτ

)2
)

. (125)

The final expression for the effective potential RG equation then becomes:

Ū ′k[χ̄] = −dimτ(Uk)Ūk[χ̄] + dimτ(χ)χ̄
∂

∂ χ̄
Ūk[χ̄] +

1
1+ ∂χ̄ Ūk(χ̄) + 2χ̄∂ 2

χ̄ Ūk(χ̄)
. (126)

From this expression it is straightforward to deduce the explicit expressions for coupling con-
stant. Using the definition (120) we have: ∂χ̄ Ū ′k[χ̄ = κ̄] = −ū4 κ̄

′. Therefore, deriving equa-
tion (126), we get for κ̄′:

κ̄′ = −dimτ(χ)κ̄+ 2
3+ 2κ̄ ū6

ū4

(1+ 2κ̄ū4)2
. (127)

In the same way, taking second and third derivatives, and from the conditions (121) and (122),
we get:

ū′4 = −dimτ(u4)ū4 + dimτ(χ)κ̄ū6 −
10ū6

(1+ 2κ̄ū4)2
+ 4
(3ū4 + 2κ̄ū6)2

(1+ 2κ̄ū4)3
, (128)

and

ū′6 = −dim(u6)ū6 − 12
(3ū4 + 2κ̄ū6)3

(1+ 2κ̄ū4)4
+ 40ū6

3ū4 + 2κ̄ū6

(1+ 2κ̄ū4)3
. (129)
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The flow equation for η. We now assume that η(k) ̸= 0. From definition, assuming that z
depends only on the value of the vacuum, we have:

z[M = κ]≡
d

dp2
Γ
(2)
k (p,−p)

∣∣∣∣
M=
p

2κ
. (130)

Therefore:

η(k) :=
1
z

k
dz
dk
=

1
z

d
dp2
Γ̇
(2)
k (p,−p) . (131)

The flow equation for Γ (2)k can be deduced from (70), taking the second derivative with respect
to the classical field. Because the effective vertex are momentum independent in the LPA, the
contributions involving Γ (4)k have to be discarded from the flow equation for z. Therefore:

ż := (Γ (3)k (0,0, 0))2
d

dp2

∑
q

ṙk(q
2)G2(q2)G((q+ p)2)

∣∣∣∣
M=
p

2κ,p=0
, (132)

where, according to LPA, we evaluated the right-hand side over uniform configurations. After
a few algebras, we can prove the following statement:

Proposition 1 The anomalous dimension η(k) for κ ̸= 0 is given by:

η(k) = 2(t ′)−2 (3
p

2κ̄ū4 + (2κ̄)3/2ū6)2

(1+ 2κ̄ū4)4
. (133)

Proof. We have Gk(p, p′) =: Gk(p)δ(p+p′) is the inverse of Γ (2)k (p, p′)+rk(p2)δ(p+p′), with

Γ
(2)
k given by equation (104). The expression of Γ (3)k (0, 0,0) can be easily obtained; taking the

third derivative of the effective potential for M :

Γ
(3)
k (0, 0,0) = 3u4

p
2κ+ u6(2κ)

3/2 . (134)

Using the modified Litim regulator, we get:

ṙk(p
2) = η(k)rk(p

2) + 2zk2θ (k2 − p2) , (135)

and
d

dp2
rk(p

2) = −zθ (k2 − p2) . (136)

In the LPA′, the diagonal components of the effective propagator take the form:

Gk(p
2) =

1
zp2 + z(k2 − p2)θ (k2 − p2) +M2(g, h,κ)

, (137)

where M2 denotes the effective mass, i.e. the second derivative of the effective potential.
Finally, we have to compute integrals like

In(k, p) =
∫ k

−k
ρ(q2)q(q2)ndqGk((p+ q)2) . (138)

We focus on small and positive p. In that way the integral decomposes as
In(k, p) = I (+)n (k, p) + I (−)n (k, p), where:

I (±)n (k, p) = ±
∫ ±k

0
ρ(q2)q(q2)ndqGk((p+ q)2) . (139)
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Since p > 0, in the negative branch, (q+ p)2 < k2, and:

I (−)n (k, p) =
1

zk2 +M2
×
∫ 0

−k
ρ(q2)q(q2)ndq , (140)

which is independent of p. In the positive branch however:

I (+)n (k, p) =
1

zk2 +M2

∫ k−p

0
ρ(q2)q(q2)ndq+

∫ k

k−p
ρ(q2)q(q2)ndq

1
z(q+ p)2 +M2

. (141)

Hence, taking the first derivative with respect to p, we get:

d
dp

I (+)n (k, p) =−
1

zk2 +M2
ρ(q2)q(q2)n|q=k−p +ρ(q

2)q(q2)ndq
1

z(q+ p)2 +M2
|q=k−p

− 2z
∫ k

k−p
ρ(q2)q(q2)ndq

(q+ p)
(z(q+ p)2 +M2)2

.

The first two terms cancel exactly, and then:

d
dp

I (+)n (k, 0) = −2z
∫ k

k−p
ρ(q2)q(q2)ndq

(q+ p)
(z(q+ p)2 +M2)2

. (142)

To conclude, taking second derivative and setting p = 0, we obtain:

1
2

d2

dp2
In(k, 0) = −

zρ(k2)(k2)n+1

(zk2 +M2)2
=: I ′′n (k, 0) . (143)

Therefore:

zη(k) =
(3u4
p

2κ+ u6(2κ)3/2)2

(zk2 +M2)2
(
2zk2 I ′′0 (k, 0) + zη(k)(k2 I ′′0 (k, 0)− I ′′1 (k, 0))

)
.

To introduce τ-dimensionless quantities, we have to remark that both u4κ and u6κ
2 have the

same scaling dimension. Finally, using renormalized and dimensionless quantities ū2p, and
replacing the effective mass by its value:

M̄2 = ∂χ̄ Ūk(κ̄) + 2κ̄∂ 2
χ̄ Ūk(κ̄) = 2κ̄ū4 , (144)

we arrive to the expression (133). □

Note that to derive this expression we took into account the additional rescalling coming from z
accordingly to the requirement that the coefficient in front of p2 in the kinetic action remains
equals to 1. This in particular implies to change κ̄ → z−1κ̄ with respect to the strict LPA
definition. Due to the factors z in the definition of barred quantities, η(k) appears in the flow
equations. The net result is a translation of canonical dimensions

dimτ(u2n)→ dimτ(u2n)− n
d t
dτ
η(k) , (145)

in the equations obtained previously for z = 1. We moreover have to take into account the
additional contribution coming from the derivative of the regulator.
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5 Investigations for standard models of noise

In this section we will apply the formalism presented in the previous section to concrete situa-
tions, considering a series of spectra in the neighbourhoods of common universal noise models.
We will start by a review of the vicinity of the universality class corresponding to the MP spec-
trum, studied in references [52–55]. We will then consider the case of Wigner’s universality
class. Although this distribution is not positive, we will be able to make it positive by perform-
ing a translation on the spectrum, arranging to place the signal in the tail of the spectrum, on
the positive side. Finally, we will consider the case of a noise corresponding to data materi-
alized by a tensor and not a matrix. This less-common universality class corresponds to the
tensor PCA, more widely studied in the last few years [61–64]. The tensor case will also allow
us to confront our methods to the case where we do not have an analytical formula for the
eigenvalues of the covariance matrices. Moreover, we will see that the definition of the covari-
ance matrix is not unique. The theory of random tensors [102, 103] proposes many of them
and we will be able to build an effective criterion to decide which are the best. Note that the
simplest definition, based on the simplest of melonic graphs has been studied previously [55].
Notwithstanding the fact that some results have been previously studied, the investigations
presented in this following section (including MP) go far beyond our previous studies.

5.1 Empirical methodology

If proposing new detection algorithms for quasi-continuous spectra where standard methods
fail to give satisfactory results is part of our long term goals, it would be difficult to draw
clear conclusions from this kind of analysis without having understood the properties of the
RG stream of reference spectra beforehand. Indeed, our paradigm replaces the search for
principal components of the standard PCA by that of principal flows, relevant in the IR. We
could then speak of principal flow analysis (PFA). But to be able to identify the principal flow of
a type of spectrum and to say with certainty that the characteristics of this flow are compatible
with the presence of a signal requires a prior understanding of the expected properties of this
flow. Note that this is not specific to our study but a reflection of the general approach in
physics. Physics experiments are performed in such a way as to keep a precise control on the
different parameters of the experiment. We propose here such an approach. We will build
spectra by corrupting a signal made of a deterministic matrix or tensor and normalized by a
certain rank by a random matrix or tensor materializing the noise. The signal will be weighted
by a parameter β ∈ [0, 1], interpolating between a regime without signal and a regime of
strong signal. We will only work with the Gaussian set, and normalize all our distributions so
that the variance is the same for all components. Thus we will keep a precise control on the
numerical parameters, the characteristics of the distribution and the strength of the signal that
we can vary. In that way we can able to obtain empirical statement about general properties
of spectra in vicinity of universal class for matrices or tensors.

5.2 Marchenko-Pastur universality class

In this section, we will first discuss numerical analyses concerning spectra in the neighbour-
hood of the universality class of MP. This case has been extensively studied in the papers cited
in reference [52–54], so this section takes up most of their material.

In section 4, we illustrated the dependence of the canonical dimensions on the scale, for
an MP distribution, and emphasized two points. The first point is that at a large scale only
two couplings are relevant, the quartic and the sextic, the latter tending to be asymptotically
marginal. The second point is the appearance of a dimensional crisis around the first third of
the spectrum. From this scale and going towards more and more ultraviolet scales, the num-
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Figure 11: Blue histogram: Typical spectrum for a 2000×1500 white Wishart matrix.
Brown histogram: Perturbation with a deterministic matrix of rank 50.

ber of marginal operators as well as their dimensions grow uncontrollably (see Figure 10).
This observation constitutes one of the first pieces of the empirical statement 1, and can be
verified on real spectra, at large but finite N and P, following the conventions given in the
section 5.1. Such a spectrum corresponds to the histogram in blue on Figure 11, for N = 2000
and P = 1500, with a standard deviation fixed at 1. On the same figure, we can observe the
blue histogram obtained by taking another matrix of the same statistical set, and by adding
a deterministic matrix m of rank 50, whose normalized column vectors materialize a signal.
Figure 12 shows the behavior of the canonical dimension in both cases for the quartic coupling
(see equation (85)). The RG thus allows establishing a first criterion indicating the presence
of a signal in a spectrum in the vicinity of the Gaussian point. For a noisy signal, the quartic
and sextic couplings will be relevant, and the theory will be essentially interactive. On the
contrary, when a signal is input, the couplings will tend to become irrelevant, and the Gaus-
sian fixed point will become stable. This situation is reminiscent of the standard theory of
ferromagnetism, where the Gaussian theory is stable in dimension > 4, and becomes unstable
in dimension < 4 [2]. Here, it is the shape of the distribution that replaces the dimension, and
we will say that a dimension becomes critical when it approaches a power law ρ(p2)∼ (p2)δ

with δ = 1 (see definition 3). Such a difference in behavior makes the asymptotic states
distinguishable, and establishes a simple detection criterion:

Empirical statement 2 The emergence of a signal in a data set around a white Wishart ensemble
corresponds to a critical behavior.

We will see in the following that this statement is not limited to Wishart-type white noise.

Remark 2 Note that all these simulations take into account the warning concerning the crisis of
the dimension, around the eigenvalue λ∼ λ+/3 (see the discussion after equation (89)). For the
concrete case we study, this means that we consider our field theory approximation valid between
the eigenvalue ∼ 2.5 and the largest eigenvalue ∼ 3.4.

Unlike in ordinary field theories, the canonical dimensions are scale-dependent and therefore
the flow equations never form an autonomous system. This implies in particular that, in this
context, it cannot exist true fixed points of the RG flow, i.e. points where all the β functions
(see equations (98), (101) and (102)) vanish exactly. However, it is instructive to plot the flow
numerically. Figure 13 shows the typical behavior of the RG flow corresponding to blue and
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Figure 12: Blue line: Canonical dimension dimτ(u4) for blue histogram without sig-
nal (on the top) and for the brown histogram with signal (on the bottom). Red curve
is the empirical eigenvalue distribution in both cases.

brown histograms of Figure 11. On the figure are represented the flows associated respectively
with the blue and brown histograms of Figure 11. What is striking at first is that, although there
is no real fixed point, there is nevertheless a region that behaves “almost” like a Wilson-Fisher
fixed point, separating the stream into two regions. These two figures illustrate the important
point of our discussion. The asymptotic behavior of some trajectories is likely to vary in the
presence of a sufficiently strong signal. Around the Gaussian fixed point, the trajectories have
two outcomes. Either they gain the region u2 > 0, and the Z2 symmetry is restored in the IR,
or they reach the region u2 < 0 and the symmetry is broken in the IR. In a given truncation,
we can search numerically the set of trajectories which, for some initial conditions around the
Gaussian fixed point, end in the symmetric phase (u2 > 0) in the IR. For a purely noisy dataset,
and using the sextic truncations given by equations (98), (101) and (102), we typically obtain
the Figure 14. The set of initial conditions leading to the symmetric phase forms a compact
domain around the Gaussian point (in purple), which we will call R0.

Remark 3 The reader should keep in mind that, since the flow is not described by an autonomous
system, a global fixed point cannot exist. However, there can be “fixed trajectories” along which the
beta functions vanish. Asymptotically, as the theory behaves like a 3D quantum field theory, these
lines act similarly to an ordinary fixed point, but only in the asymptotic limit. The region discussed
in this paragraph, which behaves “like” a Wilson-Fisher fixed point, represents the endpoint of such
a trajectory.
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Figure 13: Behavior of the RG flow in the vicinity of the Gaussian fixed point. On the
top: For a purely noisy dataset (blue histogram). On the bottom: with a deterministic
signal (brown histogram).

We can now investigate what happens if we add a signal, that is if we consider the blue
histogram rather than the blue histogram in Figure 11. The result is shown in Figure 15. We
observe a reduction in the size of the R0 region. In other words, some trajectories that used
to end up in the symmetric phase now end up in the non-symmetric phase. The exploration of
this phase renders obsolete the development that led to the equations (98), (101) and (102);
and the local potential formalism lends itself better to this kind of investigation.

By limiting ourselves again to a truncation of order 6, i.e. for a potential of the form (103);
we can follow the evolution of the R0 zone but also of the κ vacuum and the effective potential.
These results are summarized in Figures 16, 17 and 18. To realize the Figure 16, we multiplied
the signal (materialized by the deterministic matrix m) by a factor β ∈ [0, 1], continuously
interpolating between the blue (β = 0) and brown (β = 1) histograms of Figure 11. An
illustration of how the size of the R0 region reduces with signal strength can be seeing in this
figure. The more β increases, the more the area shrinks. Note that to obtain this figure we
used the effective potential formalism and that the axes correspond respectively to κ, u4 and
u6; κ being the running expectation value for the classical field.

Figure 17 shows the evolution of the effective IR potential for a typical trajectory taking
its initial conditions in the R0 region. When β = 0, the Z2 symmetry persists in the IR. But as
β increases, the shape of the potential changes, the κ= 0 vacuum becomes unstable and two
stable non-zero voids emerge. This situation is again evocative of the physics of critical phe-
nomena, the value of β playing the role played by the inverse of the temperature (β ≡ 1/T).
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Figure 14: Three different points of view on the region R0 for the blue histogram
around the Gaussian point (materialized by the black point) for a local sextic trun-
cation.

Figure 15: Three different points of view on the region R0 for the blue histogram
around the Gaussian point (materialized by the black point) for a local sextic trun-
cation.

45

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.077


SciPost Phys. Core 7, 077 (2024)

Figure 16: On the left: A series of spectra obtained by varying the signal strength β .
From top to bottom, β = 0,0.4, 0.7,1. On the right: the R0 area in the (κ, u4, u6)
truncation of the effective potential Uk[χ].

Finally, Figure 18 illustrates the expected behavior for κ(k) along typical trajectories, going to-
wards a broken or asymptotically restored symmetry. In this respect, it is worth observing that
the trajectories leading to the restoration do not just converge to zero, but become negative.
This effect indicates that the potential does not cancel at zero, which can be seen in Figure 17.
Finally, to conclude, these numerical analyses assume the validity of the LPA; which is gen-
erally questionable. In particular, this approximation assumes that the anomalous dimension
plays a negligible role. We have discussed a formalism that takes into account the anomalous
dimension in the section 4, and we can indeed verify that taking into account these effects
leads only to tiny deviations from the predictions of the LPA. Figure 19 illustrating that the
expected values for η are all≪ 1.

We have been able to illustrate almost the whole proposition 1. However, we still need to
clarify an important point. These investigations seem to suggest that formalism would allow
for the detection of the slightest presence of a signal in a spectrum. But as it is known, there is
always a threshold effect and we should be able to understand the existence of such a threshold
with our theory.
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Figure 17: Shape of the IR effective potential for different values of the signal
strength β .

To this end, we need to clarify a little what we mean by “IR potential” in the Figure 17.
Generally, the deep IR corresponds to the k → 0 limit. Here, however, we have to take care
that the “zero” modes must be excluded from the partial integration procedure (see discussion
at the end of the section 4.1).

More precisely, we expect to obtain an effective theory for the “zero” modes, and the partial
integration procedure should stop just before. Since the eigenvalue spacing is of the order of
1/N , the smallest value of k2 must be ∼ 1/N and not exactly 0. So when we talk about IR
potential, we must understand Ūk, evaluated for k ∼ 1/

p
N . This observation allows fixing the

typical size of the mass for a phase transition to occur. Indeed, it is not enough that ū2 reaches
a negative value for a transition to occur. |u2|must have a finite value. Because u2 = k2ū2, if ū2
tends to a negative but finite value, u2 could vanish in the limit k→ 0. In our case, k is always
finite, but 1/N is assumed to be a very small number, and |ū2| has to be very large, of order
N , so that |u2| has a finite value. Similarly in the symmetric phase, the mass being interpreted
as the inverse of the largest eigenvalue in the IR, its value must be finite for arbitrarily large
values of N , and we must select in the purple region R0 those initial conditions which respect
this constraint. We can easily show that there are such trajectories (see Figure 20). We can
search, among the trajectories of the region R0 those which have this characteristic. What we
obtain is represented in the Figure 21. We will say that these trajectories are physical, and we
will denote by r0 ⊂R0 this subset of the physical initial conditions.

This physical region allows us to consider the existence of a detection threshold from an-
other angle. We have seen that when β increases, the size of the R0 region decreases. How-
ever, as long as this shrinkage does not reach the sub-region r0, the physical states remain
insensitive to the presence of the signal. It is only when this region is reached that the physical
asymptotic states are altered. Hence, the RG allows us to simply understand the existence of
an intrinsic detection threshold. This would deserve to be refined. One should for instance
take into account the global precision of the measurement system, and introduce error bars
systematically. Nevertheless, the final conclusions would remain qualitatively the same, i.e.
that there is an intrinsic limit to the data, a finite domain between blue and purple regions,
which the RG “perceives”.
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Figure 18: Illustration of the evolution of κ. On the top: For some RG trajectories (on
the left), κ decreases toward a negative value, which corresponds to a restoration of
the Z2-symmetry. On the bottom: For other trajectories however, κ stays almost con-
stant in the range of eigenvalues that we consider, and does not lead to a restoration
of the symmetry.

5.3 Wigner’s universality class

In this section we want to highlight the universality of the proposed framework. For this,
we illustrate that the results presented in the previous section related to the MP law are still
true for other noise models. In this section, we focus on the signal detection around the
well known Wigner’s law. In Figure 22 we show the typical spectrum that we analysed with
the proposed framework. In the left, we show an spectrum of a large random symmetric
matrix with Gaussian entries that for which the distribution converges to the Wigner’s law. We
consider this case as a reference spectrum associated to data with only noise. Then we build
a matrix data which can be regarded as a disturbance of this reference data in the sense that
we added to it a matrix of rank 50 that we consider as a signal. The spectrum of such matrix
is illustrated on the right side of this Figure 22.
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Figure 19: Evolution of the anomalous dimension.

Figure 20: Illustration of the evolution of the u2 for eigenvalues between 2.5 and 3.4
in the case of pure noisy data. We can see that the values of u2 for these examples
are of the same magnitude as N = 2000.

The first main observations are related to the canonical dimensions illustrated in Figure 23
for large but finite matrices. In contrast to the MP case, the relevant sector is more sensitive
to the size of the matrix, and for finite N , it is more generally spanned by the first three even
local couplings28 (u4, u6 and u8). Beyond those interactions, all the couplings are irrelevant.
However, as a universal feature of our framework we can see in these canonical dimensions that
all these couplings tends to be shifted to the top which means that they tends to be irrelevant.

The second main observation is related to the behavior of the RG trajectories. Figure 24,
shows the numerical behaviour of the quartic truncation, on the top, for the data without
signal and on the bottom, for the data with a signal. As for the MP case, we observe the
existence of a region analogous to a Wilson-Fisher fixed point (even if it is not a true fixed
point). When, we add a signal (on the bottom) we can see clearly, that the behaviour of the
global flow is affected: the effective Wilson-Fisher region is shifted toward the Gaussian fixed
point (illustrated in red) and the size of the symmetric phase is reduced.

28The octic coupling becoming irrelevant as we goes toward the analytic form.
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Figure 21: The physical region r0 ⊂R0. All trajectories starting from this region end
with a mass of order 1.

Figure 22: Left histogram: Typical spectrum for a 3000×3000 symmetric matrix with
random entries following the Gaussian distribution. Right histogram: Perturbation
with a deterministic matrix of rank 50.

Finally, the Figure 25 shows the compact region associated to the RG trajectories for which
we have a symmetry restoration in the IR in the case of a sextic truncation using LPA. Again,
the presence of a signal is indicated by a symmetry breaking for some trajectories taking their
initial conditions in the symmetric phase of the case of pure noise.

5.4 Tensorial universality classes

In this section, we focus on the most difficult issue where the data is tensorial. Mathematically
we mean that dataset have to be materialized not as a P×N matrix X = {Xai} as it was the case
before, but as a tensor P1× · · · Pd−1×N , of rank d: T= {Ta1···ad−1 i}. The tensor generalization
of PCA has been considered for some years [64] in an attempt to generalize the result of [68]
for the spike matrix model through the basic equation:

Ti jk = β vi v j vk +
1
p

N
X i jk , (146)

for some purely Gaussian noise X being a N3 tensor with entries X i jk ∼N (0,1) and vi ∈ SN−1
is a deterministic unit vector. This equation aims to generalize the one-spike matrix model (1).

50

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.077


SciPost Phys. Core 7, 077 (2024)

Figure 23: Top: Canonical dimensions related to u4, u6, u8 and u10 for the numerical
Wigner spectrum of the data without signal. Bottom: Canonical dimensions in the
same range of eigenvalues for the spectrum of the data with a signal.

The recent results of [64, 104–106] seem to indicate that a phase transition, similar to the
one observed in the matrix case, also occurs in the tensor case. Hence, as for the matrix,
there exists a critical value βc of order 1, such that it is impossible to detect or recover a signal
below it. For matrices, recovering use maximum likelihood (ML) estimator, which is equivalent
to computing the largest eigenvector. For tensors, unfortunately, the computation of the ML
estimator is NP-Hard. In practice, however, what is relevant is the size of the signal from
which detection is allowed from detection algorithms in a polynomial time. This value β0 for
symmetric tensors depends non-trivially on N , the size of the tensor, β0 ∼ Nγ. Generally for
rank 3 tensors, γ = 1/4 or 1/2, depending on the used algorithm to estimate the empirical
threshold. Until recently moreover γ ≳ 1/4 looks like an algorithmic lower bound. Note that
a recent algorithm named SMPI for Selective Multiple Power Iteration [107] (appeared during
the redaction of this paper) promises to outperform these algorithms, providing empirically
β0 of order 1.

In the large N limit, this poses a computational issue, as signal detection and recognition
of low-rank signal using algorithmic methods is possible in a polynomial time for β ≳O(Nγ).
The tensor case is therefore a privileged topic of investigation for alternative approaches like
ours. We can mention the recent results [106], which extend the results obtained in the matrix
case for the spike model, from a spectral point of view, for random tensors.
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Figure 24: Behavior of the RG flow in the vicinity of the Gaussian fixed point for the
case of the Wigner’s law for a quartic truncation. On the top: for the spectrum of the
data without signal. On the bottom: for the spectrum of the data with a signal.

The theory of random tensors has developed considerably in recent years in the context of
quantum gravity [102], and we will largely rely on this formalism, which exploits the notion
of tensor invariants. Let us note that the authors of the references [104, 105] have exploited
this formalism, which has proven to be very efficient.

5.4.1 A digest of random tensor formalism

In this section introduce the notations and definitions usually considered for random tensor
models [102]. Let EM (R) a M dimensional real vector space:
u ∈ EN (R) ⇒ u = {u1, · · · , uM} ∈ RM . It is equipped with the standard Euclidean scalar
product 〈 , 〉 defined as:

∀u, v ∈ EM (R)→ 〈u, v〉 :=
M∑

n=1

unvn . (147)
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Figure 25: Three different points of view on the region R0 around the Gaussian point
(materialized by the black point) for a local sextic truncation. On the left: for the
spectrum of the data without signal. On the right: for the spectrum of the data with
a signal.

A P1 × · · · Pd−1 × N rank d tensor T = {Ta1···ad−1 i ∈ R} is a multi-linear form belong
EP1
(R)⊗· · ·⊗EPd−1

(R)⊗EN (R). For a pair of tensors T1 and T2, we can define an inner product,
inherited from the Euclidean product over EM (R):

(T1,T2)→ 〈T1,T2〉 :=
P1∑

k1=1

· · ·
Pd−1∑

kd−1=1

N∑
kd=1

(T1)k1···kd
(T2)k1···kd

. (148)

Tensor T transforms naturally under rotations:

Tk1···dd
→ T ′k1···kd

=
∑

k1,··· ,kd

d∏
j=1

O( j)k j l j
Tl1···ld , (149)

where O( j) ∈ O(Pj). Such a quantity, which is invariant under transformation (149), is said
to be a tensorial invariant. The concept of tensorial invariant can be extended for quantities
involving a larger number of tensors, provided that the index ki of a given tensor is contracted
with the index li of an other tensor. We call color the number i indexing ki . Obviously this
construction implies that the number on tensors must be even. Tensorial invariants can be
pictured as d-colored regular graphs as follows. To each tensor we associate a black node, with
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Figure 26: Examples of tensorial invariants for d = 3. The last one on the right is
non connected.

d colored half edges hooked to it:

Tk1k2···kd k1
k2
k3

kd . (150)

A tensor invariant made of 2P tensors can then be constructed by connecting the lines in pairs
according to their colors. Figure 26 provides elementary examples of tensor invariants for
d = 3. A tensorial invariant can be connected or not. We will call bubble the tensor invariants
whose graphs are connected. Although interactions are inherently non-local in the ordinary
sense, rotation invariance and connectivity allow us to define a notion of locality [108]. We
will adopt the following definition:

Definition 6 We will say that a real function f (T ) is local if it can be expanded (finite or not) in
bubble-labelled monomials. For instance, for d = 3:

f (T ) = a1 + a2 × + a3 × + a4 × + · · · , (151)

for some reals parameters {a1, a2, a3 · · · } that we call components. Moreover a local function
whose expansion has only one bubble b ̸= ; will be called observable.

In this paper, we will focus on Gaussian noise. A random tensor will be Gaussian if it is
distributed according to the probability measure dµ(T ) = e−SG(T )/Z , for:

SG(T ) =
Nα

2a

∑
k1···kd

(Tk1···kd
)2 , (152)

for some positive real number a > 0. The normalization factor Z being such that:∫
dµ(T )Tk1···kd

Tl1···ld = aN−αδk1 l1δk2 l2 · · ·δkd ld . (153)

The power α will be adjusted so that the 1/N expansion of the expectation values for prod-
ucts of observables exist. The expectation value 〈 f1(T ) × · · · × fK(T )〉 for the product of K
observables f1(T ), · · · fK(T ) reads as,

〈 f1(T )× · · · × fK(T )〉 :=
∫

dµ(T ) f1(T )× · · · × fK(T ) . (154)

The right hand side can be computed using Wick theorem [82] as a product over all allowed
contractions of tensors pairwise. The result takes the following form:

〈 f1(T )× · · · × fK(T )〉=
∑

G∈GK

A(G) , (155)
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Figure 27: A typical Feynman graph involving 3 vertices for d = 3.

where GK designates the set of Feynman diagrams having K vertices, and A(G) the Feynman
amplitude corresponding to the graph G. Figure 27 shows a typical graph G ∈ GK for K = 3.
In the Figure, the Wick contractions, involving the propagator (153), are pictured with dotted
edges. If we associate to them a color 0, the resulting graph is (d + 1)-colored and regular.
The knowledge of the free propagator allows to compute Feynman amplitudes exactly, and it
is not hard to check that:

A(G) = aL(G)N−αL(G)+F(G)+
∑K

j=1ρ(b j)
K∏

j=1

ãb j
, (156)

where ab =: ãbNρ(b) designates the component along the bubble b defining the observable
fb(T ), the intrinsic scaling ρ(b) depending only on b. In that equation moreover, L(G) desig-
nates the number of Wick contractions, and F(G) the number of closed faces:

Definition 7 A face f is a bicolored cycle, which can be open or closed, corresponding respectively
to open and closed faces. Its boundary ∂ f is the subset of dotted edges along the cycle.

The exponents ρ(b), as well as the constant α must be chosen in such a way that the develop-
ment in 1/N exists, and that it favors a certain family of graphs when N →∞, all having the
same scaling behavior with N . A solution was found in [109] for tensors of rank 3 to which
we will limit ourselves in our investigations,29 and we have the following theorem:

Theorem 4 Let G a 4-colored Feynman graph. Fixing α = 3/2, we define the degree ω(G) as
follows

ω(G) = 3+
3
2

L(G)−
∑

b|Nb>2

ρ(b)nb(G)− |F | , (157)

where nb is the number of bubbles of type b, Nb the number of nodes for the bubbles b, L(G) the
number of dotted edges, |F | denote the total number of bicolored cycles in G and the degree of the
bubble, ρ(b) is:

ρ(b) = 3−
|Fb|
2

, (158)

where |Fb| is the number of closed bicolored cycles in b. In that way, Feynman amplitude A(G)
for G behaves as:

A(G)∼ N3−ω(G) . (159)

Leading order diagrams are then defined by the condition ω(G) = 0 form a unique family of
graphs which obey a simple recursive definition and are said melonics.

29The numerical resources required for the simulations increase dramatically with the rank of the tensor.
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Figure 28: Illustration: Definition of the covariance matrix as the cut of a line of a
tensor invariant.

Figure 29: Covariance matrices obtained from ci-cuts. From left to right: Edge dele-
tion for 1, 2, 1 and 1 dipoles.

5.4.2 Definition of covariances

It is now necessary to generalize to the case of tensors the construction of the covariance
matrix considered for matrices. For a matrix X = {Xai}, the covariance matrix is defined
by the averaging of the euclidean scalar product Ci j =

1
P

∑
a XaiXa j . We are looking for a

generalization of this construction to the case of tensors. One can think of:

Ci j =
〈 ∑

a1,a2,···ad−1

Ta1,a2··· ,ad−1 i Ta1,a2···ad−1 j

〉
. (160)

This definition was used in [55], where the authors conducted numerical investigations that
we will summarize in the next section. However, we will also seek to extend this natural
definition. Let us note at first that, from the point of view of the formalism presented in the
previous section, the definition (160) can be understood as the opening of the color edge d
(see Figure 28). The question is: Would it make sense to extend this observation to more
complicated bubbles, involving a larger number of tensors? One could for example imagine
cutting an edge of color d in one of the three bubbles of Figure 26. We will call k-dipole any
pair of nodes joined directly by k-colored edges, and we will speak of ci-cut to designate the
opening of the i-colored line on a k-dipole. In Figure 28, we have thus opened the d color
edge of a 3-dipole. Figure 29 provides another example, for the third diagram of Figure 26,
in which we cut the edge of color d on a 1-dipole.

To understand why tensor invariants would be useful, we must return to matrices. The
interest of “traces” for matrices is well known and reflects the invariance of intrinsic properties
of the signal by rotation. This observation explains why the search for eigenvalues is so central
in data analysis. In the case of matrices, we can easily switch from eigenvalues to traces,
and we can focus on one or the other at will. In the case of tensors, however, the notion
of eigenvalue is not as obvious [110], but the notion of invariant is as we recalled in the
previous section. For this reason, it is expected that each invariant, and thus each possible
definition of the covariance matrix, carries partial information about the problem. A simple
question we could try to answer with our RG formalism would be the following: Among all
these definitions, which one is the most suitable from the point of view of signal detection?
Note that this approach exploiting tensor invariants in the framework of PCA is not the first.
A notable attempt was made in the recent work [84]. However, our approach is the first to
exploit the RG.
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Table 2: List of covariance matrices considered in our numerical investigations.

Covariance Family Valence Degree Graph

C1 2 ρ(b∗) =
5
2

C2 4 ρ(b∗) = 2

C3 4 ρ(b∗) = 2

C4 Melon 6 ρ(b∗) =
3
2

C5 6 ρ(b∗) =
3
2

C6 6 ρ(b∗) =
3
2

C7 6 ρ(b∗) =
3
2

C8 Complete 4 ρ(b∗) =
5
2

5.4.3 Numerical investigations

We will consider eight different definitions of covariance matrices in our investigations, noted
CI , I = 1, · · · , 8, all represented with their characteristics in the table 2 for non-symmetric
tensors of size 50 × 50 × 50. The corresponding typical spectra are shown in Figure 30, the
signal being materialized as a non-symmetric deterministic tensor of rank R = 50, having a
trivial singular decomposition of the form

X (signal)
a1,a2,a3

=
R∑

k=1

u(k)a1
v(k)a2

w(k)a3
. (161)

Three observations must be made at this level.

• First, the rate of convergence of the distributions seems to depend on the definitions
of the covariance matrix, and some numerical instabilities are expected for this reason.
This is a consequence of the numerical resources required to simulate a random tensor
concerning random matrices. This can also be a direct advantage of our approach, which
would only require a numerical smoothing of the spectrum, less demanding in terms of
computational resources to calculate the RG flow.

• Second, the shape of the distribution differ from a definition to another. The blue his-
togram for C1 for instance is almost symmetric around the eigenvalue 1, whereas the
blue histogram for C5 is not symmetric, which a sharp behavior around the smaller
eigenvalue, reminiscent of the MP law.
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Figure 30: On the left, from top to bottom, we illustrate the histograms corresponding
to C1, C2, C3 and C4. On the right, from top to bottom, we illustrate the histograms
corresponding to C5, C6, C7 and C8. In all the plots, blue histogram corresponds to
data without signal and the brown histogram corresponds to data with the maximum
intensity of signal considered in our experiments.

• The third remark concern the stability of the smaller eigenvalue of the distribution. The
smaller eigenvalue when a signal is added receives a positive shift, as pictured in Figure
31 for C6. This effect has been systematically corrected on the spectra of the figure.
However, it should be noted that all definitions are unequal on this point. For example,
C1 and C8 are not very sensitive, while the effect is very important for C6, for a signal of
the same strength.

The definition C1 has already been considered in [55], and we will recall its main conclu-
sions. As in the section 5.2, it is instructive to plot the typical flow behavior for a quartic trun-
cation in the symmetric phase (i.e. assuming the expansion of the effective potential around
χ = 0 makes sense). The result is shown in Figure 32, obtained by numerical integration of
flow equations. As for MP, one can see that ending regions of some RG trajectories are different
if a signal is added to the spectrum. Moreover, there exist again a region that behaves as an
effective fixed point like Wilson-Fisher. For MP, we argued that it could never be a true fixed

58

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.077


SciPost Phys. Core 7, 077 (2024)

Figure 31: The original histograms corresponding to C6 before shifting the brown
histogram corresponding to data with a signal in order to align it with the blue his-
togram corresponding to data without a signal.

point because scaling dimensions depends non trivially on the scale. For tensor, the situation
is slightly different. Figure 33 illustrates the numerical behavior of canonical dimension with
or without signal, and with or without averaging over a few numbers of draws. Two main
differences have to be noticed with respect to MP:

• The scaling dimensions diverge again in the deep UV, but are all negative, meaning that
local couplings are all irrelevant in this regime.

• In the deep IR moreover, the scaling dimensions for couplings become almost constant
up to a given scale.

The first point illustrates that the flow behaves much better in the UV than for tensors and
that the learnable region extends in fact over almost the whole spectrum. The second point
shows that fixed point solutions exist for tensors, at least approximately (i.e. within numerical
instabilities). For the rest, the previous conclusions (see 1) remain true for the definition C1:
The presence of a signal affects the relevance of the couplings (the mainstream), and the
canonical dimensions all decrease simultaneously. This concerns especially the quartic and
sextic couplings, which tend to become irrelevant when a strong enough signal is added to the
noise. Thus once again we see that the presence of a signal affects the sector relevant to the
theory, tending to make the non-Gaussian perturbations irrelevant. As for MP, we find that the
anomalous dimension remains a negligible correction in the IR, ensuring the validity of the
LPA in this region. Figure 34 shows the symmetrical phase obtained for a sextic truncation, in
the case of purely noisy data (on the left) and when a signal materialized by a deterministic
tensor is added (on the right). We have also considered two approximation schemes, in the
first one the potential is developed around χ = 0 (top figure), and in the second round χ = κ
(bottom figure). In both cases, we see that the conclusions remain the same as for the matrices
and that the signal has the effect of reducing the size of the symmetric phase. Figure 35 shows
the symmetry broken in the point of view of the effective potential.

Remarkably, all these conclusions remain true for all definitions proposed in the table 2. In
particular, definitions 1 to 7 show strong similarities. Definition 8 however stands out slightly,
especially for the canonical dimensions. The empirical dimension (with and without signal)
is represented in Figure 36. Contrary to what we observed for C1 and which remains true
for all definitions up to C7, all dimensions are positive in the IR. Only the quartic and sextic
couplings have positive dimensions along the stream, but for a finite period of its history only.
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Figure 32: Behavior of the RG flow for a quartic truncation in the symmetric phase,
using covariance C1. On the top, the flow for the blue histogram (without signal).
On the bottom, the flow for the brown histogram (with signal).

Moreover, all dimensions become irrelevant in the UV, as seen before. This illustrates an im-
portant point. The sensitivity of the canonical dimensions to the presence of a signal differs
from one definition to another, and also depends on the scale at which the signal is sought.
Thus although the conclusions given by the proposition 1 seem universal, the RG seems to
give a new criterion on the practical relevance of the different definitions of covariance. In
Figure 37, we track the evolution of the average canonical dimensions as the signal strength
is increased. We see that for weak signals (signal intensity < 1) the canonical dimensions
associated with the theories C1 and C5 change much faster than the others, and we, therefore,
expect their relevant sector to be more affected than that of the other theories. In this sector,
on the other hand, the canonical dimensions of the C8 theory change very little. Conversely,
in the strong signal regime (signal intensity > 1), the C6, C7 and C8 theories seem to be more
sensitive, the C8 theory being the most sensitive of all. These conclusions seem to agree with
the conclusions of [84] concerning the relevance of the “tetraedron” graph defining C8, the
authors showing that combinatorial properties of such a graph simplify proofs for detection
theorem. Hence our RG formalism could provide answers on open topics such as tensor PCA.

6 Concluding remarks and open issues

This pedagogical article has reviewed analogous field-theory models discussed in a series of
recent papers. We have proposed an alternative point of view on signal detection in the case of
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Figure 33: Canonical dimensions for C1. On left, we illustrate the results for data
without signal and on right the results for data with the maximum intensity of signal
considered in our experiments. On the top Figures are obtained without numerical
smoothing. On the bottom we show the same figure after averaging over a few draws.
In both cases, the red curve denotes the shape of the fitted eigenvalue spectrum.

an almost- continuous spectrum. In that way and through RG-arguments, we have been able
to discuss the universality of the empirical proposition (1), but also to characterize a type of
tensor invariant as optimal from the point of view of signal detection. Our main message then
is, that it is possible to understand signal detection by the significant changes on the universal
properties of noise models, in particular for the number of relevant couplings by which asymp-
totic states in the IR are distinguished. That is reminiscent of the physics of critical phenomena,
and makes it possible to consider signal detection as a phase transition, breaking the native
Z2 symmetry of models based on a principle of maximum entropy. Moreover, the RG allows a
natural understanding of the existence of a detection threshold due to the existence of a com-
pact subset of physically acceptable initial conditions, included in the symmetric phase. Open
questions will be considered in later publications and include the following. We have worked
in the continuum limit. Therefore, to compute derivatives and scaling dimensions, a smooth
fitting of the empirical distributions is required. That may induce some spurious effects. A
discrete version of the RG (via discrete sums and finite differences) could avoid such difficul-
ties. More generally, the methods we have used to construct the RG are approximate. The LPA
easily connects the UV and IR two-point functions, with all the effects of quantum fluctuations
included in the mass, and this approximation is certainly justified in the IR, where the anoma-
lous dimension remains a tiny correction. Yet, if we approach UV scales we can expect more
serious difficulties. The LPA might no longer be valid anymore, and corrections or more so-
phisticated methods should be considered [111–113]. Furthermore, after the threshold of the
“dimensional crisis”, the number of relevant parameters and their canonical dimensions could
become very large for some noise models like MP. In this case, the very notion of truncation
could become problematic. Another issue concerns the formalism itself, based on an equilib-
rium field theory where configurations are weighted by a Boltzmann weight p[φ]∝ e−H[φ].
The assumption of equilibrium comes from the maximum entropy principle, but for a system
exhibiting a symmetry breaking of the microscopic Hamiltonian, the ergodic assumption that
the probability of finding the system in a certain state is given by Boltzmann’s law may be
questionable. A possible alternative could use a dynamical description, based on a fictitious
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Figure 34: Illustration of the compact region R0 (illustrated with purple dots) in the
vicinity of the Gaussian fixed point providing initial conditions ending in the sym-
metric phase. On the left: the region for purely i.i.d random tensors in the expansion
around χ = 0 (on the top) and around a running vacuum χ = κ (on the bottom). On
the right: the same regions when a signal build as a deterministic tensor is added.

time t, by constructing not spatial but temporal averages. The ergodicity breaking would then
correspond to the fact that the correlations do not cancel in the limit where the width of the
interval on which the averages are constructed tends to infinity.

Introducing such a dynamical model would interpret the field as a time-dependent variable,
whose dynamics would be governed by a disordered Langevin-type equation, the disorder
being given by the covariance matrix. Such a model would have to admit the field theory
discussed in this paper as a special case. The presence or absence of a signal would then
correspond to a breaking of ergodicity. Such models are reminiscent of spin glass physics, and
have been studied extensively in the literature [114–117], and recently by the renormalization
group [34].

Figure 35: Illustration of the evolution of the potential associated to the coupling u2,
u4 and u6 for a truncation around χ = 0, on the right without signal, on the left with
a signal. This example corresponds to specific initial conditions (in blue) taking in
the interior of the purple region. We illustrate different points of the trajectory, from
UV to IR respectively by the red, yellow, purple curves. The green curves correspond
to the ending point of the considered trajectory.
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Figure 36: Canonical dimensions for C8. On left, we illustrate the results for data
without signal and on right the results for data with the maximum intensity of signal
considered in our experiments.

Figure 37: Results obtained for the different covariance matrices (from C1 to C8)
considered in our experiments. These results indicate the amount of “shift” in the
canonical dimensions with respect to the intensity of the signal present in the data.
In details, we compute the sum of the mean over the learnable region (ΩCi

for each
covariance matrix) of the canonical dimensions corresponding to the first four even
local interactions (u4, u6, u8 and u10).

Finally, an important point of practical interest could be to understand how these theoret-
ical results could lead to new detection algorithms or the improvements of the existing ones.
For the moment, the leap seems too big, and a better understanding of the theory seems nec-
essary before such practical applications can be considered.
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A Symmetries and resummation for noisy nearly Gaussian
models∗

This section explores different aspects of the theory for a purely noisy signal near to the Gaus-
sian point. Here we formalize the case where the interactions are non local, anticipating
further investigations beyond the scope of this paper.
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A.1 Ward-Takahashi identities

In quantum field theory, the symmetries look like identities between correlations functions
given by Ward-Takahashi identities. We must now investigate such identities for the model
(38), focusing on the quartic model. Let us consider the generating functional:

Z[D̃, g,χ] :=
∫
[dΦ]e−

1
2

∑N
i, j=1φi D̃i jφ j−

g
4!

∑N
i=1φ

4
i +

∑N
i=1 χiφi . (A.1)

It is formally invariant under the global transformation:

φi → φ′i =
N∑

j=1

Oi jφ j , (A.2)

for O ∈ O(N), because the functional integral covers all the configurations for the field Φ. This
formal invariance, for infinitesimal transformations, can be expressed as a functional relation
between correlations functions - see [82] for more details. For an infinitesimal transformation
Oi j = δi j +ϖi j , with ϖi j = −ϖ ji along the Lie algebra of the rotation group O(N), the
variation of the partition function reads:

δZ =
〈
−

1
2

N∑
i, j=1

φi[ϖ, D̃]i jφ j −
g
6

N∑
i, j=1

ϖi jφ jφ
3
i +

N∑
i, j=1

χiϖi jφ j

〉
≡ 0 . (A.3)

The first term involves the commutator of the kinetic kernel with ϖ.

Effective Ward-Takahashi identities. If we consider a nearly Gaussian model for purely
noisy data, the matrix D̃ must have to be close to C−1 which, following our assumptions, is a
positive random matrix. In that way, we assume that eigenvalues and eigenvectors are closed
for these two matrices, the correction being given by equations (50) and (49). The matrix C
is in principle deterministic, but for a purely noisy signal it has no particular structure and,
following the original assumption of Wigner,30 C can by replaced by an element of a suitable
random matrix ensemble - like for Wigner or Wishart ensembles. The point is, that for large
N , these ensembles are essentially invariant by rotation in law meaning that C is as probable
as OCOT , or at least asymptotically for N →∞ for some rotation matrix O.

The statistical properties of the large matrix do not change if we apply a global rotation
on its elements. This is explicitly the case for Wigner and white Wishart ensembles,31 such for
all the noise models that we will consider in this article (see Section 5). Hence, for N large
enough, we expect the relevant features of the field theory to be essentially not sensitive to
the specific draw in the considered matrices universality class chosen to define the matrix D̃.
In particular, one expect the two realizations D̃−1 ≈ C and OD̃−1OT are indistinguishable by
the field theory. This observation can be translated by a formal equivalence relation:

Z[OD̃OT , g,χ]∼ Z[D̃, g,χ] . (A.4)

The symbol ∼ means that the two theories cannot be distinguished by their ability to describe
the correlations of the field Φ. From this point of view, the physically relevant object is the
equivalence class itself, defined by relation (A.4). We therefore will see that, in the neighbour-
hood of the Gaussian point, the theory projects itself as a class functional. The relation (A.2)
defines on the other hand a formal identification between points of the phase space, related by

30In its seminal papers, Wigner focused on the Hamiltonian of a nucleus with a large number of nucleons.
31Even for more general definitions of this ensemble, where rotational invariance holds only asymptotically.
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Figure 38: Qualitative illustration of the projection. We consider three draws for
the random matrix K , say A, B ≡ RO(A) and C ≡ RO′(A), such that kinetic kernels are
OKOT on B and O′KO′T on C for some orthogonal matrices O and O′, the above rela-
tion defining the maps RO and RO′ . The three planes materialize the theory space for
each draw, the solid edges (P1) and (P2) are equivalence class for fixed interactions
and the heavy solid edge (T ) is the global translation of fieldsφi → φ′i =

∑N
j=1 Oi jφ j ,

that we denote as RO(W ) (a global rotation acting on the interaction space W ). The
solid edge (D) on A materializes the equivalent class of models, defined by the equiv-
alence relation A∼ RO(A).

a global rotation in the space of parameters defining the theory. Indeed, we can view the quar-
tic coupling (g/4!)

∑
φ4

i as a specific value for the general coupling
∑

i, j,k,l wi jklφiφ jφkφl ,
assuming that tensor wi jkl transforms under rotations as:

wi jkl →
∑

p,q,r,s

wpqrsOpiOq jOrkOsl =: (O▷w)i jkl . (A.5)

We denote as W = (χ, D̃, w) and we introduce the map RO which converts some draw C as
RO(C) := OCOT and acts on RO(W ) := (O▷χ, O▷D̃, O▷w), where O▷D̃ := OD̃OT and O▷χ := Oχ.
We also indicate as Z[W ] the corresponding partition function,

Z[W ] :=
∫
[dΦ]e−

1
2

∑N
i, j=1φi D̃i jφ j−

∑N
i, j,k,l wi jklφiφ jφkφl+

∑N
i=1 χiφi , (A.6)

and the global translation invariance of the functional integral under transformation (A.2)
reads as:

Z[W ]≡ Z[RO[W ]] . (A.7)

With equivalence (A.3), identity (A.7) establish another equivalence, relying par-
tition functions having the same kinetic kernel but interactions transformed by O:
Z[(O▷χ, D̃, O▷w)] ∼ Z[(χ, D̃, w)]. Figure 38 illustrates the construction of the projection into
this equivalence class on models.

65

https://scipost.org
https://scipost.org/SciPostPhysCore.7.4.077


SciPost Phys. Core 7, 077 (2024)

Let us show that Z[W ] is a class functional regarding to the equivalence relation (A.7). If
we consider an infinitesimal transformation O = I +ϖ, equivalence (A.7) implies:〈

1
2

N∑
i, j=1

φi[ϖ, D̃]i jφ j

〉
∼ 0 , (A.8)

in other words:
N∑

i, j=1

[ϖ, D̃]i jC ji ∼ 0 , (A.9)

where 〈φiφ j〉 ≡ Ci j , the full propagator. This relation is trivially satisfied at zero order in ε.

Indeed, writing Ci j =
∑
µλµu(µ)i u(µ)j and neglecting the difference between u(µ) and ũ(µ)

(see (50)), the previous sum reads:32

N∑
i, j,l,µ=1

[ϖil D̃l j − D̃ilϖl j]u
(µ)
i u(µ)j λµ =

N∑
i, j,l,µ=1

ϖilu
(µ)
i u(µ)l −ϖl ju

(µ)
l u(µ)j

N
+O(ε) =O(ε) . (A.10)

This holds again at the first order in ε. Defining f (µ,ν) := εΞµν(λ̃µ − λ̃ν)−1 following equa-
tion (50), relation (A.8) at first order in ε reads as:

δε :=
∑

i, j,l,µ ̸=ν

f (µ,ν)
ϖil ũ

(ν)
i ũ(µ)l λµ −ϖl j ũ

(ν)
l ũ(µ)j λν

N
, (A.11)

which can be simplified as:

δε =
∑

i, j,µ ̸=ν

f (µ,ν)(λµ −λν)ϖi j ũ
(ν)
i ũ(µ)j = ε

∑
i, j,µ ̸=ν

Ξµνϖi j ũ
(ν)
i ũ(µ)j . (A.12)

Eigenvectors being delocalized, the missing term µ = ν must be of order 1/N , moreover∑
i, jϖi j ũ

(µ)
i ũ(µ)j = 0 as ϖi j is a skew symmetric matrix. Hence:

δε =
∑

i, j,µ ̸=ν

Ξµνϖi j ũ
(ν)
i ũ(µ)j =

∑
i, j,µ,ν

Ξµνϖi j ũ
(ν)
i ũ(µ)j =

∑
i, j

ϖi jΞi j = 0 , (A.13)

the last equality coming from the fact that Ξ is symmetric. Then Z[D̃,χ, g] is almost a class
function, at least is the vicinity of the Gaussian point.

This constraint has an impact in which the variation (A.3) becomes:

δZ =
N∑

i, j=1

ϖi j

〈
−

g
6
φ jφ

3
i +χiφ j

〉
= 0 . (A.14)

This equation must be true for allϖ along with the Lie algebra of the group O(N). Taking into
account that ϖi j = −ϖ ji , the previous equation implies:

−
g
6

(
G(4)iii j − G(4)j j ji

)
+
(
χi M j −χ j Mi

)
= 0 , (A.15)

32This can be derived more simply from the the observation that:

Tr [ϖ, D̃]D̃−1 = Trϖ[D̃, D̃−1] = 0 .
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where:

G(2n)
i1 i2···i2n

:=
1

Z[W ]χ=0

∂ 2nZ[W ]
∂ χi1∂ χi2 · · ·∂ χi2n

, and Mi :=
1

Z[W ]χ=0

∂ Z[W ]
∂ χi

. (A.16)

We are now investigating some consequences of this equation. Taking the first derivative
with respect to χl and set χ = 0, and assuming that M is small and discarding contributions
of order gM where M is small, we obtain:

−
N∑

l=1

(D̃jl G
(3)
il l − D̃il G

(3)
jl l ) +δil M j −δ jl Mi = 0 . (A.17)

At first order in M , we have:

G(2n+1)
i1,··· ,i2n+1

(M) = G(2n+1)
i1,··· ,i2n+1

(0) +
N∑

k=1

G(2n+2)
i1,··· ,i2n+1,k(0)Mk +O(M2) , (A.18)

and in particular, discarding contributions of order gM :

G(3)i jk =
N∑

l=1

(Ci jCkl + CikC jl + Cil C jk)Ml +O(gM) , (A.19)

leading to:

−M jCik +MiC jk −δk jCimMm +δkiC jmMm +δil M j −δ jl Mi = 0 . (A.20)

Then, summing over l and j, we get:

−M j

N∑
i,k=1

Cik + N M̄
N∑

k=1

C jk −
N∑

i,m=1

CimMm + N
N∑

m=1

CimMm + N(M j − M̄) = 0 , (A.21)

where M̄ :=
∑N

i=1 Mi . Exploiting rotational invariance for large N , we expect NCi j ≈
∑

i Ci j ,
and the previous equation reduces to:

(−M j + M̄)

 N∑
k,l=1

Ckl − N

≈ 0 , (A.22)

implying:

M j ≈
1
N

N∑
i=1

Mi . (A.23)

This equation holds for all j. In other words, each components of the classical field Mi self
averages, and equals to the means field M̄ . Hence, the classical field M inherits of the delo-
calization of the eigenvectors of the kinetic kernel D̃, which almost equals C−1. Note that the
derivation of these identities assumes N is large. Now, let us derive twice with respect to the
source, i.e. applying ∂ 2/∂ χk∂ χl on the left hand side of (A.15). Setting χ = 0, we get:

−
g
6

(
G(6)iii jkl − G(6)j j jikl

)
−
∑

m

(D̃imG(4)mjkl − D̃jmG(4)mikl)

+
(
δkiG

(2)
jl +δl iG

(2)
jk −δ jl G

(2)
ik −δk jG

(2)
il

)
= 0 , (A.24)
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where G(2)i j ≡ Ci j , and the last term comes from the second derivative of (A.8) (which is not
zero) and reads for χ = 0:

1
2

N∑
i, j=1

[ϖ, D̃]i jG
(4)
i jkm =

1
2

N∑
i, j,l=1

(ϖil D̃l j − D̃ilϖl j)G
(4)
i jkm

=
1
2

N∑
i, j,l=1

ϖil(D̃l j + D̃jl)G
(4)
i jkm

=
1
2

N∑
i, j,l=1

ϖi j(D̃jl G
(4)
ilkm − D̃il G

(4)
jlkm) . (A.25)

Schwinger-Dyson equations. Finally, let us show how these equations can be derived from
the assumption that fields vanish at the boundaries of the formal Lebesgue integral defining
the generating functional, better know as the Schwinger-Dyson equation (SDE). Recall that
SDE arising from the functional relation [82]:

Z[D̃, g,χ] :=
∫
[dΦ]

∂

∂ φi

(
φ j e−

1
2

∑N
i, j=1φi D̃i jφ j−

g
4!

∑N
i=1φ

4
i +

∑N
i=1 χiφi

)
≡ 0 . (A.26)

Computing derivative of each terms, we get:

δi j Z[D̃, g,χ]−
∑

m

〈φ j D̃imφm〉 −
g
6
〈φ3

i φ j〉+χi〈φ j〉= 0 , (A.27)

or:
δi j −

∑
m

D̃imG(2)mj −
g
6

G(4)iii j +χi M j = 0 . (A.28)

In the vicinity of the Gaussian point,
∑

m D̃imG(2)mj is almost δi j and the two first terms cancel.
Taking the skew symmetric part of the remaining terms, we recover the Ward identity (A.15).
Applying ∂ 2/∂ χk∂ χl on both sides of equation (A.27), and setting χ = 0 at the end, we get:

g
6

G(6)iii jkl +
∑

m

D̃imG(4)mjkl − (δi jG
(2)
kl +δil G

(2)
jk +δikG(2)jl ) = 0 . (A.29)

If we construct the skew symmetric part of that equation with respect to i and j, we get:

g
6
(G(6)iii jkl − G(6)j j jikl) +

∑
m

(D̃imG(4)mjkl − D̃jmG(4)mikl)− (δil G
(2)
jk +δikG(2)jl −δ jl G

(2)
ik +δ jkG(2)il ) = 0 ,

(A.30)
which is nothing but the Ward identity (A.24). The same thing remains true for higher corre-
lation functions.

A.2 Resummation for large N

In that section, we show how the quartic model can be formally solved in the large N limit. The
methods presented in this section and the following one have been quite extensively studied
in similar cases, where the dominant large N sector exhibits a branched structure [108,118].

We focus on the quartic model, with configuration field probability p(Ψ) given by:

p(Ψ) =
1
Z

exp

−1
2

N∑
µ=1

ψµλ̃
−1
µ ψµ −

g
8N

 N∑
µ=1

ψ2
µ

2 . (A.31)
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We denote as G := limN→∞ G(2) the relevant contributions to the effective propagator G(2).
From the definition we have G(2) := C , hence C →G in law in the large N limit.

First, let us show how we can obtain a closed equation for the 2-point function. In this
section we denote as Σ the leading order 1PI 2-point function. The diagrams forming Σ can be
obtained from the vacuum diagrams by cutting them by one line.33 Let us now consider the
vacuum diagrams in the N →∞ limit and try to define their structure by a recurrence on the
number of vertices p. For p = 1, there are two allowed configurations:

(A.32)

where the solid edges corresponds to Kronecker delta defining the quartic interaction and the
dotted edge materialize the Wick contractions with the free propagator D̃−1. We have the
following definition:

Definition 8 A face is a cycle made of a succession of dotted and solid lines. It can be closed or
open. The boundary ∂ f = {e} of a face f is defined as the set e of dotted edges building the face.

Each face involves a sum over eigenvalues, which is of order N , and each vertex carry a factor
1/N . The Feynman amplitudes AG in the perturbative expansion of partition function:

Z =
∑
G

AG , (A.33)

are then power countable, the amplitude AG labeled with the diagram G involving F faces
ans V vertices scaling as AG ∼ N F−V . We will define the degree of divergence of the
graph as ω(G) := F − V . The diagram on the left then involves two faces and scale as
1
N

∑
µ,νλµλν → N(

∫
µ(λ)λdλ)2 = O(N) (ω = 1) where, in contrast, the diagram on the

right involves only one and then scale as 1
N

∑
µλ

2
µ→

∫
µ(λ)λ2dλ=O(1) (ω= 0). Its contri-

bution is therefore overwhelmed by the one of the first diagram. For higher order diagrams we
introduce a new representation known as the intermediate field representation [108,119,120].
The rule is as follows: to each vertex we match a thick line, and to each face a “loop” vertex.
In that way, the two diagrams (A.32) read:

(A.34)

We will therefore proof the following statement:

Proposition 2 Relevant diagrams in the large N limit are trees in the intermediate field repre-
sentation.

The first step of the proof has be done, the relevant diagram to the first order being a tree (on
the left of the equation (A.34)). We consider a tree with n edges (i.e. a Feynman diagram
involving n vertices) whose 39 provides an example. Now let’s try to find out how to go from

33Recall that the lines in question are Wick’s contractions of the perturbation theory.
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Figure 39: A typical tree in the intermediate field representation. The dotted line
means that the tree continues.

a b c d

Figure 40: The four moves allowing to construct a n+ 1 tree from a n tree.

a tree of order n to a tree of order n+1. It is easy to convince oneself that only 4 moves allow
to do this, all listed in Figure 40. We will study each of them separately.

In intermediate field representation, each line costs 1/N and each vertex creates a factor N .
The configurations of types (c) and (d) preserve the tree structure, which add a line and create
a face. The variation of power count is thus null δω = 0. On the contrary, the configurations
(a) and (b) add a line without creating new vertices, so δω = −1. The proposition is then
proved, and the leading order amplitudes behave as AG ∼ N . The 1PI 2-point diagrams,
involved in the Feynman expansion of Σ, can then be obtained by “cutting” a dotted line in
a vacuum diagram. Because the operation destroys a face, we deduce that the corresponding
amplitudes must behave as N0 (ω= 0). The tree structure also implies that the cut line must
be on one of the leaves of the tree, otherwise the resulting diagram will not be 1PI. Thus, the
resulting diagram should have the following structure:

Ḡ

(A.35)

where the remaining graph Ḡ in the white disk corresponds to the part of the diagram minus
the vertex where the leaf has been opened.

It is not difficult to convince oneself that these graphs contribute to the 2-point function G.
In formula:

Σµν = −4δµν

(
g

8N

) N∑
µ=1

Gµµ→−
1
2

g
(∫

µ(λ)λdλ
)
δµν , (A.36)

where on the right-hand side, we take into account the factor 4 counting the number of inde-
pendent contractions accordingly to the one-loop diagram. Then, Σ is diagonal and this result
generalizes our previous conclusions (equation (53)): only the mass is shifted in the large N
limit.
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`1

G1

G2

G3
`2

`3

Figure 41: Typical leading order 4-point diagram.

In the same vein, 4-point diagrams can be resumed as a compact expression. Leading
order 1PI 4-point diagrams can be obtained from 1PI 2-point diagrams by opening a second
dotted edge, which for the same reason as above must be located on a leaf. For example, the
diagram 41 illustrates the general structure: the two “open” blue sheets labelled with a dotted
line are linked together by a single path L of minimal length formed by the red segments
L := (ℓ1,ℓ2,ℓ3). We will call this path the skeleton of the graph, the length L of the skeleton
being given by the number of segments constituting it, here L = 3. Each segment of the
skeleton is attached to the next by a vertex, to which one are attached related components
(G1, G2 and G3).

A moment of reflection shows that these components are actually diagrams involved in the
development of the two-point function G. All these contributions can be resumed in effective
loops where the propagator D̃−1 can be replaced by G. We define as π(4)p (µ1,µ2,µ3,µ4) the
vertex function34 corresponding to the resummation of trees which skeleton has length L = p
up to the replacement G→ C . The resulting diagram takes the form:

π
(4)
3 (µ1,µ2,µ3,µ4) =

µ1

µ2

C

C

C

C

µ3

µ4

+ perm, (A.37)

where perm denotes the permutation of external edges.
This can be formally rewritten as:

π
(4)
3 (µ1,µ2,µ3,µ4) =


C

C


2

µ1

µ2

µ3

µ4

+

µ1 µ2

µ3 µ4

+

µ1 µ2

µ3µ4

 . (A.38)

The loop integral factorizes outside and the external contributions are only products of Kro-
necker deltas. In formula:

π
(4)
3 (µ1,µ2,µ3,µ4) = γ3

g
N
Υ 2(δµ1µ2

δµ3µ4
+δµ1µ3

δµ2µ4
+δµ1µ4

δµ3µ2
) , (A.39)

where γ3 is a symmetry factor and Υ the strength of the loop,

Υ :=
g
N

N∑
µ=1

G2
µµ→ g

∫
µ(λ)λ2dλ . (A.40)

34I.e. with external propagators amputated.
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The symmetry factor γ3 can be computed using perturbation theory, for the leading order
two-loops diagrams involving three vertices. It corresponds to diagrams as (A.38), but with
C → D̃−1. Each vertex generates a factor −1/8. The permutation of positions for all the vertex
generates a factor 3!, which is exactly compensated by the factor 1/3! arising from the expan-
sion of the exponential. There is moreover an additional factor 2 per vertex, corresponding to
the two different orientations which do not affect the topology of the graph and an additional
factor 2 per loop, counting the number of contractions. We have therefore a factor 23 to count
all these permutations. Finally, each configurations for external edges, for instance (µ1,µ2)
on one side and (µ3,µ4) on the other side must be multiplied by 4 = 22, the configuration
(µ1,µ2) being equivalent to (µ2,µ1). Hence:

γ3 = −
1
4

. (A.41)

Generalizing the argument, it is not hard to check that:

γp :=
(−1)p

2p−1
, (A.42)

and π(4)p (µ1,µ2,µ3,µ4) must be read:

π(4)p (µ1,µ2,µ3,µ4) = −
g
N

(
−

g
2

∫
µ(λ)λ2dλ

)p−1

(δµ1µ2
δµ3µ4

+δµ1µ3
δµ2µ4

+δµ1µ4
δµ3µ2

) . (A.43)

The full 4-points vertex function Γ (4)(µ1,µ2,µ3,µ4) is then obtained by summing the contri-
butions from p = 1 to p =∞:35

Γ (4)(µ1,µ2,µ3,µ4) = −
∞∑
p=1

π(4)p (µ1,µ2,µ3,µ4) , (A.44)

which can be formally computed using (A.43), and we get:

Γ (4)(µ1,µ2,µ3,µ4) =
g/N

1+ g
2

∫
µ(λ)λ2dλ

(δµ1µ2
δµ3µ4

+δµ1µ3
δµ2µ4

+δµ1µ4
δµ3µ2

) . (A.45)

The effective coupling geff is then defined for vanishing external momenta, namely:

geff =
g

1+ g
2

∫
µ(λ)λ2dλ

. (A.46)

To conclude, in the limit where N is very large, it is easy to verify that the Ward identities are
identically verified. Let us consider the model (A.31) and the generating functional:

Z[χ] :=
∫

p(Ψ)exp

 N∑
µ=1

χµψµ

 dΨ , (A.47)

and apply an infinitesimal rotation on ψµ,

ψµ→ψ′µ :=ψµ +
∑
ν

εµνψν , (A.48)

where ε ∈ so(N). The path integral being invariant under such a global translation of fields,
we get: ∑

µ,ν

∫
dΨp(Ψ)e

∑N
µ=1 χµψµ

(
λ̃−1
µ ψµψν −χµψν

)
εµν = 0 , (A.49)

35The minus sign arise because we are aiming to define Γ (4)(0,0, 0,0) as the effective coupling constant.
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leading to: ∫
dΨp(Ψ)e

∑N
µ=1 χµψµ

(
(λ̃−1
µ − λ̃

−1
ν )ψµψν − (χµψν −χνψµ)

)
= 0 . (A.50)

Taking the second derivative for χ, and setting χ = 0 at the end of the derivation, we obtain:

(λ̃−1
µ − λ̃

−1
ν )G

(4)
µ1µ2µν

− (δµµ1
Cνµ2

+δµµ2
Cνµ1
−δνµ1

Cµµ2
−δνµ2

Cµµ1
) = 0 . (A.51)

Because Cµν = λµδµν, this is further simplified by:

(λ̃−1
µ − λ̃

−1
ν )G

(4)
µ1µ2µν

− (λν −λµ)(δµµ1
δνµ2

+δµµ2
δνµ1

) = 0 . (A.52)

We assume µ ̸= ν. The 4-point function G(4)µ1µ2µν
admits the following decomposition:

G(4)µ1µ2µν
= Cµ1µ

Cµ2ν
+ Cµ1ν

Cµ2µ
− Γ (4)µ1µ2µν

λµ1
λµ2
λµλν . (A.53)

We get:

(λ̃−1
µ − λ̃

−1
ν )λµλν − (λν −λµ) =

geff

N
(λ̃−1
µ − λ̃

−1
ν )λ

2
µλ

2
ν , (A.54)

or:
(λ̃−1
µ − λ̃

−1
ν )− (λ

−1
µ −λ

−1
ν ) =

geff

N
(λ̃−1
µ − λ̃

−1
ν )λµλν . (A.55)

This relation shows that the dominant corrections affect only the mass and that the corrections
to the wave function corrections cancels identically as N →∞. An explicit expression can be
obtained if we assume that p2

µ = Z p̃2
µ for small pµ. In that way, setting pµ = 0, we get:

1− Z =
1
N

geff

(m2)2
. (A.56)

It would have been different if the Ward identity had included an effective loop, compensating
the 1/N factor coming from the vertex. This loop does not appear for vector models, but it does
in tensor models for which Ward identities give non-trivial results [108,121–123].36 Although
this model is excessively simple and its resolution obvious, it is however inappropriate for
signal detection.
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[90] Vinayak, T. Prosen, B. Buča and T. H. Seligman, Spectral analysis of finite-time corre-
lation matrices near equilibrium phase transitions, Europhys. Lett. 108, 20006 (2014),
doi:10.1209/0295-5075/108/20006.

[91] C. De Dominicis and I. Giardina, Random fields and spin glasses, Cam-
bridge University Press, Cambridge, UK, ISBN 9780521847834 (2006),
doi:10.1017/CBO9780511534836.

[92] C. Itzykson and J.-M. Drouffe, Statistical field theory: Volume 1, Cambridge University
Press, Cambridge, UK, ISBN 9780521408059 (1991).

[93] C. Itzykson and J.-M. Drouffe, Statistical field theory: Volume 2, Cam-
bridge University Press, Cambridge, UK, ISBN 9780521370127 (1989),
doi:10.1017/CBO9780511622786.

[94] A. Wilkins, G. Rigopoulos and E. Masoero, Functional renormalisation group
for Brownian motion I: The effective equations of motion, (arXiv preprint)
doi:10.48550/arXiv.2008.00472.

[95] A. Wilkins, G. Rigopoulos and E. Masoero, Coarse graining in time with the func-
tional renormalization group: Relaxation in Brownian motion, Phys. Rev. E 106, 054109
(2022), doi:10.1103/PhysRevE.106.054109.

[96] K. Falconer, Fractals: A very short introduction, Oxford University Press, Oxford, UK,
ISBN 9780199675982 (2013).

[97] A. Messiah, Quantum mechanics, Dover Publications, Mineola, USA, ISBN
9780486409245 (1999).

[98] B. Delamotte, An introduction to the nonperturbative renormalization group, in Renor-
malization group and effective field theory approaches to many-body systems, Springer,
Berlin, Heidelberg, Germany, ISBN 9783642273193 (2012), doi:10.1007/978-3-642-
27320-9_2.

[99] F. Synatschke, G. Bergner, H. Gies and A. Wipf, Flow equation for supersymmet-
ric quantum mechanics, J. High Energy Phys. 03, 028 (2009), doi:10.1088/1126-
6708/2009/03/028.

[100] J. M. Pawlowski, M. M. Scherer, R. Schmidt and S. J. Wetzel, Physics and the choice
of regulators in functional renormalisation group flows, Ann. Phys. 384, 165 (2017),
doi:10.1016/j.aop.2017.06.017.

[101] I. Balog, H. Chaté, B. Delamotte, M. Marohnić and N. Wschebor, Convergence of non-
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